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Outline

Belief Propagation in Computer Vision Applications.
Convex vs. non-convex BP.

What should we use?

Some new theoretical results on ordinary BP



Stereo by Energy Minimization

E(x) = Z Ei(x) + Y _ Ej(xi,x)

<ij>

data term E;(x;) and smoothness term Ej(x;, x;) are
non-quadratic. Optimization is NP Hard (Boykov et al. 04)



Learning Energy Functions for Category-Specific
Segmentation

Training Set:

Novel Input:

(Borenstein and Ullman, 2002)



Energy Functions for Category-Specific Segmentation
Input

x* = arg mXin Z Ei(x;) + Z Eji(xi, X;)
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Pairwise term Data Term
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Constructing the Data Term

' Input Fragment
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Constructing the Data Term

Input Fragment
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I

<ij>

Search Space Data Term




Constructing the Data Term
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Constructing the Data Term
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Constructing the Data Term
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Constructing the Data Term
Input Fragment

x* _argmanE (x)+ > Ej(xi, x)
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Search Space Data Term




Learning Formulation

Given training set and tens of thousands of fragments, choose
a small number of fragments, thresholds and weights.



Learning Formulation

Given training set and tens of thousands of fragments, choose
a small number of fragments, thresholds and weights.

Equivalent to Feature Induction in Conditional Random Fields
(Lafferty et al. 97, Lafferty et al. 2001)



Feature Induction in CRFs

Training set:

+A1llx — xF, || +)\2HX Xk, ||

A* = argmaxlog P(x; \) + sparsity

+As)lX — X£||
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Calculating Conditional Likelihood Exactly is
Intractable

lteratively add fragment with highest likelihood gain:

Pr(x; E) = Z(E) e E0Y)

¥ e E

¢ Give low energy to desired segmentations and high energy
to all other segmentations.

e “all other” : exponentially many.

¢ Need to evaluate likelihood gain for tens of thousands of
fragments.



Image Segmentation Using Normalized Cut

. . Cut(A, B)
Yo RE Tas
Linearized problem:
min Ei(x;, x;) + A\ x||1 — x
min 37 Ejx,x) + AT - x|

<ij>



Inference in Graphical Models




Convex vx. non-convex BP

o Input: {W; o e~ Ei}
e Output: beliefs {bj}, {b;}
Iterate:

WOREDI N L AL ANCNIER)

Xi k]

e p = 1,standard BP.

e pj < 1“Tree-Reweighted/Fractional/Convex” BP (MPLP,
MSD,TRW)



Why is it called “convex” BP?

T=100.00 T=100.00

H({aj, ai}) Zc,, (a5) +Zc,q,

Bethe approximation: ¢; = 1, ¢; = 1 — d. Usually non-convex.



Why is it called “convex” BP?
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Why is it called “convex” BP?

T=100.00 T=100.00

H({qj, qi}) = Z ciH(q;) + Z Ciqi
ij i

1
Ci + 2 jeni Ci
pi = PiCj
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So what should we use?

For stereo we successfully used max-product convex BP and
for segmentation sum-product convex BP. Mostly because of
cleaner theory.



Theory of convex BP:

T=100.00 T=100.00

no local minima (sum).

bound on log Z (sum).

connection to linear programming relaxation (max).
bound on optimal assignment (max).

o certificate of optimality (max)

(Wainwright et al. 01, Vontobel and Koetter 06, Weiss et al. 07, Koller
and Friedman 09)



Sometimes excellent results with convex BP
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but sometimes not as good as BP...
(Szeliski et al. 08, Rosenberg and Weiss 11)



Other comparisons

Overall, the outcome of the experiments is that across
all settings, AP obtains better results than either
MPLP or DD, at a better run time. This is somewhat
disappointing, as both MPLP and DD come with
theoretical justification and convergence guarantees.

(Givoni et al. 11)

Despite these merits, in terms of quality of the
approximation, convex free energies are still often not
competitive with Bethe and in fact result in poorer
performance over a wide range of parameter settings.

(Meshi et al. 08)



Q: What should we use?
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A: if you really need a bound, use convex BP.
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Image Segmentation Using Normalized Cut

. . Cut(A, B)
Yo RE Tas
Linearized problem:
min Ei(x;, x;) + A\ x||1 — x
min 37 Ejx,x) + AT - x|
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The )\ question

E* =

min, f(x) — A\g(z) s.t g(x) > 0777

<0 =10 =0
E* < )\ E* =\ and E* > A
arg ming f(r) — Ag(r) = arg ming ’ge([rg



Solving the A\ question using convex BP
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Solving average cut on a benchmark

For 92% of images we find the global optimum of average cut,
up to tolerance 0.1.



Interim Summary

e Sometimes convex BP is better, sometimes worse.
e If you really need a bound, use convex BP.
e More theory needed



Bounds from ordinary BP

Using reparametrization property of BP (Wainwright et al. 01).
Let b;, b; be the BP beliefs at any iteration:

Pr(x) = % H Vi(x) H WX, Xk)

_ bij(xi; X;)
B Hb 1_Ib (xi)bj(x;)

)
bi(x;)

(Xi, X;
max Pr(x Hmaxb X; Hmax ” D /
Xi, X

sometimes, we can show the bound is tlght.

(Meltzer and Weiss, in preparation)



BP as coordinate descent on the bound

frustrated cycle (9 nodes)

% 0
message update

e When the graph contains at most one cycle, BP is
coordinate descent on the bound.

¢ Even when BP oscillates, the bound converges.



Locally tree-like graphs
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BP tends to improve the bound.



Discussion

e Many successful applications of both convex and ordinary
BP.

e More theory needed.
e Bounds from ordinary BP.



