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Introduction

@ Markov random fields (undirected graphical models): central in many
application areas of science/engineering:
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Introduction

@ Markov random fields (undirected graphical models): central in many
application areas of science/engineering:

@ some fundamental problems
» counting/integrating: computing marginal distributions and partition
functions

> optimization: computing most probable configurations (or top
M-configurations)

» graph learning: fitting and selecting models on the basis of data
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Graph structure and factorization

® Markov random field: random vector (X7i,. .., X,) with distribution
factoring according to a graph G = (V, E):

@ Hammersley-Clifford theorem: factorization over cliques

Qz1,...,xp;0) = %e){p{ Z HC(J;C)}

cecC



Some pairwise graphical models

Zero pattern of inverse covariance

Q»—\
Ocn

@ p X p matrix of weights © = [04]
@ Ising model (Xi,...,X,) € {0,1}7:

Qz1,...,2p;0) = Z(l@) exp{ Z Osxs + Z Gstxsxt}.

seV (s,t)eE

@ Multivariate Gaussian (Xi,...,X,) ~ N(0,071):

det(©
Qz1,...,2p;0) = mexp(—;xTGx).



Some pairwise graphical models

3

Zero pattern of inverse covariance

1 5
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Some pairwise graphical models

1 2 Zero pattern of inverse covariance

4 1 2 3 4 5

@ p X p matrix of weights © = [04]
o Ising model (X3,...,X,) € {0,1}”:

1
Qz1,...,2p;0) = 70 exp { Z Osxs + Z Hstxsajt}.
seV (s,t)EE
@ Multivariate Gaussian (X1,...,X,) ~ N(0,07!):
) _ det(0O) 1 7
Qz1,y...,2p;0) = CSRE exp (— 7% Oz).



Graphical model learning

@ drawn n samples from

Q(z1,...,2p;0) = exp{ZHx + Z Osizswy }

seV (s,t)EE

@ graph G and matrix [0]s; = 04 of edge weights are unknown
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Graphical model learning

@ drawn n samples from

Q(z1,...,2p;0) = exp{ZHx + Z Osizswy }

seV (s,t)EE

@ graph G and matrix [0]s; = 04 of edge weights are unknown

o data matrix X7 € {0,1}"*? (or in X} € R™*P)

@ estimator X7 — 8)

Martin Wainwright (UC Berkeley) Learning in graphical models



Graphical model learning

@ drawn n samples from

1
Q(xl;-“axp;@) = Z((“)) eXp{ZQSQE§+ Z gstxsxt}

seV (s,t)eE

graph G and matrix [O]s; = 5 of edge weights are unknown

data matrix X7 € {0,1}"*? (or in X} € R"*P)

estimator X7 — 8)

various loss functions are possible:

» graph selection: supp[@] = supp[©]?
» bounds on Kullback-Leibler divergence D(Qg || Qo)
» bounds on ||© — O|op.
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Markov property and neighborhood structure

@ Markov properties encode neighborhood structure:

d
(Xs | X)) = (X | Xng)
—_— —_—
Condition on full graph Condition on Markov blanket

N(s) = {s,t,u,v,w}

@ basis of pseudolikelihood method (Besag, 1974)
@ basis of many graph learning algorithm (Friedman et al., 1999; Csiszar &
Talata, 2005; Abeel et al., 2006; Meinshausen & Buhlmann, 2006)
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Graph selection via neighborhood regression

-I Predict X, based on X\, := {Xj, t # s}.
X\s X
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-I Predict X, based on X\, := {Xj, t # s}.
X\s X

© For each node s € V, compute (regularized) max. likelihood estimate:

0 1 Z" (i)

0 = arg mi —— L(0; X + An |6

[8] I‘g eeRgil { n = ( \5 ) \_” |_/|1}
local log. likelihood regularization



Graph selection via neighborhood regression

-I Predict X, based on X\, := {Xj, t # s}.
X\s X

© For each node s € V, compute (regularized) max. likelihood estimate:

0 1 Z" (i)
0 = arg mi —— L(0; X + An |6
[8] I‘g eeRgil { n = ( \5 ) \_” |_/|1}
local log. likelihood regularization

© Estimate the local neighborhood N (s) as support of regression vector
0[s] € RP~1L,



Prob. success

Empirical behavior: Unrescaled plots

Star graph; Linear fraction neighbors
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Empirical behavior: Appropriately rescaled

Star graph; Linear fraction neighbors

o o
o)) o

©
~

Prob. success

0.2 ——p= 64
—o—p =100
-*-p=225
0 L T
0 1 15 2

Control parameter



Sufficient conditions for consistent Ising selection

@ graph sequences Gp.q = (V, E) with p vertices, and maximum degree d.
@ edge weights |0s¢| > Omin for all (s,t) € E

@ draw n i.i.d, samples, and analyze prob. success indexed by (n,p, d)

Theorem (Ravikumar, W. & Lafferty, 2006, 2010)
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@ graph sequences Gp.q = (V, E) with p vertices, and maximum degree d.
@ edge weights |0s¢| > Omin for all (s,t) € E

@ draw n i.i.d, samples, and analyze prob. success indexed by (n,p, d)
Theorem (Ravikumar, W. & Lafferty, 2006, 2010)

Under incoherence conditions, for a rescaled sample

n
YLr(n,p,d) = m > Yerit

and regularization parameter \, > c1 105” , then with probability greater than
1—2exp ( = czx\in) :

(a) Correct exclusion: The estimated sign neighborhood N (s) correctly
excludes all edges not in the true neighborhood.




Sufficient conditions for consistent Ising selection

@ graph sequences Gp.q = (V, E) with p vertices, and maximum degree d.
@ edge weights |0s¢| > Omin for all (s,t) € E

@ draw n i.i.d, samples, and analyze prob. success indexed by (n,p, d)
Theorem (Ravikumar, W. & Lafferty, 2006, 2010)

Under incoherence conditions, for a rescaled sample

n
YLr(n,p,d) = m > Yerit

and regularization parameter \, > c1 105” , then with probability greater than

1—2exp ( = czx\in) :

(a) Correct exclusion: The estimated sign neighborhood N (s) correctly
excludes all edges not in the true neighborhood.

(b) Correct inclusion: For Oy, > 63\/;0\,,, the method selects the correct
signed neighborhood.
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Some related work

thresholding estimator (poly-time for bounded degree) works with
n - 2% log p samples (Bresler et al., 2008)

information-theoretic lower bound over family G, 4: any method requires
at least n = Q(d? log p) samples (Santhanam & W., 2008)

{1-based method: sharper achievable rates, also failure for 6 large enough
to violate incoherence (Bento & Montanari, 2009)

empirical study: ¢;-based method can succeed beyond phase transition on
Ising model (Aurell & Ekeberg, 2011)

simpler neighborhood-based methods: thresholding, mutual information,
greedy-methods

» Anandkumar, Tan & Willsky, 2010a, 2010b

» Netrapalli et al., 2010

refined dependence on graph structure  (Anandkumar et al; talk later today)

“list-decoding” for graphical models (Vats & Moura, 2011)
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A challenge

The reality:

In practice, samples X = (Xi,..., X,) are not perfectly observed.
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A challenge

The reality:

In practice, samples X = (X, ...,X,) are not perfectly observed.

@ Examples:

» Missing data (e.g., voting records):

(X1 X2 X3 X4 ... Xp|=[0 1 % 1 ... 0].

» Noisy and corrupted data:

Z=X+W

@ standard methods for missing data (e.g., EM algorithm) lead to
non-convex problems

@ very difficult to provide rigorous guarantees



Gaussian case (linear regression)

Z7=2X\,

Predict y = X, based on other variables
Z =X\s:={X,, t #s}.

=X



Gaussian case (linear regression)

Predict y = X based on other variables
Z = X\s = {X,, t #s}.

Z =X\, y = X;

@ when (y, Z) is fully observed, solve problem

N 1 )
AS argmaln{%ﬂy— Z0)5+ Mall0ll }



Gaussian case (linear regression)

Predict y = X, based on other variables
Z =X\s:={X,, t #s}.

Z:X\s y=Xs

@ when (y, Z) is fully observed, solve problem

. 1 ~
0 e a,rgmein{gaTI‘G — (7, 0) + A6]l1} where I’ = % and § = Zy,
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Gaussian case (linear regression)

Predict y = X, based on other variables
Z =X\s:={X,, t #s}.

ZZX\S y:Xs

@ when (y, Z) is fully observed, solve problem

. 1 ~
0 e argmein{gaTI‘G — (7, 0) + A6]l1} where I’ = % and § = Zy,

n

@ more general family of estimators: let (I',7) be any unbiased estimators of

cov(Z;) € RP=DXP=Dand  cov(y; Z;) € RP7L



Example: Estimator for missing data
@ observe corrupted version Z € Rn*(P—1)

- {Xij with probability a
Zij =

* with probability 1 — a.



Example: Estimator for missing data
@ observe corrupted version Z € Rn*(P—1)

- {Xij with probability a
Zij =

* with probability 1 — a.

N
bq

N)
)ﬂ

N
)ﬂ

n n

<



Example: Estimator for missing data
@ observe corrupted version Z € Rn*(P—1)

- {Xij with probability a
Zij =

* with probability 1 — a.

@ Natural unbiased estimates: set x = 0 and Z := 0 _Za):
~ AN/ AWA ZT
r = fadiag( ), and 7 = y,
n n

@ solve optimization problem: 8 € arg ming {%HTIA“Q — (7, 0) + All6]l+ }-



Example: Estimator for missing data
@ observe corrupted version Z € Rn*(P—1)

Zij =

~ ) Xi; with probability
* with probability 1 — a.

@ Natural unbiased estimates: set x = 0 and Z := (I—Za):
~ AN/ AWA ZT
r = fadiag( ), and 7 = y’
n n

@ solve optimization problem: 8 € arg ming {%HTIA“Q — (7, 0) + All6]l+ }-

Challenge:

Matrix I" not positive semidefinite = non-convex program.




Theoretical guarantees on statistical error
@ take m i.i.d. samples multivariate Gaussian in p-dimensions
@ missing probability a € [0, 1)

@ inverse covariance matrix ©* € RP*P;

» bounded eigenspectrum
» at most d non-zero entries per row
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@ take m i.i.d. samples multivariate Gaussian in p-dimensions
@ missing probability a € [0, 1)

@ inverse covariance matrix ©* € RP*P:
» bounded eigenspectrum
» at most d non-zero entries per row

Theorem (Loh & W., 2011)

Solve non-convex program with regularization \, 7
probability greater than 1 — ¢ exp(—nA2):

(a) For all j € V, any global optimum satisfies ||0; — 0*[|2 3 1/%.
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Theoretical guarantees on statistical error

@ take m i.i.d. samples multivariate Gaussian in p-dimensions
@ missing probability a € [0, 1)

@ inverse covariance matrix ©* € RP*P;

» bounded eigenspectrum
» at most d non-zero entries per row

Theorem (Loh & W., 2011)

Solve non-convex program with regularization \, 7 10%. Then with
probability greater than 1 — ¢ exp(—nA2):

* 1 d 1
(a) For all j €V, any global optimum satisfies ||0; — 0*[|2 T 51/ L.
(b) Combining neighborhood estimates yields a global estimate s.t.:

. log
16 — 6% [lop 3 f d "




Operator norm error

Empirical results

(unrescaled)
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Operator norm error
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Projected gradient descent

Constrained objective: ot %V,C(Ot)

~ R
RS argngn{ﬁ ;E(Q; Z)}

£(0)

subject to ||0]|1 < pc.

With (inverse) stepsize 7

S WOEELZ )

@ stepsize v > 0 related to smoothness of objective function



Convergence for non-convex objective

log(1B8" - BI)
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Log error plot: missing data case
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Theoretical guarantee for non-convex objective

@ data drawn from Gaussian graphical model such that:

» maximum degree d
> inverse covariance © has bounded eigenspectrum

@ projected gradient descent with fixed step size: used to estimate row
0*=0; eR?
Theorem (Loh & W., 2011)
Forn (‘il_o—‘—;)’;, there is w.h.p. a contraction coefficient r € (0,1) such that

for any global optimum QA, the gradient descent iterates {0'}:2, satisfy

lo

I =B < wt I0°-B1F + 226073+ 18— 6r3
\ ” 1

T

Opt. error Statistical error

for all iterations t =0,1,2,. ...




Geometry of result

Optimization error At := ¢t — § decreases geometrically up to statistical
tolerance:

16+ —8)12 < k1160 — 8] + o [|6" — 6> ) for all iterations t = 0,1, 2, ..
—_——

Statistical error



Summary

@ graphical model learning: an interesting “inverse” problem
@ neighborhood-based approaches:

» polynomial-time, truly practical
» match information-theoretic limits up to constant factors
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o challenges for {missing, noisy, hidden } data:

» Gaussian case: non-convex methods have similar guarantees
» extensions to general variables?
» combination with fully hidden variables?
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Summary

@ graphical model learning: an interesting “inverse” problem
@ neighborhood-based approaches:

» polynomial-time, truly practical
» match information-theoretic limits up to constant factors

o challenges for {missing, noisy, hidden } data:

» Gaussian case: non-convex methods have similar guarantees
» extensions to general variables?
» combination with fully hidden variables?

@ geometry of statistical optimization: other guarantees in non-convex
settings?
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Some papers on graph selection

@ Ravikumar, P., Wainwright, M. J. and Lafferty, J. (2010).
High-dimensional Ising model selection using ¢;-regularized logistic
regression. Annals of Statistics.

@ Santhanam, P. and Wainwright, M. J. (2008). Information-theoretic
limitations of high-dimensional graphical model selection. Presented at
International Symposium on Information Theory, 2008.

@ Loh, P. and Wainwright, M. J. (2011). High-dimensional regression with
noisy and missing data: Provable guarantees with non-convexity. Arziv,
September 2011.
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