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Multiobjective Optimization 
 
Decision making with multiple criteria (objectives). 
 
Evaluate different solutions from a design space and pick  
the “best” one according to the criteria of interest. 
 
Arises in many areas: economics, management, engineering,  
healthcare, biology, etc 

 
Only minimization objectives for this talk. 



Example (Bi-objective Shortest Path) 
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•  Graph G=(V, E). Each edge e has length l (e)  and cost c (e). Find 
the “shortest, cheapest” s - t path. 

25 s - t paths.  
Many of them 
incomparable. 
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the “shortest, cheapest” s - t path. 

25 s - t paths.  
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incomparable. 

•  Decision space: Z  subset of {0,1}|E| 
(characteristic vectors of s-t paths) 

•  Objectives: l, c  Q |E|
+ 

 
•  Objective space: 
X = {(x, y)R2

+| x =l⋅z, y =c⋅z, zZ} 
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Example (Bi-objective LP) 
Minimize two linear functions subject to a set of linear constraints. 
 
•  Decision space:       Z = { z  Rn x 1 |  A⋅z ≥ b, z ≥ 0n x 1 }  
      where                  A  Q m x n   and    b  Q 1 x m  
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Multiobjective Optimization 
Active research area with many applications in various diverse  
disciplines (economics, management, engineering, healthcare, etc). 
 
What does it mean to solve such a problem? 
 
§  One approach: Treat as single objective. 
 
§  Alternative approach: Pareto Set. 
 
 
 
       
 



Multiobjective Optimization 
Active research area with many applications in various diverse  
disciplines (economics, management, engineering, healthcare, etc). 
 
What does it mean to solve such a problem? 
 
§  One approach: Treat as single objective. 
 
§  Alternative approach: Pareto Set. 
 
 
 
“The set of undominated solution points in the objective space.” 
 



Pareto Set 
Discrete Space 
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Pareto Set (I) 
 
§  Represents “reasonable optimal choices” in the objective/design 

space. 

§  Contains optimal solutions for all possible combining functions. 

§  Decision maker can choose based on preferences. 
 
 
 

 



Pareto Set (II) 
 

But… 
 
§  Exponentially large (or infinite) even for two objectives.  
 
§  NP-hard to decide whether a point is in the Pareto set.  

 
 
 

 



“Representative” Approximation 
In practice, some kind of approximation is computed. 
 
 
Underlying goal:  
 
Efficiently compute  

a “good” approximation with “few” points.  
 



Examples 
 
•  Networking: Network routing with multiple QoS criteria. 

 
•  Databases: “Skyline Query” 

    (google scholar: “skyline, databases” returns ~10300 results) 
 

•  Healthcare: [Craft et al.--Medical Physics ’06] Approximating convex 
Pareto surfaces in multiobjective radiotherapy planning. 

 

•  Computer Aided Design, 
•  etc. 
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-Pareto Set 
-Pareto set [Papadimitriou – Yannakakis ’00]: 
§  A set of solutions P that approximately dominates every other 

solution.  
§  For any solution point s, there exists a point in P that is within a 

factor  of (1+) in all the objectives. 
 

 



-Pareto Set 
Discrete Space 
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Approximate Pareto Set 
-Pareto set [Papadimitriou – Yannakakis ’00]: 
§  A set of solutions P that approximately dominates every other 

solution.  
§  For any solution point s, there exists a point in P that is within a 

factor  of (1+) in all the objectives. 
 
“Always” exists a polynomially succinct one: ~ (m / ) d-1 

 
                                       #bits in objective functions       # criteria 
 
    
    
 
   



•  Divide objective space 
geometrically with ratio 
1+ into hyper-rectangles. 

•  Pick (at most) one point 
per rectangle. 

•  Number of points:  

            O ( (m / )d-1 ) 

Polynomial size -Pareto sets 

obj1 

obj2 

m = # bits in obj. values 

d = # objectives ratio 
1+ 

max 
value 

min 
value 



Efficient Constructibility – GAP primitive 
Theorem [Papadimitriou – Yannakakis ’00] 
An -Pareto set can be computed in polynomial time (for every >0) iff the  
following GAP problem can be so solved (for every  > 0) : 
   Given  an instance and bounds b1, b2, …,bd either: 

•  Find a solution point s with   si ≤ bi   for all i, or  
•  Decide that there is no solution with si ≤ bi / (1+ ) for all i  
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Discrete Linear Multiobjective 
Problems 

Theorem [PY’00]: We can construct an  -approximate Pareto set 
for a linear multiobjective combinatorial problem in polynomial 
time if the (single objective) exact version can be solved in 
pseudopolynomial time. 
 
Exact Version: Given an instance and an integer B in unary, is 
there a solution with value exactly equal to B ? 
 
Corollary: Shortest Path, Spanning Tree, Matching. 
 
Other applications in several related contexts: Stochastic 
Optimization, Smoothed analysis, Mechanism Design, … 
 
 



Approximate Pareto Set 
-Pareto set [Papadimitriou – Yannakakis ’00]: 
§  A set of solutions P that approximately dominates every other 

solution.  
§  For any solution point s, there exists a point in P that is within a 

factor  of (1+) in all the objectives. 
 
Always exists a polynomially succinct one: ~     (m / ) d-1 

 
                                       #bits in objective functions       # criteria 
 
The Succinctness Argument: Obtain a “good” approximation of  
the Pareto set with as few points as possible. 
 
     



“Representative” Approximation 
Two general goals: 
 
•  Primal Problem: Given an instance and >0, find an  
    “-approximation” to the Pareto set using as few points as 

possible. (“covering” problem) 

•  Dual Problem: Given an instance and k, find k points that 
approximate the Pareto set as well as possible, i.e. find the 
“best” k points. (“clustering” problem) 



Succinct approximate Pareto sets 
 
•  Approximate Pareto sets are not unique. Want one of 

(approximately) minimum cardinality. 
 
 
•  Problem 1 (Primal): Given an instance and an >0, construct 

an -Pareto set of (approximately) minimum cardinality k = 
OPT. 

 
•  Problem 2 (Dual): Given an instance and a bound k, find k 

points that form an -Pareto set  for the minimum possible . 



Two Objectives (Primal Problem) 
 
Theorem [Vassilvitskii-Yannakakis’04] For any bi-objective  
 problem with an efficient GAP routine, we can  efficiently  
 compute an -Pareto set with at most 3 OPT many points. 
 Moreover, the factor 3 is tight in general. 
 
 
Theorem [D-Yannakakis’07] For bi-objective shortest paths,  
spanning tree, matching (and other natural problems), we can  
efficiently compute an -Pareto set with at most 2 OPT many  
points. Moreover, the factor 2 is tight for these problems, i.e., it is  
NP-hard to do better. 
 



d Objectives 
Theorem [DY’07]: Let d be a constant. For any  
’ > , we can find an ’-Pareto set with O (d log OPT  OPT)  
points. For d=3, there is a constant factor approximation. 
 
 
[VY’04]: For the dual problem, can do log k approximation (for all d).  
 
Theorem [DY’07]:  For d = 3, there is a factor 9  
approximation for the dual problem. NP-hard to do better than 

3/2. 
 
Main Lemma [DY’07]: For any fixed d, an (a, b) - bicriterion  
approximation algorithm for the primal problem implies a  
c-approximation for the dual problem, where  
 

c = log b + a + 4. 



Main Open Problem 
•  Main Open Question: Is there a “constant” factor “bi-

criterion” approximation for 4 and more objectives? 

 

•  Conjecture: YES 

“For any fixed d, we can efficiently compute an  

(1+)d-cover whose size is at most 2dOPT” 
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Convex Space? 
In many settings, -Pareto set not the right notion of approximation. 
Convex objective space (e.g. Multiobjective LP, convex programs, etc.) 

Pareto Set y 
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Motivation (I) 
In many settings, -Pareto set not the right notion of approximation. 
Convex objective space (e.g. Multiobjective LP, convex programs, etc.) 

- Pareto Set y 
 

x 



Motivation (II) 
In many settings, -Pareto set not the right notion of approximation. 
Convex objective space (e.g. Multiobjective LP, convex programs, etc.) 

y 
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Motivation (III) 
In many settings, -Pareto set not the right notion of approximation. 
 
•  Convex objective space (e.g. Multiobjective LP, convex programs, 

etc.) 
 
•  Convexity can arise in various other ways. 

§  In several applications, points dominated by convex combinations of other 
points considered inferior. 

§  May actually want a representation of the “lower envelope”. 
§  The decision is randomized (mixed) and the figures of merit are the expected 

values of the objective functions. 
 
In these cases, we need an approximation of the convex Pareto set. 
 
 



Convex Pareto Set 
Convex Pareto Set: “Points not dominated by convex combinations  
of other points.” 
 



Convex Pareto Set 
Discrete Space 

 
Convex Space  
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Convex Pareto Set 
Convex Pareto Set: “Points not dominated by convex combinations  
of other points.” 
 
Studied  in “Parametric” Optimization. 
 
Chandrasekaran ’77;   Megiddo ’78;   Gusfield ’80; Carstensen ’83;   
Ruhe ’88;   … 



Approximate Convex Pareto Set 
 
-convex Pareto set (-CP) [D-Yannakakis’08]: 
§  A set of solutions CP whose convex combinations 

approximately dominate every other solution.  
§  For any solution point s, there exists a c.c. of points in 

CP  that is within a factor  of (1+) in all the objectives. 
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Approximate Convex Pareto Set 
 
-convex Pareto set (-CP) [D-Yannakakis’08]: 
§  A set of solutions CP whose convex combinations 

approximately dominate every other solution.  
§  For any solution point s, there exists a c.c. of points in 

CP  that is within a factor  of (1+) in all the objectives. 

 
•  -Pareto also -CP ; not vice-versa.  
•  -CP can be arbitrarily smaller than optimal -Pareto. 



Algorithmic Questions 
 
•  Question 0: Does a polynomial size -convex Pareto set 

always exist?  
 
•  Question 1: Under what condition is an* -convex Pareto 

set efficiently constructible?  
 

     *(any polynomial one; not necessarily the smallest one!) 

•  Question 2: Assuming that the condition is satisfied, can 
we efficiently compute an -convex Pareto of 
approximately minimum size? 

 
 



Existence (I) 
 
•  Question 0: Does a polynomial size -convex 

Pareto set always exist?  
 
 
 
 



Existence (II) 
 
•  Question 0: Does a polynomial size -convex 

Pareto set always exist?  

•  Easy answer;  
 
•  In fact, upper bound is ~ (m / √) d-1 

                                      [rescaling + adaptation of Dudley’74] 

 



Efficient Computability (I) 
 
•  Question 1: Under what condition is an* -convex Pareto 

set efficiently constructible?  
 
     *(any polynomial one; not necessarily the smallest one!) 

 

 



Efficient Computability (II) 
 
•  Question 1: Under what condition is an -convex Pareto 

set efficiently constructible?  

Theorem [DY’08, PY’00]: An -convex Pareto set can be computed  
in polynomial time iff the following “Comb problem” has a PTAS:  
Given w in Rd

+, minimize the combined objective  
v = w i f  = Σd

i=1 wi ⋅ fi. 

 
      
 

 



Comb Oracle (I) 
Illustration for d=2. 

y

x



Comb Oracle (II) 
Illustration for d=2. 

y

x
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Comb Oracle (III) 
Illustration for d=2. 
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x
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Comb Oracle (IV) 
Illustration for d=2. 

y

x

l



Comb Oracle (V) 
Illustration for d=2. 

y

x
l

( )Combq = l

q

Comb

l



Efficient Computability (III) 
Theorem [DY’08]: An -convex Pareto set can be computed in  
polynomial time iff the following “Comb problem” has a PTAS:  
Given w in Rd

+, minimize the combined objective  
v = w i f . 

Proof: 

(è) Best point of an -CP under v = Σi wi⋅fi  is an -approximate  
         optimum for v. 
 
(ç) Oblivious algorithm ; uses Od ((m /) d-1) queries to Comb (w) 
        and outputs an -CP. 



Efficient Computability 
Corollary: The following multi-objective problems have a PTAS  
for the construction of an -convex Pareto set: 
•  Shortest Path 
•  Spanning Tree 
•  Matching 
•  s-t Min-cut 
•  Linear Programs 
•  MDP’ s 
•  … 
                                              ------------------------------- 
 
•  Euclidean TSP 
•  Convex Programs 
•  … 

Exact Comb 

PTAS for Comb 



Succinct Approximation 
 
•  Question 2: Assuming that the condition is satisfied, can we 

efficiently compute an -convex Pareto of approximately 
minimum size? 

 
 
Problem Statement: Given a problem with d objectives that has a  
PTAS for Comb, an instance I and error , compute an  - CP with as 
few points (solutions) as possible. 



Results 

Primitive Performance Ratio 

Space d = 2 d = 3 d > 3 
(fixed) 

Unbounded 
d 

Exact 
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 log OPT 
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Ω (log n) 
(even for 
explicit) 

discrete 2 
PTAS for 

Comb 
convex 3 
discrete 6 
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2d – Explicit – Convex 
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Convex Pareto set CP 



2d – Explicit – Convex 
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Lower Envelope LE 



2d – Explicit – Convex 
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Scaled Lower Envelope 
LE’ = (1+ ) ⋅LE 



2d – Explicit – Convex 
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2d – Explicit – Convex 

Visibility w.r.t. LE’ 
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2d – Explicit – Convex 
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2d – Explicit – Convex 
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2d – Explicit – Convex 

Bit Complexity? 
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2d – Explicit – Convex 

Bit Complexity? 
Numerical Lemma-- 
Guarantees polynomial 
number of  bits. 

x 

y 
 



Bi-objective LP 
 
Theorem [DY’08]: Can compute an  - CP of optimal 

size OPT by solving 2· OPT Linear Programs. 
 

Main idea: 
•  Simulate Explicit Points Algorithm. 
•  Exploit LP-duality. 
 
 
 



General Case: Approximate Comb 
 
•  First compute a δ-CP for appropriate δ < . 
                             (using generic oblivious algorithm)  
•  Then post-process using explicit algorithm. 
 
Lemma [D-Y’08]: Let A in R2

+ be a set of points and  > 0.   
For all δ > 0 satisfying δ < (1+ )1/2 -1 ≈ /2 we have: 

|CP*(A, δ)| ≤  3⋅|CP* (A, )|  
 
 

•  Factor 3 for convex objective space, factor 6 for discrete. 



Minimize number of Queries 
 
 
In the general case, number of Comb calls is Ω (m/) … 
 
 
Problem Statement:  
 
 
Find an -CP using as few queries to the Comb oracle as possible. 
(online algorithm / competitive ratio). 
 
 
 
 



What would Archimedes do ? 

Archimedes Thoughtful (Fetti, 1620) 



What would Archimedes do ? 
[Daskalakis-D-Yannakakis’10]  

Analysis of a natural greedy 
heuristic for this problem. 

 
“Chord” Algorithm 

 
 
Also very popular in other settings. 
•  Convex function approximation 
           [BHR’91, Ro’92, YG’97, …] 
•  Curve simplification 
           [Ramer’72, Douglas-Peucker’73) 
•  Parametric Optimization [ES’79] 

Archimedes Thoughtful (Fetti, 1620) 



Illustration of Chord Algorithm 
 
Convex  
Curve C: 
 
 
 

 



Chord Algorithm (I) 
 
Find leftmost 
point of C: 
 
 
 



Chord Algorithm (II) 
 
Find rightmost 
point of C: 
 
 
 



Chord Algorithm (III) 
 
Initial  
Information: 
C in shaded  
triangle. 
 
 
 
 



Chord Algorithm (IV) 
 
Initial  
approx: 
segment ab. 
 
d (c, ab) ≤   
       ? 
 
 

a

bc



Chord Algorithm (V) 
 
                                                         q = point of C 
                                                         least well covered by ab 
 
 
 

a

bc

q



Chord Algorithm (VI) 
 
                                                        
 
                                                       q = Comb (slope of ab) 
 
 
 
 

a

bc

q

( )ab=l l



Chord Algorithm (VII) 
 
                                                     Lower approximation 
                                                      becomes finer. 
 
 
 

a

bc

( )ab=l l

q



Chord Algorithm (VIII) 
 
                                                         Same for upper  
                                                         approximation. 
 
 
 

a

bc

( )ab=l l

q

1c

2c



Chord Algorithm (IX) 
 
                                                         Recurse on  
                                                         two subproblems. 
 
 
 

 

a

bc

q

1c

2c



What would Archimedes do ? 
[Rote’ 92]  
“When approximating a parabola,  

the sequence of upper approximations  
is just the sequence which  

Archimedes used to exhaust the area  
of a parabolic segment in his second 

proof of the area formula.” 
 

Archimedes constructed his  
sequence of polygons according 

to the Chord algorithm. 

Archimedes Thoughtful (Fetti, 1620) 



Analysis of Chord Algorithm 
Theorem 1 [DDY’10]: The worst-case performance of the  
Chord algorithm is Θ (m/log m  + log(1/)/log log (1/)). 
 
 
                                                                                     
n points from “un-concentrated” 
product distribution  
 
Theorem 2 [DDY’10]: The average case performance of the  
Chord algorithm is Θ (log m + log log 1/). 



Optimal Algorithm ? 
 
Lower Bound [DDY’10]: No algorithm with access to a  
Comb oracle can have worst-case performance better than  
Ω (log m + log log 1/). 
 

                                                                                    
Is there is an algorithm  with worst-case performance  
O (log m + log log 1/) ?  Yes [D-Yannakakis’12] 
 
How about for more than 2 objectives? 
 



Open Problems 
 

•  d > 3 objectives?  

•  Faster algorithms for important combinatorial problems. 
 
•  Online learning of multi-objective problems.         

•  Merging approximate Pareto sets.                                      
 
•  Connections to other areas ? 



 
 
 

Any Questions? 
 



 
 
 

Thank you! 
 
 

 



Efficient Computability — Comparison 

PTAS for -Pareto 

PTAS for each objective 

PTAS for -convex Pareto 
e.g. convex programs, 
all linear problems with a 
PTAS for single objective 

e.g. shortest path, spanning  
tree, matching, etc. 

e.g. s - t min-cut 



Bi-objective LP 
 
Theorem: Can compute an  - CP of (optimal) size OPT,  
by solving 2OPT LPs. 
 
 
 
 
           
 
 
Recall notation: 
•  Decision space:       Z = { z  Rn1 |  A⋅z ≥ b, z ≥ 0n1 }  
•  Minimization Objectives: c , d  Q 1n 

•  Objective Space: X = {(x, y)  R 2+ | x =c⋅z, y =d⋅z, zZ} 
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Bi-objective LP 
Equation of line (pq) ? 
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Bi-objective LP 
Equation of line (pq) ? 

X (1+ ) ⋅X 

y 
 

x 

p

q



Bi-objective LP 
Suppose    (pq):     r* x + y = t* 

Claim: y (q) = min y 
 s.t. 
            r* x + y = t* 

             ---------------------- 
               x = c⋅z 
               y = d⋅z 
               z  Z 

 (x, y)  X 

y 
 

x 

p

q



Bi-objective LP 
  (x, y)  X: 
         r* x + y  t* / (1+ ) 

 
y 

 

x 

p

q



Bi-objective LP 
  (x, y)  X: 
         r* x + y  t* / (1+ ) 

  w   R1m
+ : 

  r* c + d  w⋅A 
 w⋅b  t* / (1+ 
) 

y 
 

x 

p

q



Bi-objective LP 
 

 
 r* = min r s.t. 
         r x (p) + y (p) = t 

          ------------------------- 

          r c + d  w⋅A 
          w⋅b  t / (1+ ) 
          w  0 
          ------------------------- 
           r  0 

y 
 

x 

p

q


