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Outline

• Belief Propagation in Computer Vision Applications.
• Convex vs. non-convex BP.
• What should we use?
• Some new theoretical results on ordinary BP



Stereo by Energy Minimization

Input Output

E(x) =
∑

i

Ei(xi) +
∑

<ij>

Eij(xi , xj)

data term Ei(xi) and smoothness term Eij(xi , xj) are
non-quadratic. Optimization is NP Hard (Boykov et al. 04)



Learning Energy Functions for Category-Specific
Segmentation

Training Set:

· · · · · ·

Novel Input:

(Borenstein and Ullman, 2002)



Energy Functions for Category-Specific Segmentation
Input

Output

x∗ = arg min
x

∑

i

Ei(xi) +
∑

<ij>

Eij(xi , xj)

Pairwise term Data Term
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Constructing the Data Term
Input Fragment

x∗ = arg min
x

∑

i

Ei(xi) +
∑

<ij>

Eij(xi , xj)

Search Space Data Term



Constructing the Data Term
Input Fragment

x∗ = arg min
x

∑

i

Ei(xi) +
∑

<ij>

Eij(xi , xj)

Search Space Data Term



Constructing the Data Term
Input Fragment

x∗ = arg min
x

∑

i

Ei(xi) +
∑

<ij>

Eij(xi , xj)

Search Space Data Term



Constructing the Data Term
Input Fragment

x∗ = arg min
x

∑

i

Ei(xi) +
∑

<ij>

Eij(xi , xj)

Search Space Data Term



Constructing the Data Term
Input Fragment

x∗ = arg min
x

∑

i

Ei(xi) +
∑

<ij>

Eij(xi , xj)

Search Space Data Term



Constructing the Data Term
Input Fragment

x∗ = arg min
x

∑

i

Ei(xi) +
∑

<ij>

Eij(xi , xj)

Search Space Data Term



Learning Formulation

· · · · · ·
Given training set and tens of thousands of fragments, choose
a small number of fragments, thresholds and weights.

Equivalent to Feature Induction in Conditional Random Fields
(Lafferty et al. 97, Lafferty et al. 2001)
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Feature Induction in CRFs

Training set:

E(x ; I) =
∑

<ij>

wij(I)|xi − xj |

+λ1‖x − xF1‖ +λ2‖x − xF2‖ +λ3‖x − xF3‖

λ∗ = arg max log P(x ;λ) + sparsity



Calculating Conditional Likelihood Exactly is
Intractable

Iteratively add fragment with highest likelihood gain:

Pr(x∗; E) =
1

Z (E)
e−E(x∗)

=
1∑

x e−E(x)
e−E(x∗)

• Give low energy to desired segmentations and high energy
to all other segmentations.

• “all other” : exponentially many.
• Need to evaluate likelihood gain for tens of thousands of

fragments.



Image Segmentation Using Normalized Cut
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Figure 5: Clustering two dimensional data points. (a) The lower and upper bounds on the optimal solution for average cut
after each iteration. (b) The spectral solution for average cut (c) The optimal average cut found using our method
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Figure 6: Clustering Images Derived from Olivetti Face Database. (a) The lower and upper bounds on the optimal solution
for average cut after each iteration. (b) Random sample of 25 faces from the larger part of the cut (810 images). (c) Random
sample of 25 faces from the smaller part of the cut (90 images).
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Figure 7: Image Segmentation. The lower and upper bounds on the optimal solution for average cut at each iteration, for
the (a) original (b) small size baby images and (e) man with a hat image. (c) the input baby image (d) the segmentation
result on the small image (f) the man with a hat input image. Segmentation results using: (g) the spectral method (h) our
method .

λ∗ = min
A,B

cut(A,B)

|A||B|
Linearized problem:

min
x∈{0,1}n

∑

<ij>

Eij(xi , xj) + λ|x ||1− x |



Inference in Graphical Models

Pr(x) =
1
Z

∏

i

Ψi(xi)
∏

ij

Ψij(xi , xk )
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Figure 6: Clustering Images Derived from Olivetti Face Database. (a) The lower and upper bounds on the optimal solution
for average cut after each iteration. (b) Random sample of 25 faces from the larger part of the cut (810 images). (c) Random
sample of 25 faces from the smaller part of the cut (90 images).
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Figure 7: Image Segmentation. The lower and upper bounds on the optimal solution for average cut at each iteration, for
the (a) original (b) small size baby images and (e) man with a hat image. (c) the input baby image (d) the segmentation
result on the small image (f) the man with a hat input image. Segmentation results using: (g) the spectral method (h) our
method .
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Figure 3: The Graphical Model. We have pairwise poten-
tials for pairs of nodes with edge between them and a global
node, the α node. The α node is connected to all the other
nodes and is a cardinality potential.

tioning. Defining the potentials: φα(x) = −λg(x) and

ψi,j(xi, xj) =
(

0 wi,j

wi,j 0

)
we can rewrite it as:

x∗ = arg min
x∈{0,1}n

∑

<i,j>

ψi,j(xi, xj) + φα(x) (1)

We can formulate this optimization problem using a graph-
ical model over binary random variables {xi}n

i=0. We de-
fine the MRF with the above potentials (see Figure 3 for
graphical view):

P (x) ∝
∏

<i,j>

exp(−ψi,j(xi, xj)) exp(−φα(x)) (2)

We wish to find x∗ = arg maxx P (x). In principle we can
use any inference algorithm for MRFs, but note that for the
bisection algorithm to work, it is not enough to solve the
λ question approximately. We need an algorithm that can
give a rigorous bound on the optimal solution.

A classical approach for obtaining bounds on the optimal
solution in such problems is linear programming relax-
ations (e.g. Wainwright and Jordan, 2008) but it is easy
to show that due to the high order potential φα(x), even
a first-order LP relaxation will have an exponentially large
state space. Instead we follow a number of recent works:
Tarlow et al. (2010), Weiss et al. (2007), Werner (2007),
Globerson and Jaakkola (2007) in which message passing
is used to solve the dual of the LP relaxation.

3.1 Convex Belief-Propagation Message Passing

We use the “default” convex belief propagation (BP) mes-
sages from Weiss et al. (2007, 2011). These are based on
approximating the joint entropy of all variables with a com-
bination of entropies over single variables and pairs of vari-
ables: H ≈ ∑

i ciHi + cαHα +
∑

<ij> Hij +
∑

i Hiα.

We choose ci = −deg(i)
2 , cα = −n + 1 , where deg(i)

is the degree of node i. It can be shown that this com-
bination yields a convex entropy approximation. Substi-
tuting these constants into equations 6.18-6.20 from Weiss
et al. (2011), using ρi = 2

deg(i)+2 , Fi,j = exp(−ψi,j) and
Fα = exp(−φα) we get the following message passing and
beliefs equations:

mi→j(xj) =

max
xi

Fi,j(xi, xj)
∏

k∈Nei(xi)

mρi

k→i(xi)m
ρi−1
j→i (xi) (3)

mi→α(xi) =

max
xi

F ρi

i (xi)
∏

k∈Nei(i)

mρi

k→i(xi)m
ρi−1
α→i (xi) (4)

mα→i(xi) = max
x\xi

Fα(x)
∏

k %=i

mk→α(xk) (5)

bi(xi) = F ρi

i (xi)
∏

k∈Nei(i)

mρi

ki(xi) (6)

bα(x) = Fα(x)
∏

j

mjα(xj) (7)

bij(xi, xj) = Fij(xi, xj)
bi(xi)bj(xj)

mji(xi)mij(xj)
(8)

biα(x) =
bi(xi)bα(x)

mαi(xi)miα(xi)
(9)

Given the messages and beliefs after each iteration we can
compute the labeling of xi as described in Kolmogorov
(2006): We order the nodes by the value of their maximal
belief in descending order, let S(i) be this order. We then
go by this order over the nodes choosing label x

∗(t)
i that

maximiazes:

x
∗(t)
i = arg max

xi

Fi(xi) +
∑

S(j)<S(i)

Fij(xi, xj)+

+
∑

S(j)>S(i)

m
(t)
ji (xi) + m

(t)
αi (xi) (10)

Using this computed labeling, x∗(t) , we can infer the prob-
ability (and the energy) after each iteration. It is shown in
Weiss et al. (2007) that at each iteration we can compute
the bound on the optimal solution:

MAP log Z MAP



Convex vx. non-convex BP

• Input: {Ψij ∝ e−Eij}
• Output: beliefs {bij}, {bi}

Iterate:

mij(xj)←
∑

xi

∏

k 6=j

mρki
ki (xi)m

ρij−1
ji (xi)Ψij(xi , xj)

• ρ = 1,standard BP.
• ρij < 1 “Tree-Reweighted/Fractional/Convex” BP (MPLP,

MSD,TRW)



Why is it called “convex” BP?
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H({qij ,qi}) =
∑

ij

cijH(qij) +
∑

i

ciqi

Bethe approximation: cij = 1, ci = 1− di . Usually non-convex.



Why is it called “convex” BP?

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
T=100.00

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
T=100.00

H({qij ,qi}) =
∑

ij

cijH(qij) +
∑

i

ciqi

ρi =
1

ci +
∑

j∈Ni cij

ρij = ρjcij



Why is it called “convex” BP?

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
T=100.00

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
T=100.00

H({qij ,qi}) =
∑

ij

cijH(qij) +
∑

i

ciqi

ρi =
1

ci +
∑

j∈Ni cij

ρij = ρjcij

mij(xj) ←
∑

xi

∏

k 6=j

mρki
ki (xi)m

ρij−1
ji (xi)Ψij(xi , xj)



So what should we use?
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Figure 5: Clustering two dimensional data points. (a) The lower and upper bounds on the optimal solution for average cut
after each iteration. (b) The spectral solution for average cut (c) The optimal average cut found using our method
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Figure 6: Clustering Images Derived from Olivetti Face Database. (a) The lower and upper bounds on the optimal solution
for average cut after each iteration. (b) Random sample of 25 faces from the larger part of the cut (810 images). (c) Random
sample of 25 faces from the smaller part of the cut (90 images).
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Figure 7: Image Segmentation. The lower and upper bounds on the optimal solution for average cut at each iteration, for
the (a) original (b) small size baby images and (e) man with a hat image. (c) the input baby image (d) the segmentation
result on the small image (f) the man with a hat input image. Segmentation results using: (g) the spectral method (h) our
method .

For stereo we successfully used max-product convex BP and
for segmentation sum-product convex BP. Mostly because of
cleaner theory.



Theory of convex BP:
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• no local minima (sum).
• bound on log Z (sum).
• connection to linear programming relaxation (max).
• bound on optimal assignment (max).
• certificate of optimality (max)

(Wainwright et al. 01, Vontobel and Koetter 06, Weiss et al. 07, Koller
and Friedman 09)



Sometimes excellent results with convex BP
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Algorithm Tsukuba Teddy Venus Aloe
TRW-S 0.97sec 33.31sec 0.6 127.38
GC-SWP - 32.14sec 10.46 43.13
GC-EXP 1.72sec 25.26sec 3.83 45.68
BP-S - - 0.92 -
BP-M 4.7sec - 7.06 -
BP-C2F 0.38sec 3.54sec 0.81 16.36

Table 1. Displays the time it takes each algorithm to first reach the
TRW-S’s lower bound up to a margin of 3%.

benchmarks. These problems are somewhat easier than the
stereo problems and all algorithms achieve less than 100.5
% of the optimum in about a second. Here the benefit of
coarse to fine BP is not as dramatic, and in the Penguin
image BP-C2F actually obtains slightly lower energy than
BP-S (although the final labelings are indistinguishable vi-
sually). On the house image, BP-C2F is faster and gives
lower energy than the other BP implementations and is also
much faster than TRW-S. This is in contrast with the perfor-
mance of coarse to fine BP reported in[10]. As mentioned
above, they did include a comparison to coarse to fine BP
(which they called BP-P) just for the denoising benchmarks
and found it consistently slower than TRW-S and with com-
parable energies to BP-M and BP-S. We believe this differ-
ence is due to our faster implementation (the Middlebury
web page does not include the code for BP-P) and perhaps
depends on the exact parameters of the energy function.

Figure 9 shows the results on the photomontage bench-
mark. Perhaps the most salient part of these results is the
poor match between low energy and visually pleasing re-
sults. Note that BP-S and TRW-S achieve at best a result
that is within 3000 % of the bound (i.e. 300 times worse
than the bound). Nevertheless the TRW-S result is visually
more pleasing than the swap result (which gets much lower
energy).

Since all the above results were for arbitrarily chosen en-
ergy functions, we performed additional experiments where
we attempted a much more exhaustive sampling of en-
ergy functions. We used the stereo energy function also
used in the comparison paper of [6] where the penalty for
two neighboring pixels having a different label is p × l ×
min(abs(lp − lq), m) if their intensity difference is less
than g and zero otherwise. Figure 11 shows a comparisons
in terms of final energy obtained (top) and time to achieve
103% of the lower bound (bottom). Consistent across a
wide range of parameters we find that (1) C2F-BP is not
only faster than BP-S but also gives lower energies and (2)
C2F-BP is faster than TRW-S or Graph-Cuts at achieving a
good solution.
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Figure 3. Here we see the results of running our code, i.e BP-
C2F vs the code of [10] on the same Stereo MRFs on the same
computer.

4

but sometimes not as good as BP...
(Szeliski et al. 08, Rosenberg and Weiss 11)



Other comparisons

Overall, the outcome of the experiments is that across
all settings, AP obtains better results than either
MPLP or DD, at a better run time. This is somewhat
disappointing, as both MPLP and DD come with
theoretical justification and convergence guarantees.

(Givoni et al. 11)

Despite these merits, in terms of quality of the
approximation, convex free energies are still often not
competitive with Bethe and in fact result in poorer
performance over a wide range of parameter settings.

(Meshi et al. 08)



Q: What should we use?
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Figure 5: Clustering two dimensional data points. (a) The lower and upper bounds on the optimal solution for average cut
after each iteration. (b) The spectral solution for average cut (c) The optimal average cut found using our method
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Figure 6: Clustering Images Derived from Olivetti Face Database. (a) The lower and upper bounds on the optimal solution
for average cut after each iteration. (b) Random sample of 25 faces from the larger part of the cut (810 images). (c) Random
sample of 25 faces from the smaller part of the cut (90 images).

1 2 3 4 5 6 7
0

1

2

x 10
−4

iteration

a
ve

ra
g
e
 c

u
t

 

 

upper bound

lower bound

1 2 3 4 5 6 7
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

iteration

a
ve

ra
g
e
 c

u
t

 

 

upper bound

lower bound

1 2 3 4 5 6 7
6.5

7

7.5

8

8.5

9

9.5

10

10.5
x 10

−3

iteration

a
ve

ra
g

e
 c

u
t

 

 

upper bound

lower bound

Figure 7: Image Segmentation. The lower and upper bounds on the optimal solution for average cut at each iteration, for
the (a) original (b) small size baby images and (e) man with a hat image. (c) the input baby image (d) the segmentation
result on the small image (f) the man with a hat input image. Segmentation results using: (g) the spectral method (h) our
method .

A: if you really need a bound, use convex BP.



Image Segmentation Using Normalized Cut
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Figure 5: Clustering two dimensional data points. (a) The lower and upper bounds on the optimal solution for average cut
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for average cut after each iteration. (b) Random sample of 25 faces from the larger part of the cut (810 images). (c) Random
sample of 25 faces from the smaller part of the cut (90 images).
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Figure 7: Image Segmentation. The lower and upper bounds on the optimal solution for average cut at each iteration, for
the (a) original (b) small size baby images and (e) man with a hat image. (c) the input baby image (d) the segmentation
result on the small image (f) the man with a hat input image. Segmentation results using: (g) the spectral method (h) our
method .

λ∗ = min
A,B

cut(A,B)

|A||B|
Linearized problem:

min
x∈{0,1}n

∑

<ij>

Eij(xi , xj) + λ|x ||1− x |



The λ question
Manuscript under review by AISTATS 2012

the form f(x)/g(x) where f(x) is the cut size and g(x)
is a function of the size of the partitions. We use a clas-
sical approach where we repeatedly solve the λ question:
minxf(x) − λg(x). The answer to the λ question tells us
whether the optimal solution is better than λ or not. Our
main insight is that we can solve the λ question efficiently
using recently developed techniques for Markov Random
fields (MRFs) with high order potentials (HOPs) (Tarlow
et al., 2010, Rother et al., 2007, Weiss et al., 2007). We
show that the specific form of the HOP is amenable to mes-
sage passing and show how to derive a bound on the opti-
mal solution from the messages. Our experiments show
that message passing often succeeds in solving the λ ques-
tion in short time. Using a bisection algorithm over λ we
succeed in improving the bounds on the optimal solution
and in some examples to find it.

2 Notations and Preliminaries

The set of points in an arbitrary feature space are repre-
sented as a weighted undirected graph G = (V,E), |V | =
n, where the vertices (or nodes) of the graph are the points
in the feature space, and edges are formed between pairs
of nodes. The weight on each edge, w(i, j) = wi,j , is a
function of the similarity (or affinity) between nodes i and
j. We use the notations d(i) =

∑
j wi,j for the sum of

edges of node i and deg(i) as the degree of vertex i. We
define as the neighbors of i, Nei(i), the set of nodes that
are connected to i by an edge. The Laplacian of the graph
is defined as L = (D −W ), where D is a n × n diagonal
matrix with d on its diagonal, and W is a n×n symmetrical
matrix with W (i, j) = wij .

The graph can be partitioned into two disjoint sets,
A, B s.t A∪B = V, A ∩ B = ∅ by simply remov-
ing edges connecting the two parts. The degree of
similarity between these two parts can be computed
as the total weight of the edges that have been re-
moved. In graph theoretic language, it is called the cut:
cut(A, B) =

∑
i∈A,j∈B wi,j . We will use the indicator

vector x ∈ {0, 1}n to indicate to which group each node
belong and get cut(x) =

∑
i,j xi(1− xj)wi,j .

2.1 Ratio Optimization Problems for Graph
Partitioning

We can find in several graph partitioning measures 2 oppo-
site goals: The first is minimizing the cut and the second
is maximizing some property (e.g. size) of the sets. Usu-
ally these two goals are combined to one ratio optimiza-
tion problem. We mention here graph partitioning mea-
sures which are ratio problems:

1. Average cut cut(x)
‖x‖ + cut(x)

(n−‖x‖) = n∗cut(x)
‖x‖(n−‖x‖)

2. Normalized cut cut(x)∑
i|xi=0 di

+ cut(x)∑
i|xi=1 di

=

Figure 2: The λ Question

∑
i di∗cut(x)∑

i|xi=0 di

∑
j|xj=1 dj

3. Cheeger cut cut(x)
min(‖x‖,min(n−‖x‖) .

2.2 The λ Question

We use a classical approach (Hochbaum, 2010) for max-
imizing a fractional objective function with positive de-
nominator (see figure 2). Given a problem of the form:
minx

f(x)
g(x) , we reduce it to a sequence of calls to an oracle

that provides the answer to the λ-question: Is minx f(x)−
λg(x) less than, greater than or equal to 0? If the answer
is equal to 0, the optimal solution to the original fractional
problem is λ and the same x∗ that minimizes f(x)−λg(x)
minimizes also the fractional objective function. If the an-
swer is less than zero, then the optimal solution has a value
smaller than λ and otherwise, the optimal value is greater
than λ. Assuming we have an initial upper bound - U , and
lower bound - L on the optimal solution, we can use a bi-
section method to find the optimal solution. Using the bi-
section method we can get as close as ε to the optimal so-
lution solving O(log(U−L

ε )) times the λ-question. There-
fore, if the linearized version of the problem, i.e. the λ-
question, is solved in polynomial time, then so is the ratio
problem.

3 The λ Question as a MRF

Although the λ question gets rid of the ratio
minxf(x)/g(x) and replaces it with the simpler form
minxf(x) − λg(x) we are still faced with minimizing
over x and the number of possible values of x is still
exponential in the graph size. The fundamental insight
behind our algorithm is that we can efficiently solve the
λ question by using message passing algorithms with
tractable high order potentials.

In order to solve the λ question for the three
cut problems mentioned above, we need to find
arg minx∈{0,1}n,‖x‖>0 cut(x) − λg(x). Notice that we
have turned to finding the argument that minimize the ob-
jective function since we will need it to get the parti-
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Figure 4: Energy and bound as a function of the iteration of the BP. (a) energy reached a value below zero→ the λ chosen
is greater than the optimal solution (b) bound reached a value above zero → the λ chosen is smaller than the optimal
solution (c) the bound coincides with the energy→ we have found the global optimum

3.4 Algorithm Summary

We summarize our algorithm for finding the optimal solu-
tion for graph partitioning with fractional objective func-
tion in Algorithm 1. Please notice that in order to solve the
λ question we usually do not need to find E∗

current exactly.
In order to know E∗

current is below zero all we need is to
find a specific x(t) for which E(x(t)) < 0 (see Figure 4a).
The bound gives us this service from the other end (Figure
4b). We compute the current energy and bound efficiently
every few iterations, usually, this allows us to terminate our
BP before its convergence. We will wait until convergence
when E∗

current = 0, in this case we will know we have
found the optimal solution (Figure 4c). We emphasize that
without the bound we could answer the λ question only in
cases where we found an example for which E(x(t)) < 0 .

4 Experiments

We used our method to find the optimum of average cut
problem on several benchmark problems: from clustering
two dimensional points, through image segmentation to fi-
nancial optimization. In all the experiments the input was
the symmetric affinity matrix containing the affinities be-
tween each pair of data points. Our initial upper bound was
the spectral solution (using zero as a threshold on the sec-
ond smallest eigenvector of the Laplacian to partition the
points) and the lower bound was the second smallest eigen-
value (the Fiedler value). We also provided to the method
the required interval between the upper bound to the lower
bound, if we achieved it we announced we got to the opti-
mal solution1.

Notice that for a fixed λ our method has a random compo-
nent - the first conditioned variable. It might be that in two
runs using the same λ one run of the algorithm will answer

1Using the bisection algorithm we cut by half the interval be-
tween the lower and upper bounds on each successful iteration.
Since the computer has limited accuracy we can announce that
we have found the optimal solution when the interval is small
enough.

the λ question and the other will not. Because of that, if our
algorithm did not succeed to answer the λ question we do
3 more trials before terminating the entire run announcing
we failed to find the optimal solution.

Though we did not put an effort in optimizing our code,
we mention here that running the experiments took from
several seconds (when the number of nodes, n was 25) to
several tens of minutes (n = 37, 376)

Clustering Two-Dimensional Data Points

The similarity between every pair of 25 two dimensional
data points was set to the exponent of the negative squared
distance between the points divided by σ2 = 6.25, that is,
wi,j = exp(−‖xi−xj‖2

σ2 ). We used the same two dimen-
sional data points as in Frey and Dueck (2007). As can be
seen in Figure 5 our method got the the optimal average
cut.

Clustering Images Derived from Olivetti Face
Database

We took the data for the faces images from Frey and Dueck
(2007): “Each 64×64 face image from the first 100 images
in the Olivetti database was smoothed using a Gaussian
kernel with σ=0.5 and then rotated by -10°, 0° and 10°
and scaled by a factor of 0.9, 1.0 and 1.1 (using nearest-
neighbor interpolation), to produce a total of 900 images.
To avoid including the background behind each face, a cen-
tral window of size 50×50 pixels was extracted. Finally, the
pixels in each 50×50 image were normalized to have mean
0 and variance 0.1. The similarity between two images was
set to the negative sum of squared pixel differences”. The
input affinities to our method were the exponent of the sim-
ilarities between images, which was just described, divided
by σ2 = 1.69. In this experiment our method proved that
the solution received from the spectral method is the opti-
mal average cut by improving the lower bound. The best
average cut divided the 900 images to 810 images of differ-
ent people and 90 images of the same person. The results
can be seen in Figure 6.
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Figure 5: Clustering two dimensional data points. (a) The lower and upper bounds on the optimal solution for average cut
after each iteration of the bisection algorithm. (b) The spectral solution for average cut for this problem. (c) The optimal
average cut found using our method
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Figure 6: Clustering Images Derived from Olivetti Face Database. (a) The lower and upper bounds on the optimal solution
for average cut after each iteration of the bisection algorithm. (b) Random sample of 25 faces from the larger part of the
cut (810 images). (c) Random sample of 25 faces from the smaller part of the cut (90 images).
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Figure 7: Image Segmentation. The lower and upper bounds on the optimal solution for average cut at each iteration of
the bisection algorithm, for the (a) original and (b) resized baby images and (c) ’a man with a hat’ image. (d) Baby input
image (e) Segmentation result on the resized image (f) ’A man with a hat’ input image. Segmentation results using: (g) the
spectral method (h) our method .
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Figure 7: Image Segmentation. The lower and upper bounds on the optimal solution for average cut at each iteration of
the bisection algorithm, for the (a) original and (b) resized baby images and (c) ’a man with a hat’ image. (d) Baby input
image (e) Segmentation result on the resized image (f) ’A man with a hat’ input image. Segmentation results using: (g) the
spectral method (h) our method .

For 92% of images we find the global optimum of average cut,
up to tolerance 0.1.



Interim Summary

• Sometimes convex BP is better, sometimes worse.
• If you really need a bound, use convex BP.
• More theory needed



Bounds from ordinary BP

Using reparametrization property of BP (Wainwright et al. 01).
Let bi ,bij be the BP beliefs at any iteration:

Pr(x) =
1
Z

∏

i

Ψi(xi)
∏

ij

Ψij(xi , xk )

=
1
Z2

∏

i

bi(xi)
∏

ij

bij(xi , xj)

bi(xi)bj(xj)

⇒

max
x

Pr(x) ≤ 1
Z2

∏

i

max
xi

bi(xi)
∏

ij

max
xi ,xj

bij(xi , xj)

bi(xi)bj(xj)

sometimes, we can show the bound is tight.

(Meltzer and Weiss, in preparation)



BP as coordinate descent on the bound

Proof We should first re-write the bound in terms of
messages, by substitute the beliefs with equations 8, 9.
If we do so, and assuming that each node has no more
than one incoming edge, we can see that all forward
messages (with respect to the scanning direction) are
canceled out, so we shall consider only backward mes-
sages.

The part of the bound which is dependent in the back-
ward message mj→i in the edge < i→ j > is:

f(mj→i) = max
xp,xi

rSLT
p→i (xp, xi) + max

xi,xj

rSLT
i→j (xi, xj)

where p notates the parent of node i. If i is the root
node, then rSLT

p→i (xp, xi) is reduced to ln bi(xi). This
term is bounded below:

f(mj→i) ≥ max
xi

(
max

xp

rSLT
p→i (xp, xi) + max

xj

rSLT
i→j (xi, xj)

)

It’s easy to see that (1) the message mj→i cancels
out from the lower bound to f(mj→i), and (2) using
BP update rule for mj→i, f(mj→i) achieves its lower
bound. We conclude that any message update by or-
dinary BP cannot increase the bound.

3.1 Frustrated Cycle

The performance of ordinary BP on graphs with con-
vex Bethe free energy was already explored [TBD: in-
sert references]. It is known that max-product BP con-
verges to the exact max-marginals on trees, and then
the MAP assignment can be extracted [TBD ref]. For
graphs with a single cycle, the existing analysis refers
to the fixed points of the max-product [TBD ref], but
indicates that the algorithm might not converge at all.

Our derivation of the bound can give us a different
view on the case of non-convergence. For example,
see the simple case of a frustrated cycle presented in
figure 1. Each pair of nodes prefers to have different
assignments as to maximize the pairwise potentials.
As we have an odd number of edges, it is impossible
to find such an assignment. Starting with a certain set
of initial messages (such as messages biased to prefer
one of the possible assignments of the neighbour), and
using a certain updating order (such as 1→ 2→ 3→
1), the messages will be flipped in each iteration to
prefer the opposite assignment, and the algorithm will
not converge.

What happens is that the algorithm moves between
different sets of messages with the same bound value,
which is not the optimal one. So BP indeed converges
with respect to the bound, while the messages oscil-
late.

Figure 2 shows the performance of BP on such a cy-
cle. The uniform messages provide the solution to the

Figure 1: An illustration of a frustrated cycle. The ta-
bles show pairwise potentials. It is impossible to find
an assignment x∗ that maximizes all pairwise poten-
tials.
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Figure 2: Frustrated cycle

LP, and if our initial point is close enough to this fixed
point, the algorithm converges and the bound coin-
cides with the LP. If we start with a large bias of the
messages, the algorithm gets stuck on a higher value.

4 Experiments

Figures 3, 4 and 5 demonstrate BP on 9x9 Ising model.
The nodes are divided into 2 parts, such that the local
potentials are (p1− p) with probability p and (1− pp)
with probability 1−p for left hand side, and in the right
hand side it is the other way around. The pairwise

potentials are constant, and equal to
(

1 0.1
0.1 1

)
for

each pair.

Figure 6 shows the simulation for two cycles. With
one set of α the bound is tight, while with the other

• When the graph contains at most one cycle, BP is
coordinate descent on the bound.

• Even when BP oscillates, the bound converges.



Locally tree-like graphs
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Figure 3: Ising model, 2D grid, 9x9, local potentials
randomized with p = 0.1, pairwise potentials constant
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Figure 4: Ising model, 2D grid, 9x9, local potentials
randomized with p = 0.05, pairwise potentials con-
stant
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Figure 5: Ising model, 2D grid, 9x9, local potentials
randomized with p = 0.01, pairwise potentials con-
stant
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Discussion

• Many successful applications of both convex and ordinary
BP.

• More theory needed.
• Bounds from ordinary BP.


