
The Complexity of Joint Computation

by

Andrew Donald Drucker

B.A., Swarthmore College (2006)

S.M., Massachusetts Institute of Technology (2010)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2012

c� Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 31, 2012

Certified by. .
Scott Aaronson

TIBCO Career Development Associate Professor
Department of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Students

2

The Complexity of Joint Computation

by

Andrew Donald Drucker

B.A., Swarthmore College (2006)

S.M., Massachusetts Institute of Technology (2010)

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Joint computation is the ubiquitous scenario in which a computer is presented with
not one, but many computational tasks to perform. A fundamental question arises:
when can we cleverly combine computations, to perform them with greater e�ciency
or reliability than by tackling them separately? This thesis investigates the power
and, especially, the limits of e�cient joint computation, in several computational
models: query algorithms, circuits, and Turing machines. We significantly improve
and extend past results on limits to e�cient joint computation for multiple inde-
pendent tasks; identify barriers to progress towards better circuit lower bounds for
multiple-output operators; and begin an original line of inquiry into the complexity
of joint computation. In more detail, we make contributions in the following areas:

Improved direct product theorems for randomized query complexity: The “direct
product problem” seeks to understand how the di�culty of computing a function on
each of k independent inputs scales with k. We prove the following direct product
theorem (DPT) for query complexity: if every T -query algorithm has success proba-
bility at most 1�" in computing the Boolean function f on input distribution µ, then
for ↵  1, every ↵"Tk-query algorithm has success probability at most (2↵"(1� "))k
in computing the k-fold direct product f⌦k correctly on k independent inputs from
µ. In light of examples due to Shaltiel, this statement gives an essentially optimal
tradeo↵ between the query bound and the error probability. Using this DPT, we
show that for an absolute constant ↵ > 0, the worst-case success probability of any
↵R

2

(f)k-query randomized algorithm for f⌦k falls exponentially with k. The best
previous statement of this type, due to Klauck, Špalek, and de Wolf, required a query
bound of O(bs(f)k).

Our proof technique involves defining and analyzing a collection of martingales
associated with an algorithm attempting to solve f⌦k. Our method is quite general

3

and yields a new XOR lemma and threshold DPT for the query model, as well as
DPTs for the query complexity of learning tasks, search problems, and tasks involving
interaction with dynamic entities. We also give a version of our DPT in which decision
tree size is the resource of interest.

Joint complexity in the Decision Tree Model: We study the diversity of possible
behaviors of the joint computational complexity of a collection f

1

, . . . , fk of Boolean
functions over a shared input. We focus on the deterministic decision tree model,
with depth as the complexity measure; in this model, we prove a result to the e↵ect
that the “obvious” constraints on joint computational complexity are essentially the
only ones.

The proof uses an intriguing new type of cryptographic data structure called a
“mystery bin,” which we construct using a polynomial separation between determin-
istic and unambiguous query complexity shown by Savický. We also pose a conjecture
in the communication model which, if proved, would extend our result to that model.

Limitations of Lower-Bound Methods for the Wire Complexity of Boolean Opera-
tors: We study the circuit complexity of Boolean operators, i.e., collections of Boolean
functions defined over a common input. Our focus is the well-studied model in which
arbitrary Boolean functions are allowed as gates, and in which a circuit’s complexity
is measured by its depth and number of wires. We show sharp limitations of several
existing lower-bound methods for this model.

First, we study an information-theoretic lower-bound method due to Cherukhin,
which gave the first improvement over the lower bounds provided by the well-known
superconcentrator technique for constant depths. (The lower bounds are still barely-
superlinear, however) Cherukhin’s method was formalized by Jukna as a general
lower-bound criterion for Boolean operators, the “Strong Multiscale Entropy” (SME)
property. It seemed plausible that this property could imply significantly better
lower bounds by an improved analysis. However, we show that this is not the case, by
exhibiting an explicit operator with the SME property that is computable in constant
depths whose wire-complexity essentially matches the Cherukhin-Jukna lower bound
(to within a constant multiplicative factor, for depths d = 2, 3 and for even depths
d � 6).

Next, we show limitations of two simpler lower-bound criteria given by Jukna:
the “entropy method” for general operators, and the “pairwise-distance method” for
linear operators. We show that neither method gives super-linear lower bounds for
depth 3. In the process, we obtain the first known polynomial separation between
the depth-2 and depth-3 wire complexities for an explicit operator. We also continue
the study (initiated by Jukna) of the complexity of “representing” a linear operator
by bounded-depth circuits, a weaker notion than computing the operator.

New limits to classical and quantum instance compression: Given an instance of
a decision problem that is too di�cult to solve outright, we may aim for the more
limited goal of compressing that instance into a smaller, equivalent instance of the
same or a di↵erent problem. As a representative problem, say we are given Boolean
formulas

1

, . . . , t, each of length n ⌧ t, and we want to determine if at least one

4

 j is satisfiable. Can we e�ciently reduce this “OR-SAT” question to an equivalent
problem instance (of SAT or another problem) of size poly(n), independent of t? We
call any such reduction a “strong compression” reduction for OR-SAT. This would
amount to a major gain from compressing

1

, . . . , t jointly, since we know of no way
to reliably compress an individual SAT instance.

Harnik and Naor (FOCS ’06/SICOMP ’10) and Bodlaender, Downey, Fellows, and
Hermelin (ICALP ’08/JCSS ’09) showed that the infeasibility of strong compression
for OR-SAT would also imply limits to instance compression schemes for a large
number of other, natural problems; this is significant because instance compression
is a central technique in the design of so-called fixed-parameter tractable algorithms.
Bodlaender et al. also showed that the infeasibility of strong compression for the
analogous “AND-SAT” problem would establish limits to instance compression for
another family of problems.

Fortnow and Santhanam (STOC ’08) showed that deterministic (or 1-sided error
randomized) strong compression for OR-SAT is not possible unless NP ✓ coNP/poly;
the case of AND-SAT remained mysterious. We give new and improved evidence
against strong compression schemes for both OR-SAT and AND-SAT; our method
applies to probabilistic compression schemes with 2-sided error. We also give versions
of these results for an analogous task of quantum instance compression, in which a
polynomial-time quantum reduction must output a quantum state that, in an appro-
priate sense, “preserves the answer” to the input instance. We give quantitatively
similar evidence against strong compression for AND- and OR-SAT in this setting,
albeit under less well-studied hypotheses about the relationship between NP and
quantum complexity classes. To prove all of these results, we exploit the informa-
tion bottleneck of an instance compression scheme, using a new method to “disguise”
information being fed into a compressive mapping.

Thesis Supervisor: Scott Aaronson
Title: TIBCO Career Development Associate Professor
Department of Electrical Engineering and Computer Science

5

Acknowledgments

This thesis was a long time in the making, and accordingly is indebted to many people.
First of all, I would like to thank my advisor, Scott Aaronson, for the innumerable
forms of support he has shown me over the years it’s been my privilege to know
him. Scott has always treated me as a colleague and an equal. He has always
enthusiastically invited me to explore the many wonderful ideas that have excited him
over the years, and has taught me a huge amount about computational complexity
and allied fields. At the same time he has placed faith in me to plot my own course
of research.

My collaborations with Ronald de Wolf were in many ways akin to a second
advisorship. In addition to sharing his scientific expertise, he generously shared his
time to help me develop as a writer and editor. His formidable skills and work ethic
have served as a model for me ever since.

I am grateful to Russell Impagliazzo for his kind support and guidance during
my first year of graduate study at UC San Diego. I thank Michael Sipser and Scott
Aaronson for each giving me valuable teaching opportunities at MIT, and for leading
by example with their own inspiring teaching.

Fellow students have supported me and taught me a great deal over the years.
Their guidance has come in many forms—from mathematical discussions, to practical
advice about school and life. (I regard many of these talented individuals more as role
models than as peers.) I have also valued their friendship and camaraderie through
the academic process. A very partial list of fellow students who’ve given me valuable
support and advice includes: Aleksander, Alexandr, Alex, Ankur, Ben, Bernhard,
Cynthia, Jing, Krzysztof, Mayank, Michael, Nathan, Rotem, Swastik, Thomas.

It would be impossible to do justice here to the many friends outside of my aca-
demic sphere who’ve brought me happiness and emotional support during my grad-
uate studies. I hope you know who you are and how much you’ve meant to me.

Most of all I am grateful to my whole loving family—especially my parents, Ron
Drucker and Erica Buhrmann, for their unconditional love and support—and to Anna
Torres, who was a loving partner, a steadfast friend, and a source of joy throughout
my graduate studies.

My grandfather, Donald Buhrmann (1920-2012), was a gifted artist and a thor-
oughly remarkable man; he has always served as a model of achievement, purpose,
and satisfaction in life for me. I am deeply saddened that he passed away shortly
before this thesis was completed. I hope it would make him proud.

6

This thesis is based on the following papers:

• A. Drucker. Multitask E�ciencies in the Decision Tree Model. In: IEEE

Conference on Computational Complexity (CCC 2009).

• A. Drucker. Improved Direct Product Theorems for Randomized Query

Complexity. Computational Complexity 21(2), 2012 (special issue for CCC’11).

Previous version in CCC’11; won Ronald V. Book award for Best Student Paper.

• A. Drucker. Limitations of Lower-Bound Methods for the Wire Com-

plexity of Boolean Operators. In: IEEE Conference on Computational

Complexity (CCC), 2012. Won Ronald V. Book award for Best Student Paper.

• A. Drucker. New Limits to Classical and Quantum Instance Compres-

sion. To appear in: IEEE Symposium on Foundations of Computer Science

(FOCS), 2012.

Copyright to each of the conference papers listed above is retained by IEEE, while

copyright for the journal version of the second listed paper is held by Springer. The

material in these papers is used here (in substantially modified and expanded form)

in accordance with my authors’ rights in the copyright agreements.

7

8

Contents

1 Introduction 15

1.1 E�cient joint computation . 15

1.2 Limits to computational synergies . 18

1.3 Disjoint inputs . 20

1.3.1 The disjoint-inputs intuition, and the direct sum and direct

product problems . 20

1.3.2 Background on the direct sum problem 25

1.3.3 Background on the direct product problem 29

1.4 Lower bounds for multiple functions of a shared input 33

1.4.1 The query and communication models 33

1.4.2 Circuit models . 34

1.4.3 The arbitrary-gates and linear algebraic circuit models 38

1.5 Other work in joint computation . 41

1.5.1 Joint compression of problem instances 41

1.5.2 Parallel repetition theorems for 2-prover games 43

1.5.3 Reductions and equivalences between operators and decision

problems . 44

1.5.4 The Baur-Strassen theorem 45

1.6 Our contributions . 46

1.6.1 Improved direct product theorems for randomized query com-

plexity . 46

9

1.6.2 A universality result for joint complexity in the decision tree

model . 47

1.6.3 Limitations of lower-bound methods for the wire complexity of

Boolean operators . 49

1.6.4 New limits to classical and quantum instance compression . . 50

2 Improved Direct Product Theorems for Randomized Query Com-

plexity 53

2.0.5 Results of this chapter . 53

2.0.6 Our methods . 57

2.0.7 Organization of the chapter 59

2.1 Preliminaries . 59

2.1.1 Randomized decision trees and query complexity 59

2.1.2 Binomial distributions and Cherno↵ bounds 61

2.2 Proof of Theorem 2.0.1 . 62

2.3 Tightness of the bounds in Theorem 2.0.1 66

2.4 Proof of Theorem 2.0.2 . 68

2.5 Threshold direct product theorems 69

2.5.1 A gambling lemma . 70

2.5.2 Application to threshold DPTs 73

2.5.3 Direct product theorems for learning tasks 77

2.6 Proof of the XOR lemma . 78

2.7 Direct product theorems for search problems and errorless heuristics . 81

2.7.1 Search problems . 81

2.7.2 Errorless heuristics . 84

2.8 A direct product theorem for decision tree size 86

2.9 DPTs for dynamic interaction . 88

2.10 Questions for future work . 93

2.11 Chapter acknowledgments . 94

10

3 Joint Complexity in the Decision Tree Model 95

3.0.1 Results of this chapter . 95

3.0.2 Comparison with Shannon entropy 97

3.0.3 Economic cost functions, computational models, and universality 98

3.0.4 Outline and methods . 100

3.1 Definitions and preliminary results 103

3.1.1 Vectors and economic cost functions 103

3.1.2 Decision trees and joint cost functions 104

3.1.3 Search problems and TUSPs 105

3.1.4 Set systems and hitting sets 109

3.2 Proof of Theorem 3.0.1 . 110

3.2.1 First steps . 110

3.2.2 Bins and mystery bins . 111

3.2.3 Application of mystery bins 113

3.2.4 Construction of mystery bins 116

3.3 Chapter acknowledgments . 120

4 Limitations of Lower-Bound Methods for the Wire Complexity of

Boolean Operators 121

4.1 Known lower-bound methods for wire complexity 121

4.1.1 The Strong Multiscale Entropy method 121

4.1.2 Two simpler lower-bound methods 123

4.2 Our contributions . 125

4.2.1 Limitations of entropy-based methods 125

4.2.2 Results on linear transformations 126

4.3 Preliminaries . 128

4.3.1 Wire complexity of operators 128

4.3.2 Representing linear operators relative to di↵erent bases 129

4.3.3 A hashing lemma . 129

4.4 Entropy and circuit lower bounds . 131

11

4.4.1 Entropy of operators . 131

4.4.2 Strong Multiscale Entropy . 132

4.5 Limitations of the SME lower-bound criterion 134

4.5.1 The DIR operator . 135

4.5.2 Establishing the SME property for DIR 136

4.5.3 E�cient bounded-depth circuits for DIR 138

4.6 Limits of Jukna’s entropy method, and a separation of depths 2 and 3 149

4.7 Representing random linear operators 151

4.8 Tightness of Jukna’s pairwise-distance lower bound for depth 2 155

4.9 The pairwise-distance method fails for depth 3 159

4.10 Easy bases for representing linear operators 160

4.11 Chapter acknowledgments . 163

5 New Limits to Classical and Quantum Instance Compression 165

5.1 Background and new results . 165

5.1.1 Instance compression and parametrized problems 165

5.1.2 Previous work: results and motivation 166

5.1.3 Our results . 169

5.1.4 Our techniques . 175

5.1.5 Organization of the chapter 182

5.2 Preliminaries I . 183

5.2.1 Statistical distance and distinguishability 183

5.3 Proof of Theorem 5.1.1 . 184

5.4 Preliminaries II . 192

5.4.1 Information theory background 192

5.4.2 Basic complexity classes and promise problems 194

5.4.3 Arthur-Merlin protocols . 195

5.4.4 Statistical zero-knowledge and the SD problem 196

5.4.5 f -compression reductions . 199

5.5 Parametrized problems and parametrized compression 200

12

5.5.1 Parametrized problems . 201

5.5.2 OR-expressive and AND-expressive parametrized problems . . 202

5.5.3 Parametrized compression . 205

5.5.4 Connecting parametrized compression and f -compression . . . 206

5.6 Technical lemmas . 207

5.6.1 Distributional stability . 208

5.6.2 Sparsified distributional stability 210

5.6.3 Building disguising distributions 213

5.7 Limits to e�cient (classical) compression 215

5.7.1 Complexity upper bounds from OR-compression schemes . . . 216

5.7.2 Application to AND- and OR-compression of NP-complete lan-

guages . 221

5.7.3 f -compression of NP-complete languages for general f 223

5.7.4 Limits to strong compression for parametrized problems . . . 224

5.7.5 Application to problems with polynomial kernelizations 225

5.8 Extension to quantum compression 229

5.8.1 Trace distance and distinguishability of quantum states 230

5.8.2 Quantum f -compression . 231

5.8.3 Quantum complexity classes 232

5.8.4 Quantum distributional stability 234

5.8.5 Building quantum disguising distributions 235

5.8.6 Complexity upper bounds from quantum compression schemes 236

5.9 Alternative proofs of distributional stability 237

5.9.1 A proof based on Raz’s lemma 237

5.9.2 A proof based on the Average Encoding Theorem 239

5.10 Our original distributional stability lemma 240

5.10.1 Entropy and the unreliability of compressive encodings 240

5.10.2 Bounds on the inverse entropy function 243

5.10.3 The lemma . 244

5.11 Proof of quantum distributional stability 246

13

5.12 Questions for further study . 250

5.13 Chapter acknowledgments . 252

14

Chapter 1

Introduction

1.1 E�cient joint computation

Joint computation is the ubiquitous scenario in which a computer is presented with

not one, but many computational tasks to perform. The question arises: when can we

cleverly combine computations, to perform them with greater e�ciency or reliability

than by tackling them separately?

Important real-world examples of joint computation are easy to identify. The

output of a typical piece of consumer software—say, a computer game—consists of a

constantly-updating monitor display of hundreds of thousands of pixel values. The

desired values tend to be highly correlated within spatial and temporal regions, lead-

ing to the strong potential for “synergies,” or joint savings, in their computation.

On a much larger scale, we also see striking examples of joint computation. Google,

the world’s largest online search engine, now processes billions of search queries a day

worldwide. At any given time, a significant fraction of these queries are concentrated

on a relatively small number of “hot” search terms. Such terms are identified and

“preprocessed” to reduce the amount of computation per search.1

Turning to a more theoretical setting, we can regard a well-defined computational

task as an example of joint computation whenever the desired output consists of

1For recent search-volume statistics, see [com10]. For more on how Google preprocesses the web,
see, e.g., [Aus06].

15

more than one bit. In every such case, we have the option to compute these bits

separately, but may benefit from computing them jointly. One caveat is that in

numerical or algebraic problems, and in associated algebraic models of computation,

it is often appropriate to regard a number (or field element) as “atomic.” Thus over a

ring R, we will consider a polynomial mapping like t! t2 as “single-output,” whereas

a mapping like t! (t, t2, t3) is distinctly “multiple-output.” We will also use the term

“operator” to refer to a mapping F : Sn ! (S 0)m, where S, S 0 are finite or infinite

sets and m � 1 (typically S = S 0).

From this expansive viewpoint, joint computation is a pervasive theme in comput-

ing. Many natural computational problems of interest are multiple-output. Moreover,

gains from joint computation have been at the heart of some of the most important

and celebrated algorithms:

• Sorting is an operator mapping n integers a
1

, . . . , an to n outputs—the same

values, in sorted order. Sorting algorithms have been studied and implemented

since before the dawn of the modern computing era [Knu73]. Fast sorting rou-

tines, such as MergeSort, Quicksort, and their relatives [Knu73], use O(n log n)

integer comparisons, compared to the ⇥(n2) used by näıve approaches, and have

led to enormous practical savings.

• The discrete Fourier transform (DFT) is a linear operator F : Cn ! Cn that

has numerous applications in science and engineering. While the obvious algo-

rithm requires ⇥(n2) arithmetic operations over C, the family of Fast Fourier

Transform algorithms implements the same operator in O(n log n) arithmetic

steps [FP11].

• Matrix multiplication, definable over any field or ring, is another fundamental

operator with diverse applications. While näıve multiplication of two n-by-n

matrices takes ⇥(n3) arithmetic steps, a series of ingenious algorithms begin-

ning with Strassen [Str69] gave polynomial speedups for matrices with field

elements. The current champion for asymptotic complexity, due to Vassilevska

Williams [Wil12], uses O(n2.373) arithmetic steps over any field. While this par-

16

ticular algorithm is not practically useful, techniques from this long line of work

have led to dramatic speedups in practice as well.

An important observation is that, for each of the operators listed above, the com-

plexity of the functions determining individual output values are well-understood, at

least in the most natural computational model for the problem at hand:

• For sorting, it is known that for any k 2 [n], we can find the kth-largest

value among a
1

, . . . , an—for example, the median value—using O(n) compar-

isons [BFP+73]. This is optimal up to a constant factor.

• For the DFT, any (fanin-two) algebraic circuit to compute a linear map f :

Cn ! C that depends nontrivially on all inputs must use n � 1 gates, sim-

ply to “gather” all the needed information in one place. Moreover, if scalar

multiplications are free then n� 1 gates are su�cient.

• Similarly, to compute an individual matrix entry of the product of two n-by-n

matrices requires an algebraic circuit of 2n� 1 gates.

For each of these problems, the best known algorithm is faster—by polynomial

factors—than the näıve approach of computing each output value separately. Thus,

in a sense, the algorithmic improvements for these key problems have been “all about”

e�cient joint computation.

In spite of this, the concept of e�cient joint computation is often omitted from

discussions of important themes in the design of algorithms. The widely-used intro-

ductory algorithms textbook of Cormen et al. [CLRS09], which covers fast algorithms

for sorting, median-finding, the DFT, and matrix multiplication, makes no explicit

mention of joint computation as a unifying theme in these algorithms. Indeed, no

standard, universally-recognized term seems to have emerged in the algorithms com-

munity for the concept of joint computation.

Why might this be? No conclusive answer can be given, but we may speculate. In

algorithms research, computations involving more than one bit of output are the norm

rather than the exception, and may be so familiar and common as to need no special

17

designation. Techniques for multiple-output computation actually form an essential

part of the toolkit for single-output problems as well, so that the study of these

two classes of problems is closely integrated. For example, in the algorithm-design

paradigm of dynamic programming [CLRS09, Chapter 15], to solve an instance of a

computational problem we first “embed” it within a larger family of related problem

instances, then solve all of them by an inductive approach that reuses information

between the multiple computations.

While dynamic programming is widely-applicable, it does not encompass all e�-

cient joint computation. It may be that joint computation is such a broad enterprise

that powerful universal techniques simply do not exist. This would help explain

the algorithms community’s focus on developing e↵ective tools for particular joint-

computational problems.

1.2 Limits to computational synergies

Running alongside the important algorithmic developments described above, there has

been a long tradition of significant research into the complexity of joint computation.

That is, complexity theorists have tried to identify inherent limits to computational

synergies for various multiple-output computational tasks. The present thesis falls

within this tradition of study; we will review past work of this type in Sections 1.2

to 1.5, then describe our own contributions in Section 1.6.

At the outset, however, it seems fair to say that joint computation receives rela-

tively little explicit, general discussion in complexity theory in comparison with other

major themes. As in the algorithms community, no catch-all term for this concept is

in wide use by researchers in complexity. When the complexity of joint computation

is discussed, it is often in connection with two fairly specific questions—the so-called

direct sum and direct product problems, which we will introduce in Section 1.3.

It seems likely that complexity theory’s longstanding focus on decision problems

as the usual objects of study has contributed to this state of a↵airs. Let us review

the usual (folklore) justification for this focus. First, for most practically-interesting

18

computational problems, the desired output is of length polynomially bounded in the

input length. One can “reduce” the study of such functions to that of decision prob-

lems as follows. To any function f : {0, 1}⇤ ! {0, 1}⇤ satisfying |f(x)|  poly(|x|),
we can associate a natural decision problem Lf ✓ {0, 1}⇤. The input to Lf is a binary

representation of a tuple hx, i, bi, with i 2 N, b 2 {0, 1}; we define

Lf := {hx, i, bi : |f(x)| � i and f(x)i = b} .

It is not hard to see that we can compute f(x) using poly(|x|) queries to an oracle for

Lf , all on inputs hx, i, bi of length |x|+O(log |x|). Similarly, computing membership

in Lf easily reduces to a single query to f itself. Thus, the complexity of computing

f on input length n is “essentially the same” as that of computing Lf on input length

n+O(log n), at least up to a polynomially-bounded multiplicative factor.

This does not give an exact equivalence between our function problem and the as-

sociated decision problem. However, for most problems of interest in complexity the-

ory, such as NP-hard function and decision problems, there is currently a huge (super-

polynomial) gap between the known upper and lower complexity bounds. From this

perspective, the lack of exact equivalences between function and decision problems

can be regarded as of secondary importance, and for this reason decision problems are

often treated as acceptably general objects of study in complexity theory. (This focus

has never been absolute, however; that would be a caricatured view of the field.)

The past several decades have seen an increasing theoretical interest in the “fine-

grained” complexity of problems—particularly within computational models that al-

low extremely fast or economical computation, such as parallel algorithms [JáJ92];

“property testing” algorithms, which query only a small fraction of the input [Gol10];

and “streaming” algorithms, which use little storage space and make a small number

of sequential passes over the input data [Mut05]. In these settings, where it is some-

times possible to prove asymptotically tight or nearly-tight bounds on the complexity

of computational tasks, the known “equivalence” between a general function prob-

lem f and its “decision version” Lf (as described above) must be regarded as rather

19

loose. Thus, our view is that taking a fine-grained approach to complexity theory,

within any computational model, also motivates a detailed study of the complexity

of multiple-output functions. We hope to see attention to this issue grow in years to

come.

With that said, we emphasize that a great deal of interesting research has ad-

dressed the complexity of joint computation. We will now give a (selective) overview

of past work in this area. To keep the discussion manageable and focused, we will

only aim to describe our general state of knowledge for certain important compu-

tational models, including query algorithms, communication protocols, and various

types of Boolean and algebraic circuits.2 We will not attempt to treat every computa-

tional model, or to describe the known lower bounds for every specific multiple-output

problem of practical interest.

In the complexity of joint computation, a useful if rough division can be made

between two broad lines of research, according to whether the multiple computational

tasks are defined with respect to disjoint inputs, or with respect to a shared input.

The disjoint-inputs scenario is more specific, and the historical roots of its study are

somewhat more recent. It has been influential within complexity theory, however,

and is currently a very active area of study. We will review this area first.

1.3 Disjoint inputs

1.3.1 The disjoint-inputs intuition, and the direct sum and

direct product problems

In the disjoint-inputs scenario, one studies operators of form

F (x1, . . . , xk) =
�
f
1

(x1), . . . , fk(x
k)
�

: Sk⇥n ! (S 0)k ,

2The query model will be formally introduced in Chapter 2, and the circuit models relevant to our
own results will be defined in Chapter 4. For background on communication models of computation,
the reader may consult [KN96].

20

where no pair of input vectors xi, xj share a variable in common. (We often consider

families {Fn} of such operators, one for each value of n > 0; in this case k may be

a parameter depending on n.) Here, the natural algorithmic approach is to compute

each fj(xj) separately, since the computational tasks appear to have nothing to do

with each other. It is tempting to suspect that this approach is always optimal, i.e.,

that joint computation of f
1

, . . . , fk does not yield benefits. We will refer to this idea

as the “disjoint-inputs intuition.” As we will see, there are several ways to formalize

it as a concrete hypothesis, even within a fixed computational model.

A great deal of research has explored the extent to which the disjoint-inputs

intuition is actually valid. This work has found that in some settings the intuition

can be confirmed completely; in other settings it can fail slightly, or fail badly; and in

still other settings the extent of its validity remains unknown. Despite its fallibility,

however, the disjoint-inputs intuition has been very fertile as a meta-hypothesis in

complexity theory, and has helped to inspire an impressive range of research.

Before we review this work, it will be helpful to describe some fairly uninteresting

senses in which the disjoint-inputs intuition fails; this will help clarify the proper focus

of study. First, suppose that x1, . . . , xk, while disjoint, are nevertheless correlated in

some strong fashion. One way to model this is to assume that the inputs x1, . . . , xk

do not take on arbitrary values, but are promised to obey some restriction; as a trivial

example, they might always satisfy x1 = . . . = xk. In this case, if we additionally have

f
1

= . . . = fm = f , then we gain decisively from joint computation, since we need

only evaluate f once and output m copies of the obtained value. This is clearly not

the situation that our disjoint-inputs intuition aims to address. Thus in the disjoint-

inputs scenario, if we do make a restriction on the admissible input-tuples (x1, . . . , xk)

to our computational problem, we only consider cases where this restriction involves

no dependence between the xjs, but can be expressed as a conjunction of restrictions,

each involving a single xj. For simplicity’s sake, however, in the review that follows

we will assume that all functions are total, and no such restriction is made on the

inputs.

As a similar failure of the disjoint-inputs intuition, if x1, . . . , xk are assumed to

21

be generated by some probability distribution that involves significant dependence

between the xjs, then we can enjoy the same kind of gains from joint computation.

Thus, we will generally focus on distributional input-settings where the inputs are

sampled from a product distribution with respect to the input blocks x1, . . . , xk. That

is, the distribution of each xj is statistically independent of
�
xj0
�
j0 6=j

. We do allow,

however, that the distribution over an individual input-vector xj may be non-product.

For the purposes of high-level discussion, we will use “independent inputs” to

refer, either to the setting where (x1, . . . , xk) are allowed to assume arbitrary values

(with no distributional assumption made), or to the setting where these vectors are

generated according to a product distribution with respect to the blocks x1, . . . , xk.

Following convention, we will refer to these input models as the “worst-case” and

“average-case” (or “distributional”) input models, respectively.

There is another uninteresting way in which the disjoint-inputs intuition can fail:

namely, it can fail if we measure an algorithm’s cost in terms of its usage of a reusable

resource, such as space usage by a Turing machine. For example, suppose we have

functions f
1

(x1), f
2

(x2) : {0, 1}n ! {0, 1}, each of which can be computed using

n bits of space. Then we can also evaluate f
1

(x1), f
2

(x2) using n bits of space,

by just computing each output bit separately and clearing the storage tape before

each computation. This e↵ect, which occurs in both the disjoint-input and shared-

input settings, can be viewed as a significant but conceptually-trivial gain from joint

computation. Thus, our focus will be on non-reusable resources such as running time,

or such as the number of circuit gates or wires used (in acyclic circuit models).

Once we focus attention to computational tasks where the xjs are “independent,”

in one of the two possible senses described above, the restriction that all fjs are equal

to some single function f (applied to multiple, independent inputs) does not reduce

the interest of the question, and does not seem to obscure any interesting issues. The

known counterexamples to the disjoint-inputs intuition can all be realized within this

restriction; also, results and conjectures become simpler to state and discuss when

we make this restriction. As a result, many authors have done so. We will follow

this practice, and will describe work in this area with attention to the case of a single

22

function f , evaluated on k inputs; we note at the outset that some of the known

results we describe either are proved for a more general setting involving multiple

distinct functions fj, or can be straightforwardly extended to such a setting.

If f(x) : Sn ! S 0 is any function and k 2 N, we let

f⌦k : Sk⇥n ! (S 0)k ,

the k-fold tensor product of f ,3 denote the mapping

f⌦k(x1, . . . , xk) :=
�
f(x1), . . . , f(xk)

�
.

We can now describe the two major lines of research investigating the disjoint-

inputs intuition. These two strands investigate two closely-related ways of formalizing

the disjoint-inputs intuition; these two approaches are known as the direct sum prob-

lem and direct product problem.

As a rough initial description, in the direct sum problem, one tries to prove (or

disprove) statements of the following form:

Suppose f(x) requires cost T to compute “satisfactorily.” Then, computing f⌦k

on k independent inputs requires cost T 0 to compute satisfactorily.

Such results, when true and provable, are known as direct sum theorems. Here,

T 0 is determined by T, k, and possibly by other properties of the function f itself.

The disjoint-inputs intuition suggests (sometimes falsely) that we may obtain a valid

statement with T 0 := Tk.

To investigate the direct sum problem, one has to choose a notion of a “satisfac-

tory” solution to a computational task. There are several options for what may count

as satisfactory:

1. Perfect solution: an algorithm that computes f(x) correctly on every admissible

input x to f .

2. Bounded-error solution for worst-case error: a randomized algorithm that suc-

3(also known as the k-fold direct sum or direct product of f)

23

ceeds “with high probability” on every admissible input x.

3. Distributional bounded-error solution: a (deterministic or randomized) algo-

rithm that succeeds with high probability when the input is drawn according

to some particular input distribution D. Here the success probability is taken

both over D, and over any randomness used by the algorithm itself. In this

setting, we compare the complexity of computing f on inputs from D with the

complexity of computing f⌦k on D⌦k, that is, on k inputs drawn independently

from D.

In the latter two cases, research on the direct sum question aims to compare the

complexity of computing f with the complexity of computing f⌦k, where the success

probability requirement defining a “satisfactory” solution is roughly equivalent for

the two tasks. Sometimes the equivalence is not exact—results may compare the

complexity of computing f with success probability .8 to the complexity of computing

f⌦k with success probability .9, say. (This sometimes makes results easier to prove;

examples of this can be found, e.g., in [BBCR10, JKS10]). Results of this type,

following items 2 or 3 above, can be stated in the following general form:

Suppose every algorithm using resources at most T has success probability at most

p in computing f . Then, every algorithm using resources at most T 0 has success

probability at most p0 in computing f⌦k on k independent inputs to f . (*)

Again, the probability may be with respect to a worst-case input model, or a

distributional one. As we have noted, research on the direct sum problem focuses on

the case p ⇡ p0, and aims to understand how large T 0 may be as determined by the

other parameters and by f itself.

The direct sum problem can be contrasted with the direct product problem. The

direct product problem also explores statements of form (*). A wide range of param-

eters is explored, but the characteristic focus is on proving results where p0 decays

exponentially as k grows; such results are conventionally referred to as direct product

theorems. The division between direct sum and direct product problems is not exact,

but it is fairly clear in practice and serves to indicate two distinct (but communicat-

24

ing) lines of research.

1.3.2 Background on the direct sum problem

Algebraic circuits

The direct sum problem was first studied in the context of algebraic circuits to com-

pute bilinear forms, with principal attention to bilinear forms over fields. These are

mappings

Q(x, y) : Fn1+n2 ! Fm ,

where F is a field, and where Q is linear in each of x, y whenever an input to the other

argument is fixed. Such mappings are computable by circuits using addition and

multiplication gates over F; one natural complexity measure for a bilinear form, the

multiplicative complexity of Q (which we’ll denote by C
mult

(Q)), is the least number

of non-scalar multiplication gates used in any algebraic circuit to compute Q.

The direct sum Q�Q0 of forms Q(x, y), Q0(x0, y0) is the form that evaluates each

of the pair on disjoint pairs of inputs. Strassen [Str73b] conjectured that the disjoint-

inputs intuition always holds in perfect strength here: C
mult

(Q � Q0) = C
mult

(Q) +

C
mult

(Q0). This has been verified for many classes of forms [FZ77, AFW81, FW84,

JT86, Bsh89] (see also [Bsh98]), but remains open in general. The conjecture fails for

algebraic computation over general rings; this was proved by Schönhage [Sch81], and

used as a tool in the development of improved algorithms for matrix multiplication.

For a recent review of this line of work, see [Lan12].

25

Boolean circuits

The disjoint-inputs intuition can fail dramatically for Boolean circuits. The first

example of this phenomenon was shown by Uhlig [Uhl74]. He showed that if f :

{0, 1}n ! {0, 1} is any Boolean function, and if r = r(n) satisfies log r = o
⇣

n
logn

⌘
,

then we can compute f⌦r using a Boolean circuit of (1+o(1))2n

n gates (over the basis

{^,_,¬}). Remarkably, for randomly chosen f , this is asymptotically equal to the

circuit size needed to compute a single copy of f ! (See [Juk12, Chapter 1] for this

latter fact.)

Another example of this type of behavior was shown, later but independently,

by Paul [Pau76]. Both Uhlig and Paul’s results only provide non-trivial information

about functions with super-polynomial circuit complexity. However, also appearing

in Paul’s paper (and attributed to a referee) is an example that applies to polynomial-

sized circuits. First, by a counting argument [Lup56], for each n there exists a linear

transformation L : Fn
2

! Fn
2

that requires ⌦
⇣

n2

logn

⌘
gates to compute in any (Boolean

or F
2

-linear) circuit. Now consider L⌦n : Fn⇥n
2

! Fn⇥n
2

; this operator corresponds to

left-multiplication by L, and can be computed by an F
2

-linear circuit of size n3�⌦(1) ⌧
n · n2

logn using Strassen’s algorithm [Str69] or any subsequent fast algorithm for matrix

multiplication.

The disjoint-inputs intuition does at least hold for the important subclass ofmono-

tone Boolean circuits: Galbiati and Fischer [GG81] showed that the monotone circuit

complexity C
mon

(f) satisfies C
mon

(f⌦k) = k · C
mon

(f).

Query algorithms and communication protocols

Let F be a (possibly non-Boolean) function defined over a Boolean input string x, and

let D(F) denote the minimum number of queries to compute function F . It is simple

to prove, and seems to be folklore, that the direct sum property holds in perfect

strength for deterministic queries: for all F, k, we have D(F⌦k) = k · D(F). This

result was generalized somewhat by Jain, Klauck, and Santha [JKS10]. The authors

also prove a direct sum theorem for randomized query complexity with respect to the

26

worst-case input model. Letting R"(F) denote the cost of computing F with error

probability at most " on any input, they show that for any 0 < " < "0, one has

R"0(F⌦k) = ⌦","0 (k ·R"(F)).

In the study of multiparty, distributed communication problems, an interesting

example of an asymptotic savings from jointly computing functions of independent

inputs was given by Stout [Sto86], in the model of “mesh computing with buses,” a

grid model of computation in which nodes have some limited broadcast capability.

The example he exhibits is fairly natural.

In the standard model of two-party communication protocols, the direct sum

problem was first raised by Karchmer, Raz, and Wigderson [KRW95], who showed

that for the deterministic communication complexity C(F) of a total function F ,

we have C(F⌦k) = ⌦
⇣
k
p

C(F)
⌘
provided C(F) is “reasonably large” with respect

to the input size n. This result was independently obtained by Feder, Kushilevitz,

Naor, and Nisan [FKNN95], who showed that for this result to hold, it su�ces that

C(F) � 2 log n. It remains open whether the
p

C(F) factor in this result can be

improved to C(F).

Feder et al. prove this result by appealing to a known relation between the de-

terministic and nondeterministic communication complexity, and showing that the

disjoint-inputs intuition holds in a strong way for the latter complexity measure.

This technique, of analyzing the computational complexity of F⌦k using a di↵erent,

“surrogate” complexity measure of F , has been a frequent theme in the study of the

direct sum and direct product problems. In the same vein, Karchmer et al. [KRW95]

also gave a lower bound on C(F⌦k) in terms of the logarithm of the rank of the

communication matrix for F .

Feder et al. also gave a strong direct product result for one-way deterministic

communication complexity, as well as an example of a failure of the disjoint-inputs

intuition: a partial function F where C(F) = ⇥(log n), yet C(F⌦k) = O(k) for certain

choices of k � log n. For randomized protocols, they show that a similar failure of

the disjoint-inputs intuition occurs for a total function, namely, the Equality function

EQ(x, y) := [x = y].

27

The next important development in the study of the direct sum problem for com-

munication complexity came in the work of Chakrabarti, Shi, Wirth, and Yao [CSWY01],

who gave a direct sum theorem for certain functions in the simultaneous message

model of (randomized) communication protocols. Perhaps more important than the

results were the techniques they developed, which identified a key complexity mea-

sure of a communication problem: its informational complexity (or information cost),

which, roughly speaking, is defined as the minimal amount of information about the

inputs that must be leaked to a third party eavesdropping on the communication

channel. (Here, the minimum is taken over all protocols solving the communication

problem with a desired success probability.) The authors showed that the informa-

tion cost lower-bounds the communication complexity, and obeys a perfect direct sum

theorem. Another key tool in this work was a method to compress communication

protocols having small information cost.

The ideas in this work were extended in several subsequent papers; notably, [JRS03,

HJMR10] obtained direct sum theorems for bounded-round randomized communica-

tion protocols. Recently Barak, Braverman, Chen, and Rao [BBCR10] made another

significant advance using related ideas. Working with a slightly di↵erent notion of in-

formation cost—the internal information cost, in which we measure information being

leaked between the two communicating parties rather than to an outside observer—

and using di↵erent protocol-compression techniques, they showed new direct sum

theorems that place no restriction on the number of rounds. These show that for

0 < " < "0, the randomized communication complexity R"(F⌦k) in the distributional

setting satisfies

R"(F
⌦k) · log

2

�
R"(F

⌦k)
�

= ⌦","0

⇣p
k ·R"0(F)

⌘
,

for any input distribution over inputs (x, y) to F . For input distributions where x, y

are independent, they show that

R"(F
⌦k) · polylog �R"(F

⌦k)
�

= ⌦","0 (k ·R"0(F)) .

28

It is open whether this latter result holds when (x, y) are not independent. More

recently, Braverman and Rao [BR11] have shown that this problem is essentially

equivalent to a question about the communication complexity of the so-called Cor-

related Pointer-Jumping problem, a problem whose definition involves no immediate

resemblance to the direct sum problem. Further connections between the computa-

tion of a function F on multiple instances and various measures of the information

cost of F are made in [BR11, Bra12].

1.3.3 Background on the direct product problem

Recall that in the direct product problem, we study the validity of statements of the

following form:

Suppose every algorithm using resources at most T has success probability at most

p in computing f . Then, every algorithm using resources at most T 0 has success

probability at most p0 in computing f⌦k on k independent inputs to f .

As mentioned earlier, in contrast to the direct sum problem for randomized al-

gorithms, the direct product problem is distinguished by its focus on statements in

which p0 exhibits some form of exponential decay as k grows. The strength of a direct

product theorem (or DPT) can be measured in terms of the dependence of the pa-

rameters T 0, p0 on T, p, k, and, possibly, on the function f itself. From a lower-bounds

perspective, we are interested in proving statements in which T 0 is as large and p0 as

small as possible, to establish that the k-fold problem is indeed “very hard.”

There is also an important variant of the direct product problem, in which we

are interested in computing the “k-fold XOR” f�k(x1, . . . , xk) := f(x1)� . . .� f(xk)

of k independent inputs to a Boolean function f ; here � denotes the sum mod 2.

An XOR lemma is a result which upper-bounds the success probability p0 achievable

by algorithms for f�k using T 0 resources, under the assumption that any algorithm

using T resources has success probability at most p.4 An obvious di↵erence from

4Terminology varies somewhat in the literature. For instance, what we call XOR lemmas are
called “direct product theorems” in [Sha03], and what we refer to as direct product problems are in
[Sha03] called the “concatenation variant.”

29

DPTs is that in an XOR lemma, p0 must always be at least 1/2, since f�k is Boolean

and the algorithm could simply guess a random bit. The hope is that (p0 � 1/2)

decays exponentially with k. Research on XOR lemmas has proceeded in parallel

with research on direct product theorems; the known results are of similar strength

(with some exceptions), and in some cases there are reductions known from XOR

lemmas to DPTs or vice versa (see [Ung09, IK10] for an overview and recent results

of this type).

The direct product problem has been studied extensively in models including

Boolean circuits (e.g., [GNW95, IW97, IJKW10]), communication protocols [IRW94,

Sha03, KŠdW07, LSŠ08, VW08], and query algorithms [IRW94, NRS99, Sha03, KŠdW07].

In all of these models, an optimal T -bounded algorithm which attempts to compute

f can always be applied independently to each of k inputs, using at most T 0 = Tk

resources and succeeding with probability p0 = pk, so these are the “ideal,” strongest

parameters one might hope for in a DPT. However, direct product statements of such

strength are generally false, as was shown by Shaltiel [Sha03], who gave a family

of counterexamples which applies to all “reasonable” computational models. We will

describe these examples (specialized to the query model) in Section 2.3 of Chapter 2.5

Thus, all DPTs shown have necessarily been weaker in one of several ways. First,

researchers have restricted attention to algorithms of a special form. Shaltiel [Sha03]

showed a DPT with the “ideal” parameters above holds for the query model, if the

algorithm is required to query each of the k inputs exactly T times. He called such

algorithms “fair.”6 A similar result for a special class of query algorithms called

“decision forests” was shown earlier by Nisan, Rudich, and Saks [NRS99].

Second, DPTs have been shown for unrestricted algorithms, but using resource

bounds whose strength depends on properties of the function f . These results require

the resource bound T 0 to scale as D(f)k, where D(f) is a complexity measure which

5Shaltiel calls a DPT “strong” if it applies to all p, T and its parameters satisfy p0  p⌦(k)

and T 0 � ⌦(Tk). His counterexamples rule out strong DPTs for most computational models. In
later works, the modifier “strong” has been used in a somewhat broader way. We will not use this
terminology in this thesis.

6Actually, Shaltiel proved, in our terms, an optimal XOR lemma for fair algorithms, but as he
noted, this implies an optimal DPT, and his proof method can also be modified to directly prove an
optimal DPT for fair algorithms.

30

can be significantly smaller than the resources needed to compute a single instance of

f . (We have already mentioned results of a similar type in the direct sum literature.)

For example, Klauck, Špalek, and de Wolf [KŠdW07] (improving on earlier work of

Aaronson [Aar05]) showed that for any f and any � > 0, a DPT holds for f in

which the achievable worst-case success probability p0 is at most (1/2 + �)k, provided

T 0  ↵ · bs(f)k for some constant ↵ = ↵(�) > 0. Here bs(f) is the block sensitivity

of f [Nis91, BdW02], a complexity measure known to be related to the randomized

query complexity by the inequalities R
2

(f)1/3  bs(f)  R
2

(f) (suppressing constant

factors). Now, one can always compute f correctly on k instances with high probabil-

ity using O(R
2

(f)k log k) queries. For many functions, including random functions,

bs(f) = ⇥(R
2

(f)) so in these cases the DPT of [KŠdW07] gives a fairly tight result.

However, examples are known [BdW02] where bs(f) = O(
p
R

2

(f)), so the number of

queries allowed by this DPT can be significantly less than one might hope.

Klauck, Špalek, and de Wolf also proved DPTs for quantum query algorithms

computing f , in which the worst-case success probability p0 drops exponentially in k

if the number of allowed quantum queries is O(
p
bs(f)k). For symmetric functions,

direct product theorems of a strong form were proved for quantum query complexity

by Ambainis, Špalek, and de Wolf [ASdW09]. Špalek [Š08] proved a DPT for quan-

tum query algorithms where the resource bound T 0 scales in terms of a complexity

measure called the multiplicative quantum adversary. Quite recently,7 a sequence of

works [She11, AMRR11, LR12] dramatically advanced our understanding of the di-

rect product problem in the quantum query model. This culminated in a DPT for

quantum queries due to Lee and Roland [LR12] in which the success probability de-

cays exponentially even as the query bound scales as ⌦(Q
2

(f)k). Here, Q
2

(f) is the

bounded-error quantum query complexity of a (possibly non-Boolean) function f .

In the model of communication protocols, several types of results have been shown.

DPTs have been given for specific functions: e.g., in [KŠdW07] a DPT was proved for

the quantum communication complexity of the Disjointness function, and a classical

analogue was proved by Klauck [Kla10]. On the other hand, general DPTs have

7(after a preprint of our paper [Dru12] appeared)

31

been given, whose resource bound scales in terms of complexity measures that may

be significantly smaller than the communication complexity of f . For example, in

communication complexity, DPTs have been shown whose strength is related to the

so-called discrepancy of f [Sha03, LSŠ08].

Recently, there has been significant progress in the communication model. In

the public-coin randomized setting, Jain showed a strong general-purpose DPT for

one-way communication [Jai10a] and a DPT for two-way communication [Jai10b]

whose strength depends on a new complexity measure (see also [JPY12]). Sher-

stov [She11] gave a new DPT for quantum communication, whose resource bound

scales as ⌦(GDM
1/5(f)k), where GDM

1/5(f) is the lower bound on quantum com-

munication complexity obtained by the generalized discrepancy method, the strongest

lower bound technique known in the quantum setting.

In the Boolean circuit model, despite intensive study, the known results are quan-

titatively much weaker, and in particular require T 0 to shrink as k grows in order

to make the success probability p0 decay exponentially with k. One significant line

of research in the circuit model has investigated direct product theorems in the cir-

cuit model, in which the assumption of full independence between the inputs to

the various computations is replaced with weaker notions of independence. It was

shown [Imp95, IW97] that, if these weakly-independent distributions are constructed

appropriately, one can prove DPTs that approach the quantitative strength of the

known results for the fully-independent case, while significantly reducing the ran-

domness complexity needed to sample from these input distributions. This is a key

ingredient in the “hardness versus randomness” approach to derandomizing proba-

bilistic algorithms [BM84, Yao82, NW94, IW97], one of the most important develop-

ments in modern complexity theory (and also the most significant application of ideas

from the direct product problem). This approach was initiated by Nisan and Wigder-

son [NW94] and carried further in many works; see [IW97] in particular, and [AB09]

for an exposition for an overview of this area and further references.

32

1.4 Lower bounds for multiple functions of a shared

input

The shared-inputs scenario is our chosen term for the general study of mappings

F (x) : Sn ! (S 0)m ,

typically with S 0 = S. This contains the disjoint-inputs scenario as a special case.

Outside of that special case, research on the complexity of joint computation has

aimed to exhibit explicit mappings which are as costly to compute as possible. Here,

the main emphasis has been on exact computation—that is, on algorithms that com-

pute the desired output with probability 1 on all inputs. Our review will focus on this

setting. Another common focus in this research, which we will follow, is to consider

cases where m = ⇥(n).

1.4.1 The query and communication models

In the query model, it is straightforward to identify individual Boolean functions f :

{0, 1}n ! {0, 1} with essentially maximal query complexity: for example, the PAR-

ITY function requires n queries for deterministic, nondeterministic, or randomized

query algorithms. Considering multiple-output mappings F : {0, 1}n ! {0, 1}m>1

cannot increase the query complexity beyond n, since the trivial solution of reading

the entire input always su�ces to compute any mapping. Thus, the study of multiple-

output mappings in the query model is uninteresting in this particular sense.

The situation for the communication model is very similar: we know how to prove

nearly-maximal lower bounds ⌦(n) on the communication needed to compute explicit

Boolean functions f(x, y) with |x| = |y| = n, and 2n bits of communication trivially

su�ces to compute any (Boolean or non-Boolean) mapping. In Chapter 3, we will

explore a more promising line of research into the query complexity of joint compu-

tation in the shared-input setting, and also suggest a way to extend this research to

the communication model.

33

1.4.2 Circuit models

For some circuit models of computation, any individual mapping f : Sn ! S is

“easy to compute,” i.e., can be computed using O(n) operations. As we have noted,

this includes the comparison-based model as well as linear and bilinear arithmetic

computations. It also includes a less well-known model, the arbitrary-gates model,

which we will describe shortly. In these models, proving significant lower bounds

requires attention to multiple-output operators.

Before reviewing the state of knowledge for these models, we will review part

of the venerable history of lower-bounds research in the monotone circuit model.

In this model, lower bounds for multiple-output monotone operators were studied

intensively for a di↵erent reason: during a significant span of time (1971-1985), the

multiple-output setting was the only setting in which super-linear lower bounds were

known. More detailed surveys of the work on monotone circuits from this period can

be found in the references [Kor03] and [Weg91], to which our brief review is indebted.

Monotone circuits

The first super-linear lower bounds for monotone circuits over the basis {^,_} were

due to Nechiporuk [Nec71]. Using finite projective planes, Nechiporuk defined a sys-

tem of n = p2 disjunctions f
1

, . . . , fn, each disjunction of size p over the Boolean

input variables x
1

, . . . , xn, and for which each pair fj, fj0 intersect in at most 1 vari-

able. Nechiporuk proved that this property implies that optimal monotone circuits

for computing (f
1

(x), . . . , fn(x)) consist of _ gates only. This implies that joint com-

putation of f
1

, . . . , fn yields no benefits, and gives a lower bound of n(p � 1) ⇠ n3/2

for the circuit size. Lower bounds of form ⇥(n5/3) were proved by an elaboration

of Nechiporuk’s method in [Meh79, Pip80]. By somewhat similar methods, a lower

bound of ⇥(n3/2) for monotone circuits can be proved for other natural operators as

well, such as the convolution and matrix multiplication operators over the semiring

{_,^}. In the case of matrix multiplication, the näıve circuit for this operator was

shown to be exactly optimal (see [Weg91, Corollary 8.1]).

34

In a culmination of this line of work, Wegener (see [Weg91, Cor. 9.1]) exhibited

a family of n simple DNFs f
1

, . . . , fn over x
1

, . . . , xn, each individually computable

with O(n) gates, which require ⌦
⇣

n2

logn

⌘
gates to compute jointly. Except for the 1

logn

factor, this is essentially the best lower bound one can attain from collections of n

“simple” functions.

Prior to 1985, no super-linear lower bounds were known for the size of monotone

circuits computing explicit monotone functions. That year, in a dramatic devel-

opment, Razborov [Raz85a] proved super-polynomial lower bounds for the Clique

decision problem; these lower bounds were subsequently improved to bounds of the

form 2n
⌦(1)

[And87, AB87]. While these results are now (justly) famous, few re-

searchers today study the interesting previous work on monotone circuit lower bounds

for multiple-output Boolean operators—a line of work that gave examples showing

strong limits to joint computation in the monotone circuit model. Our view is that

this earlier work’s conceptual message deserves to be remembered.

Other “natural” restricted Boolean circuit models

Monotone circuits are the “natural,” most-intuitive circuit model for computing

monotone functions. Every monotone function has a monotone circuit over the basis

{^,_}, and in practice, ideas for computing monotone functions tend to be express-

ible as monotone circuits. It came as quite a surprise, then, when Razborov [Raz85b]

showed that monotone circuits can be strongly sub-optimal for computing natural

monotone functions such as the MATCH function, which detects whether a graph

contains a perfect matching: this function has polynomial-size Boolean circuits, but

not polynomial-size monotone circuits. (Less-dramatic polynomial separations be-

tween the monotone and non-monotone circuit complexity of monotone multi-output

operators were shown earlier by Paul [Pau76]. In fact, such a separation is provided

by the example of Boolean semiring matrix multiplication, which we have already

encountered.)

We currently have no super-linear lower bounds for the non-monotone circuit

complexity of explicit Boolean functions; this is one of the biggest embarrassments in

35

the field. It is even open to prove a super-linear lower bound for the size of log-depth

circuits to compute any explicit operator f : {0, 1}n ! {0, 1}n. Thus the state of our
knowledge for non-monotone circuit complexity is poor even when compared with our

understanding of the monotone circuit model in 1971 (after the pioneering work of

Nechiporuk [Nec71]).

Thus, one thrust of research in circuit complexity has been to identify and analyze

circuit models that represent “natural” algorithmic paradigms for particular classes

of Boolean functions and operators, by analogy with the study of monotone circuits

for monotone functions. Multiple-output operators have played a prominent role in

this area.

One class of “natural” circuits for problems related to the Sorting problem are the

so-called “conservative” circuits [PV76]. Loosely speaking, these circuits (a family of

related models) treat certain input elements as “atomic” and do not modify them, but

instead “route” them through the circuit over the course of a computation. Within

this model, sorting n elements by comparisons is well-known to require ⌦(n log n)

operations, even when the n input elements are all bits.

Another prominent trend across circuit complexity (also motivated by the dif-

ficulty of proving general lower bounds) has been to try to better understand the

circuit complexity of bounded-depth circuits, allowing unbounded fanin of gates. This

trend has appeared in the study of conservative circuits, and we will sketch one no-

table lower bound that has been obtained for a multiple-output operator; this will

be useful as a benchmark of comparison when we describe the much weaker known

results for more general classes of circuits.

The Boolean shift operator [PV76], denoted shiftn : {0, 1}n+dlogne ! {0, 1}n, is
defined as follows. We are given a length-n string x, indexed as x = (x

0

, . . . , xn�1).

We regard a second input string i 2 {0, 1}dlogne as a value in Zn, and define

shiftn(x, i) := (x�i, x1�i, . . . , xn�1�i) ,

with index arithmetic taken mod n. Thus the input x is cyclically shifted by an

36

amount i. In the natural circuit-design paradigm for this problem, the circuit becomes

a routing device for each fixed setting to i; the bits of x are not inspected, but merely

routed to their “destinations” in the output. The best currently-known circuits for

this problem follow this routing paradigm [PV76, PY82]. For circuits obeying the

routing paradigm, and in which we allow the circuit to “preprocess” the input i for

free, we understand the complexity of this operator rather precisely: in depth d =

d(n) � 2, the circuit complexity is at least d · n1+1/d, and at most eO(n1+1/d) [PY82].

For unbounded depth, the complexity is ⇥(n log n) [PV76].

Thus, the Boolean shift operator is an example of an operator for which we benefit

substantially from joint computation of the multiple output bits—and all the more

so as we increase the allowed depth—but for which we can also identify meaningful

limits to joint computation in the natural associated computing paradigm. As we

will see, we have been not been so fortunate in the study of more general circuits.

We have also had very limited success in proving lower bounds for the size of linear

circuits, the “natural” computational model for linear operators.

More constant-depth circuits: AC0 and TC0

As mentioned, no super-linear circuit lower bounds over a complete basis are known

for explicit Boolean functions. We briefly review what is known about constant-

depth, non-monotone circuits, where very little research seems to have probed the

issue of joint computation. For constant-depth, unbounded-fanin circuits over the

basis {_,^,¬} (also known as AC0 circuits), H̊astad [H̊as86], improving on earlier

work [FSS84, Yao85], proved very strong super-polynomial lower bounds for the num-

ber of gates required to compute a simple explicit function—the PARITY function.

Given this happy state of a↵airs, there seems to have been little research into the

question of joint computation for AC0 circuits; to the best of our knowledge there is

no known example of an explicit operator F : {0, 1}n ! {0, 1}n whose depth-d AC0

circuit complexity is asymptotically greater than the largest depth-d complexity of

any of its component functions (for large constants d). From our perspective, this

omission suggests a direction for future work.

37

For the richer model of so-called TC0 circuits, which are constant-depth circuits

consisting of (weighted) threshold gates, our known lower bounds for Boolean func-

tions are much weaker: the best result is due to Impagliazzo, Paturi, and Saks [IPS97]

who show that the PARITY function requires at least ⌦(n1+↵d

) wires to compute in

depth d, for an absolute constant 0 < ↵ < 1. A super-linear lower bound for gates

is not known. In this model, it might be feasible to prove higher lower bounds for

multiple-output operators, but again we are not aware of work in this direction.

Beyond TC0 circuits, researchers have explored a physically unrealistic, but power-

ful and interesting, circuit model called the arbitrary gates model. This latter model

is tailor-made to explore questions of e�cient joint computation. We will review it

next, along with the model of linear algebraic circuits over F
2

(since the known lower

bounds for these two models are similar). Our review of this area will be rather de-

tailed, as this provides needed background for our original contributions in Chapter 4.

1.4.3 The arbitrary-gates and linear algebraic circuit models

A great deal of work, including the papers [Val76, Val77, DDPW83, CFL83, CFL85,

Pud94, PR94, RS03, Che08a, Juk10a, Juk10b, JS10], has studied the circuit model

in which unbounded fanin is allowed, and in which circuit gates can apply arbitrary

Boolean functions to their inputs. In this model, we study the number of wires

required in such a circuit to compute an operator F , a quantity we denote as s(F).

In our discussion we will focus attention on operators F of n input and ⇥(n) output

bits, since this is the focus of most prior work and seems to capture most interesting

issues.

While allowing gates to compute arbitrary Boolean functions is not realistic, there

are a number of motivations to study this model. First, it arguably provides a natural

measure of the “information complexity” of Boolean operators. Second, lower bounds

in this strong circuit model are highly desirable, since they also apply to a variety

of more realistic models. Third, several natural circuit lower-bound criteria apply

even to circuits with arbitrary gates, and it seems worthwhile to understand how

far techniques of this kind can carry us. Finally, for at least one important class

38

of Boolean operators—the F
2

-linear operators, naturally computable by F
2

-linear

circuits—it remains unclear whether allowing arbitrary gates in our circuits even

confers additional power.

Any individual Boolean function can by trivially computed with n wires in the

arbitrary-gates model, so n2 wires always su�ce to compute an operator F : {0, 1}n !
{0, 1}n. In general, this is not far from optimal: random (non-linear) operators require

⌦(n2) wires to compute [JS10]. Thus random collections of Boolean functions are,

in a sense, “computationally orthogonal” to one another. It would be extremely

interesting to identify an explicit function collection with this property; however,

proving a super-linear lower bound s(F) = !(n) for an explicit operator F is a long-

standing open problem.

This has led researchers to consider circuits with arbitrary gates but restricted

depth. Even depth-2 circuits in this model are powerful, and their study was strongly

motivated by work of Valiant [Val77] (see [Vio09]), who showed that any operator

with depth-2 wire complexity !(n2/ ln lnn) also cannot be computed by linear-size,

logarithmic-depth Boolean circuits (of fanin 2). However, the known lower bounds

for depth 2 are too weak to apply Valiant’s results. For depth-2 circuits, the best

bounds for explicit operators are of form ⌦(n3/2) [Che08a, Juk10a]. For depths 3

and 4, the best bounds are ⌦(n lnn) and ⌦(n ln lnn) respectively [Che08a]; for higher

constant depths the known bounds (described in Section 4.1.1) are barely super-

linear [DDPW83, Pud94, Che08a].

One might suspect that the di�culty of proving strong lower bounds stems from

the unrealistic strength of the circuit model being studied. A seemingly much more

modest aim is to prove lower bounds in the linear algebraic circuit model over F
2

.

In this model, we require the circuit gates to compute F
2

-linear functions, i.e., sums

mod 2; we again allow unbounded fanin. Given some linear operator L : Fn
2

! Fn
2

,

we let s�(L) denote the number of wires needed to compute L with a linear circuit.

Lupanov [Lup56] (and later Bublitz [Bub86]) showed that s�(L) = O(n2/ lnn), and

that this bound is tight if L is chosen randomly.

Unfortunately, the known lower bounds for explicit linear operators in the linear

39

circuit model are just as discouragingly weak as for operators in the arbitrary-gates

model. Moreover, since the lower bounds quoted earlier were shown for non-linear

operators, the situation is actually slightly worse in the linear case: for example,

for depth-2 circuits, the best known lower bound for an explicit linear operator is

⌦
⇣
n
�

lnn
ln lnn

�
2

⌘
, proved very recently [GHK+12].

Thus, it is a major unmet challenge to develop lower-bound techniques that e↵ec-

tively exploit the specific behavior of linear circuits.8 In fact, it is an open question

whether s�(L) can be noticeably larger than s(L), that is, whether non-linear gates

can ever help us compute linear operators more e�ciently. However, we also can-

not rule out the possibility that all linear operators L are computable by depth-2,

non-linear circuits of size O(n · polylog(n)); see [JS10]. (We will at least prove, in

Section 4.7 of Chapter 4, that s(L) = ⌦(n lnn) for random L.)

For several decades, the best known lower bounds for explicit operators (including

cyclic convolution) were based on the superconcentrator technique of [Val76, Val77].

In a recent breakthrough, Cherukhin [Che08a], obtained new lower bounds giving a

(modest) asymptotic improvement over these previous results. (He proved an ⌦(n3/2)

lower bound for depth 2, and extended the previous lower bounds for any constant

depth d � 2 to apply to circuits of depth d + 1.) Cherukhin’s method, developed

specifically for the convolution operator, was later formulated by Jukna [Juk12, Chap.

13] as a general property of operators, called the Strong Multiscale Entropy (SME)

property, that yields a lower bound of form ⌦d(n·�d�1(n)). Despite the modest nature

of the gain over the previous superconcentrator bounds, it was exciting to see any

progress in this area.

8A lower-bound criterion specific to linear circuits, based on matrix rigidity, has been given by
Valiant [Val77]. In principle this method is capable of showing strong lower bounds. However,
except for some limited success in depth 2 [Pud94], no one has proved su�ciently-strong rigidity
lower bounds on explicit F2-matrices to imply circuit lower bounds in this way. See [Lok09] for a
survey of this line of work.

40

1.5 Other work in joint computation

Here we briefly describe three avenues of research that are relevant to joint compu-

tation, but do not fit neatly into the areas described in the previous sections. The

first topic, instance compression, will be our focus of study in Chapter 5, and we

will review it in greater detail in that chapter. The other topics we describe here

will not be directly studied in this work, but help to provide a fuller sense of joint

computation’s role in contemporary research.

1.5.1 Joint compression of problem instances

An instance compression scheme for a decision problem L is a many-to-one reduction

R from L to some second, “target” decision problem L0. That is, R satisfies

x 2 L () R(x) 2 L0 .

(For randomized reductions, we may ask for this equivalence to hold with high prob-

ability.) There is no requirement that any proof be supplied for the equivalence

exhibited by R, nor any requirement that x be recoverable from R(x). We are inter-

ested in reductions for which significant compression occurs, that is, for which R(x)

is significantly shorter than x. Studying the power and limits of instance compres-

sion involves an intriguing interplay between computational and information-theoretic

ideas.

Instance compression schemes in which the source and target languages are equal

(L = L0), or kernelization reductions, form a central technique in the design of fixed-

parameter algorithms [DF99], and more general instance compression has also shown

to have interesting connections to questions in cryptography [HN10]. A related notion

of core-sets [AHPV05], which is a family of sparsification techniques principally aimed

at geometric data, has also proved to be an influential tool in the design of geometric

algorithms.

It is unknown whether one can e�ciently, significantly compress an arbitrary

41

instance of a natural NP-complete language like SAT, the set of satisfiable Boolean

formulas.9 However, it is conceivable that e�cient compression for SAT might become

easier, if we were allowed to jointly compress multiple SAT instances into a single

output string. This possibility, suggested by [HN10, BDFH09], can be viewed as an

analogy to the direct sum problem in the setting of instance compression.

As an example to make this possibility more concrete, consider the case in which

we are given Boolean formulas
1

, . . . , n100 , each of length n, and want to know

whether at least one of them is satisfiable. Can we e�ciently compress this question

to an easier-to-state, equivalent question about the satisfiability of a single formula

� = R(
1

, . . . , n100), where � is of length, say, n3?

This kind of “OR-compression” for SAT would be a dramatic counterexample to

the “disjoint-inputs intuition” in this setting, which suggests that joint compression

of the j shouldn’t yield savings since these instances are “unrelated.” It would

also go against our intuition that SAT is a formidably hard problem. However, the

possibility of this kind of compression is consistent, as far as we know, with the

hypothesis P 6= NP.

Why study the “joint compressibility” of SAT, beyond its resonance with the

theme of joint computation? It was shown in [HN10, BDFH09] that this question

is intimately connected to open questions about individual instance compression.

As we describe in Chapter 5, if the “OR-compression” task for SAT (as sketched

above) is indeed intractable, then this would imply the intractability of individual

instance compression for many natural problems. Hardness of the corresponding

“AND-compression” task for SAT would imply the intractability of a number of other

problems.

Motivated by these findings, Fortnow and Santhanam [FS11] provided the first

strong complexity-theoretic evidence against joint compression for SAT. They showed

that a deterministic OR-compression reduction for SAT that reduces t = t(n) =

9If we could e�ciently reduce instances of SAT to shorter instances of SAT itself, then we could
iterate the reduction to solve our problem in polynomial time, implying P = NP. However, even if
P 6= NP, it is still conceivable that SAT might have an e�cient compressive reduction to a di↵erent
target problem—to the Halting problem, say.

42

poly(n) length-n instances to an output instance of size O(t log t), of any target

problem, would imply the collapse NP ✓ coNP/poly. (Their techniques also handle

randomized compression reductions that avoid false negatives, with a somewhat more

involved statement in this case. Their techniques do not apply to AND-compression

for SAT, which remained mysterious after their work.)

Even assuming NP * coNP/poly, Fortnow and Santhanam’s result does not fully

rule out significant deterministic compression for an OR of SAT instances; it says

only that the “amortized” output length per input formula cannot be O(log n). This

still provides very useful negative evidence about the feasibility of various instance

compression tasks, however, and has helped guide algorithmic research in the area.

1.5.2 Parallel repetition theorems for 2-prover games

A 2-prover (1-round) game G involves one party called Verifier, interacting with two

parties, called Provers 1 and 2, that cannot communicate directly with one another.

Verifier uses a source of randomness to generate two challenge strings (w
1

, w
2

) ac-

cording to a distribution D over a finite set of possible messages; D may involve

some dependence between the wis. Verifier sends wi to Prover i (i = 1, 2). Each

Prover i returns a response string zi. Verifier applies some predicate P (w
1

, w
2

, z
1

, z
2

)

to decide whether to accept or reject. The value Val(G) 2 [0, 1] of the game, de-

fined with respect to P and D, is the maximum achievable success probability of any

non-communicating Prover strategy in causing Verifier to accept.

In the k-fold parallel repetition of G, denoted G⌦k, Verifier plays k copies of this

game simultaneously, with k challenge-pairs drawn independently from D; a single

pair of Provers 1 and 2 plays each of the k copies. The Provers’ goal is now to make

Verifier accept on all of the k copies. The basic question is whether the Provers can

do significantly better than by playing an optimal independent strategy on each copy.

That is, can Val
�
G⌦k

�
be significantly larger than Val(G)k?10

This question is not computational in nature, since no computational restrictions

10For motivation, in the simpler setting of 1-prover games, it is not hard to show that Val
�
G⌦k

�
=

Val(G)k.

43

are placed on the Provers. However, it has much of the flavor of the direct prod-

uct problem for computing multiple independent copies of a function f ; ideas and

techniques have flowed back and forth between these two areas. It turns out that

Val
�
G⌦k

�
can indeed be larger than Val(G)k [For89], but still exhibits a weaker form

of exponential decay. The most important result of this type, the Parallel Repetition

Theorem (PRT) of Raz [Raz98], has been a key tool in the study of hardness of ap-

proximation for NP-hard problems. See [AB09] for a description of this connection.

New variants of the PRT are still being studied and proved; see, e.g., [RR12] for a

recent example and overview.

1.5.3 Reductions and equivalences between operators and

decision problems

Reductions between problems are a well-established tool for providing evidence of

their relative easiness or di�culty. This is true, not only of decision problems, but

of multiple-output problems as well. Moreover, reductions can in some cases shed

light on the fine-grained complexity of a problem, with close attention to polynomial

factors; this is important for the study of joint computation, since the e�ciency

savings from e�cient joint computation are in most cases polynomial at best.

The well-studied All Pairs Shortest Path (APSP) problem asks for the distances

between all pairs of nodes in an n-vertex weighted, directed graph (with weights given

by O(log n)-bit integers). A famous open question is whether this problem possesses

a strongly sub-cubic algorithm, i.e., one whose running time is at most n3�⌦(1). (Note,

here the input length is ⇥(n2 log n).)

Vassilevska Williams and Williams [WW10] show that this problem possesses a

strongly sub-cubic algorithm if and only if a whole list of other fairly natural prob-

lems do.11 One such equivalence is particularly novel and especially interesting from

our perspective: the authors show that the APSP problem has a strongly sub-cubic

algorithm if and only if a particular decision problem has a strongly sub-cubic algo-

11See [WW10] for references to some other work on reductions showing tight connections of this
kind.

44

rithm: namely, the problem of detecting a triangle of negative total edge-weight in a

weighted n-vertex graph.

The reduction in [WW10] from APSP to this decision problem is rather non-

standard, and involves multiple adaptive calls to negative-triangle-detection instances

of varying sizes. The authors give another, related example of this kind of “multiple-

output to decision-problem equivalence,” for the so-called 3-Sum problem. It seems

quite interesting to ask in what generality these kinds of equivalences can be found:

which questions about the complexity of e�cient joint computation can be converted

into equivalent or nearly-equivalent questions about the individual complexity of de-

cision problems?

1.5.4 The Baur-Strassen theorem

In the model of arithmetic circuits computing polynomials, Baur and Strassen [BS83]

discovered a powerful connection between individual polynomials on the one hand,

and collections of polynomials on the other. They showed that over any field, any

arithmetic circuit computing a polynomial p can be converted into one that computes

p along with all of its (formal) partial derivates @p
@x

i

with respect to each input variable

xi; this transformation increases the circuit size by only a constant factor. This is an

algorithmic result, but it also has an important corollary for complexity theory: we

can transfer lower bounds proved for any collection C of polynomials, to any single

polynomial p whose set of partial derivatives contains C. Using this connection, Baur

and Strassen extended an earlier, tight ⌦(n log d) lower bound on arithmetic circuit

size, proved by Strassen [Str73a] for the polynomial collection (xd
1

, . . . , xd
n), to a tight

⌦(n log d) lower bound for the single polynomial p = xd
1

+ . . .+ xd
n. This remains the

largest lower bound proved for an explicit degree-d polynomial in the unrestricted

arithmetic circuit model. Using their theorem, Baur and Strassen also proved that

the determinant polynomial has arithmetic circuit complexity asymptotically equal

to that of matrix multiplication.

The Baur-Strassen theorem has had several other applications in proving arith-

metic circuit lower bounds, e.g., in [NW95, RS03]. On the algorithmic side, Cygan

45

et al. [CGS12] recently found new and unexpected applications of the Baur-Strassen

theorem to graph-theoretic problems.

1.6 Our contributions

In this thesis, we make contributions to four distinct areas of research on joint compu-

tation. Our contributions span the query, circuit, and Turing machine models. Here

we briefly describe our main contributions; these are explained in greater detail in

the opening sections of subsequent chapters. Our results are of several kinds: they

variously strengthen our state of knowledge of the limits of e�cient joint computa-

tion; point to barriers to improving known lower bounds for multiple-output tasks;

and initiate an entirely new direction for the study of synergies in joint computation.

1.6.1 Improved direct product theorems for randomized query

complexity

In Chapter 2, we give a decisive improvement for the known direct product theorems

for classical query algorithms, in both the distributional and worst-case error models.

Our results establish, for example, that if a Boolean function f cannot be computed

with success probability greater than 1 � " using T queries, then the k-fold direct

product f⌦k cannot be computed with success probability greater than (1�1.1")k by

an algorithm using .1"Tk queries. Using examples due to Shaltiel [Sha03], we show

that the tradeo↵ established in our result between the query bound we impose and

the success probability bound we guarantee is essentially optimal. This is the first

fully satisfactory direct product theorem for any natural computational model; prior

results either imposed significant restrictions on the behavior of algorithms to compute

the direct product f⌦k, or else placed resource bounds that in some cases scale as

significantly less than k times the resources needed to compute a single instance of f .

We give numerous generalizations of this result, in which we consider more gen-

eral forms of computational tasks. For example, we study the query complexity of

46

computing (non-Boolean) relations, of computing the k-fold XOR f�k of a Boolean

function, and of interacting successfully with dynamic, stateful entities rather than

fixed input strings. We also prove so-called “threshold” direct product theorems, in

which we upper-bound the probability that a query-bounded algorithm for algorithm

to compute f⌦k even solves f correctly on “too many” of the k input instances. De-

terministic query algorithms can be modeled as decision trees, and we are also able to

prove a direct product theorem in which decision tree size is the resource of interest.

1.6.2 A universality result for joint complexity in the deci-

sion tree model

In Chapter 3, we study the following general question about joint computation:

How can we characterize the “diversity” of possible behaviors of the joint complex-

ity of a finite collection f
1

, . . . , fk of finite Boolean functions defined over a shared

input x 2 {0, 1}n?
Here, f

1

, . . . , fk can be chosen arbitrarily; we are interested in what sorts of joint

complexity “profiles” can be realized by some choice of f
1

, . . . , fk. This question

makes sense in various computational models, with respect to various measures of

computational cost. Our focus in Chapter 3 will be on computing (total) Boolean

functions in the deterministic query model, with an algorithm’s cost measured by the

worst-case number of queries.

As a representative example of this general question, we may ask:

Are there functions f
1

, f
2

, f
3

, such that: (i) any two fis have extremely strong

“synergies” between them; yet, (ii) the full collection f
1

, f
2

, f
3

allows only modest

gains from joint computation?

This question can be posed more concretely, as follows:

Are there f
1

, f
2

, f
3

, such that: (i) each pair of functions can be jointly computed

on a shared input with at most 1.01 times the resources of computing f
1

; yet, (ii)

computing f
1

, f
2

, f
3

jointly requires 1.99 times the resources of computing f
1

?

How does one begin to investigate this question? In most “reasonable” models of

47

computation, one has some simple facts about joint complexity. First, the complex-

ity of computing any collection of functions is of course non-negative. Second, the

complexity of computing some collection F of functions is at most the complexity of

computing the collection F 0, whenever F 0 is a superset of F . Third, the complexity

of computing two collections F,G jointly is at most the sum of the complexities of

computing each of F and G.

As our main result of Chapter 3 (Theorem 3.0.1), we show that, in the query

model, these three “obvious” constraints on the behavior of the joint complexity are,

in a certain strong sense, the only ones. Namely, if we are given some purported

“profile” of the complexity of jointly computing each subset of a finite collection

of total Boolean functions, and if this profile obeys the three “sanity checks” listed

above, then the profile essentially describes a valid collection of Boolean functions.

The only caveats are that we must be allowed to “scale up” the complexity profile

by a scalar multiple of our choice, and we must accept a small (1± ") multiplicative

error in the predicted joint complexity of each of the various subsets of computational

tasks. (We are free to choose any " > 0. The result holds not just for collections of

three functions f
1

, f
2

, f
3

, but for any constant number.)

This “universality result” establishes that the behavior of the joint complexity in

the query model is, in a sense, “maximally diverse.” It also allows us to a�rmatively

answer the concrete question about f
1

, f
2

, f
3

given above. The existence of total

functions with this behavior is not simple to show and, in our opinion, comes as a

surprise. In Chapter 3 we also present a conjecture about the communication model

that would allow us to extend our universality result to that model.

The result of Chapter 3 is the first of its kind, and requires several interesting

ingredients to prove. Notably, we define a new type of cryptographic data structure,

and construct it using a known separation due to Savický [Sav02] between determin-

istic and unambiguous-nondeterminstic query complexity. We hope that this work

will help inspire other new ways of studying the complexity of joint computation.

48

1.6.3 Limitations of lower-bound methods for the wire com-

plexity of Boolean operators

Chapter 4 is motivated by the lack of strong results in circuit complexity, and in

particular, the lack of strong known lower bounds on the wires needed in constant-

depth, arbitrary-gates circuits to compute explicit multiple-output Boolean operators

F : {0, 1}n ! {0, 1}n. As described in Section 1.4.3, this is a powerful model of com-

putation in which non-trivial lower bounds only exist for multiple-output operators,

and where the whole challenge is to understand the limits of e�cient joint computa-

tion. Within this model, we ask whether the analysis of several known lower-bound

criteria can be improved: that is, we ask whether the properties of Boolean operators

known to imply lower bounds might actually imply stronger lower bounds by a better

analysis.

Our main object of study is the Cherukhin-Jukna “Strong Multiscale Entropy”

(SME) property [Che08a, Juk12], mentioned in Section 1.4.3 and formally introduced

in Chapter 4. We also study two simpler lower-bound methods due to Jukna: the “en-

tropy method” for general Boolean operators and the “pairwise-distance method” for

F
2

-linear operators. The message of our work is that previous analyses of these three

methods cannot be significantly improved. To show this, we construct explicit oper-

ators that obey these properties, yet which are “easy to compute” in the appropriate

sense. Our most important result along these lines is that there is an explicit operator

with the SME property, that is computable in depth d with O(n · �d�1(n)) wires, for
d = 2, 3 and for even d � 6; this matches the Cherukhin-Jukna lower bounds for these

depths, up to a constant multiplicative factor depending on d. (See Section 4.4.2 for

the definition of the �d(·) functions.) This identifies an inherent weakness in the best

currently-known lower-bound criterion for arbitrary-gates circuits. The techniques in

our circuit construction for this main result bear some resemblance to known e�cient

constructions of bounded-depth superconcentrators [DDPW83], but the details are

quite di↵erent.

49

1.6.4 New limits to classical and quantum instance compres-

sion

In Chapter 5, we study the complexity of “joint compression” for hard problems—in

particular the OR- and AND-compression tasks for SAT and other NP-hard decision

problems, as described in Section 1.5.1. Here, we manage to significantly extend the

negative results of Fortnow and Santhanam [FS11]. We show that strong enough OR-

or AND-compression for SAT would imply the existence of non-uniform, statistical

zero-knowledge proof systems for NP and for coNP; this is an even stronger and more

unlikely consequence than NP ✓ coNP/poly. This gives the first compelling evidence

of hardness for AND-compression of SAT, which also implies the first strong hardness

results for a whole family of compression tasks identified in [BDFH09]. Such a result

was eagerly sought by the fixed-parameter tractable (FPT) algorithms community,

and provides substantial new evidence of limits to the “kernelization approach” to

FPT algorithm design.

Our techniques are more robust than those of [FS11], and unlike this past work,

our results give evidence even against 2-sided error compression reductions. This

strengthens our evidence of the intractability of OR-compression for SAT and for

another large family of compression tasks identified in [BDFH09, HN10]. To prove

all of these results, we exploit the information bottleneck of an instance compression

scheme, using a new and non-trivial method to disguise information being fed into a

compressive mapping. Namely, we show that for any set S ✓ {0, 1}n, parameters t, t0

satisfying t0  O(t log t) and t, t0  poly(n), and for any mapping R : St ! {0, 1}t0 ,
there exists an input distribution D⇤ over St for which any y 2 S can be randomly

“inserted” into a sample x ⇠ D⇤, in such a way that the output distribution R(x)

is not too-strongly a↵ected by the insertion. Crucially, such a D⇤ can be found that

is e�ciently sampleable given poly(n) bits of non-uniform advice. These “disguising

distributions” should be of independent interest, and we are optimistic that they will

find other applications.

In Chapter 5 we also define a model of quantum instance compression, which

50

generalizes standard (classical) instance compression in two ways: (i) the compression

reduction is allowed to be an e�cient quantum circuit; (ii) the output of the reduction

is allowed to be a quantum state ⇢. (We merely require that the answer to the

instance being compressed can be “recovered” by some measurement on ⇢ depending

solely on the state’s size; this measurement need not be e�ciently performable.)

We investigate whether this richer setting for instance compression allows greater

potential to compress an AND or OR of SAT instances. We are able to prove a

version of our negative results for the quantum setting: we show that su�ciently

strong AND- or OR-compression for SAT would imply the existence of non-uniform,

quantum statistical zero-knowledge proof systems for all of NP and coNP, a conclusion

that seems far-fetched. The quantitative bounds in this quantum result are essentially

as strong as those we show in the classical setting.

51

52

Chapter 2

Improved Direct Product

Theorems for Randomized Query

Complexity

This chapter studies the direct product problem; as we discussed in Section 1.3, this

is one approach to exploring the validity of the “disjoint-inputs intuition.” Our focus

is on the classical query model, which will be formally introduced in Section 2.1; we

reviewed known DPTs in the classical and quantum query models in Section 1.3.3.

2.0.5 Results of this chapter

Our first result is the following direct product theorem in the average-case setting:

Theorem 2.0.1. Suppose f is a Boolean function and µ is a distribution over inputs

to f , such that any T -query randomized algorithm has success probability at most

(1 � ") in computing f on an input from µ. Then for 0 < ↵  1, any randomized

algorithm making ↵"Tk queries has success probability at most (2↵"(1� "))k < (1 �
"+ .84↵")k in computing f⌦k correctly on k inputs drawn independently from µ.

We use Shaltiel’s examples to show that the tradeo↵ in Theorem 2.0.1 between

the query bound and the error probability is essentially best-possible, at least for

general functions f and for small values ↵ < .01. (For specific functions, the success

53

probability will in some cases decay exponentially even when the number of queries

allowed scales as Tk rather than "Tk.) Theorem 2.0.1 reveals that small values of ",

as used in Shaltiel’s examples, are the only major “obstruction” to strong, general

direct product statements in the query model.

Using Theorem 2.0.1, we obtain the following DPT for worst-case error, which

strengthens the worst-case DPT of [KŠdW07] mentioned earlier:

Theorem 2.0.2. For any Boolean function f and 0 < � < 1/4, any randomized

algorithm making at most �3R
2

(f)k/11 queries has worst-case success probability less

than (1/2 + �)k in computing f⌦k correctly.

It seems intuitive that some statement like Theorem 2.0.2 should hold, and prov-

ing such a DPT was arguably one of the major open problems in classical query

complexity.1

We also prove a new XOR lemma. Let Bk,p denote the binomial distribution on

k trials with success probability p.

Theorem 2.0.3. Suppose that any T -query randomized algorithm has success proba-

bility at most (1� ") in computing the Boolean function f on an input from µ. Then

for 0 < ↵  1, any randomized algorithm making ↵"Tk queries and attempting to

compute f�k on k inputs drawn independently from µ has success probability at most

1

2

✓
1 + Pr

Y⇠B
k,1�2"

[Y > (1� ↵")k]
◆
,

which is less than 1

2

⇣
1 + [1� 2"+ 6↵ ln(2/↵)"]k

⌘
.

Compare the probability bound above with the success probability 1

2

(1 + (1 �
2")k), which can be attained using Tk queries by attempting to solve each instance

independently and outputting the parity of the guessed bits. The concrete estimate

given in Theorem 2.0.3 is meant to illustrate how our bound approaches this value as

1While classical query algorithms can be viewed as a subclass of quantum query algorithms,
we note that Theorem 2.0.2 is incomparable to the more-recent quantum DPT proved by Lee and
Roland [LR12], and mentioned in Section 1.3.3: our result shows exponentially-decaying success
probability for a more restricted class of algorithms, but under a potentially larger query bound.

54

↵! 0. By a more careful use of Cherno↵ inequalities, one can get somewhat tighter

bounds for specific ranges of ↵, ". An XOR lemma for the worst-case setting can also

be derived from our result.

In addition to our “ordinary” DPT (Theorem 2.0.1), we also prove a “threshold”

DPT, which bounds the probability that a query-bounded algorithm for f⌦k solves

“many” of the k instances correctly. As one special case, we prove:

Theorem 2.0.4. Let f be a (not necessarily Boolean) function such that any T -query

algorithm has success probability at most 1 � " in computing f on an input from µ.

Fix ⌘,↵ 2 (0, 1]. Consider any randomized algorithm R making at most ↵"Tk queries

on k independent inputs from µ. The probability that R computes f correctly on at

least ⌘k of the inputs is at most

Pr
Y⇠B

k,1�"

[Y � (⌘ � ↵")k].

Using Cherno↵ inequalities, Theorem 2.0.4 gives success bounds which decay ex-

ponentially in k for any fixed ↵, ", ⌘, provided ⌘ > 1 � " + ↵". As we will explain,

Shaltiel’s examples show that this cuto↵ is nearly best-possible. By setting ⌘ := 1

in Theorem 2.0.4, we also get an ordinary DPT for non-Boolean functions, which for

typical parameter settings is stronger than the DPT we’d obtain by a straightforward

generalization of our techniques for Theorem 2.0.1. This is the simplest way we know

to get such a DPT.

Threshold DPTs have been proved for a variety of models, including, recently,

for arbitrary Boolean functions in the quantum query model [LR12]. Unger [Ung09]

showed how to derive threshold DPTs from XOR lemmas, and recent work of Im-

pagliazzo and Kabanets [IK10] gave a way to derive threshold DPTs from su�ciently

strong DPTs; see also the earlier works cited in [Ung09, IK10]. However, the results

of [IK10] do not apply for our purposes, and the threshold DPT we prove is more gen-

eral than we’d get by applying the results of [Ung09] to our XOR lemma. In any case

the proof of our threshold DPT is, we feel, quite natural, and actually forms the basis

for the proof of our XOR lemma. Our method for proving threshold DPTs applies to

55

very general threshold events: we give bounds on the probability that the set S ✓ [k]

of instances solved correctly by a query-bounded algorithm is “large,” in a sense spec-

ified by an arbitrary monotone collection A of subsets of [k]. Generalized threshold

DPTs of this form were shown recently by Holenstein and Schoenebeck [HS11] in

the circuit model, for a rich class of computational tasks called “weakly verifiable

puzzles;” as usual in the circuit model, these DPTs require T 0 to shrink with k. Our

techniques appear unrelated to theirs.

We also prove new DPTs for relations (for which direct sum theorems were proved

recently by [JKS10]), learning tasks, search problems, and errorless heuristics. De-

terministic query algorithms can be equivalently viewed as decision trees, and we

also prove a DPT for decision trees in which decision tree size, rather than depth

(i.e., number of queries), is the resource of interest. Impagliazzo, Raz, and Wigder-

son [IRW94] gave a DPT for decision tree size with “ideal” success probability decay

p0 = pk, but in the case where the size is not allowed to scale with k, i.e., the setting

T 0 = T . By contrast, in our DPT, the success probability decays as p⌦(k) = (1�")⌦(k),

while the size bound T 0 scales as T⌦("k).

Finally, we give a further generalization of our DPTs, in which the k objects being

queried are dynamic entities rather than static strings—that is, the answers to current

queries may depend on past queries. DPTs for dynamic interaction have been proved

before [MPR07], but only for the case in which the number of queries to each entity

is fixed in advance. (This is analogous to Shaltiel’s result for “fair” algorithms.) We

further discuss the relation to past work on dynamic interaction in Section 2.9.

In order to ease notation, in this chapter we discuss only DPTs for total functions,

but our results apply to partial functions, that is, functions with a restricted domain;

the proofs are the same. Similarly, our theorems and proofs carry over without

change to handle non-Boolean input alphabets, as well as heterogeneous query costs.

Taken as a whole, our results provide a fairly complete picture of the “direct product

phenomenon” for randomized query complexity, although there may still be room for

improvement in some of our bounds. We hope this work may also help lead to a

better understanding of the direct product problem in other, richer computational

56

models.

2.0.6 Our methods

We first explain our method to prove our “basic” direct product theorem, Theo-

rem 2.0.1. As mentioned earlier, Shaltiel [Sha03] proved an optimal DPT for “fair”

decision trees, in which each of the k inputs receives T queries. Our proof method

for Theorem 2.0.1 also yields an alternate proof of Shaltiel’s result, and it is helpful

to sketch how this works first. (Really, this “alternate proof” is little more than a

rephrasing of Shaltiel’s proof technique, but the rephrasing gives a useful perspective

which helps us to prove our new results.)

Suppose that every T -query algorithm for computing f succeeds with probability

at most 1�" on an input from the distribution µ. Consider a fair Tk-query algorithm

D for f⌦k, running on k independent inputs from µ. We think of the algorithm as

a “gambler” who bets at k “tables,” and we define a random variable Xj,t 2 [1/2, 1]

which represents the gambler’s “fortune” at the j-th table after D has made t queries

overall to the k inputs. Roughly speaking, Xj,t measures how well the algorithm is

doing in determining the value of f on the j-th input. When D queries the j-th

input, the j-th fortune may rise or fall, according to the bit seen; we regard each bit

revealed to be generated sequentially at random, conditioned on the bits queried so

far. The fortunes are defined so that Xj,0  1� " for each j (reflecting the assumed

hardness of f on µ), and so that no action by the algorithm leads to an expected gain

in fortune.2 It follows that E[
Q

j2[k] Xj,Tk]  (1 � ")k. But the fortunes are defined

so that E[
Q

j2[k] Xj,Tk] upper-bounds the success probability of D in computing f⌦k.

This gives the DPT for fair algorithms. A key fact underlying the success of this

proof strategy is that, after conditioning on any initial sequence of outcomes to the

first t  T queries by the algorithm, the k inputs remain independent.

If D is no longer required to be fair, but instead makes at most ↵"Tk queries,

then the individual fortune Xj,t we define no longer has the same intuitive meaning

2In standard probabilistic terms, each individual sequence Xj,0, Xj,1, . . . is a supermartingale. We
will not use this terminology in the present work.

57

after the j-th input has been queried more than T times. (In this event we simply set

Xj,t to 1/2, so that the gambler cannot hope to increase the j-th fortune.) However,

the success probability of D can still be upper-bounded by E[
Q

j2S Xj,↵"Tk], where S

is the (random) set of inputs which receive at most T queries. Counting tells us that

fewer than ↵"k of the inputs can lie outside of S, and each fortune is always at least

1/2, so the success probability is at most 2↵"kE[
Q

j2[k] Xj,↵"Tk]  2↵"k(1� ")k, giving
the statement of Theorem 2.0.1.

Our worst-case DPT for Boolean functions follows straightforwardly from Theo-

rem 2.0.1, by an application of Yao’s minimax principle. Our DPT for decision tree

size requires a somewhat di↵erent analysis, in which we track the “size-usage” of each

of the k inputs rather than their number of queries, but the basic approach is the same

as in Theorem 2.0.1. In generalizing our method to prove our other results, however,

we face a new wrinkle: the natural definitions of the “fortunes” Xj,t in these settings

are no longer bounded from below by 1/2. For example, if f : {0, 1}n ! B then we

have Xj,t � |B|�1, and a straightforward modification of the method described above

gives a DPT whose strength degrades as |B| grows. In other settings (e.g., the k-fold

XOR setting), we will only have Xj,t � 0, and the method fails completely.3

To overcome this di�culty, we adopt a more general perspective. Our previous

proof hinged on the fact that, if a gambler plays neutral or unfavorable games at k

tables with an initial (nontransferable) endowment of 1 � " at each table, then the

probability he reaches a fortune of 1 at every table is at most (1�")k. Note, this is just
the success probability he would achieve if he followed an independent “all-or-nothing

bet” strategy at each table. It is natural to wonder whether this strategy remains

optimal if the gambler wants merely to reach a fortune of 1 at “su�ciently many”

tables. Indeed, we prove (by an induction on the number of rounds of gambling)

that this is true, where the meaning of “su�ciently many” can be specified by any

monotone collection of subsets of [k]. Most of our generalizations of Theorem 2.0.1, as

well as our XOR lemma, follow readily from this handy “gambling lemma,” although

3One way to work around the problem is to simply add a small “bu↵er term” to the fortunes
Xj,t. However, this leads to poorer bounds, and does not yield our generalized threshold DPTs.

58

care is required to define the correct fortunes in each case.

2.0.7 Organization of the chapter

In Section 2.1 we review preliminaries that are used throughout the chapter and that

are needed to state and prove our “basic” DPTs, Theorems 2.0.1 and 2.0.2. We

will introduce other definitions as needed in later sections. In Section 2.2 we prove

Theorem 2.0.1, and in Section 2.3 we use Shaltiel’s examples to analyze the tightness

of this result. We prove Theorem 2.0.2 in Section 2.4.

In Section 2.5 we prove our “gambling lemma” (Lemma 2.5.1), and use it to prove

a generalized threshold DPT for relations. Theorem 2.0.4 will follow as a special case.

We also explain how our threshold DPT implies a DPT for the query complexity of

certain learning tasks. We prove Theorem 2.0.3, our XOR lemma, in Section 2.6 (also

using Lemma 2.5.1). We define search problems and errorless heuristics in Section 2.7,

and give DPTs for these settings.

We prove our DPT for decision tree size in Section 2.8. In Section 2.9, we describe

generalizations of our DPTs to settings involving interaction with dynamic entities.

We end with some questions for future work.

2.1 Preliminaries

All of our random variables will be defined over finite probability spaces. We let

supp(X) denote the support of a random variable X, i.e., the set of values with

nonzero probability. Let µ⌦k denote k independent copies of distribution µ.

2.1.1 Randomized decision trees and query complexity

A decision tree D over {0, 1}n is a rooted, full binary tree (i.e., each node has either

0 or 2 children), in which interior vertices v are labeled by indices ind(v) 2 [n] and

leaf vertices are labeled by values `(v) in some finite set B (often B = {0, 1}). The

height of D is the length of the longest descending path in D. D defines a function

59

fD : {0, 1}n ! B in the following way. On input x we start at the root and follow

a descending path through D; at interior node v, we pass to the left subchild of v if

xind(v) = 0, otherwise we pass to the right subchild of v. When we reach a leaf vertex

v, we output the value `(v). Any deterministic algorithm to compute f which queries

at most t bits of x on any input can be modeled as a height-t decision tree, and we

will freely refer to such a tree as a “t-query deterministic algorithm.”

A randomized decision tree is a probability distribution R over deterministic de-

cision trees. Upon receiving the input x, the algorithm samples D ⇠ R, then outputs

D(x). (Every randomized query algorithm can be modeled in this fashion.) We write

R(x) to denote the random variable giving the output of R on input x. We say that

R is a t-query randomized decision tree if every decision tree in the support of R has

height at most t.

For " 2 [0, 1] and a function f (not necessarily Boolean), we say thatR "-computes

f if for all inputs x, Pr[R(x) = f(x)] � 1 � ". Similarly, if µ is a distribution over

inputs x 2 {0, 1}n, we say that R "-computes f with respect to µ if Prx⇠µ[R(x) =

f(x)] � 1� ", where the probability is taken over the random sample x ⇠ µ and the

randomness used by R.

For a function f : {0, 1}n ! B, we define R
2

(f), the two-sided-error randomized

query complexity of f , as the minimum t for which there exists a t-query randomized

decision tree which 1/3-computes f . We define

SucT,µ(f) := 1� ",

where " � 0 is the minimum value for which some T -query-bounded randomized

algorithm R "-computes f with respect to µ. By standard arguments, this minimum

exists, and is attained by a deterministic height-T decision tree.

For f : {0, 1}n ! B and k � 1, define f⌦k : {0, 1}kn ! Bk, the k-fold direct

product of f , as f⌦k(x1, . . . , xk) := (f(x1), . . . , f(xk)). If f is Boolean, define the

k-fold XOR of f as f�k(x1, . . . , xk) := f(x1)� . . .� f(xk), where � denotes addition

mod 2.

60

2.1.2 Binomial distributions and Cherno↵ bounds

Let Bk,p denote the binomial distribution on k trials with bias p. That is, Bk,p

is distributed as Y =
Pk

i=1

Yi, where the Yi are independent and 0/1-valued with

Pr[Yi = 1] = p. For s 2 {0, 1, . . . , k} we have the explicit formula Pr[Y = s] =
�
k
s

�
ps(1� p)k�s.

The following is a general form of Cherno↵’s inequality:

Lemma 2.1.1 ([DP09], §1.3). Suppose Y ⇠ Bk,p, with q := 1�p. Then for t 2 [0, q),

Pr [Y > (p+ t)k] 
 ✓

p

p+ t

◆p+t✓ q

q � t

◆q�t!k

.

The following form of Cherno↵’s inequality will be more convenient for us.

Lemma 2.1.2. Let � 2 (0, 1), and let Y ⇠ Bk,1��. If � 2 (0, 1/2], then

Pr[Y > (1� ��)k] < [1� � + 6� ln(1/�)�]k .

Proof. We apply Lemma 2.1.1 with t := (1� �)�; we find

Pr [Y > (1� ��)k] = Pr[Y > ((1� �) + (1� �)�)k]


 ✓

1� �
1� ��

◆
1��� ✓ �

� � (1� �)�
◆��(1��)�!k

=

 ✓
1� �
1� ��

◆
1���

����
!k


⇣
(1� � + 2��)1��� ����

⌘k

, (2.1)

using ��  1/2.

It is easy to verify that (1� � + 2��) � �, so that

(1� � + 2��)��� · ����  ��2�� = e2� ln(1/�)�.

Now 2� ln(1/�)�  2/e < .74. By convexity of ex, we have ex  1+((e.74�1)/.74)·x 

61

1 + 1.49x for all x 2 [0, .74]. Thus, e2� ln(1/�)�  1 + 3� ln(1/�)�. Combining these

facts with Eq. 2.1, we get

Pr [Y > (1� ��)k]  [(1� � + 2��)(1 + 3� ln(1/�)�)]k

< [1� � + 6� ln(1/�)�]k .

The constant 6 in Lemma 2.1.2 is not best-possible. To apply the lemma, it is

helpful to understand the behavior of the function h(x) := x ln(1/x). This function

is increasing on (0, e�1], and as x ! 0, h(x) approaches 0 only slightly more slowly

than x itself: for an integer n > 1 we have

h

✓
1

2n lnn

◆
=

1

2n lnn
· ln(2n lnn) =

1

n
· ln(2n lnn)

ln(n2)
<

1

n
.

2.2 Proof of Theorem 2.0.1

In this section we prove our “basic” direct product theorem:

Theorem 2.2.1 (Theorem 2.0.1, restated). Let f be a Boolean function for which

SucT,µ(f)  1� ". Then for 0 < ↵  1, Suc↵"Tk,µ⌦k(f⌦k)  (2↵"(1� "))k < (1� "+
.84↵")k.

There is no requirement that T be an integer; this will be useful later in proving

Theorem 2.0.2. The success bound (2↵"(1�"))k above is actually valid for any ↵ > 0,

but the bound is trivial whenever ↵ � 2, so we focus attention on a range where the

bound is always meaningful.

Proof. The statement is trivial if T = 0 or " = 0, so assume both are positive. By

convexity, it is su�cient to show the statement for deterministic algorithms. Also, by

a standard limiting argument, it is enough to prove this result under the assumption

that supp(µ) = {0, 1}n; this ensures that conditioning on any sequence of query

outcomes will be well-defined.

62

Next we set up some notation and concepts relating to the computation of f on

a single input; afterward we will apply our work to the direct-product setting.

For a string u 2 {0, 1, ⇤}n, let the distribution µ(u) be defined as a sample from µ,

conditioned on the event [xi = ui, 8i such that ui 2 {0, 1}]. Let |u| denote the number

of 0/1 entries in u. Let u[xi b] denote the string u with the i-th coordinate set to

b. In our proof we consider the bits of an input y ⇠ µ to be generated sequentially at

random as they are queried. Thus if an input is drawn according to µ, and u describes

the outcomes of queries made so far (with ⇤ in the coordinates that have not been

queried), we consider the input to be in the “state” µ(u). If some index i 2 [n] is

queried next, then the algorithm sees a 0 with probability Pr
y⇠µ(u) [yi = 0], in which

case the input enters state µ(u[x
i

 0]); with the remaining probability the algorithm

sees a 1 and the input enters state µ(u[x
i

 1]). Clearly this interpretation is statistically

equivalent to regarding the input as being drawn from µ before the algorithm begins

(this is the “principle of deferred decisions” of probability theory).

For each u 2 {0, 1, ⇤}n with |u|  T , let

W (u) := SucT�|u|,µ(u)(f).

In words, W (u) measures our “winning prospects” of computing f on µ, if we begin

with a budget of T queries and our first |u| queries reveal the bits described by u,

and if we follow an optimal strategy thereafter. Clearly W (u) 2 [1/2, 1], since an

algorithm may simply guess a random bit. We make two more simple claims about

this function.

Lemma 2.2.2. 1. W (⇤n)  1� ".

2. For any u 2 {0, 1, ⇤}n with |u| < T , and any i 2 [n], E
y⇠µ(u) [W (u[xi yi])] 

W (u).

Proof. 1: This is immediate from our initial assumption SucT,µ(f)  1� ".

2: If the i-th coordinate has already been queried (i.e., ui 2 {0, 1}), then yi = ui

with probability 1, so u[xi yi] = u and the statement is trivial. So assume ui = ⇤.

63

Let R
0

, R
1

be algorithms making at most T � (|u|+ 1) queries and maximizing the

success probabilities on µ(u[x
i

 0]), µ(u[x
i

 1]) respectively. Thus, the success probability

of Rb is W (u[xi b]). Consider an algorithm R which queries xi, then runs Rb if

the bit seen is b. R makes at most T � |u| queries, and the success probability of R
is E

y⇠µ(u) [W (u[xi yi])]. Thus W (u) is at least this value.

Now we prove the Theorem. Let D be any deterministic algorithm making at most

M := b↵"Tkc queries, and attempting to compute f⌦k on input strings (x1, . . . ,xk) ⇠
µ⌦k. For j 2 [k] and 0  t  M , let uj

t 2 {0, 1, ⇤}n be the random string giving the

outcomes of all queries made to xj after D has made t queries (to the entire input).

We need the following simple but important observation:

Lemma 2.2.3. Condition on any execution of D for the first t � 0 steps, with query

outcomes given by u1

t , . . . , u
k
t . Then the input is in the state µ(u1

t

) ⇥ . . .⇥ µ(uk

t

). That

is, the k inputs are independent, with xj distributed as µ(uj

t

).

Proof. Fix any j 2 [k] and consider any assignment (xj0)j02[k]\{j} of values xj0 2 {0, 1}n

to the inputs other than the j-th input, where xj0 extends uj0

t for each j0 6= j. We

show that, after conditioning on the query outcomes u1

t , . . . , u
k
t and on the event

[xj0 = xj0 8j0 6= j], the j-th input xj is distributed according to µ(uj

t

). This will prove

the Lemma.

Consider each y 2 {0, 1}n which extends uj
t . Now u1

t , . . . , u
k
t are, by assumption, a

possible description of the first t queries made by D under some input. Since D is de-

terministic, and (x1, . . . , xj�1, y, xj+1, . . . , xk) are consistent with (u1

t , . . . , u
k
t), we con-

clude that (u1

t , . . . , u
k
t) also describe the first t queries made by D on (x1, . . . , xj�1, y,

xj+1, . . . , xk). Thus the conditional probability that xj = y is

µ⌦k(x1, . . . , xj�1, y, xj+1, . . . , xk)P
z extends uj

t

µ⌦k(x1, . . . , xj�1, z, xj+1, . . . , xk)
=

µ(y) ·Qj0 6=j µ(x
j0)

P
z extends uj

t

µ(z) ·Qj0 6=j µ(x
j0)

=

µ(y)P
z extends uj

t

µ(z)
= µ(uj

t

)(y),

64

by definition of µ(uj

t

). This proves Lemma 2.2.3.

Next, define collections

X = {Xj,t}j2[k],0tM , P = {Pt}0tM

of random variables, as follows. All the random variables are determined by the

execution of D on an input drawn from µ⌦k. Let Xj,t := W (ut
j) if |ut

j|  T ; otherwise

let Xj,t := 1/2. Let Pt :=
Q

j2[k] Xj,t.

We claim that for each 0  t < M , E[Pt+1

]  E[Pt]. To see this, condition on

any outcomes to the first t queries, described by u1

t , . . . , u
k
t . Now suppose that for

the (t + 1)-st query, D queries the i-th bit of the j-th input (i, j are determined by

u1

t , . . . , u
k
t , since D is deterministic). We note that Xj0,t+1

= Xj0,t for all j0 6= j. If

|ut
j| � T then also Xj,t+1

 Xj,t, which implies Pt+1

 Pt. So assume |ut
j| < T . Then

we have

E[Pt+1

|u1

t , . . . , u
k
t] = E[Xj,t+1

·
Y

j0 6=j

Xj0,t+1

|u1

t , . . . , u
k
t]

= E[Xj,t+1

|u1

t , . . . , u
k
t] ·

Y

j0 6=j

Xj0,t  Xj,t ·
Y

j0 6=j

Xj0,t = Pt,

where we used Lemma 2.2.3 and part 2 of Lemma 2.2.2. We conclude

E[Pt+1

] = E[E[Pt+1

|u1

t , . . . , u
k
t]]  E[Pt],

as claimed. It follows that E[PM]  E[P
0

]. But we can bound P
0

directly: P
0

=

W (⇤n)k  (1� ")k (Lemma 2.2.2, part 1). Thus E[PM]  (1� ")k.
Now we argue that this implies an upper bound on the success probability of

D. Condition on the bits u1

M , . . . , uk
M seen by D during a complete execution; these

determine the k output bits of D. For each j 2 [k], at least one of two possibil-

ities holds: either |uj
M | > T , or the j-th input is in a final state µ(uj

M

) for which

Pr
y⇠µ(u

j

M

) [f(y) = 1] 2 [1 � Xj,M , Xj,M]. Since the k inputs remain independent un-

der our conditioning, the conditional probability that D computes f⌦k correctly is at

most
Q

j:|uj

M

|T Xj,M .

65

D makes at most ↵"Tk queries, so simple counting tells us that there are fewer

than ↵"k indices j for which |uj
M | > T . Thus,

Y

j:|uj

M

|T
Xj,M 

Q
j2[k] Xj

(minj2[k] Xj,M)↵"k
 2↵"kPM

(since Xj,M � 1/2 for all j). Taking expectations, we find that the overall success

probability of D is at most E[2↵"kPM]  (2↵"(1� "))k.
Finally, we simplify our bound. We claim 2x < 1+.84x on (0, 1/2]. To see this, just

note that 20 = 1, that 21/2 < 1.42 = 1+ .84(1/2), and that 2x is a convex function on

R. Then, since 0 < ↵"  1/2, we have 2↵"(1�") < (1+ .84↵")(1�") < 1�"+ .84↵".

The proof is complete.

We remark that, as claimed in Section 2.0.5, the proof above can be easily adapted

to give an alternate proof of Shaltiel’s optimal direct product theorem for “fair”

algorithms making Tk queries: we define the random variables Xj,t exactly as before

and note that |uj
t |  T for all j, t.

2.3 Tightness of the bounds in Theorem 2.0.1

In this section we describe a family of functions and input distributions, due to

[Sha03], and explain why they show that the query/success tradeo↵ in Theorem 2.0.1

is nearly best-possible, at least when ↵ < .01 and when (1 � ")k is also at most a

small constant.

Fixing an integer T > 0, define fT : {0, 1}T+2 ! {0, 1} as follows: let fT (x) := x
2

if x
1

= 1, otherwise fT (x) := x
2

� . . . � xT+2

. Given " 2 (0, 1/2), let µ" be the

distribution over {0, 1}T+2 in which all bits are independent, Pr[x
1

= 1] = 1�2", and

Pr[xi = 1] = 1/2 for all i 2 {2, . . . , T + 2}. Note that if y ⇠ µ", a T -query-bounded

algorithm can gain no information about the value of f when x
1

= 0, so any such

algorithm succeeds with probability at most (1� 2")1 + (2")1
2

= 1� " in computing

f(y).

66

Now consider the following algorithm D attempting to compute f⌦k on inputs

(x1, . . . ,xk) ⇠ µ⌦k" . First D queries the first two bits of each input. Call an input xk

“bad” if its first bit is 0, “good” if its first bit is 1. Let B ✓ [k] denote the set of

bad inputs. Note that D learns the value of f on each good input. Next, D chooses

arbitrarily a set S ✓ B of b↵"kc bad inputs, and spends T additional queries on

each input in S to determine the value of f on these inputs (if there are fewer than

b↵"kc bad inputs, D queries them all and determines the value of f⌦k with certainty).

Finally, D outputs the answer bits it has learned and makes random guesses for the

remaining values.

Observe that D uses at most 2k + ↵"Tk queries overall. To analyze the success

probability of D, first consider an algorithm D0 which uses only 2k queries to look at

the two bits of each input; D0 outputs the correct value on good inputs, and guesses

randomly on bad inputs. It is easy to see that D0 succeeds with probability (1� ")k

in computing f⌦k. Also, if D and D0 are both run on a common k-tuple of inputs

drawn from µ⌦k" , and we condition on the event that |B| � b↵"kc, then the success

probability of D is 2b↵"kc times the success probability of D0, since the inputs are

independent and D has b↵"kc fewer random guesses to make. Thus, Pr [D succeeds]

is at least

Pr [|B| � ↵"k] · 2b↵"kc Pr

D0 succeeds

����|B| � ↵"k

�

= 2b↵"kc Pr [D0 succeeds ^ |B| � ↵"k]

� 2b↵"kc · (Pr [D0 succeeds]� Pr [|B| < ↵"k])

= 2b↵"kc · �(1� ")k � Pr [|B| < ↵"k]
�
. (2.2)

Define the indicator variable Yj := 1
[j /2B]

; then the Yj’s are independent, with p =

Pr[Yj = 1] = 1� 2". Let Y := Y
1

+ . . . + Yk. We apply Lemma 2.1.2 to Y , with the

settings � := 2" and � := ↵/2  1/2, to obtain

Pr[|B| < ↵"k] = Pr[Y > (1� ↵")k]
= Pr[Y > (1� (2")(↵/2))k]

67

< [1� 2"+ 6(↵/2) ln(2/↵)(2")]k .

This can be made less than (1�1.5")k if ↵ is a small enough positive constant (↵ < .01

will work).

Now if (1 � ")k is also at most a su�ciently small constant, then (1 � 1.5")k <

.1(1� ")k so that, by Eq. 2.2,

Pr [D succeeds] > .9 · 2b↵"kc(1� ")k,

which is close to the maximum success probability allowed by Theorem 2.0.1 if D
used ↵"Tk queries. (Recall, though, that D uses 2k + ↵"Tk queries.)

2.4 Proof of Theorem 2.0.2

We now prove Theorem 2.0.2 from Section 2.0.5, our DPT for worst-case error, by

combining Theorem 2.0.1 with a version of Yao’s minimax principle [Yao77], which al-

lows us to convert worst-case hardness assumptions in query complexity into average-

case assumptions.

Define R
2,�(f) as the minimum T for which there exists a randomized T -query

algorithm which computes f(x) correctly with probability at least 1 � � for every

x. The following is a common version of Yao’s principle, and can be proved directly

using the minimax theorem of game theory.

Lemma 2.4.1. Fix 0 < � < 1/2 and a Boolean function f . There exists a distribution

µ� over inputs to f , such that every randomized algorithm making fewer than R
2,�(f)

queries succeeds in computing f on µ� with probability less than 1� �.

Proof of Theorem 2.0.2. Let f be given. Let � := 1/2 � �/2, and let µ := µ� be as

provided by Lemma 2.4.1. Now fix a tiny constant c 2 (0, 1), and let T := R
2,�(f)�c;

we have

SucT,µ(f)  1� ",

68

for some value " > � > 3/8 (independent of c). Now set ↵ := �, and apply Theo-

rem 2.0.1 to find

Suc�"Tk,µ(f) < (1� (1� .84�)")k < (1� (1� .84�)�)k .

Note that �"Tk > ��R
2,�(f)k, if c is chosen su�ciently small. We conclude that any

algorithm making at most ��R
2,�(f)k queries succeeds with probability less than

(1� (1� .84�)�)k = (1� (1� .84�)(1/2� �/2))k

< (1/2 + .42� + �/2)k < (1/2 + �)k

in computing f⌦k on inputs x1, . . . ,xk ⇠ µ⌦k. So, the worst-case success probability

is also less than this amount.

Now we relateR
2,�(f) toR2

(f) by standard sampling ideas. SayR� is an algorithm

making R
2,�(f) queries, which computes f(x) with probability at least 1� � = 1/2+

�/2 on each input. Let R be the algorithm which given an input x, runs R�(x) for

m := d3/�2e trials, outputting the majority value. For i 2 [m], define the indicator

variable Yi for the event [R� succeeds on the i-th trial], and let Y := Y
1

+. . .+Ym. Then

the probability that R(x) outputs an incorrect value is at most the probability that

Y  E[Y]��m/2, which by Hoe↵ding’s inequality is at most e�2�
2m/4  e�3/2 < 1/3.

Thus, R
2

(f)  R
2,�(f) · d3/�2e < 4R

2,�(f)/�2 (using � < 1/4). Then, we have

�3R
2

(f)k/11 < �(3/8)(�2R
2

(f)/4)k < ��R
2,�(f)k,

from which Theorem 2.0.2 follows.

2.5 Threshold direct product theorems

In this section we prove our “gambling lemma,” Lemma 2.5.1, and use it to prove

generalized threshold DPTs for relations (relation problems are formally defined in

Section 2.5.2). This will yield DPTs for non-Boolean functions as well as for the

69

query complexity of learning tasks. Further applications of Lemma 2.5.1 will appear

in later sections.

Let P([k]) denote the collection of subsets of [k]. Say that a subcollection A ✓
P([k]) is monotone if [A 2 A, A ✓ A0] implies A0 2 A. Monotone collections play an

important role in what follows.

2.5.1 A gambling lemma

Like the proof of Theorem 2.0.1, the statement of our next lemma is best explained by

a gambling metaphor. Suppose that a gambler gambles at k tables, bringing an initial

endowment of pj 2 [0, 1] to the j-th table. He cannot transfer funds between tables, or

go into debt at any table; he can only play games for which his expected winnings are

nonpositive; and the di↵erent tables’ games use independent randomness. However,

the gambler can choose which game to play next at each table.

The gambler wants to reach a fortune of 1 at “su�ciently many” of the tables,

where the meaning of “su�ciently many” is specified by a monotone subset A ✓
P([k]). One way the gambler may attempt to reach this goal is to simply place

an “all-or-nothing” bet independently at each table; that is, at the j-th table, the

gambler wins a fortune of 1 with probability pj, and loses his j-th endowment with the

remaining probability. The following lemma states that this is in fact the gambler’s

best strategy.

Lemma 2.5.1. Suppose k,N � 1 are given, along with a collection {X ,U} of random

variables (over a finite probability space). Here X = {X
1

, . . . ,Xk}, where for each

j 2 [k], Xj = {Xj,0, Xj,1, . . . , Xj,N} is a sequence of variables in the range [0, 1]

(think of Xj,t as the gambler’s fortune at the j-th table after the first t steps). U =

{U
0

, U
1

, . . . , UN�1} is a sequence of random variables taking values over some finite

set (think of Ut as describing the form and outcomes of all gambles in the first t

steps). Assume that for all 0  t < N , Ut determines {X
1,t, . . . , Xk,t}, and also

determines Ut0 for all t0 < t. Also assume that {X
1,t+1

, . . . , Xk,t+1

} are independent

conditioned on Ut. Then, if Xj,0  pj 2 [0, 1] for all j 2 [k], and A is a monotone

70

subset of P([k]), we have

Pr[{j 2 [k] : Xj,N = 1} 2 A]  Pr[D 2 A],

where D ✓ [k] is generated by independently including each j 2 [k] in D with proba-

bility pj.

Note that we assume the gambler never attains a fortune greater than 1 at any

table; this restriction is easily removed, but it holds naturally in the settings where

we’ll apply the Lemma.

Proof. We use the term “A-success” to refer to the event [{j 2 [k] : Xj,N = 1} 2 A]

whose probability we are bounding.

We first make a simplifying observation: we claim it is without loss of generality

to assume that between each consecutive times (t, t+ 1), at most one of the fortunes

changes, and that the fortune subject to change is determined by t. Call a family

of sequences with this property “nice.” To see this, consider any family X obeying

Lemma 2.5.1’s assumptions, and modify it by “splitting” each transition (t, t+1) into

a sequence of k transitions, in the j-th of which the j-th fortune changes (according

to the same distribution governing its transition in the original sequence).

More formally, we define X 0j = {X 0j,0, . . . , X 0j,Nk} by letting X 0j,` := Xj,b(`+k�j)/kc;

and we define U 0 = {U 0
0

, U 0
1

, . . . , U 0Nk�1} by

U 0` :=
⇣
Ub`/kc,

�
X 0j,`0

�
j2[k],`0`

⌘
.

(We add extra information into U 0` to ensure that it determines the random vari-

ables it is supposed to.) Lemma 2.5.1’s assumptions continue to hold for this modi-

fied, nice family of random variables; here we are using our original assumption that

{X
1,t+1

, . . . , Xk,t+1

} are independent conditioned on Ut. Also, the probability of A-

success is unchanged. So let us assume from now on that (X ,U) is nice, and for

0  t < N , let jt 2 [k] be the index of the fortune subject to change between times t

and t+ 1.

71

Fix any k � 1; we prove the statement by induction on N � 1. First suppose

N = 1, and let j
0

be as defined above. Let S ✓ [k] \ {j
0

} be the set of indices

j 6= j
0

for which pj = 1. First suppose S 2 A; then Pr[D 2 A] = 1, since each

j 2 S is included in D with probability 1. In this case the conclusion is trivially

satisfied. Next suppose S [{j
0

} /2 A. In this case, Pr[A-success] = 0, and again

the conclusion is trivially satisfied. So suppose S /2 A, S [{j
0

} 2 A, and condition

on any value U
0

= u. Then A-success occurs i↵ Xj0,1 = 1. By Markov’s inequality,

Pr[Xj0,1 = 1|U
0

= u]  E[Xj0,1|U0

= u]  Xj0,0  pj0 = Pr[D 2 A]. This proves the

statement for N = 1.

So letN > 1 and assume the statement proved for {1, . . . , N�1}; we prove it forN .

Condition on any value U
0

= u, and condition further on the value Xj0,1 = a 2 [0, 1].

The equalities Xj,1 = Xj,0  pj are forced for all j 6= j
0

; the residual collection

of random variables {Xj,t : j 2 [k], 1  t  N} [{Ut : 1  t < N} under our

conditioning obey Lemma 2.5.1’s assumptions, along with our added assumption; and

these sequences are shorter by a step than our initial sequences. Thus our induction

hypothesis implies that

Pr[A-success|U
0

= u,Xj0,1 = a]  Pr[D(a) 2 A], (2.3)

where D(a) is generated just like D except that j
0

is now included in D(a) with

probability a.

Let q
0

:= Pr[D \ {j
0

} 2 A] and q
1

:= Pr[D [{j
0

} 2 A]. Note that q
0

 q
1

, since

A is monotone. We have

Pr[D(a) 2 A] = (1� a)q
0

+ aq
1

.

Taking expectations over a in Eq. 2.3, Pr[A-success|U
0

= u] is at most

(1� E[Xj0,1|U0

= u])q
0

+ E[Xj0,1|U0

= u] · q
1

 (1� pj0)q0 + pj0q1

72

(since q
0

 q
1

and E[Xj0,1|U0

= u]  Xj0,0  pj0)

= Pr[D 2 A].

As u was arbitrary, this extends the induction to N , and completes the proof.

2.5.2 Application to threshold DPTs

Now we prove our generalized threshold direct product theorem. Our theorem will

be within the framework of solving relation problems, a more general task than com-

puting functions. A relation (with Boolean domain) is a subset P ✓ {0, 1}n ⇥B, for

some finite set B. The relation is total if for all x 2 {0, 1}n, there exists b 2 B such

that (x, b) 2 P . For each total relation P there is a natural computational problem:

given an input x, try to output a b for which (x, b) 2 P . Computing a function

f : {0, 1}n ! B is equivalent to solving the relation problem for the total relation

Pf := {(x, b) : f(x) = b}.
If R is a (possibly randomized) query algorithm producing outputs in B, P is

a total relation, and µ a distribution, say that R "-solves P with respect to µ if

Prx⇠µ[(x,R(x)) 2 P] � 1�". Define SucrelT,µ(P) := 1�", where " � 0 is the minimum

value for which some T -query randomized algorithm R "-solves P with respect to µ.

As usual, this minimum exists and is attained by a deterministic height-T decision

tree. For a randomized algorithm R making queries to k � 1 inputs x = (x1, . . . , xk)

to P and producing an output in Bk, let Rj(x) 2 B be the j-th value outputted by

R.

Given A,A0 ✓ [k], define the distance d(A,A0) := |(A \ A0) [(A0 \ A)|. Given a

set family A ✓ P([k]), and a real number r > 0, define the strict r-neighborhood of

A, denoted Nr(A), as

Nr(A) := {A0 : d(A,A0) < r for some A 2 A}.

We have A ✓ Nr(A). Note also that if A is monotone then so is Nr(A). We can now

state our generalized threshold DPT:

73

Theorem 2.5.2. Fix a finite set B, and let P ✓ {0, 1}n ⇥ B be a total relation for

which SucrelT,µ(P)  1 � ". Fixing any randomized algorithm R making queries to

inputs x = (x1, . . . ,xk) ⇠ µ⌦k and producing output in Bk, define the (random) set

S[x] := {j 2 [k] : (xj,Rj(x)) 2 P}.

Suppose R is ↵"Tk-query-bounded for some ↵ 2 (0, 1], and A is any monotone subset

of P([k]). Then:

1. Pr[S[x] 2 A]  |B|↵"k ·Pr[D 2 A], where D ✓ [k] is generated by independently

including each j 2 [k] in D with probability 1� ".

2. Also, for D as above, Pr[S[x] 2 A]  Pr[D 2 N↵"k(A)].

Proof. As in Theorem 2.0.1, we may assume ", T > 0, supp(µ) = {0, 1}n. We have

"  1 � |B|�1 < 1, since P is total and an algorithm may output a random element

of B.

For u 2 {0, 1, ⇤}n with |u|  T , let

WP (u) := SucrelT�|u|,µ(u)(P).

Then WP (u) 2 [|B|�1, 1]. We have the following claim, whose proof follows that of

Lemma 2.2.2:

Lemma 2.5.3. 1. WP (⇤n)  1� ".

2. For any u 2 {0, 1, ⇤}n with |u| < T , and any i 2 [n], E
y⇠µ(u) [WP (u[xi yi])] 

WP (u).

Let R be ↵"Tk-query-bounded; as in Theorem 2.0.1, we may assume R is deter-

ministic, so call it D instead. Let M := b↵"Tkc as before, and recall the random

strings uj
t defined in Theorem 2.0.1.

Define random variables {Xj,t}j2[k],0tM , determined by an execution of D on

inputs (x1, . . . ,xk) ⇠ µ⌦k, by letting Xj,t := WP (u
j
t) if |uj

t |  T , otherwise Xj,t :=

|B|�1. Next, the natural idea is to apply Lemma 2.5.1. First, however, we need to

74

extend the sequences for one additional (non-query) step. That is, we will define

random variables Xj,M+1

for each j 2 [k]. We will use X to denote the collection of

enlarged sequences.

Our definition of Xj,M+1

depends on whether |uj
M |  T , that is, on whether D

made at most T queries to xj on the current execution. If |uj
M |  T , let Xj,M+1

:=

1
[(x

j ,D
j

(x))2P]

be the indicator variable for the event that D solves P on the j-th input.

If |uj
M | > T , let Xj,M+1

:= 1 with probability |B|�1, and let Xj,M+1

:= 0 with the

remaining probability. We let each such “coin-flip” be independent of the others and

of (x1, . . . ,xk).

Define the collection U = {U
0

, . . . , UM} by Ut := (u1

t , . . . , u
k
t). We argue that

the conditions of Lemma 2.5.1 are satisfied by (X ,U), with N := M + 1. First,

for 0  t0  t  M , the stated conditions follow from Lemma 2.2.3 and part 2

of Lemma 2.5.3. Now consider the final, added step. Condition on any value of

UM = (u1

M , . . . , uk
M). Lemma 2.2.3 tells us that x1, . . . ,xk are independent under this

conditioning, and D’s outputs are determined by UM , so the variables {Xj,M+1

} are

independent conditioned on UM . If |uj
M |  T then E[Xj,M+1

|UM]  Xj,M by part 2

of Lemma 2.5.3. If |uj
M | > T then E[Xj,M+1

] = |B|�1 = Xj,M .

Thus the assumptions of Lemma 2.5.1 are satisfied, with pj = Xj,0  1 � ". We

conclude that for any monotone C ✓ P([k]),

Pr[{j 2 [k] : Xj,N = 1} 2 C]  Pr[D 2 C], (2.4)

where each j 2 [k] is independently included in D with probability 1� ".

To prove statement 1 of Theorem 2.5.2, let C := A. Note that S[x] and u1

M , . . . , uk
M

are determined by x, since D is deterministic. Condition on any value of x for which

S[x] 2 A. Under this conditioning, if j 2 [k] satisfies |uj
M |  T and j 2 S[x], then

Xj,N = 1. On the other hand, if |uj
M | > T , then [Xj,N = 1] holds with probability

|B|�1, and these events are independent for each such j. By the query bound on D,

75

there are fewer than ↵"k indices j in our conditioning for which |uj
M | > T . Thus,

Pr[{j 2 [k] : Xj,N = 1} 2 A|S[x] 2 A] � |B|�↵"k,

which in combination with Eq. 2.4 implies

Pr[S[x] 2 A]  |B|↵"k · Pr[D 2 A],

as needed. To prove statement 2 of Theorem 2.5.2, let C := N↵"k(A) in Eq. 2.4: we

find

Pr[{j 2 [k] : Xj,N = 1} 2 N↵"k(A)]  Pr[D 2 N↵"k(A)].

Arguing as above, S[x] \ {j 2 [k] : Xj,N = 1} is always a set of size less than

↵"k, so [S[x] 2 A] implies [{j 2 [k] : Xj,N = 1} 2 N↵"k(A)]. Thus, we have

Pr[S[x] 2 A]  Pr[D 2 N↵"k(A)].

Part 1 of Theorem 2.5.2 is a proper generalization of Theorem 2.0.1. To see this,

just set A := {[k]}, P := Pf , and note that in this case, Pr[D 2 A] = (1 � ")k.

As another dividend, we obtain the following threshold DPT for relations, which

specializes to an ordinary DPT for this setting (statement 3 in the Theorem below).

Theorem 2.5.4. Let P ✓ {0, 1}n⇥B be a total relation for which SucrelT,µ(P)  1�".
Fix any ⌘ 2 (0, 1]. For any randomized algorithm R making queries to inputs x =

(x1, . . . ,xk) ⇠ µ⌦k, define the (random) set S[x] as in Theorem 2.5.2. Then if R is

↵"Tk-query-bounded for ↵ 2 (0, 1], we have:

1. Pr[|S[x]| � ⌘k]  |B|↵"k · PrY⇠B
k,1�"

[Y � ⌘k], and also

2. Pr[|S[x]| � ⌘k]  PrY⇠B
k,1�"

[Y � (⌘ � ↵")k].

3. Pr[|S[x]| = [k]] is at most the minimum of |B|↵"k(1 � ")k and PrY⇠B
k,1�"

[Y �
(1�↵")k]. If ↵  1/2 the second bound in the min is at most [1� "+ 6↵ ln(1/↵)"]k.

Proof. Apply parts 1 and 2 of Theorem 2.5.2, with the choice A := {A ✓ [k] : |A| �
⌘k}. We have Pr[D 2 A] = Pr[D

1

+ . . . + Dk � ⌘k], where we define Dj := 1
[j2D]

.

76

These 0/1-valued variables are independent with bias 1� ", which gives statement 1.

Similarly, Pr[D 2 N↵"k(A)] = Pr[D
1

+ . . . +Dk � (⌘ � ↵")k], which gives statement

2. Statement 3 simply combines statements 1 and 2, under the setting ⌘ = 1. For

the final bound in statement 3, we apply Lemma 2.1.2 with � := ↵, � := ".

Theorem 2.0.4 in Section 2.0.5 follows from the special case of Theorem 2.5.4 in

which P := Pf .

The success bound |B|↵"k(1� ")k appearing above can also be derived by an easy

modification of the proof of Theorem 2.0.1, in which the condition Xj,t � 1/2 we

exploit becomes Xj,t � |B|�1. When |B| is large, however, the alternative bound

provided in Theorem 2.5.4 will tend to give better results.

Note that part 2 of Theorem 2.5.4, in conjunction with Cherno↵ inequalities,

gives success bounds which decay exponentially in k for any fixed ↵, ", ⌘ for which

⌘ > 1 � " + ↵". Shaltiel’s examples, described in Section 2.3, show that this cuto↵

is nearly tight: on those functions, the algorithm D described in Section 2.3 makes

2k + ↵"Tk queries and (it is easily checked) typically solves about (1� "+ .5↵")k of

the instances correctly.

Threshold DPTs for the worst-case setting can also be derived from Theorems 2.5.2

and 2.5.4, by the same reduction to the average-case setting used to prove Theo-

rem 2.0.2.

2.5.3 Direct product theorems for learning tasks

Theorems 2.5.2 and 2.5.4 readily imply direct product theorems for the query com-

plexity of certain learning tasks, as we explain next. Consider the scenario in which a

randomized algorithm R is given query access to an unknown function h : {0, 1}n !
{0, 1} drawn from some distribution µ over a hypothesis class H. That is, for any

string x, R can query the value h(x). The algorithm R attempts to output a hypoth-

esis h̃ which is “close” to h. That is, we fix some symmetric relation close ✓ H⇥H
(assume close(h, h) always holds), and we wish to find some h̃ such that close(h, h̃)

holds.

77

This task can be equivalently modeled as the relation problem associated with the

total relation

PH := {(h, h0) : h, h0 2 H ^ close(h, h0)},

where h is given in truth-table form as a Boolean string, under the input distribution

h ⇠ µ. (We don’t give a membership criterion for PH when h /2 H; this is unimportant

since supp(µ) ✓ H.)

In the k-fold learning problem associated withH, µ, the algorithm has query access

to each of k functions (h
1

, . . . , hk) ⇠ µ⌦k, and the goal is to output guesses h̃
1

, . . . h̃k

such that close(hj, h̃j) holds for all (or at least “many”) indices j 2 [k]. This task

is equivalent to the k-fold relation problem associated with PH, and Theorems 2.5.2

and 2.5.4 apply.

2.6 Proof of the XOR lemma

The proof of our XOR Lemma, Theorem 2.0.3 from Section 2.0.5, is modeled on the

proof of our threshold DPTs, and reuses Lemma 2.5.1.

Proof of Theorem 2.0.3. As usual we first set up some preliminaries. For a determin-

istic algorithm D over n input bits define

W�(u) := 2 · SucT�|u|,µ(u)(f)� 1.

Lemma 2.6.1. 1. W�(⇤n)  1� 2".

2. For any u 2 {0, 1, ⇤}n with |u| < T , and any i 2 [n], E
y⇠µ(u) [W�(u[xi yi])] 

W�(u).

Lemma 2.6.1 follows immediately from Lemma 2.2.2, since W�(u) = 2W (u)� 1.

Now we prove the Theorem. As in the proof of Theorem 2.0.1, we may assume

", T > 0, supp(µ) = {0, 1}n, and it is enough to prove the success bound for each

deterministic ↵"Tk-query algorithm D attempting to solve f�k(x1, . . . ,xk) on inputs

x1, . . . ,xk ⇠ µ⌦k. Recall the definitions of uj
t (for j 2 [k], 0  t M := b↵"Tkc) from

78

Theorem 2.0.1. For a deterministic algorithm D define {Xj,t}j2[k],0tM as follows: if

|uj
t |  T , set Xj,t := W�(ut

j); otherwise, set Xj,t := 0.

We will extend the random sequences {Xj,t} for one additional (non-query) step,

and will let X denote our enlarged collection. To set up our extension, we first define

random variables bj, rj, aj for j 2 [k], determined by uj
M , as follows. Let bj 2 {0, 1}

be defined as the likeliest value of f(y), where y ⇠ µ(uj

M

) (break ties arbitrarily). Let

rj := Pr[f(y) = bj] 2 [1/2, 1], where again y ⇠ µ(uj

M

). Let aj := 2rj � 1 2 [0, 1].

If |uj
M | > T , set Xj,M+1

:= 0. If instead |uj
M |  T , our random process “inspects”

the actual value of the bit f(xj) to help determineXj,M+1

. If f(xj) 6= bj, letXj,M+1

:=

0. If f(xj) = bj, let Xj,M+1

:= 1 with probability aj/rj, and Xj,M+1

:= 0 with the

remaining probability, where this random decision is independent of all others. Thus

in this case,

E[Xj,M+1

|u1

M , . . . , uk
M] = rj · (aj/rj) = aj  Xj,M ,

where the last inequality holds by the definition of W�(u
j
M) since |uj

M |  T .

Let U = (U
0

, . . . , UM), where Ut := (u1

t , . . . , u
k
t). By an argument analogous to

that in the proof of Theorem 2.5.2, we verify that (X ,U) obey the assumptions of

Lemma 2.5.1, this time with pj := 1� 2". Applying Lemma 2.5.1 to A := {A ✓ [k] :

|A| > (1� ↵")k}, we find

Pr[|{j : Xj,M+1

= 1}| > (1� ↵")k]  Pr[D 2 A], (2.5)

where each j 2 [k] is independently included in D with probability (1� 2"). We have

Pr[D 2 A] = PrY⇠B
k,1�2"

[Y > (1� ↵")k].
We analyze events F of form F := [UM = (u1

M , . . . , uk
M), X

1,M+1

= z
1

, . . . , Xk,M+1

=

zk]. Note that conditioning on F does not condition on the particular values f(xj)

which helped determine the values zj. Focus attention on any such event F for which

|{j : Xj,M+1

= 1}|  (1�↵")k. Since D makes at most ↵"Tk queries, there are fewer

than ↵"k indices j for which |uj
M | > T . In particular, there exists a j? 2 [k] for which

|uj?

M |  T and Xj?,M+1

< 1 (so, by our definitions, Xj?,M+1

= 0).

79

Now let the event F 0 be defined just like F , except that F 0 makes no conditioning

on Xj?,M+1

(so, F = F 0 ^ [Xj?,M+1

= 0]). Then,

Pr[f(xj?) = bj? |F] = Pr[f(xj?) = bj? |F 0 ^Xj?,M+1

= 0]

=
Pr[f(xj?) = bj? ^Xj?,M+1

= 0|F 0]
Pr[Xj?,M+1

= 0|F 0]

=
Pr[f(xj?) = bj? |F 0] · Pr[Xj?,M+1

= 0|F 0, f(xj?) = bj?]P
b2{0,1} Pr[f(x

j?) = b|F 0] · Pr[Xj?,M+1

= 0|F 0, f(xj?) = b]

=
rj?(1� aj?/rj?)

rj?(1� aj?/rj?) + (1� rj?) · 1
(using the fact that x1, . . . ,xk are independent conditioned on UM , by Lemma 2.2.3,

and the additional fact that {Xj,M+1

}j2[k] are independent conditioned on UM)

=
rj? � aj?

1� aj?
=

1

2

(1 + aj?)� aj?

1� aj?
= 1/2.

Thus, f(xj?) is an unbiased random bit conditioned on F . Consequently, f�k(x1, . . . ,xk) =

f(xj?)�f�k�1(x1, . . . ,xj?�1,xj?+1, . . . ,xk) is an unbiased random bit conditioned on

F . Thus under this conditioning, D’s output bit equals the k-fold XOR with proba-

bility exactly 1/2. Now F was an arbitrary outcome of UM , X
1,M+1

, . . . , Xk,M+1

for

which |{j : Xj,M+1

= 1}|  (1� ↵")k. It follows that

Pr
x⇠µ⌦k

[D(x) = f�k(x)]  Pr [|{j : Xj,M+1

= 1}| > (1� ↵")k] +
1

2
Pr [|{j : Xj,M+1

= 1}|  (1� ↵")k]

=
1

2
(1 + Pr [|{j : Xj,M+1

= 1}| > (1� ↵")k])

 1

2

✓
1 + Pr

Y⇠B
k,1�2"

[Y > (1� ↵")k]
◆
,

using Eq. 2.5.

Finally, to get the concrete bound claimed in statement of Theorem 2.0.3, first

suppose " = 1/2; in this case the bound follows easily since Y = 0 with certainty.

If " < 1/2, note that (1 � ↵")k = (1 � (↵/2)(2")), and apply Lemma 2.1.2 with

80

� := 2" < 1 and � := ↵/2  1/2.

2.7 Direct product theorems for search problems

and errorless heuristics

We define a fairly general notion of search problems in the query model for which

a direct product theorem can be proved. We will also obtain a DPT for errorless

heuristics, defined in Section 2.7.2.

2.7.1 Search problems

We need some preliminary definitions. Given u, v 2 {0, 1, ⇤}n, say that u and v agree

if ui 2 {0, 1} implies vi 2 {⇤, ui}. Note that this definition is symmetric in u and v.

If u, v agree, define their overlay u � v 2 {0, 1, ⇤}n by (u � v)i := b 2 {0, 1} if either

ui = b or vi = b, otherwise (u � v)i := ⇤. Say that u extends v if vi 2 {0, 1} implies

ui = vi.

Say we are given a distribution µ on {0, 1}n, and a (possibly randomized) query

algorithm R; if R runs on an input distributed according µ, we denote by UR,µ 2
{0, 1, ⇤}n the random string describing the input bits seen by R.

A search problem is defined by a subset V ✓ {0, 1, ⇤}n. We say that R "-solves

the search problem V with respect to an input distribution µ over {0, 1}n if, with

probability � 1 � ", UR,µ extends some v 2 V . (We allow the possibility that some

x 2 supp(µ) do not extend any v 2 V .) Define SucT,µ(V) := 1 � ", where " is the

minimal value such that some T -query randomized algorithm "-solves search problem

V on inputs from µ.

Define the k-fold search problem V ⌦k := {(v1, . . . , vk) : vj 2 V, 8j 2 [k]} ✓
{0, 1, ⇤}kn. Thus to solve V ⌦k, an algorithm must solve each of the k constituent

search problems. We generalize this notion in order to state a threshold DPT, which

81

will imply our ordinary DPT. For a monotone subset A ✓ P([k]), define

V k,A := {(v1, . . . , vk) : {j 2 [k] : vj 2 V } 2 A}.

Thus to solve V k,A, an algorithm must solve “su�ciently many” of the k search

problems, as specified by A.

Recall the notation Nr(·) from Section 2.5. Our generalized threshold DPT for

search problems is as follows:

Theorem 2.7.1. Suppose the search problem V satisfies SucT,µ(V)  1 � ". Then

for any ↵ 2 (0, 1] and any monotone A ✓ P([k]),

Suc↵"Tk,µ⌦k(V k,A)  Pr[D 2 N↵"k(A)],

where each j 2 [k] is independently included in D with probability 1� ".

Proof. In the search setting, " can potentially be any value in [0, 1]. The boundary

cases are trivial, so assume 0 < " < 1. As usual, we can assume that T > 0

and supp(µ) = {0, 1}n, and it is enough to bound the success probability of any

deterministic ↵"Tk-query algorithm.

Following Theorem 2.0.1, we first develop some concepts related to a computation

on a single input to the search problem V . For each u 2 {0, 1, ⇤}n for which |u|  T ,

let ValV (u) := 1 if u extends some v 2 V , otherwise ValV (u) := 0. For a deterministic

query algorithm D letWV (u,D) := E[Val(u�UD,µ(u))]. (Note that u and UD,µ(u) always

agree.)

If |u|  T , let WV (u) := maxD(WV (u,D)), where the maximum ranges over all

deterministic algorithms making at most T � |u| queries. In other words, WV (u) is

the maximum success probability of any (T � |u|)-query algorithm in solving V on an

input y ⇠ µ(u), where we reveal the bits described by u “for free” to the algorithm.

Then we have:

Lemma 2.7.2. 1. WV (⇤n)  1� ".

82

2. For any u 2 {0, 1, ⇤}n with |u| < T , and any i 2 [n], E
y⇠µ(u) [WV (u[xi yi])] 

WV (u).

We omit the proof, which is essentially the same as that of Lemma 2.2.2.

Let D be any deterministic algorithm making at most M := b↵"Tkc queries and
attempting to compute V k,A on inputs drawn as (x1, . . . ,xk) ⇠ µ⌦k. For 0  t M ,

and for j 2 [k], let uj
t be defined as in the previous proofs. Let X = {Xj,t}j2[k],0tM ,

where Xj,t := WV (u
j
t) if |uj

t |  T , otherwise Xj,t := 0.

Unlike in Theorem 2.5.2, we have no need to add any additional steps to our

random sequences. For 0  t < M , we let Ut := (u1

t , . . . , u
k
t) just as before. Setting

N := M and reasoning as in Theorem 2.5.2, we verify that the assumptions of 2.5.1

are satisfied, with pj = Xj,0  1� " (Lemma 2.7.2, part 1).

Applying Lemma 2.5.1 to the monotone set N↵"k(A), we conclude that

Pr[{j 2 [k] : Xj,M = 1} 2 N↵"k(A)]  Pr[D 2 N↵"k(A)], (2.6)

where each j 2 [k] is independently included in D with probability 1� ".
Now condition on any execution of D, and consider any j 2 [k] such thatXj,M < 1.

By our definitions, at least one of two possibilities holds: either |uj
M | > T (there are

fewer than ↵"k such indices j), or uj
M does not extend any v 2 V . Thus if D solves

the search problem V k,A on the present execution, we have {j 2 [k] : Xj,M = 1} 2
N↵"k(A). Combining this with Eq. 2.6 yields the Theorem.

From Theorem 2.7.1, we will directly obtain a standard threshold DPT and an

ordinary DPT for search problems. First, given a search problem V ✓ {0, 1, ⇤}n and

a real number s 2 [0, k], define C[� s] := {A ✓ [k] : |A| � s}.

Theorem 2.7.3. Suppose SucT,µ(V)  1 � ". Then for any ↵ 2 (0, 1] and any

⌘ 2 (0, 1],

Suc↵"Tk,µ⌦k(V k,C[�⌘k])  Pr
Y⇠B

k,1�"

[Y > (⌘ � ↵")k] .

Proof. Apply Theorem 2.7.1 with C := C[� ⌘k], and note that D 2 N↵"k (C[� ⌘k])

i↵ |D| > ⌘k � ↵"k, which is equivalent to [D
1

+ . . .+Dk > (⌘ � ↵")k], where Dj :=

83

1
[j2D]

. These indicator variables are independent with expectation 1� ".

Theorem 2.7.4. Suppose SucT,µ(V)  1� ". Then for any ↵ 2 (0, 1],

Suc↵"Tk,µ⌦k(V ⌦k)  Pr
Y⇠B

k,1�"

[Y > (1� ↵")k] .

Proof. Note that V ⌦k = V k,C[�k], so the result follows from Theorem 2.7.3 with

⌘ := 1.

2.7.2 Errorless heuristics

An errorless heuristic for a (not necessarily Boolean) function f : {0, 1}n ! B is

a randomized query algorithm R outputting values in B [{?} such that for all x,

R(x) 2 {f(x), ?} with probability 1. We say that an errorless heuristic R "-solves f

with zero error with respect to input distribution µ if Prx⇠µ[R(x) = f(x)] � 1 � ".
Let Suc0-errT,µ (f) := 1�", where " is the minimal value such that some T -query errorless

heuristic "-solves f with zero error with respect to µ. Note that Suc0-errT,µ (f) is exactly

SucT,µ(Vf), where the search problem Vf is defined as

Vf := {u 2 {0, 1, ⇤}n : u forces the value of f}.

Also, note that Vf⌦k = V ⌦kf . Thus the following result is immediately implied by

Theorem 2.7.4:

Theorem 2.7.5. Suppose Suc0-errT,µ (f)  1� ". Then for ↵ 2 (0, 1],

Suc0-err↵"Tk,µ⌦k

(f⌦k)  Pr
Y⇠B

k,1�"

[Y > (1� ↵")k] .

Let us revisit the XOR problem in the current setting. It is easy to see that an

errorless heuristic to compute the k-fold XOR f�k, on inputs drawn from a product

distribution, cannot produce any output other than “ ? ” unless its queries allow it

to determine the value of f⌦k. Thus Theorem 2.7.5 also implies an XOR lemma with

the same success bound for errorless heuristics.

84

Next we prove a worst-case analogue of Theorem 2.7.5. Define R
0

(f), the zero-

error randomized query complexity of f , as the minimum T for which some algorithm

R outputs f(x) with probability 1 for each x, and for which the expected number of

queries made by R to any input is at most T . The following is another variant of

Yao’s minimax principle [Yao77]; we include a proof for completeness.

Lemma 2.7.6. Let ⌘ 2 (0, 1]. There exists a distribution µ⌘ over inputs to f , such

that Suc0-err⌘R0(f),µ⌘

(f)  ⌘.

Proof. Consider the following 2-player game: player 1 chooses a (possibly randomized)

errorless heuristic R for f which makes at most ⌘R
0

(f) queries, and player 2 chooses

(simultaneously) an input x to f . Player 1 wins if R(x) = f(x). We claim there

exists a randomized strategy for player 2, that is, a distribution µ =: µ⌘ over inputs

to x, that beats any strategy of player 1 with probability at least 1 � ⌘. This will

prove the Lemma.

To prove the claim, suppose for contradiction’s sake that no such strategy for

player 2 exists. Then, by the minimax theorem, there exists a randomized strategy

for player 1 which wins with probability greater than ⌘ against all choices of x. This

strategy is itself a randomized algorithm making at most ⌘R
0

(f) queries; let us call

this algorithm R. Consider the algorithm R0 for f that on input x, repeatedly applies

R to x until R produces an output, which R0 then outputs. We have R0(x) = f(x)

on every input. Also, the expected number of queries of R0 on any input is strictly

less than

X

m�1
(1� ⌘)m�1⌘ (m · ⌘R

0

(f)) =

X

m�1
(1� ⌘)m�1m

!
· ⌘2R

0

(f)

=
1

⌘2
· ⌘2R

0

(f)

= R
0

(f),

contradicting the definition of R
0

(f).

Theorem 2.7.7. For any (not necessarily Boolean) function f , and ↵ 2 (0, 1/2], any

85

errorless heuristic for f⌦k using at most ↵2R
0

(f)k/4 queries has worst-case success

probability less than (7↵ ln(1/↵))k.

Proof. Set � := ↵/2. Let µ� be the distribution given by Lemma 2.7.6, so that

Suc0-err�R0(f),µ�

(f)  �. By Theorem 2.7.5 applied to ↵, with T := �R
0

(f) and " := 1��,

Suc0-err
↵(1��)�R0(f)k,µ

⌦k

�

(f⌦k)  Pr
Y⇠B

k,�

[Y > (1� ↵(1� �))k] .

We have ↵2R
0

(f)k/4  ↵(1� �)�R
0

(f)k (using �  1/2), so that

Suc0-err
↵2R0(f)k/4,µ

⌦k

�

(f⌦k)  Pr
Y⇠B

k,�

[Y > (1� ↵(1� �))k]

< [1� (1� �) + 6↵ ln(1/↵)(1� �))]k

(applying Lemma 2.1.2, with � := ↵  1/2 and � := (1� �))

< (↵/2 + 6↵ ln(1/↵))k

< (7↵ ln(1/↵))k .

2.8 A direct product theorem for decision tree size

We measure the size of a decision tree D, denoted size(D), as the number of leaf

(output) vertices. Note that this is at least 1/2 the total number of vertices. Define

SucsizeT,µ(f) as the maximum success probability of any size-T decision tree attempting

to compute f on an input drawn from distribution µ. We have the following DPT

for size-bounded query algorithms:

Theorem 2.8.1. Let f be a Boolean function. Suppose SucsizeT,µ(f)  1� ". Then for

0 < ↵  1, SucsizeT↵"k,µ⌦k

(f⌦k)  2↵"k(1� ")k.

86

Note how the size bound grows exponentially, rather than linearly, in k in the

above statement. It is natural to expect such a statement, since the k-fold application

of a size-T decision tree is described by a size-T k decision tree. Also note that, by

convexity, Theorem 2.8.1 also bounds the success probability of any “randomized

size-T ↵"k algorithm” R, i.e., of any probability distribution over size-T ↵"k decision

trees.

Proof. The proof follows that of Theorem 2.0.1, except that we need a new way to

quantify the resources used by each of the k inputs. First we develop some definitions

pertaining to a single input to f . Given u 2 {0, 1, ⇤}n and a real number Z 2 [1, T],

let

W
size

(u, Z) := SucsizeZ,µ(u)(f).

Lemma 2.8.2. 1. W
size

(⇤n, T)  1� ".

2. Take any real numbers S(0), S(1) � 1 and let S := S(0) + S(1). Then for any

u 2 {0, 1, ⇤}n and any i 2 [n],

E
y⇠µ(u) [W

size

(u[xi yi], S
(y

i

))]  W
size

(u, S).

The proof is very similar to that of Lemma 2.2.2, and is omitted.

Now let D be any deterministic algorithm of size at most T ↵"k attempting to

compute f⌦k on input strings x = (x1, . . . ,xk) ⇠ µ⌦k. Let M := bT ↵"kc; D always

makes at most M queries.

As in previous proofs, for j 2 [k] and 0  t  M , let uj
t 2 {0, 1, ⇤}n describe the

outcomes of all queries made to xj after D has taken t steps (here a “step” consists

of a query, unless D has halted, in which case a step has no e↵ect).

Let St be defined as the size (number of leaf vertices) of the subtree of D reached

after t steps have been taken. Thus we have S
0

 T ↵"k, and St = 1 i↵ D has halted

after at most t queries. For each j 2 [k], we define a sequence Zj,0, . . . , Zj,M , as

follows. Let Zj,0 := T . For 0  t < M , if D has halted after t steps, let Zj,t+1

:= Zj,t.

Otherwise, if the (t+ 1)-st query made by D is not to xj, we again let Zj,t+1

:= Zj,t.

87

If the (t+ 1)-st query is to xj, let

Zj,t+1

:=
St+1

St
· Zj,t.

Let Xj,t := W
size

(ut
j, Zj,t) if Zj,t � 1; otherwise let Xj,t := 1/2. Let Pt :=

Q
j2[k] Xj,t. Arguing as in Theorem 2.0.1, for each 0  t < M , E[Pt+1

]  E[Pt].

It follows that E[PM]  E[P
0

] = W
size

(⇤n, T)k  (1� ")k.
Condition on any complete execution of D, as described by u1

M , . . . , uk
M . Notice

that if Zj,M � 1, then (by the definitions) Xj,M is an upper bound on the conditional

success probability of guessing f(xj) correctly. Also, Xj,t � 1/2 for all j, t, and all

inputs are independent after our conditioning. Thus the conditional success proba-

bility of computing f⌦k(x) is at most 2|B| · PM , where we define the (random) set

B := {j 2 [k] : Zj,M < 1}.
Observe that SM = 1, since the algorithm halts after at most M steps. Then,

1 = SM =

✓
S
1

S
0

◆
· . . . ·

✓
SM

SM�1

◆
· S

0


 Q

j2[k] Zj,M

T k

!
· T ↵"k

 T�|B| · T ↵"k.

Thus, |B|  ↵"k always. So the overall success probability is at most E[2|B|PM] 
2↵"kE[PM]  (2↵"(1� "))k.

One can also prove variants of our XOR lemma and other results in which we

impose bounds on decision tree size rather than number of queries. We omit the

details.

2.9 DPTs for dynamic interaction

So far, all of the computational tasks we have studied have involved algorithms query-

ing a collection of fixed input strings. However, in many situations in computer science

88

it is natural to consider more general problems of interaction with dynamic, stateful

entities. An algorithm can still “query” these entities, but these actions may influence

the outcomes of future queries. In this section we describe how our proof methods can

yield DPTs for these more general problems. The methods involved are essentially

the same as in previous sections, and the theorem we give is just one example of the

kind of DPT we can prove for dynamic interaction, so we will only sketch the proofs

here, indicating the novel elements.

We will propose a self-contained model of dynamic interaction. We make no

claims of conceptual novelty for this model, however. Dynamic interaction has been

an important concept for cryptography; in this context, Maurer [Mau02] proposed a

model of random systems that generalizes our model. All of our work in this section

could in principle be carried out in the random systems framework; we choose to

use a di↵erent model that is somewhat simpler and adequate to our needs, and that

preserves a clear resemblance to our work in previous sections.

Much of the work in the random systems framework studies various kinds of com-

position of random systems; this work aims to understand how cryptographic prim-

itives can be combined into more complex protocols. In this vein, Maurer, Pietrzak,

and Renner [MPR07] proved a result (see their Lemma 6) that can be informally

described as follows: if an agent is playing games with two or more independent,

non-communicating entities, then the maximum joint-success probability is achieved

by following independent strategies on the di↵erent games. This result establishes an

“ideal” direct product property for interaction tasks with k independent entities, in

which the number of queries to each entity is fixed in advance. By contrast, our focus

will be on proving DPTs for query algorithms that can adaptively reallocate queries

between the k entities.

Now we formally define the type of entity with which our query algorithms interact.

Define an interactive automaton (IA) as a 5-tuple

M = (seeds, states,queries, R,�), where:

89

• seeds, states,queries are each finite sets, and states contains a distinguished

start state s
0

;

• R : seeds⇥ states⇥queries! {0, 1} is a response mapping ;

• � : seeds⇥ states⇥queries! states is a transition mapping.

These automata are deterministic, but we can incorporate randomness by providing

random bits as part of seeds.

We consider the scenario in which M is initialized to some seed z 2 seeds ac-

cording to a distribution µ, along with the start-state s
0

. The automaton retains the

value z throughout an interaction with a query algorithm R (which does not know

the value z), but changes its state-value. If R selects the query q 2 Q while M has

internal state (z, s) 2 seeds⇥ states, then M returns the value R(z, s, q) to R and

transitions to the state (z,�(z, s, q)).4

There are several kinds of tasks one can associate with an IA. One such task for

the query algorithm R is to try to output a value b 2 B that satisfies some predicate

P (z, b), where z is the seed toM and P ✓ seeds⇥B is a total relation over seeds and

a finite set B. This, of course, is a generalization of the relation problems we studied

in Section 2.5, and it is natural to study the k-fold setting, in which R interacts with

k IAs, querying one of them at each step. We assume that each IA only updates

its state or sends a response to R when it is queried. In particular, the IAs do not

communicate with each other.

We can transform the IA interaction scenario into an equivalent one which high-

lights the similarity with the standard query model, and makes it easy to apply

our previous work to obtain a DPT. For simplicity assume | seeds | = 2m. Given

an IA M and an integer N > 0, for each z 2 seeds we define a string ⇠(z) 2
{0, 1}m+(|queries |+1)

N

. There are two types of entries in this string. First there

are m “ID” entries, which simply contain a binary encoding of z. Next there are

4We can now sketch the modeling di↵erences between our work and [Mau02]. Maurer’s “random
systems” are modeled as inherently randomized; they may or may not be finite-state machines; and
they are specified “behaviorally” by their conditional distributions over query responses, conditioned
on all possible conversation transcripts.

90

(|queries | + 1)N “response” entries, with each such entry indexed by an N -tuple

q = (q
1

, . . . , qN) 2 (queries[{⇤})N . We are only interested in response-entries of

form q = (q
1

, . . . , qr, ⇤, ⇤, . . . , ⇤), where q
1

, . . . , qr 2 queries. For such an entry we

define ⇠(z)q 2 {0, 1} as the result of the following experiment: initialize M to state

(z, s
0

), and perform the interaction in which a query algorithm asks queries q
1

, . . . , qr

in that order. Let ⇠(z)q be the final, r-th response made by M.

Define a total relation P⇠ ✓ {0, 1}m+(|queries |+1)

N ⇥ B by

P⇠ := {(⇠(z), b) : z 2 seeds^ P (z, b)}.

Also, given a distribution µ over seeds, define µ⇠ ⇠ ⇠(z), where z ⇠ µ. In this way we

map an IA interaction task onto a relation problem of the type studied in Section 2.5,

with a corresponding map from initialization distributions to input distributions.

A standard query algorithm R (as studied in all previous sections) can faith-

fully simulate an interaction with M initialized to an unknown z 2 seeds, if given

query access to ⇠(z). This works in the natural way: if its simulated queries up

to the r-th step are q
1

, . . . , qr, then for its r-th query to ⇠(z), R looks at the entry

(q
1

, . . . , qr, ⇤, ⇤, . . . , ⇤) to learn M’s r-th response. Call an algorithm “interaction-

faithful” if its sequence of queries to any input string always obeys this format.

Of course, not all algorithms are interaction-faithful. For example, an unfaithful

algorithm could simply look at the ID-entries to learn z. Thus the relation problem

(P⇠, µ⇠) can be much easier than the IA interaction problem defined by (M, P, µ).

However, if we restrict attention to the class of interaction-faithful algorithms R, then

it is not hard to see that there is an exact correspondence between the “di�culty” of

the two problems, at least for interactions lasting at mostN steps. That is, for T  N ,

there is a T -query IA-interaction algorithm for (M, P, µ) with success probability p,

if and only if there is a T -query interaction-faithful standard algorithm for (P⇠, µ⇠)

with success probability p.

The good news is that we can prove a DPT for interaction-faithful query algo-

rithms in almost exactly the same way as for unrestricted query algorithms. In fact,

91

it’s most natural to prove a DPT for a more general notion of faithfulness, which we

define next. Say we are given n > 0 and a map ⌧ : {0, 1, ⇤}n ! {0, 1}n, called a

query-restriction map. Say that a (standard) query algorithm R on n input bits is

⌧ -faithful if for every execution of R on any input, whenever the input bits seen by

R seen so far are given by u 2 {0, 1, ⇤}n, then R either halts, or chooses a next input

bit xi to query whose index satisfies ⌧(u)i = 1. In other words, a restriction map

⌧ restricts the possible next queries which can be made by a ⌧ -faithful algorithm,

in a way that depends only on the description u of the bits seen so far. Note that

interaction-faithfulness as defined earlier is indeed equivalent to ⌧ -faithfulness for an

appropriately-defined ⌧ = ⌧
int

.

For k > 1, define the k-fold product of restriction map ⌧ , denoted ⌧⌦k : {0, 1}kn !
{0, 1}kn, by ⌧⌦k(u1, . . . , uk) := (⌧(u1), . . . , ⌧(uk)). The map ⌧⌦k can be interpreted

as a restriction map for algorithms making queries to a collection x1, . . . , xk of n-bit

strings. Note that R is ⌧⌦k-faithful exactly if for each j 2 [k], R’s queries to the

j-th input (considered alone) are always ⌧ -faithful. Thus, the k-fold IA interaction

problem defined by (M, P, µ) has “di�culty” equivalent to the k-fold relation problem

defined by (P⇠, µ⇠) for ⌧
⌦k
int

-faithful algorithms, provided N is chosen large enough in

the definition of ⇠(·) (relative to the query bounds we are interested in).

In light of these observations, a DPT for IA interaction algorithms follows by

straightforward translation from the following DPT (generalizing Theorem 2.5.2) for

standard query algorithms obeying a restriction map:

Theorem 2.9.1. Let P ✓ {0, 1}n ⇥ B be a total relation such that any T -query,

⌧ -faithful algorithm solves P with probability at most 1 � " under input distribution

µ.

For any algorithm R making queries to inputs x = (x1, . . . ,xk) ⇠ µ⌦k and pro-

ducing output in Bk, define the random set S[x] as in Theorem 2.5.2.

Suppose R is ⌧⌦k-faithful and ↵"Tk-query-bounded for some ↵ 2 (0, 1], and A is

any monotone subset of P([k]). Then conclusions 1 and 2 in Theorem 2.5.2 also hold

for R.

92

Proof. (Sketch) The proof follows that of Theorem 2.5.2; we only describe the dif-

ferences. For u 2 {0, 1, ⇤}n, and for a deterministic algorithm D on n input bits,

let

WP (u,D) := Pr
y⇠µ(u)

[(y,D(y)) 2 P].

Let us say that D is u-inducing if, on any input x 2 {0, 1}n which extends5 u, the

outcome of D’s first |u| queries to x are described by u.

If |u|  T , define WP,⌧ (u) := maxD WP (u,D), where the max ranges over all

deterministic, u-inducing, ⌧ -faithful algorithms D making at most T queries. We

have:

Lemma 2.9.2. 1. WP,⌧ (⇤n)  1� ".

2. For any u 2 {0, 1, ⇤}n with |u| < T , and any i 2 [n] satisfying ⌧(u)i = 1, we

have

E
y⇠µ(u) [WP,⌧ (u[xi yi])]  WP,⌧ (u).

The proof of Lemma 2.9.2 follows that of Lemma 2.2.2. The rest of the proof

of Theorem 2.9.1 follows that of Theorem 2.5.2, with WP,⌧ (u) taking the place of

WP (u).

One can also prove a DPT for search problems for ⌧ -faithful query algorithms,

along the lines of Theorem 2.7.1. When applied to interactive automata via the trans-

lation described earlier, search problems correspond to tasks whose success conditions

are defined in terms of the interaction itself (rather than the hidden seed of the IA,

or any output produced by the query algorithm).

2.10 Questions for future work

1. Can the bounds in our threshold DPTs and XOR lemma be improved? For

example, in Theorem 2.0.3, can one improve the success probability bound to

1

2

⇣
1 + [1� 2"+O (↵")]k

⌘
?

5(as defined in Section 2.7.1)

93

2. It is still unknown what worst-case success probability in computing f⌦k can

be achieved in general, when the number of queries allowed is ↵R
2

(f)k for

↵ � 1. The corresponding question in the quantum query model was settled

by Buhrman et al. [BNRdW07]. As mentioned earlier, O(R
2

(f)k log k) queries

always su�ce to compute f⌦k with high success probability; work of Feige et

al. [FRPU94] implies that we cannot do better than this by using a bounded-

error randomized algorithm for f in a black-box fashion.

3. Can ideas from our work be helpful in obtaining new results in other compu-

tational models? For example, Lee and Roland [LR12] prove a threshold DPT

for quantum query algorithms computing Boolean functions, where the query

bound scales as ⌦(Q
2

(f)k). Can we extend this to a generalized threshold DPT,

analogous to our Theorem 2.5.2?

2.11 Chapter acknowledgments

I thank Ronald de Wolf for numerous helpful comments, and in particular for encour-

aging me to look at threshold DPTs. I also thank the anonymous reviewers.

94

Chapter 3

Joint Complexity in the Decision

Tree Model

3.0.1 Results of this chapter

In this chapter we propose and begin a systematic study of computational models

from the point of view of the diversity of possible behaviors of their joint complexity.

Formally we approach this in the following way. We fix a computational model

M capable of producing output over any finite alphabet, and a notion of cost for

that model (such as worst-case number of comparisons, decision tree depth, etc.).

Given a collection F = {f
1

(x), f
2

(x), . . . f`(x)} of total functions on a common input

x 2 {0, 1}n, define the joint cost function CF (X) : {0, 1}` ! R by letting CF (X)

equal the minimum cost of any algorithm in M that, on input x 2 {0, 1}n, outputs in
some specified order the values fi(x), for every i such thatXi = 1. (We use capitalized

variable names for vectors that index subsets of a function family F , to distinguish

them from the lower-case vectors x which will denote inputs to F .)

The question we are interested in is this: What kinds of functions CF (X) can

arise in this way, when we range over all choices of F?

There are some obvious constraints on CF . For many reasonable definitions of

cost, CF will be nonnegative and integer-valued (at least for worst-case notions

of cost, which we will always be considering). As long as the functions in F are

95

non-constant (and we will assume this throughout), CF (X) will be 0 if and only if

X = 0.

We expect CF to be monotone (but not necessarily strictly monotone), since

any algorithm computing a subset S ✓ F of functions can be trivially modified to

compute any S 0 ⇢ S. Finally, CF should be subadditive; that is, we should always

have CF (X _ Y)  CF (X) + CF (Y). This is because an algorithm can always solve

two subcollections of functions separately and then combine the results in its output.

Are there any other constraints? We now illustrate by example that, for at least

some models of computation, there are functions C(X) obeying the constraints above,

which do not correspond to CF (X) for any choice of collection F . We consider the

deterministic decision tree model, with depth as the complexity measure.

For X 2 {0, 1}3, let ||X|| be the Hamming weight of X, and define

C⇤(X) =

8
>>>>><

>>>>>:

0 if ||X|| = 0,

1 if ||X|| 2 {1, 2},

2 if ||X|| = 3.

One can verify that C⇤(X) satisfies nonnegativity, monotonicity, and subadditivity.

Now suppose for contradiction’s sake that some family F = {f
1

(x), f
2

(x), f
3

(x)}
satisfies CF (X) = C⇤(X) for all X. This means that any two functions in F can

be computed with one query to x, while it requires 2 queries to compute all three.

Since C⇤(1, 1, 0) = 1, f
1

and f
2

must depend only on a single shared input bit xi.

Similarly C⇤(1, 0, 1) = 1 implies that f
1

, f
3

each depend on a single shared input bit

xj, so i = j. But then a single query to xi determines all three functions, so that

CF (1, 1, 1) = 1 6= C⇤(1, 1, 1). This contradicts our assumption.

The example of C⇤ suggests that other significant constraints might exist on joint

cost functions for decision-tree complexity. However, we will show that there is a

strong sense in which this is false. In Section 3.1.1 we formally define economic cost

functions as functions obeying nonnegativity (strict except at 0), monotonicity, and

subadditivity; the rest of the chapter is then devoted to proving the following result:

96

Theorem 3.0.1. Given any collection

F = {f
1

(x), f
2

(x), . . . f`(x)}

of nonconstant Boolean functions, CF (X) (defined relative to the adaptive query

model) is an economic cost function.

Furthermore, given any economic cost function C(X) : {0, 1}` ! Z, and an " > 0,

there exist integers n, T > 0, and a collection F = {f
1

(x), . . . f`(x)} of (total) Boolean

functions on a common n-bit input x, such that, for all X,

(1� ")T · C(X)  CF (X)  (1 + ")T · C(X) .

That is, there exist joint cost functions CF (X) to approximate any economic cost

function, if that economic cost function is allowed to be “scaled up” by a multiplicative

factor and if we allow a multiplicative error of (1± "). Theorem 3.0.1 would remain

true if we allowed economic cost functions to take non-integral values, since (up

to a scaling factor) such functions can be arbitrarily well-approximated by integral

economic cost functions.

3.0.2 Comparison with Shannon entropy

It is interesting to compare our result on joint cost functions in the query model

with the study of Shannon entropy measure H(X), a key measure of the informa-

tion content of a random variable X. The Shannon entropy also satisfies natural

nonnegativity, monotonicity, and subadditivity properties. Here monotonicity means

H(X)  H(X, Y) for all random variables X, Y ; H(X, Y) is simply the entropy of

the pair-variable (X, Y). Subadditivity means that H(X, Y)  H(X) + H(Y) for

all X, Y . Researchers wondered whether these basic “Shannon inequalities” imply all

the valid inequalities that obtain universally for the joint entropies of finite collections

of random variables. It turns out that this is not the case; other linear, homogeneous

inequalities constrain the joint entropies of 4 or more variables. This was first discov-

97

ered by Zhang and Yeung [ZY97], and the study of such inequalities has turned out

to be rather complex; see, e.g., [MMRV02].1

By contrast, our Theorem 3.0.1 characterizes the linear, homogeneous inequalities

that are universally valid for joint cost functions: they are precisely the ones that hold

for all economic cost functions. By standard facts, all such inequalities can be derived

as linear combinations of “basic” inequalities of the three types we have described.

In this sense, the set of realizable joint cost functions is both simpler than the joint

Shannon entropy (because it is easier to characterize in these terms), yet also more

diverse (because it is less constrained). We find this contrast intriguing.

3.0.3 Economic cost functions, computational models, and

universality

We summarize Theorem 3.0.1 by saying that the adaptive query model is universal

for economic cost functions. For any model M of computation with an associated

notion of cost, we say that M is universal for economic cost functions if the analogue

of Theorem 3.0.1 is true with joint cost functions from M replacing those of the

adaptive query model.

As a consequence of Theorem 3.0.1, we obtain a universality result for any de-

terministic, adaptive model into which we can “embed the query model.” For ex-

ample of what we mean, let us consider the comparison model of computation over

lists of integers in which a basic step is a comparison of two list elements. Let

F = {f
1

(x), . . . f`(x)} be any collection of Boolean functions with domain {0, 1}n.
Based on F , we define a collection G = {g

1

(a), . . . g`(a)} of Boolean-valued functions

gj(a) taking as common input a list of 2n integers a = (a
1

, . . . a
2n). First, let bi = bi(a)

be an indicator variable for the event [a
2i�1 < a

2i]. Then define

gj(a) := fj(b1, . . . bn) .

1This is not to say that there are no simple characterizations of the Shannon entropy, only that
there is no known simple description of the set of universally-valid entropy inequalities.

98

The values bi are each computable by a single comparison, and each pair bi, bi0 are

functions of disjoint variable-sets, so we see that the cost of computing any subcol-

lection of G on a common input is exactly the cost (in the Boolean adaptive-query

model) of computing the corresponding subcollection of F .

Since the query model thus “embeds” into the comparison model (and since cost

functions in the comparison model can be easily seen to be economic cost functions),

in light of Theorem 3.0.1 we conclude:

Corollary 3.0.2. The comparison model is universal for economic cost functions.

Proving such a result in the communication model seems di�cult, and would

require a better understanding of the “disjoint-inputs intuition” for communication

(see Chapter 1, Section 1.3). We next state a “Query-Model Embedding Conjecture”

that would su�ce to prove that the communication model is universal for economic

cost functions, along the lines of Corollary 3.0.2.

Let n, k > 0 be integers. Given f(x, y) : {0, 1}2n ! {0, 1}, and a function

g(z) : {0, 1}k ! N, define a function (g � f) : {0, 1}2nk ! N by

(g � f)(x
1

, y
1

, x
2

, y
2

, . . . xk, yk) := g(f(x
1

, y
1

,), . . . f(xk, yk)) .

(This kind of composition of functions has been studied before in the communication

setting, e.g., in [KRW95].) In the communication problem for g � f we understand

Alice to receive all x-inputs and Bob all y-inputs. Let cc(h) denote the (adaptive,

deterministic) communication complexity of computing the (N-valued) function h, by

a protocol in which Alice speaks first, and both parties learn the function value. As

usual let D(g) denote the decision tree complexity of computing g.

Conjecture 3.0.3. For every k 2 N and � 2 (0, 1), there exists n > 0 and a function

f : {0, 1}2n ! {0, 1} (with cc(f) > 0) such that for all g : {0, 1}k ! N, we have

cc(g � f) � (1� �) cc(f)D(g) .

99

We can show a nearly matching upper bound

cc(g � f)  cc(f)D(g)

for all choices of g, f , by the following protocol idea: The players consider {bi :=

fi(xi, yi)}ik as bits to be “queried,” and simulate an optimal decision tree on these

bits; whenever they want to determine some bj, they execute the optimal communi-

cation protocol for f on (xj, yj). This makes them both learn f(xj, yj), so they both

know which bit bi is to be “queried” next.

Note that the conjecture asserts a strengthened form of the disjoint-inputs intu-

ition, for some particular family of functions f : by setting g to be a function that

outputs an encoding of its input, we see that computing f(x, y) on k independent

input pairs requires nearly k times as much communication as for one pair.

Unable to prove the conjecture, we can at least note the following: the conjecture

really is sensitive to our choice of “inner” function f . For example, let f(x, y) = x_y,
and let g be the OR function on k bits. Then the communication complexity of

computing (g � f) = Wk
i=1

(xi _ yi) = (
Wk

i=1

xi) _ (
Wk

i=1

yi) is O(1), even though each

f(xi, yi) has nonzero communication complexity and the ORk function has decision

tree complexity k. We suspect, however, that a random function f(x, y), on an input

size su�ciently large compared to k and 1

� , should be a suitable inner function for

our conjecture to hold.

Our conjecture also appears somewhat related to the Enumeration and Elimina-

tion Conjectures of [ABG+01] (so far unresolved; see also [BDKW10]). These are

another type of variant of the disjoint-inputs intuition. We are not, however, aware

of any formal implication between these conjectures and ours.

3.0.4 Outline and methods

To prove Theorem 3.0.1, a first key tool is the notion of hitting sets of weighted set

systems. Given a set family A = {A
1

, . . . A`} over a universe U and a weight function

w : U ! R, the weight of a subset B ✓ U is defined as the sum of B’s members’

100

weights. B is called a hitting set for a subfamily S ✓ A if B intersects each Ai 2 S.

The hitting-set cost function C
A

(X) : {0, 1}` ! N gives the minimum weight of any

B that is a hitting set for SX = {Ai : Xi = 1}.
We use these notions to derive a useful representation lemma (Lemma 3.1.6): for

any economic cost function C(X) on ` bits, there exists a family A = {A
1

, . . . A`}
over a weighted universe (U,w), such that C

A

(X) = C(X). The simple proof of

Lemma 3.1.6 is given in Section 3.1.4.

As a concrete example to illustrate the expressive power of these hitting-set cost

functions, we present a simple weighted set system whose hitting-set cost function is

exactly the example function C⇤(X) presented in Section 3.0.1. (This will not be the

set system that would be produced by our general method.) Let A be the family of

all 2-element sets over the universe U = {u
1

, u
2

, u
3

} (so, |A| = 3), and let w(ui) = 1,

for each ui 2 U . Note that any one or two of the sets from A has a hitting set of

size 1, but to hit all of A requires two elements. Since each element has unit weight,

C
A

(X) is exactly C⇤(X).

Returning now to the discussion of our main strategy, it will su�ce to solve the

following problem: given a weighted set system A = {A
1

, A
2

, . . . A`}, produce a

collection F = {f
1

, . . . f`} of Boolean functions over some domain {0, 1}n such that

CF (X) is approximately a multiple of C
A

(X).2

Here is a high-level sketch of our collection F . For each u 2 U , we create a block

yu of input variables called the “bin” for u; x is the disjoint union of these blocks.

yu represents, in a carefully defined way, the contents of a conceptual “bin” which

contains at most one “key” k from a large set K called the “keyspace.”

The bin representations and a value T > 0 are chosen in such a way that the

following (informal) conditions hold:

(i) The contents of any bin yu can be determined in at most w(u)T queries;

(ii) For any fixed k 2 K and any bin yu, it can be determined with “very few” queries

whether k is in the bin (so that this step is “essentially free” in comparison to

2We remark that if F were allowed to be partial functions, this construction would become much
easier, but would also lose most of its interest.

101

the queries described in (i));

(iii) If the number of queries an algorithm makes to the bin yu is even “noticeably”

less than w(u)T , the amount of information it gains about the bin contents is

“tiny,” that is, the data seen is consistent with almost any k 2 K occupying

the bin. (At least, this outcome is unavoidable when an appropriately chosen

adversary strategy determines the answers to queries as they are made.)

We will formalize bins obeying the above properties in the notion of “mystery bin

functions” in Section 3.2.2.

Returning to the sketch construction of our function collection, for i 2 {1, 2, . . . l},
define fi(x) = 1 i↵ there exists some k 2 K that is contained in each of the “mystery

bins” yu corresponding to elements u 2 Ai.

To informally analyze this collection, fix any nonzero X 2 {0, 1}`, indexing a

subcollection SX ✓ A.

For an upper bound on CF (X), pick a minimal-weight hitting set B for SX , so

w(B) = C
A

(X). In the first phase, for each u 2 B, let our algorithm determine the

bin contents of yu. By property (i) this phase uses at most w(B)T queries.

Next comes the second phase. For every Ai 2 SX , there’s a u 2 Ai \ B, whose

bin contents we’ve determined; if the bin yu was empty we can conclude fi(x) = 0.

If the bin contained the element k 2 K (remember that at most one key lies in each

bin), query the bins of all other elements u0 2 Ai to see if k is in all of them. If so,

fi(x) = 1, otherwise fi(x) = 0.

Thus our algorithm succeeds in computing {fi(x) : Xi = 1}. By property (ii)

above, the query complexity of the second phase is “negligible,” giving CF (X) 
(1 + ")T · C

A

(X) as needed.

For the lower bound, we pit any algorithm using fewer than (1�")T ·C
A

(X) queries

against an adversary strategy that runs the adversary strategies for each mystery bin

in parallel. Since C
A

(X) is the minimal cost of any hitting set for SX , at the end of

this run of the algorithm there must exist some Ai 2 SX such that for each u 2 Ai,

yu receives noticeably less than w(u)T queries. Using property (iii) of mystery bins,

102

we then argue that the algorithm fails to determine the value fi(x). This will prove

CF (X) � (1� ")T · C
A

(X).

The main technical challenge in implementing the above idea is to design the

right representation of the bin contents of the blocks yu to guarantee the “mystery

bin” properties. To build mystery bin functions, we will exploit a small polynomial

separation between decision tree depth and unambiguous certificate complexity, due

to Savický [Sav02]. We describe his result, and reformulate it for our purposes, in

Section 3.1.3.

How does Savický’s result facilitate our construction of “mystery bins?” Roughly

speaking, the gap between deterministic and certificate complexity in his theorem

yields the query-complexity gap between properties (i) and (ii) of mystery bins, while

the key contribution of unambiguity is in allowing us to construct mystery bin func-

tions in which the bin always contains at most one key. In the algorithm described

above to compute {fi(x) : Xi = 1}, this allows the query complexity of the second

phase to remain negligible, yielding the upper bound we need on CF (X).

In the course of building mystery bin functions, another useful device called a

“weak exposure-resilient function” is also introduced and used. This object, an en-

coding method that looks uninformative when restricted to a small number of coor-

dinates, is indeed a weak special case of the “exposure-resilient functions” studied in

[CDH+00]. However, the parameters we need are easily obtainable and so we provide

a self-contained (probabilistic) construction and analysis.

3.1 Definitions and preliminary results

3.1.1 Vectors and economic cost functions

Given two bitvectors X = (X
1

, . . . X`), Y = (Y
1

, . . . Y`), we write X  Y if Xi  Yi,

for all i = 1, 2, . . . n. We define the vector Z = X _ Y by the rule Zi = Xi _ Yi.

Note that, in this chapter, we use capital-letter variable names (X, Y, Z) to refer

to vectors indexing “bundles of goods,” and we use lower-case variable names to refer

103

to other vectors, such as the inputs and outputs to functions whose decision-tree

complexity we will analyze.

Definition 3.1.1. Say that a function C(X) : {0, 1}` ! Z is an economic cost

function if it satisfies the following conditions:

(1) C(X) � 0, and C(X) = 0, X = 0;

(2) For all X, Y , X  Y implies C(X)  C(Y);

(3) For all X, Y , C(X _ Y)  C(X) + C(Y).

We call such functions “economic cost functions” due to the following informal

interpretation: consider the input X 2 {0, 1}` to C represent a certain subset of `

distinct “goods” that a company is capable of producing. If C(X) represents the cost

to the company of producing one each of the goods indexed by the 1-entries of X,

then intuitively, we expect C to obey condition (1) because there’s “no free lunch.”

Condition (2) supposes that, to produce one bundle of goods, one can always produce

a larger bundle of goods and “throw away” the unwanted ones (and we assume free

garbage disposal). Condition (3) supposes that, to produce two (possibly overlapping)

bundles X, Y of goods, we can always separately produce the two bundles. Equality

may not always hold in condition (3), even for disjoint bundles of goods, due to

possible “synergies” arising in production.

We note in passing that the definition of economic cost functions is a special case

of the more general notion of “outer measures” on lattices; see [Bir67], Chapter 9.

3.1.2 Decision trees and joint cost functions

Recall the formal definition of decision trees from Section 2.1. By the depth of T ,

denoted D(T) in this chapter, we again mean the length of the longest path from the

root in T , stepping exclusively from parent to child. Given a collection of functions

S = {f
1

(x), f
2

(x), . . . f`(x)}, we define the (deterministic, adaptive) query complexity

of S as D(S) = min {d : there exists a decision tree T of depth d computing the

collection S}. If S is a single function, S = {f}, we also write D(f) = D(S).

104

We next define, for any finite collection F of functions, a function CF which sum-

marizes the joint synergies existing among the members of F (relative to the decision-

tree depth model of cost). Given a collection F of functions, F = {f
1

(x), f
2

(x), . . . f`(x)}
on a common input, we define the joint cost function CF (X) : {0, 1}` ! Z associated

with F by CF (X) = D(SX), where fi 2 SX , Xi = 1. We define CF (0) = 0.

Thus CF (X) gives the “cost” of certain “bundles of goods,” where cost is inter-

preted as decision tree depth, and the di↵erent “bundles of goods” in question are the

various subcollections of functions from F . As promised by part of Theorem 3.0.1, we

will show (Lemma 3.2.1) that for any F , CF (X) is always an economic cost function

as defined in Section 3.1.1.

3.1.3 Search problems and TUSPs

Although in this chapter we are primarily interested in the query complexity of (col-

lections of) decision problems, our proof techniques also involve search problems (in

the query model), defined next.

As in Section 2.7.1, say that a string w 2 {0, 1, ⇤}n agrees with x 2 {0, 1}n if for

all i 2 [n], wi 2 {0, 1} implies wi = xi. Also as before, a search problem on domain

{0, 1}n is specified by a subset W ✓ {0, 1, ⇤}n called the “witnesses.” We say that a

decision tree T solves the search problem W if (i) for every input x that agrees with

at least one w 2 W , T (x) outputs some w0 2 W agreeing with x (if there are more

than one such w0, we don’t care which one), and (ii) if x agrees with no w 2 W ,

T (x) outputs “no match.” Note here the slight di↵erence in our definition of solving

a search problem, compared with Chapter 2.

Given a search problem W , let s(W) denote the maximum number of 0/1 entries

in any w 2 W . Write D(W) to denote the minimum depth of any decision tree solving

W .

W is called a total search problem if all x 2 {0, 1}n agree with at least one w 2 W .

W is called a unique search problem if all x agree with at most one w 2 W . In this

chapter we will deal with search problems W that are both total and unique; we call

such a W a TUSP for brevity. A TUSP W defines a (total, single-valued) function

105

from {0, 1}n ! W mapping x to the unique witness w agreeing with x; we denote

this function by W (x).

For TUSPs W , as for other search problems, it is easy to see that s(W)  D(W):

in any decision tree T solving W , the variables read by T on an input x must always

include all the 0/1 entries in w = W (x). In fact, up to an at-most quadratic factor,

this inequality is tight:

Theorem 3.1.2. [BI87], [HH91], [Tar89] For all unique search problems, D(W) 
s(W)2.

Proof. The proof is essentially identical to that of a related result, which states that

decision-tree depth complexity is most the square of the “certificate complexity” for

Boolean functions [BI87], [HH91], [Tar89].

Let s = s(W). We define a query algorithm as follows: on input x, proceed in

phases. At the beginning of phase t, let Wt ✓ W be the set of “live” witnesses, i.e.

those that agree with the bits of x seen so far. If Wt = {w}, then the algorithm

outputs w. Otherwise, say that i 2 [n] is an “active” coordinate for w 2 Wt if

wi 2 {0, 1} and xi has not been queried. In each phase t, the algorithm picks an

arbitrary w 2 Wt and queries x on each of the active coordinates i for w.

Since W is a unique search problem, every distinct w,w0 2 Wt disagree on at least

one coordinate i active for both w and w0. Thus, in each phase t and for every w 2 Wt,

the number of active coordinates for w decreases by at least one. After at most s

phases, then, no live w has any active coordinates; hence such a w either disagrees

with x on one of the bits already seen, or agrees with x on each i with wi 2 {0, 1}. As
W is total, it follows that the decision tree for our algorithm solves W , while making

at most s+ (s� 1) + . . .+ 1  s2 queries.

Savický [Sav02] proved a theorem implying that, in general, D(W) can be poly-

nomially larger than s(W) for TUSPs. He uses di↵erent terminology and states a

slightly di↵erent result than we need, so we will have to “unpack” his result a little.

A DNF formula is an OR of clauses, each of which consists of the AND of one

or more literals or negated literals. Say that is an unambiguous DNF (uDNF) if

106

any input x satisfies at most one of its clauses. Savický showed

Theorem 3.1.3. [Sav02] There exists a family of functions

{Gi : {0, 1}4i ! {0, 1}}i2N , such that

(i) Gi and Gi each have uDNF representations in which each clause has size at

most si = 3i;

(ii) D(Gi) � 4

i

+2

3

= ⌦(s�i), where � = log
3

(4) > 1.

Theorem 3.1.3 is very close, but not identical, to the combination of Theorems

3.1 and 3.6 from [Sav02]. That paper was concerned with the complexity measure

p(f) defined as the minimal number of clauses in any uDNF representation of f ,

whereas we are concerned with minimizing the maximum size of any clause as in

Theorem 3.1.3; also, Savický lower-bounds the number of leaves of any decision tree

for f rather than its depth. However, the particular function family [Sav02] gives is

seen by inspection (and noted in [Sav02]) to satisfy condition (i), while condition (ii)

follows from Savický’s lower bound on number of leaves in any decision tree computing

Gi, after noting that a decision tree with k leaves has depth at least dlog
2

(k)e. this

yields Theorem 3.1.3.

We remark that it to prove our main theorem, we don’t really need the full strength

of Theorem 3.1.3. Specifically, it would be enough that just one of Gi or Gi had

uDNF representations with short clauses relative to the query complexity (or even

short-clause DNF representations with a bounded number of satisfied clauses per

input). However, using the full statement of Theorem 3.1.3 makes our proof slightly

simpler.

We can derive from Theorem 3.1.3 the following form of Savický’s result, which

will be more convenient for us:

Theorem 3.1.4. There exists a family of TUSPs

{WN ⇢ {0, 1, ⇤}m(N)}1N=1

107

on m(N)  poly(N) input bits, and a constant ↵ > 0, such that D(WN) � s(WN)1+↵,

while s(WN) � N .

Proof. For any i > 0, given uDNF representations F
1

, F
2

of Gi and Gi respectively

satisfying condition (i) of Theorem 3.1.3, we define a search problem Vi: For every

clause c in one of the Fi’s, define a witness wc 2 Vi that has 0/1 entries exactly on

the variables contained in c, with these variables set in the unique way satisfying c

(remember c is a conjunction). From the facts that F
1

, F
2

are each uDNFs and that

every input x satisfies exactly one of them, we conclude that Vi is a TUSP.

By condition (i) of Theorem 3.1.3, s(Vi)  3i. On the other hand, since any

decision tree for Vi immediately yields a decision tree of the same depth for Gi, we

have

D(Vi) � 4i + 2

3
>

(3i)log3(4)

3
,

which for large enough i is greater than s(Vi)1+↵ for an appropriate constant ↵ > 0.

Also, by Theorems 3.1.2 and 3.1.3,

s(Vi) �
p

D(Vi) >
2ip
3
.

Now we simply set WN := Vdlog(N)e+1

. We verify that m(N) = 4dlog(N)e+1  poly(N).

In order to make e↵ective use of the decision-tree depth lower bound contained in

Theorem 3.1.4, we will need the following folklore result, showing the optimality of

the “adversary method” in decision tree complexity:

Claim 3.1.5. Let B be a finite set. Suppose f(x) : {0, 1}n ! B satisfies D(f) � t >

0; then there exists an adversary strategy for determining the bits of x as they are

queried (depending only on the sequence of queries made so far), such that for any

query strategy making (t � 1) queries to x, the bits of x fixed in the process do not

uniquely determine the value of f(x).

The proof of Claim 3.1.5 is a simple proof by induction, and is omitted. Note

108

that Claim 3.1.5 applies in particular when f(x) = W (x) is the (total, single-valued)

function associated with a TUSP W .

3.1.4 Set systems and hitting sets

As a final preliminary definition, we introduce hitting sets of set systems. Given a

finite universe U , and a collection A = {A
1

, A
2

, . . . A`} of subsets of U , we say a set

B ✓ U hits A, or is a hitting set for A, if B \ Ai 6= ; for all i  `.

Given a positive function w : U ! N called a “weight function,” define the weight

of a set A ✓ U as w(A) = ⌃u2Aw(u). Define the weighted hitting set cost of the

collection A (relative to w) as ⇢(A) = min {c : there exists a hitting set B ✓ U for

A with w(B)  c}.
For a collection A = {A

1

, . . . A`}, and given X 2 {0, 1}`, define SX = {Ai :

Xi = 1}. Define the weighted hitting set cost function C
A

(X) : {0, 1}` ! N by

C
A

(X) = ⇢(SX).

We now prove that the class of weighted hitting set cost functions is exactly the

class of economic cost functions.

Lemma 3.1.6. For any set system A and weight function w, C
A

is an economic

cost function. Moreover, given any economic cost function C(X) : {0, 1}` ! N, there

exists a finite set U and a collection A = {A
1

, . . . A`} of subsets of U , such that for

all X 2 {0, 1}`, C
A

(X) = C(X).

Proof. First we show that C
A

is always an economic cost function. That condition

(1) of the definition of economic cost functions is satisfied is immediate. For condition

(2), note that if X  Y , SX ✓ SY , so any hitting set for SY is also one for SX . Thus

C
A

(X) = ⇢(SX)  ⇢(SY) = C
A

(Y), as needed.

To see that condition (3) is satisfied, note that ifBX , BY are hitting sets for SX , SY ,

then BX[BY is a hitting set for SX[SY = SX_Y , and w(BX[BY)  w(BX)+w(BY).

For the second part, let C(X) : {0, 1}` ! N be an economic cost function. We

define a set system and weight function as follows. Let U be a set of size 2`, indexed

by `-bit vectors as U := {bX : X 2 {0, 1}`}.

109

Let A = {A
1

, . . . A`}, where Ai := {bX : Xi = 1}. Finally, define w(bX) := C(X).

We claim that, for all X = (X
1

, . . . X`), CA

(X) = C(X). First we argue that

C
A

(X)  C(X). Consider the singleton set B = {bX}. For every i such that Xi = 1,

bX 2 Ai. Thus, B is a hitting set for SX = {Ai : Xi = 1}. By definition, then,

C
A

(X)  w(B) = w(bX) = C(X).

Now examine any hitting set B0 for {Ai : Xi = 1}, say B0 = {bZ[j]
: Z

[j] 2 I ✓
{0, 1}`}. For each i such that Xi = 1, Ai is hit by B0, so there exists some Z

[j] 2 B0

such that bZ[j]
2 Ai. Then by definition of Ai, Z[j](i) = 1. Thus X  W

Z[j]2I Z[j], and

w(B0) =
X

Z[j]2I
w(bZ[j]

) =
X

Z[j]2I
C(Z

[j]) � C(
_

Z[j]2I
Z

[j]) .

(The last inequality above holds by iterated application of property (3) of economic

cost functions.) This is � C(X), since X  W
Z[j]2I Z[j], and using property (2) of

economic cost functions. Thus C
A

(X) = C(X), as claimed.

3.2 Proof of Theorem 3.0.1

3.2.1 First steps

The first half of Theorem 3.0.1 is easy, and recorded in Lemma 3.2.1:

Lemma 3.2.1. If F = {f
1

(x), f
2

(x), . . . f`(x)} is a collection of nonconstant func-

tions, CF (X) is an economic cost function.

Proof. Clearly F satisfies condition (1) in the definition of economic cost functions,

since CF (0) = 0 and all decision trees computing a nonconstant function or functions

has depth at least 1.

CF (X) satisfies condition (2) since, given an optimal decision tree T for computing

a collection S = SX of functions from S, and given a subset S 0 = SX0 ✓ S, we can

modify T by removing the coordinates of its output vectors corresponding to the

functions in S \ S 0, yielding a decision tree T 0 of the same depth computing the

collection S 0. So D(SX0)  D(SX) and CF (X 0)  CF (X).

110

To show that CF (X) satisfies condition (3), let TX , TY be optimal decision trees of

depths d
1

, d
2

respectively, for computing the collections X, Y respectively. We define

a decision tree T 0 as follows: we replace each output node u of TX with a copy TY,u of

TY , and on an output node v of the copy TY,u we place the label (z(u), z(v)), where

z(u) is the label of u in TX and z(v) is the label of v in TY . Then T 0 computes the

collection SX [SY (possibly with redundant coordinates that we can remove, and up

to a reordering of the outputs). The depth of the new tree is d
1

+ d
2

. This yields

condition (3).

Now we turn to the second, harder half of Theorem 3.0.1. Following Lemma

3.1.6 showing the “universality” of hitting set cost functions, our approach to proving

Theorem 3.0.1 is to build a collection of functions mimicking the structure of a given

set system A, where each fi we create will correspond to some Ai 2 A. We will prove:

Lemma 3.2.2. Given any hitting set cost function C
A

(X) : {0, 1}` ! N and " > 0,

there exist integers n, T , and a collection F = {f
1

(x), . . . f`(x)} of functions on n

bits, such that, for all X 2 {0, 1}`,

C
A

(X) · T (1� ")  CF (X)  C
A

(X) · T (1 + ") .

In light of Lemmas 3.1.6 and 3.2.1, this will prove Theorem 3.0.1.

3.2.2 Bins and mystery bins

Central to our construction of the function family of Lemma 3.2.2 is a technical device

called a “bin.”

Definition 3.2.3. A bin function is a function B(y) mapping a Boolean input y

(of some fixed length) to subsets of size 0 or 1 of a set K = {k
1

, . . . kM} called the

“keyspace.” We call the input y a “bin,” and say that k is “in the bin y” if B(y) = {k}.

Our input x to the function collection of Lemma 3.2.2 is going consist of disjoint

bins, one bin corresponding to each u 2 U from our set system A. The bins will have

111

di↵erent parameters; loosely speaking, we want the di�culty of determining the bin

contents Bu(yu) of the bin yu corresponding to u 2 U to be proportional to w(u).

This property by itself would be relatively easy to guarantee, but we need our bins

to have some other special properties as well, formalized next in the definition of

“mystery bins.”

Definition 3.2.4. Given � 2 [0, 1] and an integer q � 1, say that B has security

� for q queries, and write sec(B, q) � �, if there exists an adversary strategy for

answering queries to the vector y such that, for any query strategy making q queries

to y, there exists a set H ⇢ K of size �|K|, such that for any key k 2 H, the bits of y

fixed in the process are consistent with the condition B(y) = {k}. (We do not require

that the bits seen be consistent with the condition B(y) = ;, although the adversaries

we will define in our construction do achieve this.)

Note that in this definition, we require an adversary strategy for deciding the

input bits as they are queried, with answers depending only on the questions and

answers so far, not on the strategy/program making the queries.

Definition 3.2.5. Fix T > 0, � 2 (0, 1). A bin function B(y) is called a (T, �)-

mystery bin function (MBF) (with keyspace K), if

(i) There is a T -query algorithm to compute B(y);

(ii) For any k 2 K, it can be decided in �T queries whether k 2 B(y);

(iii) sec(B, (1� �)T) � (1� �).

(Note the correspondence between the conditions in the definition above and their

informal versions in the proof sketch from Section 3.0.1, when � is close to 0.)

Constructing mystery bin functions seems to crucially rely on a result like Theorem

3.1.4 and its associated TUSP. Note that mystery bin functions behave quite similarly

to the TUSPs from Theorem 3.1.4: given a particular potential witness w 2 W , it is

easily checked if the input x agrees with w; but computingW (x) may be much harder.

The main additional ingredient in mystery bin functions is the property (iii) above,

112

which imposes on algorithms a “sharp transition” between near-total ignorance and

certainty as they attempt to determine a bin’s contents. This sharp transition is what

will allow us to tightly analyze the function collections we will build to prove Lemma

3.2.2.

Our construction of mystery bin functions is given by the following Lemma:

Lemma 3.2.6. For all � > 0, we can find T,M > 0 such that, for every integer

c � 1, there exists a (cT, �)-mystery bin function with keyspace K = [M].

3.2.3 Application of mystery bins

Before proving Lemma 3.2.6, we show how it is used to prove Lemma 3.2.2 and, hence,

Theorem 3.0.1.

Say we are given a collection A = {A
1

, A
2

, . . . A`} of subsets of a universe U , and

a weight function w : U ! N. We wish to produce a collection F = (f
1

, . . . f`) of

functions such that the cost of computing a subset of the functions of F is approxi-

mately a fixed scalar multiple of the minimum cost under w of a hitting set for the

corresponding sets in A.

Let wmax be the largest value of w(u) over U . For each u 2 U , we define a block

of input yu corresponding to u and a bin function Bu taking yu as input. Bu is chosen

as a
⇣
w(u)T, "

w
max

l|U |

⌘
-MBF with keyspace K = [M], for some T,M > 0 independent

of u, as guaranteed by Lemma 3.2.6. Let the input x to F be defined as the disjoint

union of all the yu.

For i  `, define fi(x) by

fi(x) := 1 () 9k 2 [M] such that Bu(yu) = {k}, 8u 2 Ai .

We claim that F satisfies the conclusions of Lemma 3.2.2. If X = 0 the statement

is trivial, so assume X 6= 0. First we show the upper bound on CF (X). Given the

corresponding nonempty subset SX ✓ A, let B ✓ U be a hitting set for SX of minimal

cost:

w(B) = ⇢(SX) = C
A

(X) .

113

Define an algorithm PX to compute {fi(x) : Xi = 1} as follows:

Phase 1: For each u 2 B, compute the bin contents Bu(yu).

Phase 2: For every i such that Xi = 1, pick some u 2 B \ Ai (such a u

must exist, since B is a hitting set for SX). If in Phase 1 it was found that

Bu(yu) = ;, clearly fi(x) = 0, so output 0. Otherwise, suppose Bu(yu) = {k}
for some k 2M ; in this case, query each mystery bin Bu0(yu0) such that u0 2 Ai,

to ask whether k 2 Bu0(yu0). By the definitions, fi(x) = 1 i↵ k is indeed the

contents of all such bins, so the queries of PX determine fi(x) and the output

nodes of PX can be labeled to compute fi(x), for every i with Xi = 1.

It is clear that PX computes the desired function collection. Now we bound the

number of queries made by PX . In Phase 1, each individual bin contents Bu(yu) can

be computed in w(u)T queries, by property (i) of MBFs and the definition of Bu(yu).

Then altogether, at most w(B)T = C
A

(X)T queries are made in this Phase.

In Phase 2, each question to a bin yu0 asking if some k is in Bu0(yu0) can be

answered in at most
"

wmaxl|U | · (w(u
0)T)  "T

l|U |
queries, using property (ii) of MBFs. Since at most l|U | such questions are asked

(ranging over (i, u0)), in total at most "T such queries are made during Phase 2.

Summing over the two Phases shows that CF (X)  D(PX)  (1 + ")T · C
A

(X), as

needed.

Now we show that CF (X) � (1�")T ·C
A

(X), again assuming X 6= 0. We give an

adversary strategy to determine the bits of x as they are queried, namely: For each

u 2 U , fix bits of yu as they’re queried, by following the adversary strategy for Bu(yu)

given by property (iii) in the definition of MBFs (using that Bu is a
⇣
w(u)T, "

w
max

l|U |

⌘
-

MBF), and answer queries to yu arbitrarily if this bin receives more queries than the

adversary strategy for Bu(yu) is guaranteed to handle.

Let P be any algorithm making fewer than (1� ")T ·C
A

(X) queries to the input

x; we will show that the queries made by P against the adversary just defined fail to

determine some value fi(x), for some i such that Xi = 1.

114

For u 2 U , let qu be the number of queries made by P to yu against this adversary

strategy. Let BP = {u : qu � (1 � "
2

)w(u)T} . We claim BP is not a hitting set for

SX . To see this, note that

w(BP) =
X

u2B
P

w(u)


X

u2B
P

qu
(1� "

2

)T

 1

(1� "
2

)T
·
X

u2U
qu

<
1

(1� "
2

)T
((1� ")T · C

A

(X))

< C
A

(X) ,

so, by definition of C
A

(X) = ⇢(SX), BP is not a hitting set for SX .

Thus there exists an i such that Xi = 1 and such that for every u 2 Ai, qu <

(1 � "
2

)w(u)T . For each such u, by the guarantee of the adversary strategy used for

bin yu, there exist at least

(1� "

wmaxl|U |)M > (1� 1

|Ai|)M

distinct keys k 2 [M], such that it is consistent with the bits of yu seen by P that

Bu(yu) = {k}.

By a union bound, there exists some fixed k 2 K such that it is consistent with

the bits seen that Bu(yu) = {k} for all u 2 Ai, which would cause fi(x) = 1. On

the other hand, it is also clearly consistent that not all such bin contents Bu(yu) are

equal, and hence that fi(x) = 0. Thus P fails to correctly compute fi(x), for at least

one input x. Since Xi = 1, we have shown that CF (X) � (1 � ")T · C
A

(X). This

finishes the proof of Lemma 3.2.2, assuming Lemma 3.2.6.

115

3.2.4 Construction of mystery bins

Our goal in this section is to prove Lemma 3.2.6. First, suppose we can prove Lemma

3.2.6 for c = 1; we’ll show the conclusion then follows for every c 2 N, with the same

values of T and M = |K|.
Let B(y) be a (T, �)-MBF. Say the input y has length m; define a new bin function

Bc(y0) on input {0, 1}cm with the same keyspace K by breaking the input y0 into m

blocks of size c, defining zi to be the sum mod 2 of the ith block (i  m), and setting

Bc(y0) := B(z
1

, . . . zm).

The adversary strategy S 0 for Bc(y0) is simply lifted from the strategy S for B(y),

by answering queries in any given block i of y0 as 0s until the last, “critical” query

to that ith block is made, then answering this query as the strategy S would fix yi

conditioned on the “critical” responses made so far. Clearly any algorithm making q

queries can induce at most b qcc critical responses from the adversary, and so property

(iii) in the definition of MBFs is easily seen to be inherited by Bc.

Similarly, any algorithm for determining the bin contents B(y), or for querying

whether k 2 B(y) for some k 2 K, can be adapted to Bc by simply querying entire

blocks at a time. This increases the number of queries by a factor c, giving properties

(i) and (ii). Thus Bc(y0) is a (cT, �)-MBF with keyspace [M], as needed.

Now we prove Lemma 3.2.6 for the case c = 1.

Let N > 0 be a (large) integer to be determined later, and let W = WN be

the TUSP guaranteed by Theorem 3.1.4 for parameter N , with input size m(N) 
poly(N). For brevity write DN = D(W), sN = s(W), and recall DN � s1+↵

N , sN � N .

We let K := [D2

N] be the keyspace.

We next describe the structure of the “bin” input y. y is broken into three disjoint

parts, written as

y = (x,WtK,KtW) , where:

• x will be an input to the TUSP W = WN (so |x| = m(N));

• WtK, called the “witness-to-key table,” will be an encoding of a function GWtK :

W ! K (with a specific encoding method to be described shortly);

116

• KtW, called the “key-to-witness table,” will be an encoding of a function GKtW :

K ! W (with a di↵erent encoding method, also described shortly).

In our definitions, every setting to the input tables WtK,KtW will define functions

GWtK, GKtW as above, and such functions will generally not have unique encodings.

Assuming for now that the two encoding schemes have been fixed, we define the

bin function B(y) as follows: k 2 B(y) if the witness w = W (x) satisfies

GWtK(w) = k , GKtW(k) = w .

Note that at most one key can be in the bin by this definition (or the bin may be

empty).

Now we describe the encodings. KtW simply uses any e�cient encoding with a

table entry KtW|k corresponding to each element k of the domain K. Since each

w 2 W ⇢ {0, 1, ⇤}m(N) has at most sN 0/1 entries, |W | cannot be too large, namely

|W | 
X

is
N

✓
m(N)

i

◆
= NO(s

N

) ,

sincem(N)  poly(N). Thus each table entry KtW|k in KtW can be represented using

O(sN log(N)) bits. We do so, assigning “leftover” codewords arbitrarily to elements

of W , so that every table defines a function (and also every function is representable).

For the encoding WtK, we want table entries to be “obfuscated,” so that it takes

many queries to learn anything about an individual value of GWtK. We make the

following definition, which resembles more-demanding definitions in [CDH+00]:

Definition 3.2.7. Fix integers m, d, t > 0. Say that a mapping J : {0, 1}m ! [d] is

an (m, d, t)-weak Exposure-Resilient Function (wERF) if for every c 2 [d] and every

subset S ⇢ [m] of size at most t, there is a b 2 {0, 1}m with J(b) = c, and such that

the entries of b indexed by S are all-zero.

Claim 3.2.8. For su�ciently large N > 0, there exists a (bs1+↵/2
N c, D2

N , b1
2

s1+↵/2
N c)-

wERF J .

117

Proof. Let J be a uniformly chosen random function from the domain {0, 1}m (with

m = bs1+↵/2
N c) to the range [d] = [D2

N]. We show that with nonzero probability J

satisfies the definition of an (m, d, t)-wERF with t := b1
2

s1+↵/2
N c.

Fix any subset S ⇢ [m] of size t, and a c 2 [d]. We analyze the probability pS,c

that there is no b 2 J�1(c) such that b is all-zero when restricted to the coordinates

in S. This is simply (1� 1

d)
2

m�t

. Now by our settings, for su�ciently large N we have

2m�t � d2m/3. Thus for such N ,

pS,c 
✓
1� 1

d

◆d2m/3

 e�2
m/3

.

Taking a union bound over all choices of S, c, the probability that J fails to be an

(m, d, t)-wERF is, for large enough N , less than 2mde�2
m/3

= o(1). So, with nonzero

probability we succeed.

Recall that in our setting K = [D2

N]. We let each table entry WtK|w of WtK (with

position indexed by a witness w 2 W) contain bs1+↵/2
N c bits, and define

GWtK(w) := J(WtK|w) ,

where J is as given by Claim 3.2.8.

This completes our description of the bin function B(y). We now show that for a

large enough choice of N it is a ((1 + �
2

)DN , �) mystery bin function.

First we verify property (i) in the definition of MBFs. In order for a query algo-

rithm to determine the bin contents B(y), it su�ces to do the following: Inspect x

to determine w = W (x); look up GWtK(w), finding some key k; finally, check to see if

GKtW(k) = w. If so, B(y) = {k}, otherwise the bin is empty.

The first step can be implemented in DN queries to x. For the second step, table

entries of WtK are of size bs1+↵/2
N c, which is o(DN) since DN � s1+↵

N . The third step,

querying a table entry of KtW, takes O(sN log(N)) queries, which is also o(DN). Thus

the total number of queries is DN(1+ o(1)), less than (1+ �
2

)DN for large enough N .

This shows property (i).

118

For property (ii) of MBFs, let k 2 K be any key; to determine if {k} = B(y), our

algorithm queries KtW|k to find w = GKtW(k) and, subsequently, queries WtK|w to

determine if k = GWtK(w). If not, then {k} 6= B(y), and the algorithm reports this.

If k = GWtK(w), then the algorithm makes at most sN = o(DN) queries to x to see if

x agrees with w. Note that each step takes o(DN) queries, smaller than �(1 + �
2

)DN

for large N . This gives property (ii).

Finally, we show property (iii). This is the property for which we will use the

fact that |K| is large and entries of WtK are“exposure-resilient.” Our adversary

strategy against algorithms making at most (1 � �)(1 + �
2

)DN < (1 � �
2

)DN queries

to y = (x,WtK,KtW) is as follows:

• Answer queries to x according to a strategy, guaranteed to exist by Claim 3.1.5,

that prevents any query strategy making fewer than DN queries to x from

uniquely determining the value W (x). Answer all queries to WtK,KtW with

zeros.

Our proof of correctness is by contradiction. Suppose some deterministic algo-

rithm P makes at most (1� �
2

)DN queries to y against this adversary, and afterwards

outputs a list L of fewer than (1 � �)|K| keys, such that the bin contents B(y) is

forced by the bits seen to either be empty or contain a key from L.

Define a new algorithm P 0 as follows: in Phase 1 P 0 first simulates P on y, making

all the queries P does. After P terminates, define V ✓ W as the set of all witnesses w

for which P has made more than b1
2

s1+↵/2
N c queries to the table entry WtK|w in WtK.

In Phase 2, for each w 2 V in turn, P 0 makes any additional queries to x necessary

to determine whether x agrees with w.

Say this latter set of queries in Phase 2 are “on behalf of w.” Note that for every

w 2 V , at most sN queries are made on behalf of w in Phase 2, while more than

b1
2

s1+↵/2
N c queries are made to the table entry WtK|w in Phase 1. It follows that only

an o(1) fraction of the queries of P 0 are made in Phase 2, so for large enough N , P 0

makes fewer than DN queries to y.

But we claim that P 0 succeeds in determining W (x), contrary to the guarantee of

119

our adversary strategy from Claim 3.1.5. First, after the simulated operation of P by

P 0, say that a witness w is “live” if the bits of x seen are consistent with the possibility

W (x) = w. Note that if there is a live witness w whose table entry in WtK has been

queried at most b1
2

s1+↵/2
N c times, then the value GWtK(w) is completely undetermined

(any value is consistent with the bits seen), since the adversary answered those queries

with zeros and the function J used in defining GWtK(w) is a (bs1+↵/2
N c, D2

N , b1
2

s1+↵/2
N c)-

wERF.

Thus, for any key k whose table entry in KtW was not queried by P , it is consistent

with the bits of y seen that B(y) = {k}. Since |K| = D2

N = !(DN), if N is su�ciently

large then P cannot query a bit from even a � fraction of KtW’s table entries. Hence,

for P to output the list of candidates L ⇢ K with |L| < (1� �)|K|, it must be that

for every w 2 W still live after the operation of P , the WtK entry for w must have

been queried more than b1
2

s1+↵/2
N c times, and thus w 2 V .

No two distinct w 2 W are compatible, so it follows that exactly one w remains live

after Phase 2 of the operation of P 0. Thus, P 0 determines the value W (x) as claimed.

Again, this is in contradiction to the guarantee of our adversary strategy from Claim

3.1.5, so the assumption about P was false. We have proved that B(y) satisfies

property (iii) in the definition of MBFs, and altogether we have shown that B(y) is

a ((1 + �
2

)DN , �)-MBF, proving Lemma 3.2.6 for c = 1 (with T = (1 + �
2

)DN ,M =

D2

N).

3.3 Chapter acknowledgments

I would like to thank Scott Aaronson and Russell Impagliazzo for their support and

encouragement, Michael Forbes for valuable proofreading assistance, Brendan Juba

and Shubhangi Saraf for helpful discussions, and Suresh Venkatasubramanian for

pointing me to the definition of lattice outer measures in [Bir67].

120

Chapter 4

Limitations of Lower-Bound

Methods for the Wire Complexity

of Boolean Operators

4.1 Known lower-bound methods for wire com-

plexity

In Section 1.4.3 we reviewed the (rather unsatisfying) state of our knowledge of lower

bounds on the number of wires needed to compute Boolean operators, in the arbitrary-

gates and F
2

-linear gates models. Since there are relatively few lower-bound methods

for these models, it is important to understand the power and limitations of existing

methods. In this chapter we focus on three such methods.

4.1.1 The Strong Multiscale Entropy method

The first method we study, mentioned earlier in Section 1.4.3, was developed by

Cherukhin [Che08a] and used to obtain the best known explicit lower bounds on

bounded-depth wire complexity. The bounds apply to the cyclic convolution oper-

121

ator over Fn
2

, and are of form ⌦d (n · �d�1(n)) for depth d > 1.1 Here, �d(n) is an

unbounded function in n, which grows ever-more-slowly as d increases; its growth is

extremely slow even for modest values of d. We have2

�
1

(n) = ⇥(
p
n) , �

2

(n) = ⇥(lnn) , �
3

(n) = ⇥(ln lnn) ,

and for higher d, �d(n) = �⇤d�2(n). The precise definition is in Section 4.4.2.

The longstanding previous best lower bounds for explicit operators (including

cyclic convolution) were of form ⌦
⇣

n ln

2 n
ln lnn

⌘
for depth 2 [RTS00] and ⌦d (�d(n)) for

d � 3 [DDPW83, Pud94, AP94], and were based on the superconcentrator tech-

nique [Val76, Val77]. For depths 2, 3 and for even depths d � 4, Cherukhin’s

work gives asymptotic improvements on these older bounds; for odd depths d � 5,

his bounds match the best previous ones from [Pud94]. Cherukhin’s lower-bound

method does not apply to linear operators. (For d � 3, the best known lower

bounds for computing an explicit linear operator are of form ⌦d (n · �d(n)) [Pud94,

p. 215], [GHK+12]. These bounds, along with the ⌦
⇣
n
�

lnn
ln lnn

�
2

⌘
bound for depth 2

from [GHK+12], are valid against circuits with arbitrary gates.)

Cherukhin’s method, developed specifically for the convolution operator, was later

formulated by Jukna [Juk12, Chap. 13] as a general property of operators that yields

a lower bound of form ⌦d(n · �d�1(n)). This operator property is called the Strong

Multiscale Entropy (SME) property. Very roughly speaking, the SME property states

that there is a large “information flow” between many subsets of the input and output

coordinates of an operator. The precise definition has two noteworthy aspects. First,

the SME property requires for this information flow to be large when measured with

respect to many di↵erent partitions of the input and output coordinates, at many

di↵erent “scales” (i.e., varying the size of the input and output blocks). Second,

the measure of information flow between an input and output block is defined with

respect to a well-chosen set of restrictions of the original operator. The SME property

1Cherukhin proved his result for depths 2 and 3 earlier in [Che08b]. The paper [Che08a] contains
a unified proof for all constant depths.

2The �d(·) functions are defined di↵erently in [Pud94, GHK+12]. We follow [RS03, Che08a,
Juk12] instead, and we have converted the bounds quoted from other papers to match our convention.

122

will be defined in Section 4.4.2.

The earlier superconcentrator technique works by showing (also using “informa-

tion flow”-type arguments) that for certain operators F , any circuit to compute F

must have a strong connectivity property: it must be a so-called superconcentrator

graph. This allows one to apply known lower bounds on the number of edges in

bounded-depth superconcentrators (on n input and output vertices). The power of

this method is inherently limited, since for d � 3, the smallest depth-d superconcen-

trators have ⇥d(n·�d(n)) edges [DDPW83, Pud94, AP94]. Also, there exist supercon-

centrators with O(n) wires [Val76, Val77]; such graphs cannot have constant depth,

but may have depth that grows extremely slowly in n [DDPW83]. In contrast with

the superconcentrator technique, the SME property has an inherently information-

theoretic definition, and the associated lower bounds are proved by a combination of

graph-theoretic techniques from earlier work [Pud94, RS03] with novel information-

theoretic techniques. For constant-depth circuits, no limitations on the method were

known prior to our work, and it seemed plausible that the SME property might imply

significantly stronger lower bounds by an improved analysis.3

4.1.2 Two simpler lower-bound methods

We also study two other lower bound methods, both due to Jukna. These methods

are simpler than the SME method, and have only been shown to imply lower bounds

for depth 2. However, we feel they are still of interest due to their elegance, and due

to the fact that the important depth-2 case is still not well-understood.

The first of these methods is the so-called “entropy method” of Jukna [Juk10a].

Like the SME method, this method is a complexity measure of Boolean operators

whose definition is information-theoretic: the method identifies information that

passes between certain subsets of inputs and outputs, and argues that there must

3For larger depths, some limitations of the SME criterion follow from previous work. In particular,
the cyclic convolution operator over F2, which satisfies the SME property, can be computed in depth
polylog(n) using O(n log n log log n) wires. To see this, we first note that cyclic convolution of length
n in F2 easily reduces to multiplying two polynomials in F2[x], each of degree at most 2n � 1. For
the latter task, we can use an algorithm of Schönhage [Sch77] (see [Pos11]).

123

be many wires to carry this information. (In fact, the property of operators used by

Jukna’s entropy method can be viewed as a relaxation of the SME property, as will

be apparent from the definitions.) Using this method, Jukna proved bounds of form

⌦(n3/2) for the number of wires required in depth-2 circuits for multiplication of two
p
n-by-

p
n matrices over F

2

. Like the SME method, Jukna’s entropy method does

not yield super-linear lower bounds for computing linear operators.

The next lower-bound method we study, also due to Jukna [Juk10b] (building on

work of Alon, Karchmer, and Wigderson [AKW90]), does apply to linear operators,

and indeed is specific to these operators. Jukna showed that if the columns of a matrix

A 2 Fn⇥n
2

have pairwise Hamming distance ⌦(n), then any depth-2 circuit (with

arbitrary gates) computing the linear transformation x ! Ax must have ⌦
�
n lnn
ln lnn

�

wires [Juk10b]. This lower-bound criterion applies to a wide range of transformations,

including random ones. We will refer to this technique as the “method of pairwise

distances.”

Jukna’s result is actually stronger: the ⌦
�
n lnn
ln lnn

�
lower bound applies to any depth-

2 circuit that merely computes Ax correctly when x is a standard basis vector ei, for

i = 1, . . . , n. Such a circuit is said to “represent” the transformation Ax (relative

to the standard basis); this is a weaker notion than computing the transformation

if we allow non-linear gates. It seems worthwhile to understand how much of the

di�culty of computing a linear transformation is “already present” in the simpler

task of representing it relative to some basis. In this chapter, we will be broadly

interested in the complexity of representing linear transformations relative to various

bases; we regard the method of pairwise distances as one particular lower-bound

technique within this framework.

124

4.2 Our contributions

4.2.1 Limitations of entropy-based methods

As our most significant (and most technically involved) result, we show that Cherukhin’s

lower-bound method, formalized by Jukna as the SME property, is inherently limited

as a lower-bound criterion for the wire complexity: there is an explicit operator with

the SME property that is computable with O(n · �d�1(n)) wires, when d = 2, 3, or

when d � 6 is even. For other d > 1, this gives an upper bound of O(n·�d�2(n)) wires.
Thus, the Cherukhin-Jukna analysis of the SME lower-bound criterion is essentially

tight.

The operator we exhibit, called the “Dyadic Interval Replication” (DIR) operator,

is fairly natural, and can be roughly described as follows. Let n := 2k. The input is a

string x 2 {0, 1}n, viewed as a labeling of the leafs of Tk, the complete binary tree of

depth k, along with a specified subtree T 0 of Tk. The desired output is the labeling

z 2 {0, 1}n in which the leaf labels of T 0 in x have been “copied” to all other subtrees

of the same height. This operator is designed to create significant information flow

between all parts of the input and output; the subtree T 0 will be encoded in the input

in a way that is chosen to help ensure the SME property.

Our e�cient bounded-depth circuits for the DIR operator are built by an induc-

tion on the depth d.4 The basic idea is that, when the subtree T 0 to be copied is small,

we can “shrink” the input x, discarding most of the labelings outside of T 0. We then

either perform the replication task in a direct fashion, or, if the input has been shrunk

substantially enough, we inductively apply our circuits for lower depths. By carefully

optimizing the set of sizes to which we attempt to shrink the input, we obtain the

upper bounds quoted above. This approach also shows that the DIR operator has

linear -sized circuits of depth d = ↵(n) + 2, where ↵(n) := min{d : �d(n)  1} is

an extremely slowly-growing function. The idea of attacking a problem at di↵erent

“scales,” and applying induction, has appeared earlier in e�cient constructions of

4Technically, our induction gives circuits to compute a simplified variant, which we then apply
to compute the original operator.

125

bounded-depth superconcentrators [DDPW83] and bounded-depth circuits to com-

pute good error-correcting codes [GHK+12], although the details are di↵erent in each

case.

We share with earlier authors the belief that, for the cyclic convolution operator, it

should be possible to prove significantly better lower bounds for bounded depth—say,

bounds of form ⌦(n1+"
d) for any constant d > 0. Our work’s message is simply that

such lower bounds will have to exploit more of the specific structure of this operator.

It seems likely that this will require powerful new ideas. We do hope, however, that

our DIR example may be a useful reference point for future work in this area.

Next, we turn to study the limits of Jukna’s entropy method. In Section 4.6, we

give a simple example of an operator from 2n input bits to n output bits, which is

computable by depth-3 circuits with O(n) wires but requires ⌦(n3/2) wires to compute

in depth 2. The operator is a simplified variant of matrix multiplication over F
2

, in

which one of the two matrices is required to contain exactly one 1-entry. The lower

bound follows by the same analysis used in [Juk10a] to prove the same lower bound

for ordinary matrix multiplication over F
2

. Our example shows that the entropy

method as formalized in [Juk10a] does not provide a nontrivial lower-bound criterion

for depth-3 circuits.

As super-linear lower bounds are already known for the depth-3 wire complexity

of certain operators, our negative result on Jukna’s entropy method should be in-

terpreted as a note of caution, rather than as a strong barrier to progress in circuit

complexity. However, the operator we define to prove our result is also the first known

example of a polynomial separation between depth-2 and depth-3 wire complexities—

a finding of independent interest. (A polylogarithmic complexity separation between

depths 2 and 3 is shown in [GHK+12], for the task of computing the encoding function

of certain non-explicit linear codes.)

4.2.2 Results on linear transformations

In the rest of the chapter, we study the complexity of representing linear transforma-

tions over Fn
2

. While Lupanov [Lup56] showed that random linear transformations

126

require ⌦(n2/ lnn) wires to compute by linear circuits, Jukna [Juk10b] showed that,

if we allow non-linear gates, O(n lnn) wires su�ce to represent any linear transfor-

mation. (He showed this for the standard basis, but his method extends easily to all

other bases.) In Section 4.7, we show that relative to any fixed basis B, most linear

transformations require ⌦(n lnn) wires to represent relative to B. Our result shows

that Jukna’s upper bound is in general optimal. For our proof, we use a simple trick

(similar to a technique in [JS10]) to reduce arbitrary circuits to a special, restricted

class; we then apply a standard counting argument.

Recall that Jukna’s method of pairwise distances [Juk10b] implies a lower bound

of ⌦
�
n lnn
ln lnn

�
on the number of wires needed to represent a large class of linear transfor-

mations by depth-2 circuits. Jukna asked whether the “annoying” (ln lnn)�1 factor

in his result could be removed, to match the upper bound he proved for arbitrary

matrices. In Section 4.8, we show that in fact it cannot: there is a matrix family

{An 2 Fn⇥n
2

} whose columns have pairwise distance ⌦(n), for which we can com-

pute the transformation x ! Anx using a depth-2, F
2

-linear circuit with O
�
n lnn
ln lnn

�

wires. Our construction involves an application of combinatorial designs defined by

polynomials over finite fields.

ln Section 4.9, we show that, for depth-3 circuits, the pairwise-distance method

fails completely: there is a matrix family {An 2 Fn⇥n
2

}, whose columns have pairwise

distance ⌦(n), and for which we can compute x! Anx using a depth-3 linear circuit

with O (n) wires. Recently, Gál et al. [GHK+12] proved a related result: there is a

linear error-correcting code L : {0, 1}⌦(n) ! {0, 1}n with minimum distance ⌦(n),

whose encoding function is computable by depth-3 linear circuits with O(n ln lnn)

wires. They also show this is optimal for any such code, even if arbitrary gates

are allowed. In fact, they determine fairly precisely the minimal wire complexity

of computing a good error-correcting code for all depths d � 2: for depth 2, the

answer is ⇥
⇣
n
�

lnn
ln lnn

�
2

⌘
, and for depth d � 3, the answer is ⇥d(n · �d(n)). As a

corollary, this implies that the pairwise-distance method cannot give bounds better

than ⌦(n ln lnn) for depth 3; our result sharpens this by removing the (ln lnn) factor.

Comparing our work with [GHK+12] also shows that, while the generator matrices of

127

good linear codes do have columns with high pairwise distance, the property of being

a good code is an inherently stronger lower-bound criterion than the pairwise-distance

method.

Finally, in Section 4.10, we show another potential pitfall of circuit-size lower

bounds based on hardness of representing linear transformations. We show that for

invertible linear transformations L, there is always a basis B and a depth-3 circuit C

of size O(n) such that C represents L relative to B. (Non-linear gates are provably

necessary in this construction.) Thus in attempts to prove new circuit lower bounds

for depths greater than 2, we must at least take care in choosing which basis we use

to analyze our linear transformation.

4.3 Preliminaries

Throughout the chapter we use e
1

, . . . , en to denote the standard basis vectors in Fn
2

.

We freely identify {0, 1} with F
2

when it is convenient. We use ||y|| to denote the

Hamming weight of y 2 {0, 1}n.
Given a gate g in a circuit C, the depth of g is defined as the maximal number of

edges (i.e., wires) in any directed path from an input gate to g, where each step in

the path follows a wire in C in its direction of information-flow. The depth of C is

defined as the maximum depth of any of its gates. When we construct circuits, we

will refer to the depth-d gates as being at “Level d.” Generally these circuits will not

be layered; that is, wires may pass from Level d to any Level d0 > d.

4.3.1 Wire complexity of operators

A (total) operator (or mapping) is any function F : {0, 1}n ! {0, 1}m. A case of

special interest is when F = L is an F
2

-linear operator; we will also refer to linear

operators as linear transformations.

A partial operator is a function F : D ! {0, 1}m, where D ✓ {0, 1}n. For D0 ✓ D,

let F |D0 : D0 ! {0, 1}m be the restriction of F to D.

For a total or partial operator F , define s(F) as the minimum number of wires

128

in any circuit (using arbitrary Boolean functions at gates) which computes F . For

d � 0, define sd(F) as the minimum number of wires in any circuit which computes

F and has depth at most d. For linear operators we also study the quantity s�(L),

defined as the minimum number of wires in any F
2

-linear circuit that computes L.

Similarly, define s�d (L) as the minimum number of wires in a F
2

-linear circuit of depth

at most d that computes L.

4.3.2 Representing linear operators relative to di↵erent bases

Fix a basis B for Fn
2

. Say that a linear operator L : Fn
2

! Fm
2

is represented relative to

B by the circuit C (with n input and m output gates) if C(x) = L(x) for all x 2 B.

(Definitions in [Juk10b, JS10] applied to the standard basis; we consider more general

bases.) Note that if C is a linear circuit that represents L relative to some basis B,

then in fact C computes L.

Let Rd(L;B) be defined as the minimum number of wires in any circuit of depth

at most d that represents L relative to B. We let R(L;B) := mind>0

Rd(L;B).

4.3.3 A hashing lemma

The following lemma allows us to “compress” the information in an input string in

a wire-e�cient way, provided the input is promised to come from a restricted subset.

Item 1 of the lemma, which is an especially simple special case, will be used in several

sections, while the slightly more technical item 2 will only be used in Section 4.10.

Lemma 4.3.1.

1. There is a F
2

-linear operator Hsta : Fn
2

! F2dpne
2

, computable by a depth-1 circuit

with 2n wires, and such that for any two distinct standard basis vectors ei, ej 2
Fn
2

, the image vectors Hsta(ei), Hsta(ej) are distinct and each of Hamming weight

2. (We call Hsta a “hash mapping” for {e
1

, . . . , en}.)

2. Let D ⇢ {0, 1}n be of size n. There is an F
2

-linear operator H : Fn
2

! Fd
p
ne

2

,

computable by a depth-1 linear circuit with O(n) wires, that satisfies H(u) 6=

129

H(v) for any two distinct u, v 2 D.

Proof. (1.) For n � 1, the number of size-2 subsets of [2dpne] is �2d
p
ne

2

� � n. To

each i 2 [n], we arbitrarily assign a distinct Si ✓ [2dpne] of size 2. Let the input

variable xi be wired to the two gates ht, ht0 where Si = {t, t0}, and let each ht compute

the sum mod 2 of its inputs. Then letting Hsta(x) := (h
1

(x), . . . , h
2dpne(x)), we have

Hsta(ei) = 1S
i

,

where 1S
i

2 F2dpne
2

is the characteristic function of Si. Our circuit is depth-1, contains

2n wires, and computes a mapping with the desired property.

(2.) We will give a construction that works for su�ciently large n; this is enough

to prove the statement. Let h
1

, . . . , hdpne denote the outputs of H. We define H

by building the circuit CH that computes it. Our construction is probabilistic: each

input gate is connected to 14 output gates chosen uniformly and independently at

random, and each ht computes the sum (over F
2

) of its inputs. (If multiple wires

connect the input xi and output ht, each wire contributes to the sum. The constant

14 is simply chosen large enough to make the analysis work.) The total number of

wires is 14n = O(n), as required.

We claim that, with probability 1� o(1) over the randomness in our construction,

H is injective on D. To see this, first fix attention to any pair u, v 2 D with u 6= v.

For clarity, reorder the input coordinates so that un 6= vn. Condition on any wiring

of the outgoing wires from input gates x
1

, . . . , xn�1, and consider xn to have not yet

received its assignment of outgoing wires. This incomplete circuit defines a linear

transformation eH : {0, 1}n ! {0, 1}dpne from the inputs to the outputs.

Let t = (t(1), . . . , t(14)) 2 [dpne]14 be the 14 uniformly chosen indices of gates to

which xn is to be connected. Assume without loss of generality that un = 0, vn = 1.

Then H(u) = eH(u), while

H(v) = eH(v)� e
t(1)

� . . .� e
t(14)

130

(here et denotes the t-th standard basis vector in Fd
p
ne

2

). Let w := eH(u) � eH(v); it

follows that

H(u) = H(v) () e
t(1)

� . . .� e
t(14)

= w . (4.1)

We will show that, regardless of the value w, the probability pw := Pr[e
t(1)

� . . . �
e
t(14)

= w] satisfies pw = o(n�2). First, pw = 0 if ||w|| > 14. There are
�dpne

k

�
strings

of Hamming weight k, and each occurs as e
t(1)

� . . .� e
t

(14) with equal probability,

so pw = O(n�3) if ||w|| 2 [6, 14].

Now say ||w|| = k  5. Given an outcome of t satisfying e
t(1)

� . . . � e
t(14)

= w,

the cancellations which occur imply that we can find ` := (14� k)/2 pairs of indices

{i
1

, j
1

, . . . , i`, j`} ✓ [14], with no two indices appearing twice, such that

t(ir) = t(jr), r = 1, 2, . . . , `. (4.2)

Each event [t(i) = t(j)] occurs with probability dpne�1 if i 6= j. The variables

t(1), . . . , t(14) are independent, so the probability that Eq. (4.2) holds is O(n�`/2) =

O(n�9/4), using k  5.

In each case we find pw = o(n�2), so by Eq. (4.1), we conclude Pr[H(u) = H(v)] =

o(n�2). By a union bound over all pairs u, v 2 D, the probability that H fails to be

injective is
�
n
2

� · o(n2) = o(1). So our construction of H has the desired property on

some setting to the randomness.

4.4 Entropy and circuit lower bounds

4.4.1 Entropy of operators

Given an operator F = (f
1

, . . . , fm) : {0, 1}n ! {0, 1}m, define the entropy

Ent(F) := log
2

(|range(F)|)

as the logarithm of the number of distinct outputs of F . We have two easy facts,

both from [Juk10a]:

131

Fact 4.4.1. Suppose we fix some assignment to a subset I ✓ [n] of the inputs to F ,

and let F 0 : {0, 1}n�|I| ! {0, 1}m be the resulting operator. Then Ent(F 0)  Ent(F).

Fact 4.4.2. Suppose that there is a subset S ✓ [n], such that from the value F (x)

one can always infer the values of all input bits xi with i 2 S. Then, Ent(F) � |S|.

Say we are given an x 2 {0, 1}n, a nonempty set I ✓ [n], and an i 2 I. Let x[I; i]

denote the vector obtained from x by setting the ith bit to 1, setting the (i0)th bit to

0 for each i0 2 I \ {i}, and leaving all other bits unchanged.

Letting F (x) be as above, and fixing some output coordinate j 2 [m], define the

function

fI,i,j(x) := fj(x[I; i]) .

Now for J ✓ [m], define a mapping FI,J : {0, 1}n�|I| ! {0, 1}|I|·|J | by

FI,J := (fI,i,j)i2I,j2J .

Note, FI,J has as its domain the bits {x` : ` /2 I}. (We will still write FI,J = FI,J(x),

however.) We can now state Jukna’s entropy-based lower-bound criterion:

Theorem 4.4.3. [Juk10a] Let F : {0, 1}n ! {0, 1}m. Let I
1

, . . . , Ip be a partition of

[n], and let J
1

, . . . , Jp be a partition of [m] with the same number of parts. Then,

s
2

(F) �
pX

t=1

Ent(FI
t

,J
t

) .

4.4.2 Strong Multiscale Entropy

Next we define the Strong Multiscale Entropy property, which is a generalization due

to Jukna [Juk12, Chap. 13] of a lower-bound method of Cherukhin [Che08a].

For a pair of integers N,m � n
0

, we consider pairs (I,J) where I is a collection

of subsets of [N] and J is a collection of subsets of [m]. For an integer p  n
0

, we

say that (I,J) form an n
0

-partition at scale p if:

1. I consists of p disjoint sets It ✓ [N], with |It| = bn0

/pc;

132

2. J consists of bn
0

/pc disjoint sets Jt0 ✓ [m], with |Jt0 | = p.

Say that a family {FN : {0, 1}N ! {0, 1}m}N>0

has the Strong Multiscale Entropy

(SME) property, if there exists a parameter n
0

= n
0

(N) = ⌦(N) along with constants

C, � > 0 such that, for every N and every p 2 [C
p
n
0

, n
0

], there exists a pair (I,J)

that form an n
0

-partition at scale p, satisfying

Ent(FI
t

,J
t

0) � � · n
0

, 8It 2 I, Jt0 2 J . (4.3)

We also define the enhanced SME property similarly to the above, except that we ask

for a pair (I,J) satisfying Eq. (4.3) for all p 2 [C, n
0

].

To state the lower bounds for operators with the SME property, we need some

definitions. We let g(i) denote the i-fold composition of a function g : Z! Z. Suppose

g satisfies 1  g(n) < n for all n > 1; we then define g⇤ : {1, 2, 3, . . .}! {0, 1, 2, . . .}
by

g⇤(n) := min{i : g(i)(n)  1} .

Following conventions in [RS03, Che08a], define a family of slowly-growing functions

�d(n) as follows: let

�
1

(n) := bpnc, �
2

(n) := dlog
2

ne ,

and for d > 2, let

�d(n) := �⇤d�2(n) .

(Note that �
3

(n) = ⇥(ln lnn).)

Applying the technique of Cherukhin [Che08a], Jukna proved:

Theorem 4.4.4. [Juk12, Chap. 13] Suppose the operator family {FN : {0, 1}N !
{0, 1}m} has the Strong Multiscale Entropy property. Then for any constant d � 2,

any depth-d circuit to compute FN has ⌦d(N · �d�1(N)) wires.

133

4.5 Limitations of the SME lower-bound criterion

In this section we introduce an explicit Boolean operator called the “Dyadic Interval

Replication” (DIR) operator, and use it to show that the Strong Multiscale Entropy

property does not imply wire complexity lower bounds substantially better than those

given by Theorem 4.4.4. We prove:

Theorem 4.5.1. There is an operator family {DIRN : {0, 1}N ! {0, 1}⌦(N)}, with
the enhanced Strong Multiscale Entropy property, for which we have:

s
2

(DIRN) = ⇥(N3/2) = ⇥ (N · �
1

(n)) ;

s
3

(DIRN) = ⇥ (N lnN) = ⇥ (N · �
2

(n)) ;

s
5

(DIRN) = O (N ln lnN) = O(N · �
3

(n)) ;

For even d = d(N) � 6,

sd (DIRN) = O (N · �d�2(N)) = O (N · �d�1(N)) ,

and so for constant, even values d � 6,

sd (DIRN) = ⇥d (N · �d�1(N)) .

For odd values d = d(N) � 7, we have

sd (DIRN)  sd�1 (DIRN) = O(N · �d�2(N)) .

The lower bounds come from Theorem 4.4.4. In the statements above, we are

using the fact that �d(N) = ⇥ (�d+1

(N)) for even values d = d(N) � 4.

The hidden constants in the O (·) notation above are independent of d. Thus,

DIRN is computable by a circuit with O(N) wires, of depth ↵(N)+2, where ↵(N) :=

min{d : �d(N)  1} is an extremely slowly-growing function. On the other hand,

the lower bounds from Theorem 4.4.4 hide a multiplicative constant that goes to 0

134

as d ! 1. So there may be room for some further tightening of the upper or lower

bounds for all values of d.

In Theorem 4.5.1, we show that DIRN satisfies not only the SME property, but

also the enhanced SME property. We do so to clarify that even this stronger property

does not yield significantly better lower bounds than those given by Theorem 4.4.4.

We emphasize that our upper bounds for the specific operator DIRN are also upper

limits on the lower bounds that follow in general from the SME property.

4.5.1 The DIR operator

Now we define DIRN and show it has the SME property. In our work in this section,

it will be convenient to index vectors in {0, 1}n as x = (x
0

, . . . , xn�1), and regard the

indices as lying in Zn. For a 2 Zn, define

shift(x; a) := (x�a, x1�a, . . . , x(n�1)�a) ,

with index arithmetic over Zn. We also use set addition: for A,B ✓ Zn, define

A + B := {a + b : a 2 A, b 2 B} (with addition over Zn). For i 2 Zn, we write

A+ i := A+ {i}.
We consider input lengths N = 2 · 2k + dlog

2

ke, for k � 1. We let n := 2k, and

we regard inputs of length N to have the form

(x, y, r) 2 {0, 1}n+n+dlog2 ke .

We will consider r as an integer in [0, k� 1].5 Define the Dyadic Interval Replication

operator DIRN(x, y, r) : {0, 1}N ! {0, 1}n by the following rule:

1. If ||y|| 6= 1, output z := 0n.

2. Otherwise, let i = i(y) 2 Zn be the unique index for which yi = 1. Output the

5If k is not a power of 2, some values in [0, k�1] will have more than one encoding; this technicality
doesn’t a↵ect our arguments.

135

string z given by

zj := shift(x; i · 2r)
(jmod 2

r

)

. (4.4)

Let us explain this definition in words. The input vector x divides naturally into

n/2r = 2k�r substrings of length 2r. The operator DIRN chooses one of these sub-

strings, and outputs 2k�r consecutive copies of this substring.

We can extend the definition to input lengths N � 6 not of the above form, by

considering the input to be padded with irrelevant bits.

4.5.2 Establishing the SME property for DIR

Lemma 4.5.2. The family {DIRN} has the enhanced SME property.

Proof of Lemma 4.5.2. The number of irrelevant bits in the input to DIRN is not

more than twice the number of relevant bits, so for the purposes of our asymptotic

analysis, we may assume that N is of form N = 2 · 2k + dlog
2

ke with k � 1. Let

n := 2k, and let n
0

:= n = ⌦(N).

Let p 2 [4, n] be given. Define collections I,J as follows. For t 2 [p], let

It := {0, 1, . . . , bn/pc}+ (t� 1)bn/pc

be the tth consecutive interval of length bn/pc in Zn. For t0 2 [bn/pc], let

Jt0 := {0, 1, . . . , p}+ (t0 � 1)p

be the (t0)th interval of length p in Zn. Note that (I,J) form an n
0

-partition at scale

p for the input and output lengths of DIRN .

Say we are given any t 2 [p] and t0 2 [bn/pc]; we will show that Ent(DIRI
t

,J
t

0) =

⌦(n) = ⌦(N). First, suppose that p 2 [2`, 2`+1), where ` > 0. Then, Jt0 contains an

interval bJ of form

bJ = {0, . . . , 2`�1 � 1}+ s · 2`�1 ,

for some s 2 [0, 2k�`+1). We now fix assignments (y⇤, r⇤) to part of the input to

136

DIRI
t

,J
t

0 :

y⇤ := 0n, r⇤ := `� 1 .

Define DIR⇤I
t

,J
t

0 (x) := DIRI
t

,J
t

0 (x, y
⇤, r⇤). Using Fact 4.4.1 applied to DIRI

t

,J
t

0 , we

have Ent(DIRI
t

,J
t

0) � Ent(DIR⇤I
t

,J
t

0). So it will be enough to lower-bound Ent(DIR⇤I
t

,J
t

0).

Fix any i 2 It. Our assignment y⇤ := 0n satisfies

||y⇤[It; i]|| = 1 .

Thus for any x, case 2 holds in the definition of DIR(x, y⇤[It; i], r⇤). Consider any

j 2 bJ ; substituting values into Eq. (4.4), we find

(DIRN(x, y
⇤[It; i], r⇤))j =

�
shift(x; i · 2`�1)�

(jmod 2

`�1
)

= x
(jmod 2

`�1
)�i2`�1 .

Thus, from the output of DIR⇤I
t

,J
t

(x) we can determine xa, for each a 2 bJ
(mod 2

`�1
)

�
2`�1 · It. Here, bJ

(mod 2

`�1
)

:= {j0 2 [0, 2`�1 � 1] : j0 = j mod 2`�1 for some j 2 bJ}.
We observe that actually bJ

(mod 2

`�1
)

= [0, 2`�1� 1], since bJ is a consecutive interval of

length 2`�1. Fact 4.4.2 now implies that

Ent(DIR⇤I
t

,J
t

0) �
��[0, 2`�1 � 1]� 2`�1 · It

�� .

Recall that It is an interval of length bn/pc. It follows that, with arithmetic taken

over the integers Z, the set [0, 2`�1� 1]� 2`�1 · It is an interval in Z of size 2`�1bn/pc.
We conclude that, over Zn,

��[0, 2`�1 � 1]� 2`�1 · It
�� = min{n, 2`�1bn/pc}
� min{n, (p/4) · bn/pc} = ⌦(n).

This proves Lemma 4.5.2.

137

4.5.3 E�cient bounded-depth circuits for DIR

In this subsection, we prove the upper bounds needed to establish Theorem 4.5.1.

First we prove the upper bound for depth 2, namely s
2

(DIRN) = O
�
N3/2

�
. Our

circuit construction will split into two cases, handled separately as follows: first, if

2r <
p
n, the needed substring of x can be copied into

p
n gates on Level 1 of the

circuit, and then copied from this middle level by the output gates. On the other

hand, if 2r � pn, then each output bit can depend on at most
p
n possible bits of x.

Lemma 4.5.3. s
2

(DIRN) = O
�
N3/2

�
= O(N · �

1

(N)).

Proof. As before, we may assume N = 2 ·2k+dlog
2

ke, with n := 2k. For convenience,

we will assume further that k is even, so that
p
n = 2k/2 is an integer.

Recall that, when ||y|| = 1, the output of DIRN(x, y, r) will consist of 2k�r con-

secutive copies of a substring of x of length 2r. We will design two depth-2 circuits

C#, C", each with O
�
N3/2

�
wires. C# will compute DIRN under the promise that

2r <
p
n; C" will compute DIRN provided 2r � pn. It is then easy to combine these

two circuits to get a single circuit computing DIRN under no assumption. (We apply

each of C#, C" to the input, merging their corresponding output gates. Each output

gate is also wired to the inputs of r, to determine whether it should output the value

of C# or of C"; this takes O(n · log
2

k) additional wires.)

For C#, the basic idea is that when 2r <
p
n, fewer than

p
n bits of x actually

“matter” for the output; we can extract these bits on Level 1 and distribute them

to the appropriate outputs on Level 2. More precisely, we will have
p
n + 1 gates

(s, g
1

, . . . , gpn) on Level 1 of our circuit C#, each wired to all of (x, y, r). We set s = 1

i↵ ||y|| = 1. The gates g
1

, . . . , gpn will simply copy the interval of size 2r <
p
n in x

that must be replicated in the output of DIRN , as determined by x, r, and i = i(y).

(This interval of bits from x will be padded with
p
n� 2r zeros when copied to Level

1.)

Next, each output bit zt (t 2 Zn) is wired to all Level 1 gates and to r. We won’t

give an explicit rule, but it is clear that with these inputs, each zt can determine

its correct output to compute DIRN (assuming here that 2r <
p
n). The number of

138

wires in C# is O
�
n3/2 + n(

p
n+ log

2

k)
�
= O

�
N3/2

�
, as required.

Now we build C". The basic idea here is that, assuming 2r � pn = 2k/2, each

output bit zt depends only on y, r, and on input bits xt0 for which t� t0 is a multiple

of
p
n. Thus, after “compactifying” the relevant information in y into

p
n bits on

Level 1, each output bit can be computed from the Level 1 gates, from r, and from
p
n bits of x, using O

�
n3/2

�
wires in total. Details follow.

Let H(y) = Hsta(y) = (h
1

, . . . , h
2dpne) : Fn

2

! F2dpne
2

be the operator from item

1 of Lemma 4.3.1 that is injective on {e
1

, . . . , en}. We implement H on Level 1 of

our circuit with O(n) wires, following the construction in Lemma 4.3.1. As in C#, on

Level 1 we also include a single gate s, wired to r, that outputs 1 i↵ ||y|| = 1. Thus

the total number of wires between inputs and Level 1 is O(n), and there are
p
n+ 1

gates at Level 1.

Next, each output bit zt (t 2 Zn) is wired to all Level 1 gates, to all of r, and to

the input bits (xt, xt+
p
n, xt+2

p
n, . . . , xt+(

p
n�1)pn). Thus our circuit is of depth 2, and

the total number of wires to the outputs is n · ((pn+ 1) + dlog
2

ke+pn) = O(n3/2).

Rather than specifying the output rule for zt precisely, we argue that this gate has

all the information it needs to output (DIRN(x, y, r))t correctly (assuming 2r � pn).
First, if ||y|| 6= 1, then zt can learn this and output 0 by looking at s. Otherwise,

zt knows that ||y|| = 1. In this case, zt must output the bit shift(x; i · 2r)
(tmod 2

r

)

=

x
(tmod 2

r

)�i2r (here the outer index arithmetic is over Zn). This desired bit lies among

(xt, xt+2

r , . . . , xt+(2

k�r�1)2r), and these are contained in the inputs to zt since 2r is a

multiple of
p
n. Finally, the value i = i(y) can be determined from H(y), because

H(y) determines y when ||y|| = 1. Thus zt can output the correct value.

Next, we will develop tools for building more-e�cient circuits of higher depths.

For depth 3, we will show s
3

(DIRN) = O(N lnN). The plan for depth 3 is fairly

simple: First, from an input (x, y, r) satisfying ||y|| = 1, we can extract the index

i = i(y) and the value p := (i · 2r modn) in depth 1, with n log
2

n wires. Then we

show that there is a circuit to compute the appropriate output given (x, i, r, p) using

O(N) wires in depth 2, under the promise that r equals some fixed value a 2 [0, k�1].
As there are only log

2

n possible values of r, we can combine these circuits (merging

139

their output gates) into a single circuit of total depth 3 and with O(N lnN) wires

overall.

To build our circuits for depths 3 and higher, it is useful to introduce some auxil-

iary operators, which are “easier” versions of DIRN . The first such operator further

restricts the “admissible” values of r to some interval [a, b] ✓ [0, k � 1]. Define

DIR[a,b]
N : {0, 1}2n+dlog2 ke by

DIR[a,b]
N (x, y, r) :=

8
><

>:

DIRN(x, y, r) if r 2 [a, b],

0n otherwise.

The second simplified operator makes the values i and p := (i ·2r modn) available

in binary. Define DIRbin,[a,b]
N : {0, 1}n+k+dlog2 ke+k by

DIRbin,[a,b]
N (x, i, r, p) :=

8
><

>:

DIR[a,b]
N (x, ei, r) if p = i · 2r modn,

0n otherwise.

We are abusing notation slightly, since the input size to DIRbin,[a,b]
N is actually smaller

than N = 2n+ dlog
2

ke.
The following lemma, which handles a fixed value r = a, will be useful.

Lemma 4.5.4. For any a 2 [0, k�1], there is a depth-2 circuit Ca, using O(n) wires,

that computes DIRbin,[a,a]
N .

Proof. Let a be fixed. We include a single gate s on Level 1 that outputs 1 i↵ all of

the following hold:

1. ||y|| = 1;

2. p = i · 2r modn;

3. r = a.

Also on Level 1 of the circuit Ca, we define gates x0t, for t 2 {0, 1, . . . , 2a � 1}.
Each such gate is wired to the (k � a) most significant bits of p, and to the inputs

140

(xt, xt+2

a , . . . , xt+(2

k�a�1)2a). Let p̃ := p�(pmod 2a) be the value obtained by assuming

that the unseen bits of p are zero. We then set x0t := xt�p̃. Note that the needed

bit of x falls within the inputs to x0t. The number of incoming wires to this group of

gates is 2a · �2k�a + (k � a)
�
= O(2k) = O(n).

Finally, given an output gate zj of Ca with j 2 Zn, we set

zj := x0
(jmod 2

a

)

^ s ,

so that the output gates have 2n incoming wires in total, and the entire circuit Ca is

depth-2 and contains O(n) wires.

We claim that Ca has the desired behavior. To see this, fix any j 2 Zn. First, if

s = 0 then zj = 0 as needed. Next assume that s = 1, so that DIRbin,[a,a]
N (x, i, r, p) =

DIRN(x, ei, a). We compute

zj = x0
(jmod 2

a

)

^ 1

= x
(jmod 2

a

)�p̃

= x
(jmod 2

a

)�i2a

(since s = 1 implies p̃ = p = i · 2a modn)

= (shift(x; i · 2a))
(jmod 2

a

)

,

as needed. This proves the correctness of Ca.

Lemma 4.5.5. For any 0  b < k, s
2

⇣
DIRbin,[0,b]

N

⌘
= O (N lnN). Also, s

3

(DIRN) =

O (N lnN) = O(N · �
2

(N)).

Proof. Again assume that N = 2 · 2k + dlog
2

ke, with n := 2k.

First we show s
2

⇣
DIRbin,[0,k�1]

N

⌘
= O (N lnN). Let (x, i, r, p) be the inputs. We

apply the circuits C0, C1, . . . , Cb from Lemma 4.5.4 to (x, i, r, p). Each such circuit

Ca has n outputs, call them z
0,a, . . . , zn�1,a. For t 2 Zn, we “collapse” zt,0, . . . , zt,b

into the single output gate zt (which takes all the inputs of zt,0, . . . , zt,b as its inputs).

This gate is also wired to the input r, and it outputs zt := zt,r.

141

Let C denote the circuit we have constructed. That C computes DIRbin,[0,b]
N is

immediate. C is of depth 2 since each Ca is of depth 2, and C has O(N) · (b + 1) +

n · dlog
2

ke = O(N lnN) wires, since each Ca has O(N) wires and b < k = log
2

n.

Next we show s
3

(DIRN) = O (N lnN). In our circuit C 0 for DIRN , we will assume

that the input satisfies ||y|| = 1. As usual, it is easy to modify this circuit to handle

the case where ||y|| 6= 1.

On Level 1 of our circuit, we compute i = i(y) and p := i · 2r modn. This takes

O(n lnn) wires since i, p are k bits each. Next, we set b := k � 1 and apply our

previously constructed circuit C for DIRbin,[0,k�1]
N to (x, i, r, p). By definition, the

resulting output is DIRN(x, y, r). Our construction of C 0 is of depth 1 + 2 = 3 and

contains O(N lnN) wires.

To work with depths larger than 3, we will give a technique that allows us to

“shrink” the size of an instance of the Dyadic Interval Replication problem, discarding

most of the irrelevant bits of x, when the value r is not too large. The next lemma

collects two variants of this process.

Lemma 4.5.6. Let N = 2 · 2k + dlog
2

ke. Let 0  a  b  k � 1 be given, and let

d = d(N) � 1. Let N 0 := 2 · 2b�a+1 + dlog
2

(b� a+ 1)e.

1. There is a depth-(d+2) circuit C that computes DIRbin,[a,b]
N ; the number of wires

in C is

2a+1 · sd
⇣
DIRbin,[0,b�a]

N 0

⌘
+O (N) .

2. There is a depth-(d+ 3) circuit C 0 that computes DIR[a,b]
N , and has

2a+1 · sd
⇣
DIRbin,[0,b�a]

N 0

⌘
+O (N(k � b))

wires.

In each case the O(·) is independent of a, b, d.

Proof. (1.) We split into two cases according to whether the input p satisfies p =

0mod 2b+1, designing a di↵erent depth-(d + 2) circuit for each case. It is easy to

142

combine the two circuits using O(N) additional wires. We assume in the following

construction that p 6= 0mod 2b+1, and then sketch the other, quite similar case; this

will double the number of wires, giving the quoted bound.

On Level 1 of our circuit C (for the case p 6= 0mod 2b+1), we include gates x0 =

(x0
0

, . . . , x0
2

b+1�1), where x0t is wired to (xt, xt+2

b+1 , . . . , xt+(2

k�b�1�1)2b+1), and also to

the k � b� 1 most significant bits of p, that is, to pb+1

, . . . , pk�1. We set

x0t := xt�p̃�2b+1 , where p̃ :=
Pk�1

`=b+1

p`2` = p� (pmod 2b+1).

xt�p̃�2b+1 lies among the inputs to x0t as needed. Computing x0 uses 2b+1 ·(2k�b�1+
(k�b�1)) = O(N) wires. Also on Level 1 of C, we include a gate s, wired to (i, r, p).

We set s := 1 i↵ the following conditions hold: (1) p = i · 2r modn; (2) r 2 [a, b].

Computing s requires o(N) wires. Define the quantities i0 := imod 2b�a+1, r0 :=

min{r�a, b�a}, p0 := i0 ·r0mod 2b�a+1, and note that (i0, r0, p0) can all be determined

from (i, r, p). On Level 1 of C we also include gates computing (i0, r0, p0); this takes

O(ln2 N) = o(N) wires. For u 2 [0, 2a � 1], define x0(u) = (x0(u)
0

, . . . , x0(u)
2

b�a+1�1)

by letting

x0(u)` := x0`·2a+u .

Here we are just introducing new notation that “divides up” x0 into the subsequences

x0(0), . . . , x0(2a � 1).

Next, on Levels 2 through (d+1) of C, for each u 2 [0, 2a�1] we place a copy of an

optimal (wire-minimizing) depth-d circuit computing DIRbin,[0,b�a]
N 0 , to which we pro-

vide the values (x0(u), i0, r0, p0) as inputs. Let z0(u) = (z0(u)
0

, z0(u)
1

, . . . , z0(u)
2

b�a+1�1)

denote the output gates of this circuit.

Finally, for t 2 Zn, we may uniquely write t = ` · 2a + u, for some ` 2 [0, 2k�a� 1]

and u 2 [0, 2a � 1]. Then the output gate zt is defined by

zt := z0(u)`mod 2

b�a+1 ^ s .

The total number of wires in our circuit C is O(N) + 2a · sd
⇣
DIRbin,[0,b�a]

N 0

⌘
, and the

depth of C is (d + 2). Next we prove correctness. First, if s = 0 then C outputs 0n

143

as needed, so assume s = 1 (which implies r0 = r � a). Fix t 2 Zn=2

k , and write

t = ` · 2a + u with `, u as above. We have

zt = z0(u)`mod 2

b�a+1 ^ s

= shift(x0(u); i0 · 2r0)
(`mod 2

r

0
)

(using that 2r
0
divides 2b�a+1)

= x0
([(`mod 2

r

0
)�i02r0] mod 2

b�a+1
)·2a+u

= x0
([(`mod 2

r

0
)�i2r0] mod 2

b�a+1
)·2a+u

= x0
((`·2a mod 2

r

)�i2r)mod 2

b+1
+u

(using (cmodm) · w = cwmod(mw))

= x0
2

b+1
+(`·2a mod 2

r

)�(i2r mod 2

b+1
)+u

(since p, a multiple of 2r, is 6= 0mod 2b+1, and s = 1)

= x
[2

b+1
+((`·2a+u)mod 2

r

)�(i2r mod 2

b+1
)]�p̃�2b+1

= x
(tmod 2

r

)�(p̃+(pmod 2

b+1
))

= x
(tmod 2

r

)�p,

as needed. Finally, the case p = 0mod 2b+1 is handled identically except that we let

x0t := xt�p̃. The analysis is very similar. Combining these two circuits adds a factor

of 2 to our bound on the wires, which gives the result stated in item 1 above.

(2.) As earlier, we may assume the input to our circuit satisfies ||y|| = 1, since

the other case is easily handled using O(N) additional wires in the circuit. On Level

1 of C 0, we place gates pk�g, . . . , pk�1, each wired to all the bits of y and to r; these

gates output the g most significant bits of p := (i · 2r modn), where i = i(y) is the

unique index for which yi = 1. This takes g · (n + dlog
2

ke) = O(gN) wires. Also

on Level 1, we include gates h
1

, . . . , h
2dpne computing the operator H(y) = Hsta(y) :

{0, 1}n ! {0, 1}2dpne from Lemma 4.3.1, item 1, that is injective on {e
1

, . . . , en} and

computable in depth 1 with 2n wires.

On Level 2 of C 0, we include gates which compute the quantities (i0, r0, p0) as

144

defined in part 1 of Lemma 4.5.6, relative to i = i(y), r, and p := i · 2r modn. These

quantities can be computed with O(lnn) gates, each wired to r and to h
1

, . . . , h
2dpne

(since the value of H(y) determines i(y)). This group of gates requires O(
p
n lnn) =

o(N) input wires overall.

Also on Level 2 of C 0, we include gates x0
0

, . . . , x0
2

k�g�1, defined just as in part 1 of

the Lemma, in terms of x and p. Note that we can compute these values with O(N)

wires just as in part 1, since we have computed the g most significant bits of p on

Level 1.

Levels 3 through d+ 3 of C 0 are identical to Levels 2 through d+ 2 of our circuit

from part 1 (i.e., the full circuit, combining the two cases we considered). Correctness

is proved exactly as before, and the number of gates is 2a+1sd
⇣
DIRbin,[0,b�a]

N 0

⌘
+O(gN),

as required.

Lemma 4.5.7. s
5

(DIRN) = O(N ln lnN) = O(N · �
3

(N)).

Proof. As usual we may assume ||y|| = 1, solving the other case with O(N) additional

wires. The idea for our construction is that we will handle the case when 2r  n/ log
2

n

by “shrinking” the input with Lemma 4.5.6, then applying our depth-2 construction

from Lemma 4.5.5. We can handle the case 2r > n/ log
2

n by a more straightforward

approach since there are only ⇡ log
2

log
2

n possible values of r in this range.

For any choice of b < k, it follows from the definition of DIRN that we can write

(DIRN)j =
⇣
DIR[0,b]

N

⌘

j
_

_

b<a<k

⇣
DIR[a,a]

N

⌘

j
, 8j 2 Zn . (4.5)

Set b as the largest value for which 2b  n/ log
2

n. By part 2 of Lemma 4.5.6 with

a := 0, DIR[0,b]
N can be computed in depth 5 = 2+3 with 2 ·s

2

⇣
DIRbin,[0,b]

N 0

⌘
+O(N(k�

b)) wires, where N 0 = 2 · 2b+1 + dlog
2

(b + 1)e. By Lemma 4.5.5, s
2

⇣
DIRbin,[0,b]

N 0

⌘
=

O(N 0 lnN 0) = O(2b+1(b + 1)) = O((n/ log
2

n) · log
2

n) = O(n). Also, k � b 
log

2

log
2

n+O(1). Thus the total cost to compute DIR[0,b]
N in depth 5 is O(N ln lnN).

To compute each of DIR[b+1,b+1]

N , . . . ,DIR[k�1,k�1]
N , we first compute H(y), where

H = Hsta is the mapping defined within part 1 of Lemma 4.3.1; H is injective on

145

{e
1

, . . . , en} and computable in 2n wires. On Level 2, we use (H(y), r) to compute

i = i(y) and p := i · 2r modn; this takes O(
p
n lnn) = o(n) wires. Then we use

the depth-2 circuits Ca from Lemma 4.5.4 to compute DIRbin,[a,a]
N (x, i, r, p) for a =

{b + 1, . . . , k � 1}, which give the outputs of DIR[b+1,b+1]

N , . . . ,DIR[k�1,k�1]
N we need.

Each Ca has O(n) wires, so the total cost of computing DIR[b+1,b+1]

N , . . . ,DIR[k�1,k�1]
N

is O(n(k � b)) = O(n ln lnn).

At Level 5 of our circuit, we combine the outputs of all of our subcircuits: we

“merge” the gates giving the values
⇣
DIR[0,b]

N

⌘

j
,
⇣
DIR[b+1,b+1]

N

⌘

j
, . . . ,

⇣
DIR[k�1,k�1]

N

⌘

j

into a single output gate zj computing the OR of these values. By Eq. (4.5), this

circuit computes DIRN ; it is of depth 5 and contains O(N ln lnN) wires. This proves

the Lemma.

The next lemma, our key algorithmic tool for depths d > 5, gives an inductive

construction of ever-more-e�cient circuits for DIRbin,[0,k�1]
N at the cost of increasing

the circuit depth.

Lemma 4.5.8. For even values d = d(N) � 2, we have sd
⇣
DIRbin,[0,k�1]

N

⌘
= O (N · �d(N)).

The O(·) is independent of d.

Proof. Let C > 0 be chosen larger than the implicit constants in the O(·)-notation
used in all of our previous results, when the bounds are, for convenience, re-expressed

in terms of the parameter n = ⇥(N); recall that in each case the bound was inde-

pendent of d and the other parameters. We claim, and prove by induction on even

d � 2, that sd
⇣
DIRbin,[0,k�1]

N

⌘
< 40Cn · �d(n). We may assume in what follows that

k > 20, setting C large enough that the claim is trivially true for k  20.

For d = 2, Lemma 4.5.5 gives s
2

⇣
DIRbin,[0,k�1]

N

⌘
< Cn · �

2

(n), as needed. Now let

d � 4 be even, and consider the statement proved for d0 = d�2. First, if �d�2(n) = 1,

the result is trivial; so assume from now on that �d�2(n) � 2. Define a nondecreasing

integer sequence a
1

, a
2

, . . . , aT , where

at := blog
2

(n/�(t)d�2(n))� 20c

146

(recalling that g(t) denotes the t-fold composition of g). We let T := min{t : �(t)d�2(n) =

1}; thus T = �⇤d�2(n) = �d(n) by the definitions. It is immediate that �d�2(m) � 1

whenever m > 1, so in fact �(T)

d�2(n) = 1 and all the at’s are well-defined, with

aT = k � 20. Also, T > 1 by our assumption �d�2(n) � 2.

Let t⇤ := min{t 2 [T] : at > 0}. As aT = k � 20, we can express the interval

[0, k � 1] as

[0, k � 1] = [0, at⇤] [[at⇤ , at⇤+1

] [. . . [[aT�1, aT] [[k � 19, k � 1] ,

and for j 2 Zn we can write

⇣
DIRbin,[0,k�1]

N

⌘

j
=

⇣
DIRbin,[0,a

t

⇤]
N

⌘

j
_
⇣
DIRbin,[k�19,k�1]

N

⌘

j
_

T_

t=t⇤+1

⇣
DIRbin,[a

t�1,at]
N

⌘

j
.

(4.6)

By the same technique used in Lemma 4.5.7, one can “merge” the outputs of depth-

d circuits for the operators DIRbin,[0,a
t

⇤]
N , DIR

bin,[a
t

⇤+1,at⇤+2]

N , . . . ,DIRbin,[a
T�1,aT]

N , and

DIRbin,[k�19,k�1]
N to get a depth-d circuit for DIRbin,[0,k�1]

N .

Let ñ := 2at⇤+1, Ñ := 2 · 2at⇤+1 + dlog
2

(at⇤ + 1)e. Applying Lemma 4.5.6, part 1

(with a := 0, b := at⇤), we find that

sd
⇣
DIRbin,[0,a

t

⇤]
N

⌘
 2 · sd�2

⇣
DIRbin,[0,a

t

⇤]
˜N

⌘
+ Cn .

If t⇤ = 1, then 2at⇤+1  2�19 · (n/�d�2(n)), and, using the inductive hypothesis,

sd�2
⇣
DIRbin,[0,a

t

⇤]
˜N

⌘
 .005C · (n/�d�2(n)) · �d�2(n) ,

so that sd(DIR
bin,[0,a

t

⇤]
N) < 1.01Cn. If t⇤ > 1, then at⇤�1  0, so 2�at⇤�1 � 0 and

ñ = 2at⇤+1  2 · 2at⇤�at⇤�1  [4 · �(t⇤�1)d�2 (n)/�(t
⇤
)

d�2(n)] ,

147

and

sd�2
⇣
DIRbin,[0,a

t

⇤]
˜N

⌘
 40C · [4 · �(t⇤�1)d�2 (n)/�(t

⇤
)

d�2(n)] · 4�d�2(�(t
⇤�1)

d�2 (n))

 640C�(t
⇤�1)

d�2 (n)

< Cn

(here using n = 2k > 220 and t⇤ > 1), so that sd(DIR
bin,[0,a

t

⇤]
N)  2Cn in this case.

Now consider t 2 [t⇤ + 1, T]. By Lemma 4.5.6, part 1, we have

sd(DIR
bin,[a

t�1,at]
N)  2at�1+1 · sd�2(DIRbin,[0,a

t

�a
t�1]

N
t

) + Cn ,

where

Nt := 2 · 2at�at�1+1 + blog
2

(at � at�1 + 1)c .

Now 2at�at�1+1  [4·�(t�1)d�2 (n)/�(t)d�2(n)], so, using the inductive hypothesis, sd�2(DIR
bin,[0,a

t

�a
t�1]

N
t

)

is at most

40C · [4 · �(t�1)d�2 (n)/�(t)d�2(n)] · (4�d�2(�(t�1)d�2 (n)) = 640C�(t�1)d�2 (n) .

Thus, sd(DIR
bin,[a

t�1,at]
N) is at most

2at�1+1C · (640�(t�1)d�2 (n)) + Cn < 1.01Cn ,

using the definition of at�1.

Finally, DIRbin,[k�19,k�1]
N can be computed with 19Cn wires, using 19 applications

of Lemma 4.5.4. Combining our cases and applying them to Eq. (4.6), we find that

sd(DIR
bin,[0,k�1]
N) is less than 19Cn+2Cn+T ·(1.01Cn) < 40Cn·�d(n), since T = �d(n).

This extends the induction to d, completing the proof.

Lemma 4.5.9. For even d � 6, we have sd (DIRN) = O (N · �d�2(N)); the O(·) is

independent of d.

Proof. As usual, we may assume the input satisfies ||y|| = 1 (handling the case

148

||y|| 6= 1 separately with O(N) additional wires).

On Levels 1 and 2 of our circuit C for DIRN(x, y, r), we compute i = i(y) and p :=

i · 2r modn with O(N) wires, by applying the mapping H = Hsta from Lemma 4.3.1,

part 1 to y and then applying a brute-force circuit to (H(y), r). Then we apply an

optimal depth-(d� 2) circuit for DIRbin,[0,k�1]
N to the tuple (x, i, r, p). This yields the

desired output. The number of wires in our circuit is sd�2(DIR
bin,[0,k�1]
N)+O(N), and

by Lemma 4.5.8 this is O(N · �d�2(N)).

By collecting the upper bounds for DIRN in Lemmas 4.5.3, 4.5.5, 4.5.7 and 4.5.9,

along with the lower bounds we get from Theorem 4.4.4 and Lemma 4.5.2, we have

proved Theorem 4.5.1.

4.6 Limits of Jukna’s entropy method, and a sep-

aration of depths 2 and 3

In this section, we show:

Theorem 4.6.1. There is a family of operators MM 0 : {0, 1}2n ! {0, 1}n for which

s
2

(MM 0) = ⌦(n3/2) while s
3

(MM 0) = O(n).

The notation MM 0 indicates that our operator is a modified (simplified) form

of matrix multiplication. The lower bound on MM 0 for depth 2 will be proved

using Jukna’s entropy method, Theorem 4.4.3. This example shows that the entropy

method cannot be used to prove super-linear wire lower bounds in depth 3.

Proof of Theorem 4.6.1. For any integer n > 0, we can find a perfect square n0 = m2

in the range [n, 2n]. Thus to prove our asymptotic statement, we may assume that

n = m2 is itself a perfect square.

We regard the input to MM 0 as two matrices X, Y 2 Fm⇥m
2

. The output is a third

149

matrix Z 2 Fm⇥m
2

. Define

MM 0(X, Y) :=

8
><

>:

X · Y if X contains exactly one 1-entry,

0 otherwise.

Claim 4.6.2. s
2

(MM 0) � m3 = n3/2.

Proof. The argument is basically identical to the one used in [Juk10a] to show that

multiplying two m-by-m matrices in depth 2 requires m3 wires. Letting p := m + 1,

we set up and apply Theorem 4.4.3. For t 2 [p � 1], let It be the t-th row of input

matrix X, and let Jt be the t-th row of output matrix Z. (Thus Ip = Y, Jp = ;, and
the p-th part will contribute nothing to the lower bound from Theorem 4.4.3.)

Fix any t 2 [m], and values k, ` 2 [m]2. Let X(t,k) be the matrix whose (t, k)-entry

is 1 and whose other entries are 0. Note that for any Y ,

�
MM 0 �X(t,k), Y

��
t,`

=
�
X(t,k) · Y �

t,`
= Yk,` .

Thus any desired bit of the matrix Y can be recovered from a value in the t-th row of

MM 0(X, Y) (i.e., in the output block Jt), for some setting to X which has a single 1-

entry in the t-th column. Thus Y can be determined from values ofMM 0
I
t

,J
t

(0m⇥m, Y).

It follows from Facts 4.4.1 and 4.4.2 that Ent(MM 0
I
t

,J
t

) � m2, so by Theorem 4.4.3,

s
2

(MM 0) � m ·m2 = m3.

Now we show that s
3

(MM 0) = O(n) by giving a depth-3 circuit C for MM 0 with

O(n) wires.

First, on Level 1 we define 2dpne = 2m “hash gates” h
1

, . . . , h
2m, which compute

the linear transformation Hsta(X) = (h
1

(X), . . . , h
2m(X)) : Fn

2

! F2m given by item

1 of Lemma 4.3.1, applied to the input matrix X. Define 1
(i,j) 2 F2m

2

as the vector

obtained by applying Hsta to the input matrix X(i,j) which contains a single 1-entry

in its (i, j)th position. By Lemma 4.3.1 the vectors 1
(i,j) are pairwise distinct and

each of Hamming weight 2.

150

On Level 1 we also include a “security gate” s. This gate is connected to all the

variables in X, and outputs 1 if X has exactly one 1-entry, or 0 otherwise.

Next, on Level 2 we will have a set of “row gates” r
1

, . . . , rm, and “column gates”

c
1

, . . . , cm. The row gate rk takes h
1

, . . . , h
2m and s as inputs. We define

rk :=

8
><

>:

1 if s = 1 and (h
1

, . . . , h
2m) = 1

(k,j) for some j 2 [m],

0 otherwise.

The column gate c` takes h1

, . . . , h
2m, and the `-th column of Y as inputs. We define

c` :=

8
><

>:

Yj,` if (h
1

, . . . , h
2m) = 1

(k,j) for some k 2 [m],

0 otherwise.

Finally, for k, ` 2 [m], on Level 3 we let Zk,` be the AND of rk and c`.

We argue that C computes MM 0. First suppose that X does not have exactly one

1-entry. Then s = 0, so all row gates are 0 and Z = 0m⇥m as required. Next, suppose

X has a single 1-entry in the (i, j) position. Then we have (h
1

, . . . , h
2m) = 1

(i,j),

and s = 1. It follows that for k 2 [m], we have rk = [k = i]. Also, (c
1

, . . . , cm) =

(Yj,1, . . . , Yj,m). Thus for ` 2 [m], we have Zk,` = [k = i] ^ Yj,`. This is precisely the

(k, `)-entry of MM 0(X, Y). Thus C computes MM 0.

Finally, we count the wires in C. The subcircuit computing Hsta(X) has O(n)

gates, by Lemma 4.3.1. The security gate has m2 = n inputs. Each row and column

gate has at most 2m inputs, for a total of  (2m)2 wires as input to a row or column

gate. Each output Zk,` has 2 inputs, so the total number of wires is O(n) as desired.

This completes the proof of Theorem 4.6.1.

4.7 Representing random linear operators

In the rest of the chapter, we study the wire complexity of computing and representing

linear transformations. (Recall the notion of representing a linear operator L relative

to a basis B, and the quantities R(L;B) and Rd(L;B), from Section 4.3.2.)

151

Jukna [Juk10b] showed:

Theorem 4.7.1. [Juk10b] Every linear operator L : Fn
2

! Fn
2

can be represented by

a depth-2 circuit of O(n lnn) wires relative to the standard basis.

An easy modification of his proof shows that for any linear operator L : Fn
2

! Fn
2

and any basis B for Fn
2

, R
2

(L;B) = O(n lnn). We show that Jukna’s upper bound

is optimal up to constant factors, by proving the following lower bound on the wire

complexity of representing random linear operators:

Theorem 4.7.2. Fix any basis B for Fn
2

. Suppose a random linear operator L =

LA : Fn
2

! Fn
2

is defined by uniformly selecting its defining matrix A 2 Fn⇥n
2

. With

probability 1� o(1), we have

R(L;B) >
n log

2

n

5
.

Theorem 4.7.2 is implied by the following more general result about random partial

operators (not necessarily linear):

Theorem 4.7.3. Let D ✓ {0, 1}n be of size r = r(n) > 1, and assume r/ log
2

r �
log

2

n. Then a (1� on(1)) fraction of all partial operators F : D ! {0, 1}n satisfy

s(F) >
n log

2

r

5
.

The constant 1/5 is not optimal, and we do not attempt to optimize it here.

Proof of Theorem 4.7.2. L is distributed as a uniformly random partial operator from

B to {0, 1}n when we consider its restriction to inputs from a linearly independent

set B. Thus the result follows immediately from Theorem 4.7.3.

Proof of Theorem 4.7.3. We first define an augmented circuit model. Fix a canonical

ordering D = {x1, . . . , xr} of the possible input strings. In a free-ID circuit, the input

x = xi 2 D is given along with inputs z
1

, . . . , zdlog2 re which give the binary encoding

of i 2 [r]. That is, the circuit is provided with this unique identifier of x “for free,”

152

and these bits can be used as inputs to any gate. As before, we can use any function

at the circuit gates.

Let sfree�ID(F) denote the minimal number of wires in any free-ID circuit which

computes F . It is clear that sfree�ID(F)  s(F), so to prove the Theorem it is

enough to prove that sfree�ID(F) > n log
2

r/5 holds for a (1 � o(1)) fraction of all

F : D ! {0, 1}n.

Suppose F : D ! {0, 1}n satisfies sfree�ID(F)  n log
2

r/5, and let C be an

optimal (wire-minimizing) circuit with at most L := bn log
2

r/5c wires computing F .

Besides the input and free-ID gates, all gates with fanin zero are constant (0 or 1),

so we may assume C contains at most two such gates. Each wire is input to just one

gate, so we can assume the total number of gates of C (inclusive of inputs and free-ID

gates) is at most L + n + dlog
2

re + 2. We can then reintroduce useless (fanin-zero)

gates as necessary to get exactly this many gates.

Next we make a simple, key observation: optimality of C implies that all gates of

C have fanin at most dlog
2

re. To see this, suppose that some gate g of C has fanin

greater than dlog
2

re. The value of g on any input x = xi is determined by i, and

hence by the ID variables z
1

, . . . , zdlog2 re. Thus we can rewire g to have the inputs

z
1

, . . . , zdlog2 re and output the same result. This modified circuit still computes F but

has fewer wires than C, contradicting the minimality of C.

Now we upper-bound the number (call it NL) of free-ID circuits with at most L

wires, exactly m := L+n+dlog
2

re+2 gates (including the n input gates and dlog
2

re
free-ID gates), and maximum fanin dlog

2

re. By our reasoning above, this will bound

the number of operators F : D ! {0, 1}n for which sfree�ID(F)  n log
2

r/5. Our

calculations will follow similar ones in [JS10] with minor modifications.

There are at most (log
2

r + 2)m sequences of fanins (d
1

, . . . , dm) we may choose

for our gates, where 0  di  dlog re and
P

i2[m]

di  L. For each such sequence and

for i 2 [m], we can choose the inputs to the i-th gate in at most
�
m
d
i

�  md
i ways, and

153

there are at most 22
d

i Boolean functions to assign to this gate. Thus,

NL  (log
2

r + 2)m
Y

i2[m]

md
i

Y

j2[m]

22
d

j

= (log
2

r + 2)m m
P

i2[m] di2
P

j2[m] 2
d

j

 (log
2

r + 2)m mL2
P

j2[m] 2
d

j

.

Taking logs,

log
2

(NL)  m (log
2

r + 2) + L log
2

m+
X

j2[m]

2dj

 2L log
2

L+
X

j2[m]

2dj + o(L log
2

L),

by our settings of m,L.

In a circuit of L wires, counting tells us that fewer than n/4 gates have fanin

larger than 4L/n. Since no gate has fanin larger than dlog
2

re, we have

X

j2[m]

2dj  m24L/n + (n/4)2dlog2 re

 m24 log2 r/5 + nr/2

= nr/2 + Lr4/5 + o(Lr4/5).

Thus,

log
2

(NL)  2L log
2

L+
�
nr/2 + Lr4/5

�
+ o

�
L log

2

L+ Lr4/5
�
. (4.7)

We have Lr4/5  nr4/5 log
2

r/5 = o(nr). Also,

L log
2

L  (1/5)n log
2

r log
2

(n log
2

r/5)

< (1/5)n
⇥
(log

2

r)(log
2

n) + log2
2

r
⇤

 (1/5)n
⇥
r + log2

2

r
⇤
,

using our initial assumption r/ log
2

r � log
2

n. Plugging into Eq. (4.7), we find

154

log
2

(NL) < nr/2 + 2 · nr/5 + o(nr), so for su�ciently large n, log
2

(NL) < .95nr and

NL < 2.95nr.

Finally we compare this to the number of partial operators F : D ! {0, 1}n. For
each of the r inputs in D, there are 2n possible outputs, so we have (2n)r = 2nr many

partial operators in total. Thus less than a 2�.05nr = o(1) fraction of these satisfy

sfree�ID(F)  n log
2

r/5.

4.8 Tightness of Jukna’s pairwise-distance lower

bound for depth 2

Given A 2 Fn⇥m
2

, let Dist(A) 2 {0, 1 . . . , n} denote the minimal Hamming distance

between any two columns of A. Building on [AKW90], Jukna gave a lower-bound

criterion for representing linear operators (proved for the case n = m, although a

similar result can be given for other cases as well):

Theorem 4.8.1. [Juk10b] For A 2 Fn⇥n
2

, every depth-2 circuit representing the

linear transformation x ! Ax relative to the standard basis must have at least

⌦
�
Dist(A) · lnn

ln lnn

�
wires.

For random matrices and for some explicit examples, we have Dist(A) = ⌦(n). In

this case, Theorem 4.8.1 gives a lower bound of ⌦
�
n lnn
ln lnn

�
, which nearly matches the

upper bound from Theorem 4.7.1. It was left open in [Juk10b] whether the (ln lnn)�1

factor in the bound from Theorem 4.8.1 could be removed, leading to matching upper

and lower bounds for a large class of matrices. In this section we show that this cannot

be done: there are, in fact, linear transformations with Dist(A) = ⌦(n), for which

the lower bound from Theorem 4.8.1 is tight.

Theorem 4.8.2. There exists a family of matrices {An 2 Fn⇥n
2

}n>0

for which

Dist(An) = ⌦(n), and for which the linear transformation x ! Anx over Fn
2

can

be computed by a depth-2 circuit with O
�
n lnn
ln lnn

�
wires.

Note that the linear transformations we define can be computed, not just repre-

sented, using O
�
n lnn
ln lnn

�
wires. Now, Theorem 4.7.2 states that random matrices A

155

require ⌦(n lnn) wires even to represent by a circuit of any depth. Thus, the di�culty

of representing random matrices is not “fully captured” by the property that their

columns have pairwise distance ⌦(n).

Our main tool to prove Theorem 4.8.2 is a combinatorial design, or set family,

defined by low-degree polynomials. Set families of this kind have seen several ap-

plications in complexity theory, e.g., in [NW94]. The form we use is given in the

following Claim. For a set X, P(X) denotes the collection of all subsets of X.

Claim 4.8.3. For any integer D > 1, there is an prime q = O(D) and a set family

S ⇢ P(F2

q), which contains at least DD sets and satisfies:

(i) |Si| = q for all Si 2 S, and for each a 2 Fq we have |Si \ (a⇥ Fq)| = 1;

(ii) |Si \ Sj|  q/2 for all i 6= j.

Proof. Let q be a prime number in the range [2D, 4D], as guaranteed to exist by

Bertrand’s postulate. For each nonzero polynomial P (x) 2 Fq[x] of degree at most

D, define SP 2 P(F2

q) as the “graph of P ,”

SP := {(a, b) 2 F2

q : P (a) = b} .

Let S contain the sets SP for each such polynomial. These polynomials are in 1-to-1

correspondence with FD+1

q \ {0}, by the mapping which sends a nonzero polynomial

to its vector of coe�cients. Thus the number of such polynomials is qD+1 � 1 � DD

and |S| � DD.

It is clear that condition (i) holds, since each SP is a graph. For condition (ii),

note that (a, b) 2 SP \ SQ exactly when P (a) = Q(a) = b, and distinct polynomials

of degree at most D agree on at most D  q/2 values.

A sunflower of size k is a collection of distinct sets A
1

, . . . , Ak (called petals),

such that the pairwise intersections Ai \ Aj, for i 6= j, are all equal to some fixed

set C (called the core). The lower bound technique of Theorem 4.8.1 works by

finding a large sunflower in the incidence pattern of wires in a circuit, and using this

156

sunflower to identify an information bottleneck. The set family S in Lemma 4.8.3 is

a prototypical example of a set family which does not contain sunflowers of too-large

size: all sunflowers in S have size at most q. Thus it is natural to try to use such

a set family to show the tightness of Theorem 4.8.1. These were the considerations

that led us to the proof of Theorem 4.8.2 given below.

Proof of Theorem 4.8.2. We are going to define the matrix An 2 Fn⇥n
2

, and its as-

sociated transformation LA
n

, by defining a depth-2 linear circuit Cn that computes

LA
n

. Our construction will work for su�ciently large n.

For y � 1, define �(y) 2 R+ as the unique positive solution to xx = y. Direct

computation shows that for large n we have lnn
ln lnn < �(n)  (1+o(1)) lnn

ln lnn .

Let S ⇢ P(F2

q) be the set family given by Lemma 4.8.3, with the setting D :=

d�(n)e. We have |S| � DD � n (by definition of �(n)), so we can assign a distinct

set Si 2 S to each input coordinate i 2 [n].

Now we describe the middle level (Level 1) of our depth-2 circuit Cn. Let q = O(D)

be the prime number used in defining S. Level 1 of Cn consists of q2 gates g
(a,b)

identified with the elements of F2

q. For i 2 [n], the i-th input gate is connected to the

middle gate g
(a,b) for each (a, b) 2 Si. Each g

(a,b) is the sum mod 2 of its inputs:

g
(a,b) :=

M

i:(a,b)2S
i

xi .

For the output level, we divide the n output bits into q contiguous blocksB
1

, . . . , Bq,

each of size |Ba| = bn/qc; the remaining output bits will be identically zero. We re-

index the output gates in Ba as

Ba = (za,1, . . . , za,bn/qc) .

We fix a collection V = {v0, . . . , vq�1} ✓ Fbn/qc
2

, such that any pair of vectors from

V disagree on at least a 1/3 fraction of coordinates. This can clearly be achieved for

large n, since bn/qc = !(q). We think of va as an “error-correcting encoding” of a.

157

We determine the output bits as

za,` :=
M

0b<q

vb` · ga,b =
M

0b<q: vb
`

=1

ga,b ,

where vb` is the `-th bit of vb. This completes the description of Cn.

Note that each input gate and output gate in Cn is connected to at most q =

O(�(n)) middle gates, so the total number of wires is O(n · �(n)) = O
�
n lnn
ln lnn

�
, as

desired. Also, Cn is F
2

-linear as promised, so it defines a matrix An 2 Fn⇥n
2

by the

relation Cn(x) ⌘ Anx. We now argue that Dist(An) = ⌦(n). It is equivalent to show

that for each pair i, j 2 [n] of distinct indices, Cn(ei) and Cn(ej) disagree on ⌦(n)

positions.

Fix any i 2 [n]. For any a 2 Fq, condition (i) of Lemma 4.8.3 tells us that the

intersection Si\ (a⇥Fq) consists of a single element of Fq; call this element bi(a). We

verify that on input vector ei we have ga,c(ei) = 1 i↵ c = bi(a). Thus, for 0  ` < q

we have za,` = vbi(a)` , so that the restriction of Cn(ei) to the output block Ba equals

vbi(a).

If j 2 [n] \ {i}, then condition (ii) of Lemma 4.8.3 tells us that for at least q/2

choices of a we have bi(a) 6= bj(a). For such a, the restrictions Cn(ei)|B
a

= vbi(a),

Cn(ej)|B
a

= vbj(a) disagree on at least 1/3 of their positions. So the total number of

disagreements between Cn(ei), Cn(ej) is at least

q

2
· bn/qc

3
= ⌦(n) .

This shows Dist(An) = ⌦(n), completing the proof.

By an easy refinement of our argument, for any � > 0 we can modify the matrices

An in Theorem 4.8.2 to satisfy Dist(An) � (1/2 � �)n for su�ciently large n, while

the resulting transformation x! Anx is still computable in depth 2 with O�

�
n lnn
ln lnn

�

wires. A remaining question is whether we can have Dist(An) � n/2 � o(n), with

s
2

(An) = O
�
n lnn
ln lnn

�
. To achieve this we would need to change our approach, due to

limits on the achievable parameters of combinatorial designs (see [RRV02, Prop. 14]).

158

It is also natural to wonder whether better lower bounds would be implied by a

very strict column-distance condition on An 2 Fn⇥n
2

, namely Dist(An) = n/2. This

may be so; however, in [AKW90] it was shown that the Sylvester matrices, which

satisfy this condition, can be computed using O (n · �k(n)) wires in depth d = O(k).

4.9 The pairwise-distance method fails for depth

3

In this section we show that Jukna’s complexity measure Dist(A) (defined in Sec-

tion 4.8) does not yield super-linear lower bounds for circuits of depths 3 and higher:

Theorem 4.9.1. There exists a family of matrices {An 2 Fn⇥n
2

}n>0

for which

Dist(An) � n/2 � o(n), and such that the linear transformation x ! Anx over Fn
2

can be computed by an F
2

-linear depth-3 circuit with O (n) wires.

The work of Gál et al. [GHK+12] already implied the existence of a family {An 2
Fn⇥⌦(n)
2

} with Dist(An) = ⌦(n), whose associated linear transformations are com-

putable by depth-3 linear circuits with O(n ln lnn) wires.

Proof of Theorem 4.9.1. We may assume, by padding if necessary, that the input

length n is a perfect square, n = m2. We will define An by defining the circuit

Cn that computes it. Let H = Hsta : Fn
2

! F2m
2

be the mapping given by item

1 of Lemma 4.3.1, with associated circuit CH . Let m0 := 2m. We let the outputs

h
1

, . . . , hm0 of H occupy Level 1 of Cn, and connect them to the inputs according to

CH . Thus for ei 2 E, the gates of Cn’s first level compute H(ei), and the number of

wires used for the first level is O(n).

Level 2 will also consist of m0 gates, call them F = (f
1

, . . . , fm0). Each fi will be

connected to a uniformly random subset of {h
1

, . . . , hm0}, and will compute the sum

over F
2

of its inputs. This requires at most O(m2) = O(n) wires.

Finally, Level 3 consists of m0 blocks of outputs, with each i-th block Bi of size

m/2. For i 2 [m0], each gate in Bi simply outputs fi. Thus Level 3 requires O(n)

159

wires, and the circuit uses O(n) wires in total. Also, Cn is an F
2

-linear circuit as

promised, since CH is linear.

We now show that Cn computes a transformation with the desired properties, with

probability 1 � o(1) over our random choices. The m0 gates on Level 2, considered

as a linear transformation over the m0 Level 1 gates, compute a uniformly random

linear transformation from Fm0
2

to itself; call this transformation eF .

Fix any pair i, j 2 [n] with i 6= j. Now, as distinct nonzero vectors in Fm0
2

, the pair

(H(ei), H(ej)) map to uniform, independent images under eF . Letting �(·, ·) denote
Hamming distance, Cherno↵-Hoe↵ding bounds imply that for ↵ > 0,

Pr
h
�
⇣
eF (H(ei)), eF (H(ej))

⌘
< m0/2� ↵

p
m0 lnm0

i
= exp

��⌦(↵2 lnm0)
�
= o(n�2) ,

if ↵ is a su�ciently large constant. By a union bound, with probability 1 � o(1)

we have that �
⇣
eF (H(ei)), eF (H(ej)

⌘
� m0/2 � O

⇣p
m0 lnm0

⌘
= m � o(m) for all

i, j 2 [n], i 6= j. Note that by our definition of the output gates of Cn,

�(Cn(ei), Cn(ej)) = (m/2) ·�
⇣
eF (H(ei)), eF (H(ej)

⌘
,

so with high probability, �(Cn(ei), Cn(ej)) � n/2� o(n) for all i, j 2 [n], i 6= j. This

proves Theorem 4.9.1.

4.10 Easy bases for representing linear operators

For a linear transformation L, recall the quantities Rd(L;B) and R(L;B) from Sec-

tion 4.3. Since computing a transformation is a stronger requirement than represent-

ing the transformation, we have

sd(L) � max
B:B a basis for Fn

2

Rd(L;B) .

It is natural to wonder: how close are the left-hand and right-hand sides above?

Note that for a random L : Fn
2

! Fn
2

, we have s�(L) = ⌦(n2/ lnn), by a standard

160

counting argument. Following Jukna and Schnitger [JS10], we suspect that also

s(L) = ⌦(n2/ lnn) for random L, but this is not known. It was shown by [GHK+12]

that s
2

(L) = ⌦
⇣
n
�

lnn
ln lnn

�
2

⌘
if L : Fn

2

! FO(n)
2

is the encoding function for a good

linear error-correcting code (and we have explicit examples of these). On the other

hand, for any basis B, Jukna’s upper bound technique from Theorem 4.7.1 shows

that R
2

(L;B) = O(n lnn) for L : Fn
2

! Fn
2

.

So lower bounds for representing a random transformation L : Fn
2

! Fn
2

are

probably not even close to optimal bounds for computing L; are provably lower by

nearly a (lnn) factor in some cases; and never give bounds of form !(n lnn). However,

as mentioned in Section 4.1.1, the largest lower bounds on s
3

(L) for an explicit linear

transformation L are of form ⌦ (n · �
3

(n)) = ⌦ (n ln lnn) [GHK+12], and for higher

depths the bounds are weaker still. Thus we feel that the quantities Rd(L;B) are still

worth taking seriously as complexity measures. Thinking optimistically, we may ask:

Question 4.10.1. Given L : Fn
2

! Fn
2

, suppose that sd(L) = ⌦(n lnn). Does it follow

that Rd(L;B) = ⌦(n lnn) for some basis B?

This motivates another, more general question: how do we find a good basis B

for L, one for which Rd(L;B) is nearly maximized? We don’t have an answer to

this question. It should also be noted that the lower bound techniques of [Juk10b]

which yield Theorem 4.8.1 are specific to the standard basis, so proving lower bounds

for representing explicit linear transformations relative to other bases may well be

harder.

However, in the present section we will show that, if we consider depth-3 circuits,

there are at least some choices for B that definitely fail to yield interesting lower

bounds. Namely, we will show that, if L : Fn
2

! Fn
2

is invertible, then there exists

a basis B such that R
3

(L;B) = O(n). A uniformly-selected matrix A 2 Fn⇥n
2

is

invertible with ⌦(1) probability [CRR90], so this phenomenon applies to many linear

transformations. Compare this with Theorem 4.7.2, which tells us that for any fixed

basis B, R(L;B) = ⌦ (n lnn) for random operators L.

161

Theorem 4.10.2. Let D ⇢ {0, 1}n be of size n, and let G : D ! {0, 1}n be any

partial operator mapping D into the basis vectors {e
1

, . . . , en}. Then G is computable

by a depth-3 circuit C with O(n) wires.

If L : Fn
2

! Fn
2

is an invertible linear transformation and we setB := {L�1(e
1

), . . . , L�1(en)},
then B is a basis, and it follows from Theorem 4.10.2 that R

3

(L;B) = O(n). The

circuits used to prove Theorem 4.10.2 involve non-linear gates. This is necessary in

general: any linear circuit representing the linear transformation L relative to any

basis also computes L, and most linear transformations require ⇥ (n2/ lnn) wires to

compute by a linear circuit [Lup56, Bub86].

Proof of Theorem 4.10.2. Assume, by padding if needed, that n is a perfect square,

n = m2. Let H be the hash mapping and CH the associated depth-1 circuit given by

item 2 of Lemma 4.3.1, where in applying Lemma 4.3.1 we let D be the domain of

G. We let Level 1 consist of m gates, and use a copy of CH to connect Levels 0 and

1. Thus, on input u 2 D, Level 1 computes H(u).

Level 2 of C consists of 2m gates, call them W = (w
1

, . . . , w
2m). Each wt is wired

to every gate on Level 1. To define the behavior of these gates, first choose distinct

sets S
1

, . . . , Sn ⇢ [2m], each of size 2. We have
�
2m
2

� � n, so we can do this (we used

this idea earlier in the proof of Lemma 4.3.1, item 1). Let vi 2 {0, 1}2m denote the

characteristic vector of Si.

Recall that G(u) is a standard basis vector for any u 2 D. Let i(u) be defined by

the equation

G(u) = ei(u). (4.8)

Define the mapping W : H(D)! {0, 1}2m by the rule

W (H(u)) := vi(u). (4.9)

This can be done consistently, since H is injective on D. We leave W undefined on

other inputs. Recall that each Level 2 gate wt is wired to see every Level 1 gate, and

we have no restrictions on the functions used at gates, so we can indeed implement

162

our choice of W .

Each output (Level 3) gate zi (for i 2 [n]) is connected to the two gates gt, gt0

whose indices satisfy vit = vit0 = 1. We let zi be the AND of gt and gt0 .

Consider any input u 2 D to our circuit. By Eq. (4.9), the Level 2 gates collectively

take on the value vI(u). Thus for j 2 [n], we have zi = 1 i↵ j = i(u). So, by Eq. (4.8)

defining i(u), our circuit computes G.

Finally we count the wires. There are O(n) wires between Levels 0 and 1, since

CH has O(n) wires. The number of wires between Levels 1 and 2 is m · (2m) = O(n).

Each output gate has two incoming wires, so there are O(n) wires in total.

4.11 Chapter acknowledgments

I am grateful to Stasys Jukna for many helpful comments.

163

164

Chapter 5

New Limits to Classical and

Quantum Instance Compression

5.1 Background and new results

5.1.1 Instance compression and parametrized problems

Given an instance of a hard decision problem, we may hope to compress that instance

into a smaller, equivalent instance, either of the same or of a di↵erent decision prob-

lem. Here we do not ask to be able to recover the original instance from the smaller

instance; we only require that the new instance have the same (yes/no) answer as

the original. Such instance compression may be the first step towards obtaining a

solution; this has been a central technique in the theory of fixed-parameter-tractable

algorithms [DF99, GN07]. Strong compression schemes for certain problems would

also have important implications for cryptography [HN10]. Finally, compressing an

instance of a di�cult problem may also be a worthwhile goal in its own right, since

it can make the instance easier to store and communicate [HN10].

It is unknown whether one can e�ciently, significantly compress an arbitrary in-

stance of a natural NP-complete language like SAT, the set of satisfiable Boolean

formulas.1 A more limited goal is to design an e�cient reduction that achieves com-

1If we could e�ciently reduce instances of some NP-complete problem to shorter instances of

165

pression on instances that are particularly “simple” in some respect. To explore this

idea, one needs a formal model defining “simple” instances; the versatile framework

of parametrized problems [DF99] is one such model, and has been extensively used

to study instance compression. A parametrized problem is a decision problem in

which every instance has an associated parameter value k, giving some measure of

the complexity of a problem instance.2 As an example, one can parametrize a Boolean

formula by the number of distinct variables appearing in .

An ambitious goal for a parametrized problem P is to compress an arbitrary in-

stance x of the decision problem for P into an equivalent instance x0 of a second,

“target” decision problem, where the output length |x0| is bounded by a polynomial

in k = k(x). If P has such a reduction running in time poly(|x| + k), we say P

is strongly compressible; we say P is strongly self-compressible if the target problem

of the reduction is P itself. (In the literature of parametrized problems, a strong

self-compression reduction is usually referred to as a polynomial kernelization. More

generally, a kernelization is a polynomial-time self-compression reduction whose out-

put size is bounded by some function of the parameter k alone.)

5.1.2 Previous work: results and motivation

Let VAR-SAT denote the Satisfiability problem for Boolean formulas, parametrized

by the number of distinct variables in the formula. In their study of instance com-

pression for NP-hard problems, Harnik and Naor [HN10] asked whether VAR-SAT

is strongly compressible.3 They showed that a positive answer would have several

significant consequences for cryptography. Notably, they proved that a deterministic

strong compression reduction for VAR-SAT (with any target problem) would yield a

construction of collision-resistant hash functions based on any one-way function—a

the same problem, then we could iterate the reduction to solve our problem in polynomial time,
implying P = NP. However, even if P 6= NP, it is still conceivable that SAT might have an e�cient
compressive reduction to a di↵erent target problem—to the Halting problem, say.

2See Section 5.5.1 for details. The parameter k is explicitly given as part of the input to the
algorithm.

3Strictly speaking, they asked a slightly di↵erent question whose equivalence to this one was
pointed out in [FS11].

166

long-sought goal.

In fact, Harnik and Naor showed that for their applications, it would su�ce to

achieve strong compression for a simpler parametrized problem, the “OR(SAT) prob-

lem:” this is the Satisfiability problem for Boolean formulas expressed as disjunctions

 =
Wt

j=1

 j, where the parameter is now defined as the maximum bit-length of

any sub-formula j. Strong compression for VAR-SAT easily implies strong com-

pression for OR(SAT). Harnik and Naor defined a hierarchy of decision problems

called the “VC hierarchy,” which can be modeled as a class of parametrized prob-

lems (see [FS11]). They showed that a strong compression reduction for any of the

problems “above” OR(SAT) in this hierarchy would also imply strong compression

for OR(SAT); this includes parametrized versions of natural problems like the Clique

and Dominating Set problems. While Harnik and Naor’s primary motivation was to

find a strong compression scheme for OR(SAT) to use in their cryptographic appli-

cations, their work also provides a basis for showing negative results: in view of the

reductions in [HN10], any evidence against strong compression for OR(SAT) is also

evidence against strong compression for a variety of other parametrized problems.

In subsequent, independent work, Bodlaender, Downey, Fellows, and Hermelin [BDFH09]

also studied the compressibility of OR(SAT) and of related problems; these au-

thors’ motivations came from the theory of fixed-parameter tractable (FPT) algo-

rithms [DF99]. An FPT algorithm for a parametrized problem P is an algorithm that

solves an arbitrary instance x, with parameter k = k(x), in time g(k)·poly(|x|+k), for

some function g(·). The idea is that even if P is hard in general, an FPT algorithm for

P may be practical on instances where the parameter k is small. Now as long as P is

decidable, a kernelization reduction for P provides the basis for an FPT algorithm for

P : on input x, first compress x, then solve the equivalent, compressed instance. The

kernelization approach is one of the most widely-used schemas for developing FPT

algorithms.4 Of course, one hopes to compress by as large an amount as possible, to

maximize the e�ciency of the resulting FPT algorithm; this motivates the search for

4In fact, every problem with an FPT algorithm is kernelizable [CCDF97]. This does not mean,
however, that the most e�cient FPT algorithms always arise from the kernelization approach.

167

strong self-compression reductions.

Strong self-compression reductions are known for parametrized versions of many

natural NP-complete problems, such as the Vertex Cover problem; see, e.g., the sur-

vey [GN07]. However, for many other such parametrized problems, including nu-

merous problems known to admit FPT algorithms (such as OR(SAT)), no strong

compression reduction is known, to any target problem. Bodlaender et al. [BDFH09]

conjectured that no strong self-compression reduction exists for OR(SAT). They

made a similar conjecture for the closely-related “AND(SAT) problem,” in which one

is given Boolean formulas
1

, . . . , t and asked to decide whether
Vt

j=1

[j 2 SAT]

holds—that is, whether every j is individually satisfiable. As with OR(SAT), we

parametrize AND(SAT) by the maximum bit-length of any j.

Bodlaender et al. showed that these conjectures (sometimes referred to as the

“OR-” and “AND-conjectures”) would have considerable explanatory power. First,

they showed [BDFH09, Theorem 1] that the nonexistence of strong self-compression

reductions for OR(SAT) would rule out strong self-compression for a large num-

ber of other natural parametrized problems; these belong to a class we call “OR-

expressive problems.”5 Under the assumption that AND(SAT) does not have strong

self-compression, Bodlaender et al. ruled out strong self-compression reductions for a

second substantial list of problems [BDFH09, Theorem 2], belonging to a class we will

call “AND-expressive.” Despite the apparent similarity of OR(SAT) and AND(SAT),

no equivalence between the compression tasks for these two problems is known.

In light of their results, Bodlaender et al. asked for complexity-theoretic evidence

against strong self-compression for OR(SAT) and AND(SAT). Fortnow and San-

thanam [FS11] provided the first such evidence: they showed that if OR(SAT) has

a strong compression reduction (to any target problem), then NP ✓ coNP/poly and

the Polynomial Hierarchy collapses to its third level.

The techniques of [BDFH09, FS11] were refined and extended by many researchers

to give further evidence against e�cient compression for parametrized problems,

5See Section 5.5.2. The class of OR-expressive problems is not identical to the class described
in [BDFH09], but it is closely related and contains their class, as well as other classes of problems
identified in [HN10, BJK11a].

168

e.g., in [DLS09, DvM10, BTY11, BJK11a, BJK11b, BJK11c, CFM11, HW12, DM12,

Kra12]. (See [DM12] for further discussion and references.) As one notable develop-

ment that is relevant to our work, Dell and Van Melkebeek [DvM10] combined the

techniques of [BDFH09, FS11] with new ideas to provide tight compression-size lower

bounds for certain problems that do admit polynomial kernelizations. Researchers

also used ideas from [BDFH09, FS11] in other areas of complexity, giving new evi-

dence of lower bounds for the length of PCPs [FS11, DvM10] and for the density of

NP-hard sets [BH08].

Finding evidence against strong compression for AND(SAT) was left as an open

question by these works, however. The limits of probabilistic compression schemes

for OR(SAT) and for OR-expressive problems (including VAR-SAT) also remained

unclear. The results and techniques of [FS11] give evidence only against some restric-

tive sub-classes of probabilistic compression schemes for OR(SAT): schemes with

one-sided error, avoiding false negatives; schemes whose error probability is exponen-

tially small in the length of the entire input; and schemes using O(log n) random bits,

where n = maxj | j|.

5.1.3 Our results

Results on classical compression

We complement the results of [FS11] by providing evidence against strong compression

for AND(SAT): we prove that such a compression scheme, to any target problem,

would also imply NP ✓ coNP/poly. In fact, we show that reductions compressing even

by a much more modest amount would imply the same conclusion. For concreteness,

we state our most “basic” result on compression of AND(SAT) in a self-contained

way below.

Theorem 5.1.1. Let L be any NP-complete language. Suppose there is a determin-

istic polynomial-time reduction R that takes an arbitrarily long list of input strings

169

(x1, . . . , xt) and outputs a string z, with

z 2 L ()
^

j2[t]
[xj 2 L] .

Suppose further that R obeys the output-size bound |z|  (maxjt |xj|)O(1)

, with the

polynomial bound independent of t. Then, NP ✓ coNP/poly.

More strongly, we show the following. Suppose there is any second, “target”

language L0, a pair of polynomially-bounded functions t(n), t0(n) : N ! N with

t(n) = !(1) and t0(n) + 1  t(n)/2, and a deterministic polynomial-time reduction

R : {0, 1}t(n)⇥n ! {0, 1}t0(n), such that

R(x1, . . . , xt(n)) 2 L0 ()
^

j2[t(n)]
[xj 2 L] .

Then NP ✓ coNP/poly.

We prove Theorem 5.1.1 in Section 5.3. In later sections, we will strengthen and

generalize Theorem 5.1.1 using related but more powerful proof techniques. However,

we feel it is worthwhile to present a proof of this basic result with a minimum of tools

and preliminaries.6

The techniques we use to generalize Theorem 5.1.1 will extend naturally (and in

a strong fashion) to the probabilistic setting with two-sided error, in which we expect

the compression reduction to obey some success-probability guarantee on every input.

We show (in Theorem 5.7.4, item 1) that any su�ciently “high-quality” compression

scheme for AND(SAT) would imply NP ✓ coNP/poly. Here, “quality” is defined

by a certain relationship between the reliability and the compression amount of the

reduction, and allows for tradeo↵.

We also show (in Theorem 5.7.4, item 2, and Theorem 5.7.5) that beyond a second,

6To be precise, in our elementary proof we avoid any overt use of information-theoretic results
and concepts; we also avoid the use of the minimax theorem. These tools are central to our stronger
and more general approach (which, in particular, is much better suited for analyzing bounded-error
reductions), but familiarity with these tools is not necessary to understand Theorem 5.1.1. We
mention that the decision to use or avoid information theory in the proof is essentially independent
of the choice to use or avoid the minimax theorem.

170

somewhat more demanding quality threshold, probabilistic compression reductions

either for AND(SAT) or for OR(SAT) would imply the existence of non-uniform,

statistical zero-knowledge proofs for NP languages—a stronger (and even more un-

likely) consequence than NP ✓ coNP/poly. The more-demanding quality threshold in

this second set of results is still rather modest, and allows us to prove the following

result as a special case:

Theorem 5.1.2 (Informal). Suppose that either of AND(SAT) or OR(SAT) is strongly

compressible, with success probability � .5+ 1/ poly(n) for an AND or OR of length-

n formulas. Then there are non-uniform, statistical zero-knowledge proofs for all

languages in NP.

At the other extreme, where we consider compression schemes with more modest

compression amounts, but with greater reliability, our techniques yield the following

result:

Theorem 5.1.3 (Informal). Let t(n) : N+ ! N+ be any polynomially bounded func-

tion. Suppose there is a compression scheme compressing an AND of t(n) length-

n SAT instances into an instance z of a second decision problem L0, where |z| 
C · t(n) log t(n) for some C > 0. If the scheme’s error probability on such inputs is

bounded by a su�ciently small inverse-polynomial in n (depending on t(n) and C),

then there are non-uniform, statistical zero-knowledge proofs for all languages in NP.

The corresponding result also holds for OR-compression.7

Our results give the first strong evidence of hardness for compression of AND(SAT).

They also greatly strengthen the evidence given by Fortnow and Santhanam against

probabilistic compression for OR(SAT), and provide the first strong evidence against

probabilistic compression for the potentially-harder problem VAR-SAT. For determin-

istic (or error-free) compression of OR(SAT), the limits established by our techniques

also follow from the techniques of [FS11], which apply given an OR-compression

7In fact, error-free OR-compression of this sort for SAT would give non-uniform perfect zero-
knowledge proofs for NP, and error-free AND-compression for SAT would give non-uniform perfect
zero-knowledge proofs for coNP; see Theorem 5.7.3.

171

scheme with compression bound of form |z|  O(t(n) log t(n)).8 On the other hand,

we provide somewhat stronger complexity-theoretic evidence for these limits to com-

pression.

Using our results on the infeasibility of compression for AND(SAT) and OR(SAT),

and building on [HN10, BDFH09, FS11], we give new complexity-theoretic evidence

against strong compressibility for a list of interesting parametrized problems with

FPT algorithms. (See Theorem 5.7.7.) This is the first strong evidence against strong

compressibility for any of the ten “AND-expressive” problems identified in [BDFH09]

(and listed in Section 5.5.2). For the numerous “OR-expressive” problems identified

in [HN10, BDFH09] and other works, this strengthens the negative evidence given

by [FS11].

Our methods also extend the known results on limits to compression for parametrized

problems that do possess polynomial kernelizations: we can partially extend the re-

sults of Dell and Van Melkebeek [DvM10] to the case of probabilistic algorithms with

two-sided error. For example, for d > 1 and any " > 0, Dell and Van Melkebeek

proved that if the Satisfiability problem for N -variable d-CNFs has a polynomial-

time compression reduction with output-size bound O(Nd�"), then NP ✓ coNP/poly.

Their result applies to co-nondeterministic reductions, and to probabilistic reductions

without false negatives; we prove (in Theorem 5.7.11) that the result also holds for

probabilistic reductions with two-sided error, as long as the success probability of the

reduction is at least .5 + N�� for some � = �(d, ") > 0. Using reductions described

in [DvM10], we also obtain quantitatively-sharp limits to probabilistic compression for

several other natural NP-complete problems, including the Vertex Cover and Clique

problems on graphs and hypergraphs. (However, the limits we establish do not give

lower bounds on the cost of oracle communication protocols ; these protocols are a

generalization of compression reductions, studied in [DvM10], to which that work’s

results do apply. Trying to extend our results to this model seems like an interesting

challenge for further study.)

8This is not explicitly shown in [FS11], but follows from the technique of [FS11, Theorem 3.1];
see also [DvM10, Lemma 3] for a more general result that makes the achievable bounds clear.

172

Our results about AND(SAT) and OR(SAT) follow from more general results

about arbitrary languages. For any language L, we follow previous authors and con-

sider the “OR(L) problem,” in which one is given a collection x1, . . . , xt of strings,

and is asked to determine whether at least one of them is a member of L. We show (in

Theorem 5.7.1, item 1) that if a su�ciently “high-quality” probabilistic polynomial-

time compression reduction exists for the OR(L) problem, then L 2 NP/poly. (As

before, “high-quality” is defined by a relation between the reliability of the reduc-

tion and the compression amount.) We also show (in Theorem 5.7.1, item 2) that a

polynomial-time compression scheme for OR(L) meeting a more demanding standard

of quality implies that L possesses non-uniform statistical zero-knowledge proof sys-

tems, and lies in NP/poly\coNP/poly. (For deterministic compression, the conclusion

L 2 coNP/poly was established earlier in [FS11].) Applying these results to L := SAT

gives our hardness-of-compression results for AND(SAT); applying the second set of

results to L := SAT gives our improved negative results for OR(SAT).

In unpublished work, Buhrman [Buh] constructed an oracle A such that, for ev-

ery NPA-complete language L, the decision problem AND(L) does not have a PA-

computable strong compression reduction. This gave earlier, indirect evidence against

e�cient strong compression for the AND(SAT) problem—or at least, it indicated

that exhibiting such a compression reduction would require novel techniques. Now,

inspection of the proofs reveals that our new results on compression for OR(L) are all

perfectly relativizing. This allows us to identify many more oracles obeying the prop-

erty of Buhrman’s oracle: namely, we may take any A for which NPA * coNPA/poly.

For example, this holds with probability 1 for a random oracle [BG81].9 Such an

oracle can also be obtained through a simple diagonalization argument.

For any Boolean function f : {0, 1}⇤ ! {0, 1}, we may generalize the OR(L)

decision problem to the problem f � L, in which one is given a collection of strings

x1, . . . , xt and must output f(L(x1), . . . , L(xt)). So far it would seem that our neg-

ative results are fairly specific to the case where the outer “combining function” f

9In [BG81] it is shown that NPA * coNP

A for random A; the technique readily extends to give
the stronger claim above.

173

Please note, the main result claimed in this paragraph about (f \circ L) is over-strong and mistaken. This invalidates Sec. 5.7.3 of the thesis, as noted there. We can prove something similar, though; see the revision to "New Limits to Classical and Quantum Instance Compression" on ECCC.

is either AND or OR. However, by an idea suggested in [FS11, Section 7], our nega-

tive result on compression for AND(SAT), combined with Fortnow and Santhanam’s

negative results on compression for OR(SAT), actually implies the following: for any

Boolean function f that depends on all of its input bits for each input length, no

strong compression schemes exist from f � SAT to a target language L0 2 NP, unless

NP ✓ coNP/poly. (See Theorem 5.7.6.) Note the new requirement in this result

that L0 be in NP; if the combining function f is monotone, this requirement may be

dropped. The quantitative bounds we obtain on the achievable compression amount

are somewhat weaker for general f than for f 2 {AND, OR}, however; developing a

better understanding of the situation for other combining functions could be another

interesting goal for future work.

Results on quantum compression

Up to this point, we have discussed compression reductions in which the input and

output are both “classical” bit-strings. However, from the perspective of quantum

computing and quantum information [NC00], it is natural to ask about the power of

compression reductions that output a quantum state. An “n-qubit state” is a quantum

superposition over classical n-bit strings; a vast body of research has explored the

extent to which information can be succinctly encoded within and retrieved from

such quantum states. If quantum computers become a practical reality, quantum

instance compression schemes could help to store and transmit hard computational

problems; compressing an instance might also be a first step towards its solution by

a quantum algorithm.

We propose the following quantum generalization of classical instance compres-

sion: a quantum compression reduction for a language L is a quantum algorithm that,

on input x, outputs a quantum state ⇢ on some number q of qubits—hopefully with

q ⌧ |x|, to achieve significant compression. Our correctness requirement is that there

should exist some quantum measurement Mq, depending only on q, such that for

every x compressing to q qubits, Mq(⇢) = L(x) holds with high probability over the

inherent randomness in the measurement Mq(⇢). We do not require that Mq be

174

(End caution)

an e�ciently-performable measurement; this is by analogy to the general version of

the classical compression task, in which the target language of the reduction may be

arbitrarily complex.

Our results for quantum compression are closely analogous to our results in the

classical case. First, we show that for any language L, if a su�ciently “high-quality”

quantum polynomial-time compression reduction exists for the OR(L) problem, then

L possesses a non-uniform, 2-message quantum interactive proof system (with a single

prover). Second, we show that a su�ciently higher-quality quantum polynomial-time

compression reduction for OR(L) implies that L possesses a non-uniform quantum

statistical zero-knowledge proof system. Remarkably, the two “quality thresholds”

in our quantum results are essentially the same as in the corresponding results for

the classical case.10 It follows that, unless there exist surprisingly powerful quantum

proofs of unsatisfiability for Boolean formulas, the limits we establish for probabilistic

compression of AND(SAT) and OR(SAT) hold just as strongly for quantum compres-

sion.11

5.1.4 Our techniques

In this section we will focus on describing our strongest and most general techniques.

As mentioned earlier, we also present a similar, but more “elementary” approach to

prove Theorem 5.1.1. We will give some self-contained intuition about that approach

in Section 5.3. That strategy bears some similarities to work of Fortnow and San-

thanam [FS11] on the hardness of compression for OR(SAT). In particular, it shares

an incremental approach to defining non-uniform advice for a proof system; in each

case, the stage-based construction makes progress in correctly classifying more and

more strings of a given input length.

10We do place a minor additional restriction on quantum compression reductions for OR(L): we
require that the reduction, on input (x1, . . . , xt), outputs a quantum state of size determined by
(maxj |xj |) and t.

11We remark that 3-message quantum interactive proofs are known to be fully as powerful as
quantum interactive proofs in which polynomially many messages are exchanged [Wat03], and that
these proof systems are equal in power to PSPACE in the uniform setting [JJUW11]. However,
2-message quantum proof systems seem much weaker, and are not known to contain coNP.

175

The overall approach

We first describe our techniques for the classical case; these form the basis for

the quantum case as well. Our first two general results, giving complexity upper

bounds on any language L for which OR(L) has a su�ciently high-quality compres-

sion reduction (Theorem 5.7.1, items 1 and 2), are both based on a single reduction

that we describe next. This reduction applies to compression reductions mapping

some number t(n)  poly(n) of inputs of length n to an output string z of length

|z| = O(t(n) log t(n)).

Fix any language L such that OR(L) has a possibly-probabilistic compression

reduction

R(x1, . . . , xt) : {0, 1}t⇥n �! {0, 1}t0 ,

with some target language L0, along with parameters t0, t satisfying t0  O(t log t) 
poly(n).12 We will use R to derive upper bounds on the complexity of L. (The reader

may keep in mind the main intended setting L = SAT, which we will use to derive

our hardness results for the compression of AND(SAT). No special properties of this

language will be used in the argument, however.)

A simple, motivating observation is that if we take a string y 2 L and “insert” it

into a tuple x = (x1, . . . , xt) of elements of L, replacing some xj to yield a modified

tuple x0, then the values

R(x) , R(x0)

are di↵erent with high probability—for, by the “OR-respecting” property ofR, we will

with high probability have R(x) 2 L0, R(x0) 2 L0. More generally, for any distribution

D over t-tuples of inputs from L, let D[y, j] denote the distribution obtained by

sampling x ⇠ D and replacing xj with y; then the two output distributions

R(D) , R(D[y, j])

are far apart in statistical distance. (Of course, the strength of the statistical-distance

12Here we pay exclusive attention to R’s behavior on tuples of strings of some equal length n.

176

lower bound we get will depend on the reliability of our compression scheme.)

We want this property to serve as the basis for an interactive proof system by which

a computationally powerful Prover can convince a skeptical polynomial-time (but non-

uniform) Verifier that a string y lies in L. The idea for our initial, randomized protocol

(which we will later derandomize) is that Prover will make his case by demonstrating

his ability to distinguish between the two R-output distributions described above,

when Verifier privately chooses one of the two distributions, samples from it, and

sends the sample to Prover.13 But then to make our proof system meaningful, Verifier

also needs to fool a cheating Prover in the case y /2 L. To do this, we want to choose

D, j in such a way that the distributions R(D), R(D[y, j]) are as close as possible

whenever y /2 L.

We may not be able to achieve this for an index j that is poorly-chosen. For

instance, R(x) may always copy the first component x1 as part of the output string z,

so taking j = 1 would fail badly. To get around this, we choose our replacement index

j uniformly at random, aiming in this way to make R “insensitive” to the insertion

of y.14 As R is a compression scheme, it doesn’t have room in its output string to

replicate its entire input, so there is reason for hope.

This invites us to search for a distribution D⇤ over �Ln

�t
with the following prop-

erties:

(i) For every y 2 Ln, if we select j 2 [t] uniformly then the expected statistical

distance Ej [||R(D⇤)�R(D⇤[y, j])||
stat

] is “not too large;”15

(ii) D⇤ is e�ciently sampleable, given non-uniform advice of length poly(n).

Condition (i) is quite demanding: we need a single distribution D⇤ rendering R

insensitive to the insertion of any string y 2 Ln—a set which may be of exponential

13Interactive proofs based on distinguishing tasks have seen many uses in theoretical computer
science, and indeed we will rely upon known protocols of this kind in our work; see Section 5.4.4.

14We emphasize that the “insensitivity” we are looking for is statistical ; we are not asking that y
have small e↵ect on the output of R for most particular outcomes to x ⇠ D. This latter goal may
not be achievable, e.g., if R outputs the sum of all its input strings xi taken as vectors over Fn

2 .
15For our purposes, it actually su�ces to bound ||R(D⇤)�R(D⇤[y, j)]||stat, where j is a uniform

value sampled “internally” as part of the distribution. In our streamlined proof of Theorem 5.1.1,
we will use this idea. However, our techniques will yield the stronger property in condition (i) above,
and this is the course we will follow in proving our general results.

177

size. Condition (ii) is also a strong restriction: Ln may be a complicated set, and in

general we can only hope to sample from distributions over
�
Ln

�t
in which t-tuples

are formed out of a fixed “stockpile” of poly(n) elements of Ln, hard-coded into the

non-uniform advice.

Remarkably, it turns out that such a distribution D⇤ can always be found. In

fact, in item (i), we can force the two distributions to be non-neglibly close (with

expected statistical distance  1� 1

poly(n)) whenever the output-size bound t0 obeyed

by R is O(t log t); the distributions will be much closer when t0 ⌧ t. We call our

key technical result (Lemma 5.6.6), guaranteeing the existence of such a D⇤, the

“Disguising-Distribution Lemma.”

Assuming this lemma for the moment, we use D⇤ as above to reduce any mem-

bership claim for L to a distinguishing task for a Prover-Verifier protocol. Given

any input y, we’ve constructed two distributions R = R(D⇤) and R0 = R(D⇤[y, j])
(with j uniform), where each distribution is sampleable in non-uniform polynomial

time. Our analysis guarantees some lower bound D = D(n) on ||R � R0||
stat

in

the case y 2 L, and some upper bound d = d(N) on this distance when y /2 L.

(These parameters depend on the reliability and compression guarantees of R.) If

D(n)� d(n) � 1

poly(n) , we can give non-uniform distinguishing protocols for L, which

can converted to public-coin protocols and then non-uniformly derandomized to show

that L 2 NP/poly. Also, if D(n)2 � d(n) � 1

poly(n) then, using a powerful result due

to Sahai and Vadhan [SV03], we can derive a non-uniform, statistical zero-knowledge

proof system for L. This also implies L 2 NP/poly \ coNP/poly.

The Disguising-Distribution Lemma

The Disguising-Distribution Lemma, informally described in Section 5.1.4, is a state-

ment about the behavior of R(x1, . . . , xt) on a specified product subset St of inputs

(S = Ln in our application). This lemma is a “generic” result about the behavior of

compressive mappings; it uses no properties of R other than R’s output-size bound.16

16Indeed, in our application we have essentially no control on R’s behavior when we consider its
restriction to inputs from St, so a generic result is needed.

178

In view of its generality and interest, we are hopeful that the lemma will find other

applications.

Our proof of this lemma uses two central ideas. First, we interpret the search for

the “disguising distribution” D⇤ as a two-player game between a “disguising player”

(choosing D⇤) and an opponent who chooses y; we can then apply simple yet powerful

principles of game theory. Second, to build a winning strategy for the disguising

player, we will exploit an information bottleneck in R stemming from its compressive

property.17

To describe the proof, it is helpful to first understand how one may obtain the

distribution D⇤ if we drop the e�cient-sampleability requirement on D⇤, and focus on

the “disguising” requirement (condition (i)). To build D⇤ in this relaxed setting, we

will appeal to the minimax theorem for two-player, zero-sum games; applied here, it

tells us that to guarantee the existence of a D⇤ that succeeds in disguising all strings

y 2 Ln, it is enough to show how to build a D⇤Y that succeeds in expectation, when

y is sampled from some fixed (but arbitrary) distribution Y over Ln.

Here, a natural idea springs to mind: let D⇤Y just be a product distribution over t

copies of Y ! In this case, inserting y ⇠ Y into D⇤Y at a random location is equivalent

to conditioning on the outcome of a randomly-chosen coordinate of a sample from D⇤Y .
The intuition here is that, due to the output-size bound on R, the distribution R(D⇤Y)
shouldn’t have enough “degrees of freedom” to be a↵ected much by this conditioning.

We show (in Lemma 5.10.4, with similar, alternative results presented in Sec-

tions 5.9 and 5.10) that for any product distribution x ⇠ (D
1

, . . .Dt) over t-tuple

inputs to R, conditioning on the value of xj ⇠ Dj for a uniformly-chosen index j 2 [t]

has bounded expected e↵ect on the output distribution R(x). That is, the expected

statistical distance between the pre- and post-conditioned distributions is bounded

non-negligibly away from 1 (provided that t0  O(t log t)). We refer to this important

property of R as “distributional stability.”

In our original proof that our compressive mapping R is distributionally stable,

17This is hardly the first work in which such a bottleneck plays a crucial and somewhat unexpected
role. For example, an interesting and slightly similar application of information-theoretic tools to
the study of metric embeddings was found recently by Regev [Reg11].

179

we gave a simple (non-constructive) way to use R as a one-shot encoding method for

independent, unbiased bits b
1

, . . . , bt. The encoding Enc has a desirable property: for

each component j 2 [t] whose expected “influence” on the output distribution of R

is noticeable (when we fix a single value xj ⇠ Dj), our encoding transmits bj with

noticeable advantage over a random guess. We can then deduce strong upper bounds

on the influence of a typical component j, using the output-size bound on R and

elementary information-theoretic bounds on the reliability of compressive encodings.

This analysis succeeds when t0  t� 2. In our original draft, we used more elaborate

techniques (which involved modifying the mapping R itself) to analyze the case when

t  t0  O(t log t).

Several researchers pointed out to us that the distributional stability property can

be established in a di↵erent way, using Kullback-Leibler divergence and an inequality

due to Pinsker (see Theorem 5.4.7). This approach allows us to analyze the case when

t  t0  (1 + ")t, for a modest " > 0. As this author noted later, the divergence-

based approach can be combined with an alternative to Pinsker’s inequality—a bound

due to Vajda (Theorem 5.4.8; see [FHT03, RW09] for more information on both of

these inequalities)—to show that the mapping R has a non-negligible amount of

distributional stability as long as t0  O(t log t). Thus we feel that the divergence-

based approach is ultimately the most convenient one to work with in general; this is

the approach we now use in the main body of the chapter.

Colleagues additionally helped us to understand that the distributional stabil-

ity property for mappings with t0  (1 + ")t can also be established using other

similar, known results that follow from the same divergence/Pinsker-based tech-

niques: a lemma of Raz [Raz98], and the “Average Encoding Theorem” of Klauck et

al. [KNTSZ07]. The latter was used in [KNTSZ07] to identify a stability property

for trace and Hellinger distance metrics, for the inputs to a problem in quantum

communication complexity; this was used for a round-elimination argument. Their

proof is for inputs drawn from the uniform distribution, but extends readily to gen-

eral distributions and can be used to derive the kind of lemma we need. We describe

180

these alternative proofs of distributional stability in Section 5.9,18 and we describe

our own original, encoding/decoding-based approach in Section 5.10. We feel that

all of these approaches to proving distributional stability are interesting and worth

understanding.

Using the distributional-stability property of compressive mappings under product

input-distributions, we then establish a certain “sparsified variant” of this property

(Lemma 5.6.3), which allows us to replace each Dj with a small set sampled from Dj;19

this is an important tool in addressing the e�cient-sampleability requirement on our

desired D⇤. Using this variant, we use the minimax theorem to show (in Lemma 5.6.4)

that there exists a distribution D over product input-distributions to R—with each

product distribution defined over small subsets of S—such that, in expectation, D

disguises the random insertion of any string y 2 S at a uniformly-chosen position

j. Finally, in Lemma 5.6.6 we obtain our desired “disguising distribution” D⇤ as a

sparsified version of D, using a result due to Lipton and Young [LY94] and, inde-

pendently, to Althöfer [Alt94], that guarantees the existence of sparsely-supported,

nearly-optimal strategies in 2-player, zero-sum games.

Extension to the quantum case

Our techniques for studying quantum compression are closely analogous to the clas-

sical case. The main technical di↵erence is that the output R(D) of our compression

reduction, on any input distribution D, is now a (mixed) quantum state. In this set-

ting, to carry out an analogue of the argument sketched in Sections 5.1.4 and 5.1.4

and fool a cheating Prover, we need a “disguising distribution” for R that meets a

modified version of condition (i) from Section 5.1.4:

(i’) For every y 2 Ln, if we select j 2 [t] uniformly then, for any quantum measure-

ment M, the expected statistical distance Ej [||M(R(D⇤))�M(R(D⇤[y, j]))||
stat

]

18Russell Impagliazzo suggested the use of Raz’s lemma; Salil Vadhan also helped me to understand
the connection. Ashwin Nayak and S. Vadhan suggested direct proofs of distributional stability
based on divergence and Pinsker’s inequality, which we now use as our main approach. Dieter van
Melkebeek also suggested the relevance of Pinsker’s inequality. I thank all of these researchers.

19For convenience in the proof, we assume Dj = Dj0 for all j, j0.

181

is not too large.

A basic measure of distance between quantum states, the trace distance, is relevant

here: if two states ⇢, ⇢0 are at trace distance ||⇢�⇢0||
tr

 �, then for any measurement

M, the statistical distance ||M(⇢)�M(⇢0)||
stat

is at most �. (In fact, this property

characterizes the trace distance.) Thus to satisfy condition (i’), it will be enough

to construct D⇤ so as to upper-bound Ej[||R(D⇤) � R(D⇤[y, j])||
tr

], for uniformly-

chosen j. We do this by essentially the same techniques as in the classical case. The

one significant di↵erence is that here, we need to establish a “stability property” for

trace distance, analogous to the stability property for statistical distance described in

Section 5.1.4. This can be obtained using the same basic divergence-based techniques

as in the classical case, with the help of suitable tools from quantum information

theory.20

5.1.5 Organization of the chapter

In Section 5.2, we present the “bare minimum” of preliminaries needed to understand

our proof of Theorem 5.1.1. We present this proof in Section 5.3.

The rest of the chapter is devoted to proving stronger and more general results. In

Section 5.4, we give the additional needed preliminary material for our work, includ-

ing our definitions of compression reductions. In Section 5.5, we formally introduce

parametrized problems and AND- and OR-expressive problems. In Section 5.6, we

prove the main technical lemmas we use to obtain our results on limits of e�cient

instance compression (with alternative proofs of the first such lemma appearing in

Sections 5.9 and 5.10). Our results for the classical setting are proved in Section 5.7,

and the quantum results are proved in Section 5.8. Finally, in Section 5.12 we present

questions for future study.

20Our original approach to proving distributional stability also admits a quantum version, although
we no longer present it here.

182

5.2 Preliminaries I

Definition 5.2.1. The binary entropy function H(↵) : [0, 1]! [0, 1] is defined by

H(↵) := �↵ log
2

↵� (1� ↵) log
2

(1� ↵)

on (0, 1), with H(0) = H(1) := 0.

�
n
k

�
denotes the binomial coe�cient n!k!/(n� k)!. We will use the following stan-

dard, simple bound (see, e.g., [vL99, Chapter 1]) on the number of binary strings of

low Hamming weight:

Fact 5.2.2. For t 2 N and ↵ 2 (0, .5), we have

X

0`↵t

✓
t

`

◆
 2H(↵)t .

5.2.1 Statistical distance and distinguishability

All distributions in this chapter will take finitely many values; let supp(D) be the set

of values assumed by D with nonzero probability, and let D(u) := Pr[D = u].

For a probability distribution D and t � 1, we let D⌦t denote a t-tuple of outputs

sampled independently from D. We let UK denote the uniform distribution over a

multiset K.

The statistical distance of two distributions D,D0 over a shared universe of out-

comes is defined as

||D �D0||
stat

:=
1

2

X

u2supp(D)[supp(D0
)

|D(u)�D0(u)| .

We will use the following familiar “distinguishability interpretation” of the sta-

tistical distance. Suppose a value b 2 {0, 1} is selected uniformly, unknown to us,

and a sample u 2 U is drawn from D if b = 0, or from D0 if b = 1. We observe u,

183

and our goal is to correctly guess b. It is a basic fact that, for any D,D0, our max-

imum achievable success probability in this “distinguishing” experiment is precisely

1

2

(1 + ||D � D0||
stat

). Furthermore, the optimal distinguishing algorithm may with-

out loss of generality be a deterministic “maximum-likelihood” rule ML(b|u): guess
“b = 1” if and only if Pr[b = 1|u] � 1/2. Similarly, we define a maximum-likelihood

rule ML(X|Y) for guessing any random variable X based on the observed value of

any other random variable Y : simply guess the likeliest value of X conditioned on

the observation (breaking ties arbitrarily).

The following fact follows from the distinguishability characterization of || · ||
stat

;

it is a convenient weakening of that principle.

Fact 5.2.3. If X, Y are random variables over some shared domain S, and � :=

||X � Y ||
stat

, then there exists a subset T ✓ S such that

Pr
x⇠X

[x 2 T] � � and Pr
y⇠Y

[y /2 T] � � .

We will also use the following facts:

Fact 5.2.4. If X, Y are random variables over some shared domain S, and R(X) is

any (possibly randomized) function taking inputs from S, then

||R(X)�R(Y)||
stat

 ||X � Y ||
stat

.

Fact 5.2.5 ([SV03], Fact 2.3). Suppose (X
1

, X
2

, Y
1

, Y
2

) are distributions on a shared

probability space ⌦, that X
1

is independent of X
2

, and that Y
1

is independent of Y
2

.

Then,

||(X
1

, X
2

)� (Y
1

, Y
2

)||
stat

 ||X
1

� Y
1

||
stat

+ ||X
2

� Y
2

||
stat

.

5.3 Proof of Theorem 5.1.1

This section presents a proof that the “AND-conjecture” of Bodlaender, Downey,

Fellows, and Hermelin [BDFH09] holds true unless NP ✓ coNP/poly. As discussed

184

earlier, in this section we aim for a proof that avoids information theory and the

minimax theorem. In later sections we will obtain stronger and more general results

with these tools.

It will be convenient to consider mappings R : {0, 1}t⇥n ! {0, 1}t0 , for fixed

n, t, t0. For A ✓ {0, 1}n, let RA denote the distribution RA := R(U⌦tA), and for each

each a 2 {0, 1}n, define the distribution

RA[a] := R(U⌦(j�1)A , a,U⌦(t�j)A) ,

where j ⇠ U
[t].

Define the standout factor

�(a,A) := ||RA[a]�RA||
stat

. (5.1)

The basic idea of our proof of Theorem 5.1.1 is as follows: we will show that for

each n > 0, there exists a poly(n)-size collection of poly(n)-size sets Ai ✓ Ln,21 such

that every other element x 2 Ln will have standout factor �(x,Ai) < 1� ⌦(1) for at

least one Ai. On the other hand, each x /2 Ln will have standout factor 1 against each

Ai.22 Thus, if a polynomial-time Verifier “quizzes” a Prover by randomly sampling,

either from RA
i

or from RA
i

[x] on each i, then Prover will be able to reliably guess

which distribution was sampled from if and only if x /2 L. By known results, this

leads to the conclusion L 2 coNP/poly.

Toward this end, the next lemma is our main technical tool:

Lemma 5.3.1. Let R : {0, 1}t⇥n ! {0, 1}t0 be given. Let A ✓ {0, 1}n be a set of

size M � 100t, and suppose that we select a⇤ ⇠ UA. Then if t is su�ciently large and

t0 < 2(t� 1), we have

E [�(a⇤, A \ a⇤)]  1� 10�4 . (5.2)

Lemma 5.3.1 establishes that certain distributions are (at least slightly) “sta-

21(here, Ln = L \ {0, 1}n)
22We note that this amounts to a weakened version of the Disguising-Distribution Lemma of

Section 5.6.

185

ble” under modification. Related facts, with information-theoretic proofs, appear

in [Raz98, KNTSZ07] (see Section 5.9), and these can be readily used to obtain our

lemma. A distinctive aspect of Lemma 5.3.1, however, is that it establishes the close-

ness of the output distribution of R induced by an input to R containing a string a⇤,

to one from an input distribution to R that does not support a⇤. This “apples-to-

oranges” comparison is key to our application of Lemma 5.3.1: we will use it to build

small (poly(n)-size) subsets of Ln that serve as helpful non-uniform advice to prevent

exponential -size chunks of Ln from being accepted by Verifier. In the “minimax-free”

proof being presented here, we will do so in an iterative fashion until all of Ln is

“covered” by our advice. This is reminiscent of the incremental approach of Fortnow

and Santhanam [FS11] to defining their advice, in their proof that the OR-conjecture

holds unless NP ✓ coNP/poly.

In the more general proofs we give in later sections, Lemmas 5.6.2 and 5.6.3 will

play a role analogous (but not identical) to that of Lemma 5.3.1 in the current proof.

Proof of Lemma 5.3.1. Suppose to the contrary that E [�(a⇤, A \ a⇤)] > 1�10�4. Call
a 2 A “distinctive” if �(a,A \ a) � .99; the measure � is bounded by 1, so more than

a .99 fraction of a 2 A are distinctive.

For each a 2 A, let T = Ta be the set given by Fact 5.2.3, with X := RA\a[a], Y :=

RA\a; then for all distinctive a 2 A, we have

Pr
z⇠R

A\a[a]
[z 2 Ta] � .99 , Pr

z⇠R
A\a

[z /2 Ta] � .99 . (5.3)

Let us index A as A = {a1, . . . , aM}. Define a random R-input x = (x1, . . . , xt) ⇠
U⌦tA , and for i 2 [M] let Incli(x) be the indicator variable for the event that at least

one of the elements xj is equal to ai. We also define the indicator variable

Corri(x) := [Incli(x), (R(x) 2 Tai)] = ¬[Incli(x)� (R(x) 2 Tai)] .

The idea is that R(x) 2 Tai “suggests” that ai was included among the inputs to R,

while R(x) /2 Tai suggests the opposite; Corri(x) checks whether the suggestion given

186

is correct.

It is easy to see that, if we condition on [Incli(x) = 0], then R(x) is distributed as

RA\ai . In this case, the conditional probability that [Corri(x) = 1] holds is at least

.99, provided ai is distinctive.

On the other hand, suppose we condition on [Incli(x) = 1]. Then the conditional

probability that ai appears twice among the coordinates of x is, by basic counting, at

most t/M  .01. (After conditioning on any leftmost occurrence of ai, there are at

most t� 1 indices which could contain the next occurrence of ai; and each plays this

role with probability at most 1/M .) Thus under this conditioning, R(x) is .01-close

to the distribution RA\ai [ai], so that [Corri(x) = 1] holds with probability at least

.99� .01 = .98 if ai is distinctive.

It is also the case that
P

i2[M]

Incli(x) � .95t with probability at least .99 (for

su�ciently large t), since t/M  .01. Combining all of our work, we find that for

large enough t, with probability at least .5 the following conditions hold:

1.
P

i2[M]

Incli(x) � .95t;

2.
P

i2[M]

[Incli(x) ^ Corri(x)] � .9t;

3.
P

i2[M]

Corri(x) � .9M .

Say that x is good if all of these conditions hold.

Now fix any R-output z 2 {0, 1}t0 ; we are going to derive an upper bound U on

the number of good inputs x for which R(x) = z. Since every x maps to a string of

length  t0 under R, it will follow that

2t
0
+1 � .5|A⇥t|

U
=

.5M t

U
, (5.4)

which will yield a contradiction to our settings.

First, suppose z 2 Tai for more than t+ .1M indices i 2 [M]. Then for any x such

that R(x) = z, there are more than .1M indices for which Incli(x) = 0 yet z 2 Ta
i

.

For such i, Corri(x) = 0. Thus x is not good. So to have any good inputs x map to

187

it under R, z must satisfy

|{i : z 2 Tai}|  t+ .1M . (5.5)

Next, suppose R(x) = z and that x = (x1, . . . , xt) contains more than .15t com-

ponents xj whose value is any element xj = ai 2 A for which z /2 Tai . If x is

good, then by property 1 of good inputs, among these components we can find a

subcollection of more than .1t components xj whose values are pairwise distinct. For

each ai = xj in this subcollection, we have Incli(x) = 1 yet Corri(x) = 0. Thus
P

i2[M]

[Incli(x) ^ Corri(x)] < .9t, so x is not good—a contradiction. Thus any good

x for which R(x) = z can contain at most .15t components xj whose value xj = ai

satisfies z /2 Tai .

Combining this observation with Eq. (5.5), there is a set A0 ✓ A (depending on

z) of size at most t+ .1M  .11M , such that for any good x mapping to z under R,

at least .85t components xj satisfy xj 2 A0. We can now bound the number of good

inputs x mapping to z under R; any such x is specifiable by:

• a set of at most .15t “exceptional” indices j 2 [t];

• the values of xj on these exceptional indices;

• the values of xj on all other indices, which must lie in A0.

The number of such x is at most

X

0t0.15t

✓
t

t0

◆
M t0(.11M)t�t

0  (.11).85tM t ·
X

0t0.15t

✓
t

t0

◆

 (.11).85tM t · 2H(.15)t

< 4�tM t ,

using Fact 5.2.2 and a calculation. Thus we may take as our bound U := 4�tM t, so

that by Eq. (5.4),

2t
0
+1 � .5 · 4t = 22t�1,

188

which contradicts our assumption that t0 < 2(t� 1). This proves Lemma 5.3.1.

Proof of Theorem 5.1.1. We will show that the existence of the reduction R for L im-

plies that there exists a two-message, private-coin, interactive proof system between a

polynomial-time-bounded Verifier and a computationally unbounded Prover to prove

that a given string x 2 {0, 1}n lies in L. The proof system will be executable using

poly(n) bits of non-uniform advice on length-n inputs; Prover will be able to make

Verifier accept with probability 1 if x /2 L, and with probability at most 1 � ⌦(1)

if x 2 L. It then follows from known results on interactive proof systems and non-

uniform derandomization [GS86, Adl78] that L 2 NP/poly (see Theorem 5.4.11 and

the proof of Theorem 5.4.15 for details), which gives our desired conclusion.

Using the existence of the reduction R and Lemma 5.3.1, we will prove the fol-

lowing claim:

Claim 5.3.2. There exist multisets A
1

, . . . , Aq(n)poly(n) ✓ Ln, each of size bounded

by some s(n)  poly(n), such that, for all x 2 {0, 1}n \
⇣S

i2[q(n)] Ai

⌘
:

1. If x 2 Ln, then �(x;Ai) = 1 for all i 2 [q(n)];

2. If x 2 Ln, there is an i 2 [q(n)] for which �(x;Ai)  1� 10�5.

Assuming the truth of Claim 5.3.2 for the moment, we use it to prove Theo-

rem 5.1.1. For inputs of length n to our interactive proof system, we let the non-

uniform advice be a description of the sets A
1

, . . . , Aq(n) given by Claim 5.3.2, along

with the value t(n). The proof system works as follows. On input x 2 {0, 1}n, Verifier
first checks if x is in one of the sets Ai. If so, Verifier knows that x 2 L. Otherwise,

Verifier and Prover execute the following procedure in parallel for i = 1, 2, . . . , q(n):

• Verifier privately flips an unbiased coin bi ⇠ U{0,1};

• Verifier privately samples strings yi,1, . . . , yi,t(n) 2 {0, 1}n independently from

UA
i

;

• If bi = 0 then Verifier sets

z = z(i) := R(yi,1, . . . , yi,t(n)) ;

189

otherwise (bi = 1), Verifier samples j = j(i) ⇠ U
[t(n)] and sets

z := R(yi,1, . . . , yi, j�1, x, yi, j+1, . . . , yi,t(n)) .

• Verifier sends z to Prover.

• Prover makes a guess ebi for the value of bi.

Verifier accepts i↵ ebi = bi for all i.

This protocol is clearly polynomial-time executable by Arthur given t(n) and the

description of A
1

, . . . , Aq(n), and these sets are of polynomial size and polynomial in

number. Now let us analyze the behavior of the protocol (assuming x /2 Si Ai). First,

suppose that x 2 Ln. In this case, we have

||RA
i

[x]�RA
i

||
stat

= 1

for each i, by the first property of our sets Ai. Thus, Prover can guess bi with perfect

confidence for each i, and can cause Verifier to accept with probability 1.

Next, suppose that x 2 Ln. Then by the second property of our sets, there exists

an i⇤ 2 [q(n)] such that

||RA
i

⇤ [x]�RA
i

⇤ ||
stat

 1� 10�5 .

By the distinguishability characterization of statistical distance, and the independence

of the trials i = 1, 2, . . . , q(n), this implies that the probability that Prover guesses

bi⇤ correctly is at most 1 � .5 · 10�5. Thus Verifier rejects with probability ⌦(1). So

our interactive proof has the desired properties. As discussed earlier, this implies

L 2 NP/poly.

Proof of Claim 5.3.2. Fixing attention to a single value of n, let (t, t0) = (t(n), t0(n)).

Assume that t is large enough to apply Lemma 5.3.1. (Note that then t0 satisfies

the assumptions of that lemma as well.) Let M := 100t. We define a sequence of

190

sets S
1

◆ S
2

◆ . . . ◆ Sq(n)+1

= ;, each contained in Ln, and a sequence of sets

A
1

, A
2

, . . . , Aq(n), with all elements of Ai drawn from Si.

Let S
1

:= Ln. Inductively, having defined Si, we define Ai, Si+1

as follows. If |Si| <
M , we let Ai := Si and Si+1

:= ;, and set q(n) := i, terminating the construction

at this stage. Otherwise (|Si| � M), we let Ai be a uniformly random size-(M � 1)

subset of Si. We let

Si+1

:=
�
a 2 Si \ Ai : �(a,Ai) > 1� 10�5

.

The procedure clearly terminates, since |Si+1

|  |Si|�(M�1) whenever Si+1

6= ;.
Let us verify that these Ai satisfy conditions 1-2 of the Claim; we will then argue

that q(n)  poly(n) (with high probability over the randomness in the construction).

First, suppose x 2 Ln \
⇣S

i2[q(n)] Ai

⌘
. Then with attention to Eq. (5.1), note that

R always outputs an element of L0 when x is one of the inputs to R. On the other

hand, when all inputs to R are drawn from some Ai ✓ Si ✓ Ln, R outputs an element

of L0. Thus these two cases are perfectly distinguishable, and �(x,Ai) = 1 for each i,

as needed.

Next suppose x 2 Ln \
⇣S

i2[q(n)] Ai

⌘
. Let i 2 [1, q(n)] be the unique index such

that x 2 Si \ Si+1

. Then by the definitions, we have �(x,Ai) = ||RA
i

[x]�RA
i

||
stat


1� 10�5.

Finally, we argue that q(n)  poly(n) with high probability. Note that when we

generate Ai as a uniform set of size M � 1, we may equivalently generate Ai by first

generating a uniform set bAi ✓ Si of size M , then selecting a uniform element a⇤ of

bAi to discard to form Ai.

By Lemma 5.3.1, Ea⇤ [�(a⇤, Ai)]  1�10�4. Then with probability at least .9 over

our randomness at this stage, a⇤ satisfies �(a⇤, Ai)  1� 10�5. But a⇤ is distributed

as a uniform element of Si \ Ai. Thus,

E[|Si+1

|]  .1(|Si|� |Ai|) .

Thus q(n) = O(n) with high probability. This completes the proof of Claim 5.3.2.

191

5.4 Preliminaries II

Now we collect facts and definitions that will inform our work in the rest of the

chapter as we prove more general results.

5.4.1 Information theory background

Recall from Section 5.2 that H(↵) denotes the binary entropy function on [0, 1]. For

a finitely-supported random variable Z, we let

Hrv(Z) :=
X

z 2 supp(Z)

�Pr[Z = z] log
2

Pr[Z = z]

denote the Shannon entropy of Z. Then, for two possibly-dependent random variables

Y, Z,

Hrv(Z|Y) := Ey⇠Y [Hrv(Z[Y=y])] = Hrv((Y, Z))�Hrv(Y)

denotes the entropy of Z conditional on Y . (Z
[Y=y] denotes Z conditioned on the

event [Y = y].)

Fact 5.4.1. For all X, Y , Hrv((X, Y))  Hrv(X)+Hrv(Y) and Hrv(X|Y)  Hrv(X),

with equality holding in each case i↵ X, Y are independent. Similarly, Hrv(X|(Y, Z)) 
Hrv(X|Y).

Definition 5.4.2 (Mutual information). The mutual information between random

variables X, Y is defined as I(X;Y) := Hrv(X) +Hrv(Y)�Hrv((X, Y)).

The next fact follows easily from the definitions.

Fact 5.4.3. Mutual information obeys the following properties, for all random vari-

ables X, Y, Z:

1. I(X;Y) = I(Y ;X);

2. I(X; (Y, Z)) = I(X;Y) + I((X, Y);Z)� I(Y ;Z);

3. I(X; (Y, Z)) � I(X;Y);

192

4. I(X;Z) = 0 if X,Z are independent.

Lemma 5.4.4. If X1, . . . , X t are independent, then

I(Y ; (X1, . . . , X t)) �
X

j2[t]
I(Y ;Xj) .

Our proof of this standard claim follows steps in [Nay99a, p. 33].

Proof. We have

I(Y ; (X1, . . . , X t)) = I(Y ;X t) + I((Y,X t); (X1, . . . , X t�1))� I(X t; (X1, . . . , X t�1))| {z }
=0, by Fact 5.4.3, item 4

� I(Y ;X t) + I(Y ; (X1, . . . , X t�1)) ,

where we used item 2 of Fact 5.4.3 in the first step, and items 1 and 3 in the second

step. Iterating in this way gives the Lemma.

The next definition is a useful, non-symmetric measure of di↵erence between ran-

dom variables.

Definition 5.4.5 (KL divergence). The (binary) Kullback-Leibler divergence, or KL

divergence between random variables X, Y , is denoted D
KL

(X||Y) and defined as

D
KL

(X||Y) :=
X

x2supp(X)

Pr[X = x] · log
2

✓
Pr[X = x]

Pr[Y = x]

◆
.

The convention is that for p 6= 0, we have p log
2

(p/0) = +1. So D
KL

may be

infinite. We have the following basic equivalence (see [CT06, Chapter 2]):

Fact 5.4.6. Let X, Y be any random variables; let X 0 be distributed as X and inde-

pendent of Y . The mutual information and Kullback-Leibler divergence satisfy

I(X;Y) = D
KL

((X, Y)||(X 0, Y)) .

A proof of the following important result can be found in [CT06] (see Lemma

11.6.1, p. 370).

193

Theorem 5.4.7 (Pinsker’s inequality, stated for binary KL divergence). For any

random variables Z,Z 0,

D(Z||Z 0) � 2

ln 2
· ||Z � Z 0||2

stat

.

When ||Z�Z 0||
stat

⇡ 1, the following bound, known as Vajda’s inequality (see [FHT03,

RW09]), gives better information on the divergence:

Theorem 5.4.8 (Vajda’s inequality, stated for binary KL divergence). For any ran-

dom variables Z,Z 0, let � := ||Z � Z 0||
stat

. Then,

D(Z||Z 0) � 1

ln 2

✓
ln

✓
1 +�

1��

◆
� 2�

1 +�

◆
� 1

ln 2

✓
ln

✓
1

1��

◆
� 1

◆
.

5.4.2 Basic complexity classes and promise problems

We assume familiarity with the basic complexity classes NP and coNP and the higher

levels ⌃p
k,⇧

p
k of the Polynomial Hierarchy PH. (For the needed background in com-

plexity theory, see [AB09].) In this chapter we define NP, coNP, etc. as classes of

languages (not promise problems).

We also assume familiarity with the general model of polynomial-size, non-uniform

advice, and with the non-uniform classes NP/poly and coNP/poly. It is considered

unlikely that NP ✓ coNP/poly. In particular, this would imply a collapse of the

Polynomial Hierarchy:

Theorem 5.4.9 ([Yap83]). If NP ✓ coNP/poly, then PH = ⌃p
3

= ⇧p
3

.

We use pr-NP, pr-coNP, etc. to denote the analogous complexity classes for promise

problems. Recall that, for a class C of promise problems, coC = {(⇧Y ,⇧N) : (⇧N ,⇧Y) 2
C}. A many-to-one reduction B from the promise problem ⇧ = (⇧Y ,⇧N) to ⇧0 =

(⇧0Y ,⇧
0
N) is a mapping satisfying B(⇧Y) ✓ ⇧0Y , B(⇧N) ✓ ⇧0N . (This definition applies

as well to the special case where one or both of the promise problems are languages.)

When we refer to NP-complete problems in this chapter, we mean problems complete

under deterministic, polynomial-time many-to-one reducibility.

194

All of the results we prove in this chapter about limits of compression for languages

L and language complexity classes readily extend to the setting of compression for

promise problems (under the analogous definitions). However, for notational simplic-

ity we will state our main results for languages, and will only use promise problems

and promise classes where doing so helps to streamline our proofs and our result

statements.

5.4.3 Arthur-Merlin protocols

We will make use of the model of (public-coin, two-round) Arthur-Merlin protocols. To

be precise, these are protocols P , defined by a deterministic polynomial-time predicate

A(x, r, w), which operate as follows. On an input x, visible to both a polynomial-time

bounded verifier (Arthur) and to a computationally-unbounded prover (Merlin):

1. Arthur generates a uniformly random string r and sends it to Merlin;

2. Merlin sends a response string w to Arthur;

3. Arthur accepts if A(x, r, w) = 1, otherwise rejects.

We require that |r|, |w| each be pre-specified lengths  poly(n), where n = |x|, and
that these lengths be computable in poly(n) time given 1n.

We will need to work with promise problems having Arthur-Merlin protocols. Say

that such a protocol P defines a promise problem ⇧ = (⇧Y ,⇧N) with completeness

c(n) and soundness s(n) if

1. For all x 2 ⇧Y , some Merlin strategy causes Arthur to accept with probability

� c(n);

2. For all x 2 ⇧N , all Merlin strategies cause Arthur to accept with probability

 s(n).

Let pr-AMc(n),s(n) denote the class of promise problems definable by an Arthur-

Merlin protocol with completeness c(n) and soundness s(n); let pr-AM := pr-AM
1,1/3.

Then, pr- coAM = {(⇧Y ,⇧N) : (⇧N ,⇧Y) 2 pr-AM}.

195

Theorem 5.4.10 ([FGM+89]). For any parameters s(n), c(n) 2 (0, 1] that are polynomial-

time computable23 and satisfy 1

poly(n) < s(n) < c(n)� 1

poly(n) , we have pr-AMc(n),s(n) =

pr-AM. If we drop the requirement s(n) > 1

poly(n) , but keep the gap requirement, we

still have pr-AMc(n),s(n) ✓ pr-AM.

The next, well-known result follows from the non-uniform derandomization tech-

nique of Adleman [Adl78]:

Theorem 5.4.11. pr-AM ✓ pr-NP/poly. Similarly, pr- coAM ✓ pr- coNP/poly.

5.4.4 Statistical zero-knowledge and the SD problem

Next we will define the statistical zero-knowledge class SZK. Actually, we will only

work with its promise-problem analogue pr- SZK.24 Informally, these are the promise

problems (⇧Y ,⇧N) for which a (private-coin) interactive proof of membership in

⇧Y can be given, in which the verifier learns (almost) nothing—except to become

convinced that the input y indeed lies in ⇧Y ! The “learns nothing” requirement

is cashed out by requiring that the verifier be able to simulate interactions with the

intended prover strategy on any input y, such that if y 2 ⇧Y , the resulting distribution

is negligibly close in statistical distance to the true distribution generated by their

interaction.

Making this definition formal is somewhat delicate. (For details, and for more

information on these and related classes, see [SV03].) Fortunately, there is a simple

(but non-trivial) characterization of pr- SZK. First, given a Boolean circuit C =

C(r) with k output gates, and an ordering on these gates, let DC denote the output

distribution of C on a uniformly random input r. (This is a random variable over

{0, 1}k.) We use the following problem:

Definition 5.4.12. For parameters 0  d  D  1, define the promise problem

SD�Dd = (⇧Y ,⇧N) as follows:

⇧Y := {hC,C 0i : ||DC �DC0 ||
stat

� D} ,

23(say, as rational values represented by their numerator and denominator)
24Often the promise class is denoted SZK.

196

⇧N := {hC,C 0i : ||DC �DC0 ||
stat

 d} .

Define SDd>D analogously, switching the “yes” and “no” cases. In this definition,

both d = d(n) and D = D(n) may be parameters depending on the input length

n = |hC,C 0i|.

It is shown in [SV03] that the standard, complicated definition of pr- SZK is equiv-

alent to the following simpler one, which we take as our definition:

Definition 5.4.13. Let pr- SZK be defined as the class of promise problems for which

there is a many-to-one,25 deterministic polynomial-time reduction from ⇧ to SD�2/31/3.

The constants 2/3, 1/3 in the above definition are not arbitrary; it is unknown

whether we get the same class if we replace them by .51, .49. However, we have the

following result:

Theorem 5.4.14 (Follows from [SV03]; described as Theorem 1 in [GV11]). Suppose

0  d = d(n) < D = D(n)  1 are polynomial-time computable, and satisfy D2 >

d+ 1

poly(n) . Then, SD
�D
d 2 pr- SZK.

When we merely have D�d � 1

poly(n) , the following weaker, standard result holds:

Theorem 5.4.15. Suppose 0  d = d(n) < D = D(n)  1 are polynomial-time

computable and satisfy D > d+ 1

poly(n) . Then, SD
�D
d 2 pr-AM.

Proof sketch. We describe a private-coin two-message protocol, in which the verifier

has a source of random bits not viewable by the prover; any such protocol can be

e�ciently converted into a public-coin one [GS86].

Let m = m(n)  poly(n) be a large value. On input hC,C 0i, Verifier chooses

b
1

, . . . , bm uniformly at random and, for i 2 [m], samples

zi ⇠ DC if bi = 0, zi ⇠ DC0 if bi = 1,

independently for each i. Prover is asked to try to guess the values b
1

, . . . , bm.

25Recall the definition in Section 5.4.2.

197

If m is chosen appropriately large then, using the distinguishability interpretation

of statistical distance (see Section 5.2.1),

1. If ||DC �DC0 ||
stat

> D then Prover can, with high probability, guess at least a

1

2

�
1 + D�d

2

�
fraction of the bits bi correctly;

2. If ||DC � DC0 ||
stat

< d then Prover cannot, except with low probability, guess

this fraction of the bis correctly.

Thus, Verifier can use this threshold as an acceptance criterion, so that the proto-

col has the desired completeness-soundness gap. After converting to a public-coin

protocol, we find that SD�Dd 2 pr-AM
2/3,1/3 = pr-AM (using Theorem 5.4.10).

We will also use the following important results about pr- SZK:

Theorem 5.4.16 ([Oka00]). pr- SZK is closed under complement.

Theorem 5.4.17. pr- SZK ✓ pr-AM \ pr- coAM ✓ pr-NP/poly \ pr- coNP/poly.

The containment in pr- coAM is due to Fortnow [For87]; containment in pr-AM

was first shown by Aiello and H̊astad [AH91].26 The second containment in Theo-

rem 5.4.17 uses Theorem 5.4.11.

Finally, one of our results (Theorem 5.7.3) will make use of the class pr-PZK of

problems having (honest-verifier) perfect zero-knowledge proofs. This is a subclass of

pr- SZK. We will not define pr-PZK (see, e.g., [SV03]); unfortunately it has no known

simple characterization analogous to Definition 5.4.13 for pr- SZK. We will, however,

use the following result:

Theorem 5.4.18 ([SV03], Proposition 5.7). SD�1.5 2 pr-PZK.

Next we combine tools described in Sections 5.4.3 and 5.4.4, reformulating them

slightly.

26These works treat language classes, but the proofs extend without change to the promise-problem
setting. Also, these works analyze a so-called “honest-verifier” model of statistical zero-knowledge
proofs; these were shown to have the same expressive power as “cheating-verifier” statistical zero-
knowledge proofs in [GSV98].

198

Theorem 5.4.19. Let 0  d = d(n) < D = D(n)  1 be (not necessarily computable)

parameters.

1. If D > d+ 1

poly(n) , then SD�Dd 2 pr-NP/poly.

2. If we have the stronger gap D2 > d + 1

poly(n) , then SD�Dd is many-to-one re-

ducible to SD�2/31/3 2 pr- SZK, in non-uniform polynomial time. Also, SD�Dd 2
pr- coNP/poly.

Proof sketch. For item 1, we essentially combine Theorem 5.4.15 with Theorem 5.4.11.

The only extra ingredient needed is to encode su�ciently accurate approximations of

d(n), D(n) into the non-uniform advice for length n, and to use these in defining the

private-coin protocol as in the proof of Theorem 5.4.15. We then convert this non-

uniform protocol into an NP/poly one by the same techniques from [GS86] (which

shows how to convert private-coin to public-coin protocols), Theorem 5.4.10 (to get

perfect completeness), and Theorem 5.4.11 (to derandomize).

Similarly, for item 2, we essentially combine Theorems 5.4.14 and 5.4.17, except

that at each step we need to incorporate approximations of d(n), D(n) as (additional)

non-uniform advice.

5.4.5 f-compression reductions

Here we define a class of compression reductions for the problems f �L introduced in

Section 5.1.3, in which one is given (x1, . . . , xm) and must compute f(L(x1), . . . , L(xm)).

Our main focus will be the case where f is the OR or AND function of its input bits.

The problem f �L will be formally defined as a parametrized problem in Section 5.5.1,

but it will be useful to have a specialized definition for this problem as well; here we

won’t explicitly rely on the parametrized-problem framework.

Our next definition is modeled on definitions in [BDFH09, FS11], with some dif-

ferences. Notably, we will consider reductions where a quantitative compression guar-

antee is only made when all the input strings xj are of some equal length n, and the

number of input strings xj is equal to some value t
1

(n) determined by n. The error

199

bound will also be a function of n. This specialization is mostly to reduce clutter

in our work, and will not lead to loss of generality: we will be ruling out the exis-

tence of compression reductions (under complexity-theoretic assumptions, and for all

t
1

(n) that are su�ciently large compared to other parameters), so ruling out even

compression algorithms that work only in narrow input-regimes will lead to stronger

results.

Definition 5.4.20 (Probabilistic f -compression reductions). Let L,L0 be two lan-

guages, and let f : {0, 1}⇤ ! {0, 1} be a Boolean function. Let t
1

(n), t
2

(n) : N+ ! N+

and ⇠(n) : N+ ! [0, 1] be given.

A probabilistic f -compression reduction for L, with parameters (t
1

(n), t
2

(n), ⇠(n))

and target language L0, is a randomized mapping R(x1, . . . , xm) outputting a string z,

such that for all (x1, . . . , xt1(n)) 2 {0, 1}t1(n)⇥n,

1. PrR[L0(z) = f
�
L(x1), . . . , L(xt1(n))

�
] � 1� ⇠(n);

2. |z|  t
2

(n).

If some reduction R as above is computable in probabilistic polynomial time, we

say that L is PPT-f -compressible with parameters (t
1

(n), t
2

(n), ⇠(n)). (This does not

require that (t
1

(n), t
2

(n), ⇠(n)) themselves be computable.)

5.5 Parametrized problems and parametrized com-

pression

A central aim of our work is to better understand the limitations of e�cient compres-

sive reductions for a variety of parametrized problems. For this we need to formally

define parametrized problems and an appropriate model of probabilistic compression

for these problems. However, some readers may be satisfied to understand our work

on the limits of e�cient AND- and OR-compression (as defined in Section 5.4.5)

for SAT and other NP-complete languages. To prove these results, including Theo-

rem 5.1.3 in the Introduction, we will not need the definitions of this section, and

200

readers may choose to skip ahead to Section 5.6. (We will find it convenient to prove

Theorem 5.1.2 using the definitions below; however, this result can also be derived

directly from our Theorem 5.7.1, item 2 with little trouble.)

5.5.1 Parametrized problems

We will use the following definition:

Definition 5.5.1 ([DF99]). A parametrized problem is a subset of binary strings of

the form hx, 1ki, for x 2 {0, 1}⇤ and k > 0 (under some natural binary encoding of

such tuples).

Thus, our convention is that a parametrized problem is just a particular type

of decision problem, i.e., a language.27 However, we will use P to denote a generic

parametrized problem, as opposed to an “ordinary” language, denoted L. Sometimes,

as in the Introduction, we speak of “parametrized versions” of an ordinary decision

problem L. There is no single, canonical way to go from a decision problem to a

parametrized problem; often, however, a parametrized problem can be formed from

a decision problem L in a natural way. For example, we formally define VAR-SAT,

OR(SAT), and AND(SAT) from the Introduction as follows:

Definition 5.5.2. Fix some natural encoding of tuples of bit-strings, and some en-

coding of Boolean formulas as bit-strings. Define

1. VAR-SAT := {h , 1ki | is satisfiable and contains  k distinct variables};

2. OR(SAT) := {h
1

, . . . , t, 1ki | at least one j is satisfiable, and each j is of bit-length  k};

3. AND(SAT) := {h
1

, . . . , t, 1ki | every j is satisfiable, and each j is of bit-length  k}.

We also generalize items 2 and 3 above:

Definition 5.5.3. Let L ✓ {0, 1}⇤, and f : {0, 1}⇤ ! {0, 1}. Define
27In this definition we are following [FS11]. In [BDFH09] and many other works, parametrized

problems are defined as a subset of {0, 1}⇤⇥N+ (the parameter is still presented as part of the input);
they refer to the corresponding subset of strings of form hx, 1ki as the “unparametrized version” or
“classical version” of the problem.

201

1. OR(L) := {h(x1, . . . , xt), 1ki | Wt
j=1

L(xi) = 1 and |xj|  k for each j};

2. AND(L) := {h(x1, . . . , xt), 1ki | Vt
j=1

L(xi) = 1 and |xj|  k for each j};

3. f � L := {h(x1, . . . , xt), 1ki | f(L(x1), . . . , L(xt)) = 1 and |xj|  k for each j}.

5.5.2 OR-expressive and AND-expressive parametrized prob-

lems

Our compression lower bounds will apply to two classes of parametrized problems. As

we will explain, these classes are closely related to classes identified earlier in [HN10,

BDFH09, BJK11a, BTY11]; the classes we introduce will help to apply our techniques

uniformly to these various earlier classes.

Definition 5.5.4 (OR- and AND-expressive problems). A parametrized problem P

is OR-expressive, with parameter S(n)  poly(n), if there exists an NP-complete

language L and a deterministic polynomial-time reduction B. Whenever B receives

an input of form h(x1, . . . , xt), 1ni, for any t, n 2 N+, B outputs a tuple

(hy1, 1k1i, . . . , hys, 1ksi) .

We have the following properties:

1. h(x1, . . . , xt), 1ni 2 OR(L) () 9 i 2 [s] : hyi, 1kii 2 P ;

2. s  S(n) (in particular, the bound is independent of t);

3. For each i 2 [s], |yi|  (t+ n)O(1) and ki  nO(1).

Define AND-expressive problems identically, except we replace condition 1 above by

1’. h(x1, . . . , xt), 1ni 2 AND(L) () 8 i 2 [s] : hyi, 1kii 2 P .

The results of [BDFH09] imply that a variety of natural parametrized problems

are OR- or AND-expressive:

202

Theorem 5.5.5 (Follows from [BDFH09]). 1. OR(SAT) is OR-expressive with S(n) =

1. Also, each of the following parametrized problems are OR-expressive with

S(n)  poly(n):

• k-Path, k-Cycle, k-Exact Cycle and k-Short Cheap Tour,

• k-Graph Minor Order Test and k-Bounded Treewidth Subgraph Test,

• k-Planar Graph Subgraph Test and k-Planar Graph Induced Subgraph Test,

• (k, �)-Short Nondeterministic Turing Machine Computation,

• w-Independent Set, w-Clique and w-Dominating Set,

defined in [BDFH09].

2. AND(SAT) is AND-expressive with S(n) = 1. Also, each of the following

parametrized problems are AND-expressive with S(n)  poly(n):

• k-Cutwidth, k-Modified Cutwidth, and k-Search Number,

• k-Pathwidth, k-Treewidth, and k-Branchwidth,

• k-Gate Matrix Layout and k-Front Size,

• w-3-Coloring and w-3-Domatic Number,

also defined in [BDFH09].

In [BDFH09], the authors define a notion of compositionality for parametrized

problems. If a parametrized problem P is compositional and NP-complete, then

it is OR-expressive, with respect to the NP-complete language L = P . Also, if

P is NP-complete and P is compositional, then P is AND-expressive. These facts

follow almost immediately from the definitions. Theorem 5.5.5 then follows from the

compositionality results proved in [BDFH09]. In a number of the problems above we

can actually take S(n) = 1.

Bodlaender, Jansen, and Kratsch [BJK11a] introduced a notion of cross-compositionality

of parametrized problems, generalizing compositionality. They showed that the evi-

dence against e�cient compression against compositional problems given by [BDFH09,

203

FS11] can be extended to cross-compositional problems. Cross-compositional prob-

lems are also OR-expressive, as follows from the definitions [BJK11a, Section 3].28

As shown in [BJK11a], this class includes interesting parametrized versions of the

Clique, Chromatic Number, and Feedback Vertex Set problems.

AND-expressiveness results are fewer in number, although this is partly due to

the fact that, after the results of [FS11] appeared, OR-expressiveness results were

preferentially sought. Another example of an AND-expressive problem (not known

to be OR-expressive) is presented in [BJK11c].

We also have the following result, derived from the earlier work of [HN10]:

Theorem 5.5.6 (Follows from [HN10, FS11]). Each of the problems Clique, Dominating Set,29

Integer Programming, described in [HN10] and modeled as parametrized problems

in [FS11] (with slightly distinctive, but natural, parametrizations), are OR-expressive,

with S(n) = 1.

A class of reductions between parametrized problems, called W -reductions, is used

in these works (see [FS11, Definition 2.10]); OR(SAT) is shown toW -reduce to each of

the problems listed in Theorem 5.5.6. This immediately implies that these problems

are OR-expressive with S(n) = 1. Also, if an OR-expressive parametrized problem P

W -reduces to a second problem Q, then Q is also OR-expressive. This technique was

used in [BTY11] to derive additional hardness-of-compression results for problems not

easily captured by the compositionality framework; our new results apply to these

problems as well.

We remark that the polynomial bounds involved in the reductions of Theorems 5.5.5

and 5.5.6 are fairly modest.

28Strictly speaking, according to their definition, cross-compositional problems are OR-expressive
under the minor restriction on the reduction in Definition 5.5.4 that the input h(x1, . . . , xt), 1ni
satisfy t  2n

a

, for some a > 0. This is of no importance to us, since we will always work with the
case t  poly(n); we could have required this in Definition 5.5.4, and could prove the same variety
of hardness results.

29(these are di↵erent parametrized problems than w-Clique and w-Dominating Set in Theo-
rem 5.5.5 above)

204

5.5.3 Parametrized compression

We define compression reductions for parametrized problems as follows, following [FS11]

(but with some added flexibility in our definitions):

Definition 5.5.7 (Probabilistic parametrized compression reductions). Let P be a

parametrized problem and L0 be a language, and say we are given two functions

c(m, k, w) : (N+)3 ! N+, ⇠(m, k, w) : (N+)3 ! [0, 1] .

Say that a randomized mapping R : {0, 1}⇤ ! {0, 1}⇤ is a (c, ⇠)-parametrized com-

pression reduction for P , with target language L0, if for all inputs of form hy, 1k, 1wi,
R(hy, 1k, 1wi) outputs a string z such that:

1. PrR[L0(z) = P (hy, 1ki)] � 1� ⇠(|y|, k, w);

2. |z|  c(|y|, k, w).

We call c the compression bound and ⇠ the error bound of the reduction; we call w

the confidence parameter.

For a parametrized problem P , if some reduction R as above is computable in

probabilistic polynomial time, we say that P is PPT-compressible with parameters

(c, ⇠).

We will not be exploring the full range of possible parameter values in the above

definition, but we believe it provides a reasonable framework for future work. (Only

a few interesting examples of randomized parametrized compression reductions seem

to be known; see [HN10, KW12].) The idea of a confidence parameter w, that one

can use to increase the reliability of the compression at the expense of a potentially

larger output size, is natural for probabilistic compression and will be useful in our

work. (The same basic notion was used earlier in [FS11].)

Next, we define a notion of “strong” compressibility as in the Introduction, pre-

serving flexibility in the error bound:

205

Definition 5.5.8. Say that P is strongly PPT-compressible with error bound ⇠(m, k, w),

if P is PPT-compressible (to some target language L0) with error bound ⇠ and some

compression bound c satisfying c(m, k, 1)  kO(1), with the polynomial bound indepen-

dent of m.

Using the majority-vote technique of [FS11, Proposition 5.1], we have the following

easy result:

Lemma 5.5.9. Let a > 0. Suppose that P is strongly PPT-compressible with error

bound satisfying ⇠(m, k, 1)  .5 � k�O(1). Then, P is also PPT-compressible with

compression bound c0(m, k, w)  kO(1) · w and error bound ⇠0(m, k, w)  2�w.

5.5.4 Connecting parametrized compression and f-compression

The next lemma shows that to give evidence against e�cient compression for “expres-

sive” parametrized problems, it su�ces to give evidence against e�cient AND- and

OR-compression for NP-complete languages. This lemma is modeled on [BDFH09,

Lemma 2], but with some slight complications due to the probabilistic setting. For

simplicity we only treat strong compression in the result below; our techniques also

extend to give evidence against more modest compression amounts for expressive

problems. (For more modest compression amounts, the obtainable results are weaker

when the parameter S(n) in the definition of expressiveness is fast-growing.)

Lemma 5.5.10. Let L be an NP-complete language.

1. Suppose that the parametrized problem P is OR-expressive with respect to L,

with parameter S(n)  poly(n). If P is strongly PPT-compressible with er-

ror bound ⇠(m, k, 1)  .5� k�O(1), then for any polynomially-bounded function

T (n) : N+ ! N+, L is PPT-OR-compressible with parameters

t
1

(n) = T (n), t
2

(n)  S(n) · nO(1), ⇠0(n)  2�n .

2. Suppose P is AND-expressive with respect to L. If P is strongly PPT-compressible

206

with error bound ⇠(m, k, 1)  .5�k�O(1), then L is PPT-AND-compressible with

parameters (t
1

(n), t
2

(n), ⇠0(n)) as in item 1.

Proof of Lemma 5.5.10. We will prove item 1 above; item 2 is proved similarly. Let

R be the PPT compression reduction R for P given by Lemma 5.5.9. Let L0
0

be the

target language of R. Let B be the reduction for P and L as in Definition 5.5.4.

We define an OR-compression reduction R0 for L, with target language L0 :=

OR(L0
0

), as follows. In defining R0, we let t
1

(n) := T (n). On inputs x1, . . . , xT (n) 2
{0, 1}T (n)⇥n, the reduction first applies B to h(x1, . . . , xT (n)), 1ni, yielding a tuple

(hy1, 1k1i, . . . , hys, 1ksi). Next, for each i 2 [s], R0 applies R to the string hyi, 1ki , 12ni
(here we are selecting the confidence parameter w := 2n for R), yielding an output

zi. Then R0 outputs h(z1, . . . , zs), 1Mi, where M := maxi |zi|.
R0 is clearly polynomial-time computable. Now let us analyze its compression

and reliability properties. First, each yi is of bit-length |yi|  (T (n) + n)O(1), and

ki  nO(1), by item 3 of Definition 5.5.4. Then by the compression guarantee for R,

each zi is of bit-length  nO(1) · w = nO(1). Thus for the output-size bound of R0 we

may take t
2

(n)  S(n) · nO(1), as needed.

Now we bound the error of R0. Using the correctness property of B (Defini-

tion 5.5.4, item 1), the equivalence

h(z1, . . . , zs), 1Mi 2 OR(L0
0

) ()
T (n)_

j=1

[xj 2 L]

holds as long as each application of R, namely R(hyi, 1kii) for i 2 [s], is successful.

By a union bound, this occurs with probability � 1�S(n) ·2�2n, which is larger than

1�2�n for su�ciently large n. (For smaller n, R0 may solve its input problem directly

by brute force.) Thus for the error bound ⇠0(n) for R0, we may take ⇠0(n)  2�n.

5.6 Technical lemmas

In this section we present our main technical lemmas. Our final goal in this section

will be the “Disguising-Distribution Lemma,” our key technical tool for our main

207

results.

5.6.1 Distributional stability

Here we define the notion of “distributional stability” described in Section 5.1.4.

Definition 5.6.1. Let U be some finite universe, and let T, n � 1 be integers. Given

a possibly-randomized mapping F (x1, . . . , xT) : {0, 1}T⇥n ! U , and a collection

D
1

, . . . ,DT of mutually independent distributions over {0, 1}n, for j 2 [T] let

�j := E
y⇠D

j

⇥||F (D
1

, . . . ,Dj�1, y,Dj+1

, . . . ,Dt)� F (D
1

, . . . ,Dt)||
stat

⇤
.

For � 2 [0, 1], say that F is �-distributionally stable (or �-DS) with respect to

D
1

, . . . ,DT if

1

T

TX

j=1

�j  � .

Lemma 5.6.2. Let R(x1, . . . , xt) : {0, 1}t⇥n ! {0, 1}t0 be any possibly-randomized

mapping, for any n, t, t0 2 N+. R is �-distributionally stable with respect to any

independent input distributions D
1

, . . . ,Dt, where we may take either of the following

two bounds:

1. � :=
q

ln 2

2

· t0+1

t ;

2. � := 1� 2�
t

0
t

�3.

Our proof of Lemma 5.6.2, item 1 essentially follows suggestions by Ashwin Nayak

and Salil Vadhan; item 2 is a small modification using Vajda’s inequality. When

t0/t = 1 � ⌦(1), the bound given in item 1 above is within constant factors of the

bound from our original distributional stability lemma, Lemma 5.10.4. On the other

hand, when t0/t = 1�↵ ⇡ 1, the bound in Lemma 5.6.2, item 1 is better (i.e., smaller)

by a ⇥
�
log 1

↵

�
factor. We don’t know how to prove a version of item 2 above with the

methods of Lemma 5.10.4; this alternative bound is important for our work. In an

earlier draft we used a more complicated workaround to prove the results obtainable

from item 2.

208

Proof of Lemma 5.6.2. Define independent random variables Xj ⇠ Dj over {0, 1}n,
for j 2 [t]. Let R := R(X1, . . . , X t).

The entropy of R is at most log
2

���{0, 1}t0��� < t0 + 1. Thus, the mutual in-

formation I((X1, . . . , X t);R) is less than t0 + 1. By the independence of the Xjs,

Lemma 5.4.4 gives
X

j2[t]
I(Xj;R) < t0 + 1 . (5.6)

By Fact 5.4.6,

I(Xj;R) = D
KL

�
(Xj,R) || (Y j,R)

�
, (5.7)

where Y j ⇠ Dj is independent of R. By Theorem 5.4.7,

D
KL

�
(Xj,R) || (Y j,R)

� � 2

ln 2
· ||(Xj,R)� (Y j,R)||2

stat

=
2

ln 2
· Exj⇠D

j

⇥����R
�D

1

, . . . ,Dj�1, xj,Dj+1

, . . . ,Dt

��R (D
1

, . . . ,Dt)
����

stat

⇤
2

,

where the equality follows from the distinguishability interpretation of statistical dis-

tance. Using this, we find

0

@1

t

X

j2[t]
Exj⇠D

j

⇥����R
�D

1

, . . . ,Dj�1, xj,Dj+1

, . . . ,Dt

��R (D
1

, . . . ,Dt)
����

stat

⇤
1

A
2

 1

t

X

j2[t]
Exj⇠D

j

⇥����R
�D

1

, . . . ,Dj�1, xj,Dj+1

, . . . ,Dt

��R (D
1

, . . . ,Dt)
����

stat

⇤
2

(by Jensen’s inequality)

<
ln 2

2
· t
0 + 1

t
.

Thus, R is
q

ln 2

2

· t0+1

t -distributionally stable with respect to D1, . . . ,Dt. This proves

item 1 of the Lemma.

For item 2, we apply the alternative bound, Vajda’s inequality (Theorem 5.4.8),

to each j 2 [t], to find

D
KL

�
(Xj,R) || (Y j,R)

� � 1

ln 2

✓
ln

✓
1

1� ||(Xj,R)� (Y j,R)||
stat

◆
� 1

◆

209

=
1

ln 2

✓
ln

✓
1

"j

◆
� 1

◆
,

where we define

"j := 1� Exj⇠D
j

⇥����R
�D

1

, . . . ,Dj�1, xj,Dj+1

, . . . ,Dt

��R (D
1

, . . . ,Dt)
����

stat

⇤

and note that "j > 0. Averaging over j 2 [t] and applying Eqs. (5.6) and (5.7),

t0 + 1

t
� 1

t

X

j2[t]

1

ln 2

✓
ln

✓
1

"j

◆
� 1

◆
,

i.e.,
1

t

X

j2[t]
ln

✓
1

"j

◆
 (ln 2)(t0 + 1)

t
+ 1 .

The function f(x) = ln(1/x) has second derivative x�2 > 0 for x > 0, and so Jensen’s

inequality gives

ln

1

1

t

P
j2[t] "j

!
 (ln 2)(t0 + 1)

t
+ 1 .

This implies
1

t

X

j2[t]
"j �

⇣
e

(ln 2)(t0+1)
t

+1

⌘�1
� 2�

t

0
t

�3 ,

which proves item 2.

5.6.2 Sparsified distributional stability

Here we prove a technical lemma showing that if a mapping F is distributionally

stable with respect to i.i.d. inputs, then F also obeys a slightly di↵erent stability

property, in which we replace an input distribution D with a “sparsified” version of

D.

Lemma 5.6.3. Let U be a finite set, and let F (x1, . . . , xT) : {0, 1}T⇥n ! U be given.

Suppose F is �-distributionally stable with respect to input distribution D⌦T , for every
distribution D over {0, 1}n.

210

Fix some distribution D over {0, 1}n, and let x1, . . . , xd be independently sampled

from D. Let k⇤ ⇠ U
[d].

Let bD denote the distribution defined by sampling uniformly from the multiset

{xk}k 6=k⇤. (This distribution is itself a random variable, determined by x1, . . . , xd and

by k⇤.) Define

�j := E
k⇤,x1,...,xd

h ���
���F

⇣
bD⌦(j�1), xk⇤ , bD⌦(T�j)

⌘
� F

⇣
bD⌦T

⌘���
���
stat

i
,

where all the bDs are to be mutually independent (for fixed values of x1, . . . , xd and

k⇤). Then,
1

T

tX

j=1

�j  � + 2T/d .

Proof. Let eD denote the distribution, determined by x1, . . . , xd, that samples uni-

formly from the multiset {xk}k2[d]. By an easy calculation, for any values of x1, . . . , xd

and k⇤ we can bound ���
��� eD � bD

���
���
stat

 1/d .

It follows that

���
���F

⇣
eD⌦T

⌘
� F

⇣
bD⌦T

⌘���
���
stat


���
��� eD⌦T � bD⌦T

���
���
stat

 T/d ,

where in the last step we used Fact 5.2.5 and the fact that for any assignment to

x1, . . . , xd and to k⇤, the T copies of eD used are mutually independent, as are the

copies of bD.

By identical reasoning, for any assignment to x1, . . . , xd and to k⇤, and for any

index j 2 [T] we have

���
���F

⇣
eD⌦(j�1), xk⇤ , eD⌦(T�j)

⌘
� F

⇣
bD⌦(j�1), xk⇤ , bD⌦(T�j)

⌘���
���
stat

 (T � 1)/d .

Using the triangle inequality for || · ||
stat

, for any values x1, . . . , xd, k⇤ and any index

211

j 2 [T] we always have

���
���F

⇣
bD⌦(j�1), xk⇤ , bD⌦(T�j)

⌘
� F

⇣
bD⌦T

⌘���
���
stat


���
���F

⇣
bD⌦(j�1), xk⇤ , bD⌦(T�j)

⌘
� F

⇣
eD⌦(j�1), xk⇤ , eD⌦(T�j)

⌘���
���
stat

+
���
���F

⇣
eD⌦(j�1), xk⇤ , eD⌦(T�j)

⌘
� F

⇣
eD⌦T

⌘���
���
stat

+
���
���F

⇣
eD⌦T

⌘
� F

⇣
bD⌦T

⌘���
���
stat


���
���F

⇣
eD⌦(j�1), xk⇤ , eD⌦(T�j)

⌘
� F

⇣
eD⌦T

⌘���
���
stat

+ 2T/d . (5.8)

Now suppose we fix any values x1, . . . , xd, leaving k⇤ undetermined. The value

k⇤ is uniform on [d], so that xk⇤ is distributed exactly according to eD. Under our

conditioning, let

�j = �j
�{xk}k2[d]

�
:= E

k⇤

h ���
���F

⇣
eD⌦(j�1), xk⇤ , eD⌦(T�j)

⌘
� F

⇣
eD⌦T

⌘���
���
stat

i
.

By our original assumption, F is �-DS with respect to input distribution eD⌦T . Thus,
for any x1, . . . , xd we have

1

t

tX

j=1

�j  � . (5.9)

Now �j is itself a random variable, determined by x1, . . . , xd, and from Eq. (5.8) we

have

�j  E[�j] + 2T/d .

Using linearity of expectation, we find that

1

t

tX

j=1

�j  � + 2T/d .

212

5.6.3 Building disguising distributions

In the next lemmas we show how the distributional stability of a mapping F can be

used to obtain a “disguising distribution” for F . In Lemma 5.6.6 we will apply this

to give disguising distributions for any su�ciently compressive mapping R.

Recall that UK denotes the uniform distribution over a multiset K.

Lemma 5.6.4. Suppose F (x1, . . . , xT) : {0, 1}T⇥n ! U obeys the assumption of

Lemma 5.6.3: namely, F is �-distributionally stable with respect to input distribution

D⌦T , for every distribution D over {0, 1}n.
Let S ✓ {0, 1}n, and fix some value d > 0. There exists a distribution K over

size-d multisets K ✓ S, such that for every y 2 S, the following holds:

E
K⇠K,j⇤⇠U[T]

h ���
���F

⇣
U⌦(j⇤�1)K , y,U⌦(T�j⇤)K

⌘
� F

�U⌦TK

����
���
stat

i
 � + 2T/(d+ 1) .

(Here the copies of UK are to be mutually independent for fixed K, although the set

K ⇠ K used is the same for each copy.)

Proof. Consider the following two-player, simultaneous-move, zero-sum game:

• Player 1: chooses a size-d multiset K ✓ S.

• Player 2: chooses a string y 2 S.

• Payo↵: Player 2 receives a payo↵ equal to

E
j⇤⇠U[T]

h ���
���F

⇣
U⌦(j⇤�1)K , y,U⌦(T�j⇤)K

⌘
� F

�U⌦TK

����
���
stat

i
.

(Note that this payo↵ is a determinate value, given (K, y).)

Consider any randomized strategy by Player 2, specified by a distribution y ⇠ Y over

S. In response, let KY be the randomized Player-1 strategy that chooses a size-d

multiset K of elements sampled independently from Y .

To bound the expected payo↵ under the strategy-pair (KY , Y), note that we can

equivalently generate (K, y) ⇠ (KY , Y) as follows. First, sample x1, . . . , xd+1 inde-

213

pendently from Y . Sample k⇤ ⇠ U
[d+1]

, set y := xk⇤ , and let

K := {x1, . . . , xk⇤�1, xk⇤+1, . . . , xd+1} .

It is easily verified that (K, y) ⇠ (KY , Y) as desired.

Then Lemma 5.6.3, applied to our initial distributional-stability assumption on

F , informs us that

E
j⇤⇠U[t],K,y

h ���
���F

⇣
U⌦(j⇤�1)K , y,U⌦(T�j⇤)K

⌘
� F

�U⌦TK

����
���
stat

i
 � + 2T/(d+ 1) .

Thus Player 2’s expected payo↵ against KY is at most � + 2T/(d+ 1).

As Y was arbitrary, the minimax theorem tells us that there exists a distribution

K over Player-1 moves that forces Player 2’s expected payo↵ under every strategy to

be at most � + 2T/(d+ 1). The result follows.

Lemma 5.6.5. Let U be a finite set, and let F (x1, . . . , xT) : {0, 1}T⇥n ! U be given.

Suppose F is �-distributionally stable with respect to input distribution D⌦T , for every
distribution D over {0, 1}n.

Let S ✓ {0, 1}n, and fix d > 0. Given any " > 0, let s := d(.5 ln 2)n/"2e. Then

there exists a collection K
1

, . . . , Ks of size-d multisets contained in S, such that for

every y 2 S the following holds:

E
a⇠U[s],j⇤⇠U[t]

h ���
���F

⇣
U⌦(j⇤�1)K

a

, y,U⌦(T�j⇤)K
a

⌘
� F

�U⌦TK
a

����
���
stat

i
 � + 2T/(d+ 1) + " .

Proof. This is an immediate application (to the game in Lemma 5.6.4) of a general

result due to Lipton and Young [LY94, Theorem 2], showing that all two-player, zero-

sum games have sparsely-supported, nearly-optimal player strategies. (Essentially the

same result was proved independently by Althöfer [Alt94], and a more general result

for many-player, non-zero-sum games was proved later in [LMM03].) The support size

required in the Lipton-Young-Althöfer result depends logarithmically on the number

of pure strategies available to the player we are opposing; in our case, Player 2 has

a choice of |S|  2n strings y, so we get s = O(n/"2). In their proof technique

214

applied to our setting, the K
1

, . . . , Ks are obtained by sampling independently from

the distribution K given by Lemma 5.6.4, giving a successful outcome with nonzero

probability.

Lemma 5.6.6 (Disguising-Distribution Lemma). Let R(x1, . . . , xt) : {0, 1}t⇥n !
{0, 1}t0 be any possibly-randomized mapping, for t, t0 2 N+. Let S ✓ {0, 1}n, and fix

d > 0. Given any " > 0, let s := d(.5 ln 2)n/"2e. Let

b� := min

(r
ln 2

2
· t
0 + 1

t
, 1� 2�

t

0
t

�3
)

.

Then there exists a collection K
1

, . . . , Ks of size-d multisets contained in S, such

that for every y 2 S, we have

E
a⇠U[s],j⇤⇠U[t]

h ���
���R

⇣
U⌦(j⇤�1)K

a

, y, U⌦(t�j⇤)K
a

⌘
� R

�U⌦tK
a

����
���
stat

i

 b� + 2t/(d+ 1) + " .

Proof. This follows immediately from the combination of Lemmas 5.6.2 and 5.6.5,

applied to F := R (and with T := t).

5.7 Limits to e�cient (classical) compression

In this section, we show that a su�ciently high-quality PPT-OR-compression reduc-

tion for any language L implies that L 2 NP/poly. We also show that above a higher

threshold of quality, such a compression reduction implies that L has non-uniform,

statistical zero-knowledge proofs, which in particular implies L 2 coNP/poly as well.

We will then apply these results to give evidence against e�cient probabilistic com-

pression for AND(SAT) and OR(SAT), as described in the Introduction, and for other

parametrized problems with either of the two “expressiveness” properties described

in Section 5.5.2. We will also present our result on f -compression reductions for more

general combining functions f , and our result extending the work of Dell and Van

Melkebeek [DvM10] on problems with polynomial kernelizations.

215

5.7.1 Complexity upper bounds from OR-compression schemes

Theorem 5.7.1. Let L be any language. Suppose t
1

(n), t
2

(n) : N+ ! N+ are (not

necessarily computable) functions. Suppose that there exists a PPT-OR-compression

reduction R(x1, . . . , xt) : {0, 1}t1(n)⇥n ! {0, 1}t2(n) for L with parameters t
1

(n), t
2

(n),

error bound ⇠(n) < .5, and some target language L0. Let

b� := min

(s
ln 2

2
· t2(n) + 1

t
1

(n)
, 1� 2�

t2(n)
t1(n)�3

)
.

1. If for some constant c > 0 we have

1� 2⇠(n)� b� � 1

nc
, (5.10)

then L 2 NP/poly.

2. If for some c > 0 we have the (stronger) bound

(1� 2⇠(n))2 � b� � 1

nc
, (5.11)

then there is a many-to-one reduction from L to a promise problem in pr- SZK.

The reduction is computable in non-uniform polynomial time; in particular, this

implies L 2 NP/poly \ coNP/poly.

We remark that, using the technique of [FS11, Proposition 5.1], one can reduce the

error bound ⇠(n) of an OR-compression scheme, at the cost of increasing the output-

length bound t
2

(n). (The idea is to perform multiple, independent applications of R

to the fixed input tuple (x1, . . . , xt1(n)) and to concatenate the results in the output,

using a majority-vote rule to define a new target language.) With this amplification,

we can in some cases apply Theorem 5.7.1 where its assumptions do not hold for the

original scheme—or, we may obtain the stronger conclusion in item 2 of Theorem 5.7.1

in cases where only item 1 would apply directly.

Proof of Theorem 5.7.1. We will use the same basic reduction to prove items 1 and 2.

216

First, with non-uniformity it is easy to handle length-n inputs whenever Ln = {0, 1}n,
so let us assume from this point on that Ln is nonempty.

Using R, we define a deterministic, non-uniform polynomial-time reduction R
that, on input y 2 {0, 1}n, builds a description of two circuits C,C 0. The aim is that

||DC �DC0 ||
stat

should be large if y 2 L, and small if y /2 L. R works as follows:

• Non-uniform advice for length n: a description of the value t
1

(n), and the

multisets K
1

, . . . , Ks ✓ Ln given by Lemma 5.6.5 with

(t, t0) := (t
1

(n), t
2

(n)), S := Ln, d := d8t
1

(n) · nce , " :=
1

4nc
.

(Here c > 0 is as in Eq. (5.10) or Eq. (5.11), according to which item of the

Theorem we are proving.) Note that d and the value s given by Lemma 5.6.5

are both  poly(n) under these settings, so our advice is of polynomial length.

• On input y 2 {0, 1}n: let R output descriptions hC,C 0i of the following two

randomized circuits:

– Circuit C: samples a ⇠ U
[s], then samples

x = (x1, . . . , xt1(n)) ⇠ U⌦t1(n)K
a

,

and outputs z := R(x).

– Circuit C 0: samples values

a ⇠ U
[s], j⇤ ⇠ U

[t1(n)] ;

then, samples

x ⇠
⇣
U⌦(j⇤�1)K

a

, y, U⌦(t1(n)�j⇤)K
a

⌘
,

and outputs z := R(x).

Claim 5.7.2. The following holds:

217

1. If y 2 L, then

||DC �DC0 ||
stat

� D(n) := 1� 2⇠(n) ;

2. If y /2 L, then

||DC �DC0 ||
stat

 d(n) := b� + 1

2nc
. (5.12)

We defer the proof of Claim 5.7.2, and use it to prove the two items of Theo-

rem 5.7.1.

For item 1 of Theorem 5.7.1, if Eq. (5.10) holds (for su�ciently large n), then

D(n)� d(n) � 1

nc

.

Now D(n), d(n) were parametrized in terms of n = |y|, but the gap D(n)�d(n) is

also at least inverse-polynomial in the length N  poly(n) of the output description

hC,C 0i. Thus our reduction R reduces any instance y of the decision problem for

L, to an equivalent instance R(y) = hC,C 0i of the promise problem SD�D
0
(N)

d0(N)

, with

di↵erent parameters D0(N), d0(N) still satisfying the gap condition D0 � d0 � 1

poly(N)

.

By item 1 of Theorem 5.4.19, SD�D
0

d0 2 pr-NP/poly. Let (A, {aN}N>0

) be an

nondeterministic, non-uniform polynomial-time algorithm and advice family solving

SD�D
0

d0 . Then by applying (A, {aN}) to R(y), we obtain a nondeterministic, non-

uniform polynomial-time algorithm for solving L. This shows L 2 NP/poly, proving

item 1 of the Theorem.

Next, for item 2 of Theorem 5.7.1, if Eq. (5.11) holds for su�ciently large n,

then D(n)2 � d(n) � 1

nc

. Arguing as in the previous case, but this time applying

item 2 of Theorem 5.4.19, we exhibit a nonuniform polynomial-time reduction from

L to SD�D
0

d0 , where this time D0(N)2 � d0(N) � 1

poly(N)

. This problem can in turn be

reduced to SD�2/31/3 2 pr- SZK in non-uniform polynomial time, by the second assertion

of Theorem 5.4.14. This also yields L 2 NP/poly\coNP/poly, and completes the proof

of Theorem 5.7.1.

Proof of Claim 5.7.2. (1.) First, suppose y 2 L. We will use the distinguishing

interpretation of statistical distance (see Section 5.2.1) to argue that ||DC �DC0 ||
stat

is large. Suppose an unbiased coin b ⇠ U{0,1} is flipped, unseen by us, and we receive

218

a sample z ⇠ DC if b = 0, or z ⇠ DC0 if b = 1. Consider the distinguisher that

outputs the guess b̃ := 0 if z 2 L0, or b̃ := if z 2 L0.

We lower-bound the success probability Pr[b̃ = b] as follows. Say we condition

on [b = 0], so that z ⇠ DC . The distributions UK
a

are supported on Ln, so in

the execution of C we get x 2 �
Ln

�t1(n). Then it follows from the OR-compression

property of R for L that Pr[z 2 L0] � 1 � ⇠(n). On the other hand, suppose we

condition on [b = 1], so that z ⇠ DC0 . In an execution of C 0 the input tuple x contains

y 2 Ln; thus, by the OR-compression property of R, we have Pr[z 2 L0] � 1 � ⇠(n).
So regardless of the value of b, our distinguisher succeeds with probability � 1�⇠(n).
Thus, 1� ⇠(n)  1

2

(1 + ||DC �DC0 ||
stat

). This proves item 1.

(2.) Now suppose y /2 L; we must upper-bound ||DC � DC0 ||
stat

. Consider the

distinguishing experiment between C and C 0 as in item 1. If we regard the random

variables a and j⇤ (the latter used only by C 0) to be part of the joint probability

space of both algorithms (noting that a is identically distributed in the two circuits),

then revealing the values a, j⇤ along with z to the distinguisher cannot decrease

the distinguisher’s maximum achievable success probability. Now conditioned on

revealed values a, j⇤, the maximum achievable success probability in the modified

distinguishing experiment is

1

2

⇣
1 +

���
���R

⇣
U⌦t1(n)K

a

⌘
�R

⇣
U⌦(j⇤�1)K

a

, y, U⌦(t1(n)�j⇤)K
a

⌘���
���
stat

⌘
,

from which we conclude that

||DC �DC0 ||
stat

 E
a⇠U[s],j⇤⇠U[t1(n)]

h ���
���R

⇣
U⌦t1(n)K

a

⌘
�R

⇣
U⌦(j⇤�1)K

a

, y, U⌦(t1(n)�j⇤)K
a

⌘���
���
stat

i
.

(5.13)

By our choice of K
1

, . . . , Ks and Lemma 5.6.6, the right-hand side of Eq. (5.13) is at

most

b� + 2t
1

(n)/(d+ 1) + " < b� + 2 · 1

4nc
, (5.14)

by our settings to d, ". This proves Eq. (5.12) and completes the proof of Claim 5.7.2.

219

The next result gives a useful consequence of Theorem 5.7.1 for the case where

the compression bound t
2

(n) is on the order of t
1

(n) · log
2

(t
1

(n)), and also points out

a strengthening of the result’s conclusion in the case of error-free compression.

Theorem 5.7.3. Let L be any language. Suppose t
1

(n), t
2

(n) : N+ ! N+ satisfy

t
2

(n)  C · t
1

(n) log t
1

(n) and t
1

(n)  nC0
, for some C,C 0 > 0. Suppose that R is

a PPT-OR-compression reduction R(x1, . . . , xt1(n)) : {0, 1}t1(n)⇥n ! {0, 1}t2(n) for L
with parameters t

1

(n), t
2

(n), error bound ⇠(n) < .5, and some target language L0.

1. If ⇠(n) < n�C·C0
/32, then there is a non-uniform polynomial-time many-to-one

reduction from L to a promise problem in pr- SZK.

2. Suppose further that R is error-free (i.e., ⇠(n) = 0). Then, there is a non-

uniform polynomial-time many-to-one reduction from L to a promise problem

in pr-PZK.

Proof. (1.) We bound the quantity b� from Theorem 5.7.1:

b�  1� 2�
t2(n)
t1(n)�3

 1� 2�C log2(t1(n))/8

 1� t
1

(n)�C/8

 1� n�C·C0
/8 .

If ⇠(n) < n�C·C0
/32, then the left-hand quantity in Eq. (5.11) is � 1

poly(n) , and the

desired conclusion then follows from Theorem 5.7.1, item 2.

(2.) Looking into the proof of Theorem 5.7.1, item 2, we see that it gives a non-

uniform polynomial-time many-to-one reduction from L to SD�D
0
(N)

d0(N)

, where in the

current case, using Claim 5.7.2, we have

D0(N) = 1, d0(N)  1� 1

poly(N)
.

220

This problem can in turn be uniformly many-to-one reduced to SD�1.5 by mapping

a circuit-distribution pair hC,C 0i to hC⌦T , (C 0)⌦T i, where C⌦T is the circuit that

outputs T samples drawn independently from C, and where T  poly(n) is chosen

suitably large. Finally, SD�1.5 2 pr-PZK by Theorem 5.4.18.

5.7.2 Application to AND- and OR-compression of NP-complete

languages

Throughout this section, for parameters t
1

(n), t
2

(n), we will use the shorthand

b� := min

(s
ln 2

2
· t2(n) + 1

t
1

(n)
, 1� 2�

t2(n)
t1(n)�3

)

Here is our first main result giving evidence against e�cient AND-compression for

NP-complete languages:

Theorem 5.7.4. Suppose that for some NP-complete language L, any target language

L0, and an error bound ⇠(n) < .5, L has a PPT-AND-compression reduction R with

target language L0, with parameters t
1

(n), t
2

(n) : N+ ! N+ and error bound ⇠(n) < .5.

1. If

1� 2⇠(n)� b� � 1

poly(n)
, (5.15)

then NP ✓ coNP/poly and PH = ⌃p
3

= ⇧p
3

.

2. If we have the bound

(1� 2⇠(n))2 � b� � 1

poly(n)
, (5.16)

then L (and every other language in NP) is many-to-one reducible in non-

uniform polynomial time to a problem in pr- SZK, and NP ✓ coNP/poly.

3. The conclusion of item 2 holds if t
2

(n)  C · t
1

(n) log(t
1

(n))) and if ⇠(n) is

a su�ciently small inverse-polynomial function of n (determined by t
1

and the

constant C).

221

Item 3 above establishes the assertion of Theorem 5.1.3 from the Introduction for

the case of AND-compression.

Proof of Theorem 5.7.4. (1.) The reduction R is also a PPT-OR-compression for L,

with target language L0, and with the same parameters.

If Eq. (5.15) holds in case 1, we apply item 1 of Theorem 5.7.1 to L, concluding that

L 2 NP/poly, i.e., L 2 coNP/poly. The consequence for PH is from Theorem 5.4.9.

(2.) Similarly, if Eq. (5.16) holds in case 2, we apply item 2 of of Theorem 5.7.1 to

L, giving a non-uniform many-to-one reduction from L to a problem ⇧ = (⇧Y ,⇧N) 2
pr- SZK. This is also a reduction from L to (⇧N ,⇧Y), which by Theorem 5.4.14

also lies in pr- SZK. The extension to other languages in NP follows from the NP-

completeness of L.

(3.) In this case we apply Theorem 5.7.3, item 1 to L.

The next theorem gives evidence for the infeasability of e�cient OR-compression

for NP-complete languages.

Theorem 5.7.5. 1. Suppose that for some NP-complete language L, any target

language L0, and an error bound ⇠(n) < .5, L has a PPT-OR-compression

reduction R with target language L0, with parameters t
1

(n), t
2

(n) : N+ ! N+

and error bound ⇠(n) < .5. If

(1� 2⇠(n))2 � b� � 1

poly(n)
, (5.17)

then L (and every other language in NP) is reducible in non-uniform polynomial

time to a problem in pr- SZK, and NP ✓ coNP/poly.

2. The conclusion of item 1 holds if t
2

(n)  C · t
1

(n) log(t
1

(n))) and if ⇠(n) is a

su�ciently small inverse-polynomial function of n (determined by t
1

and C).

Item 2 completes the proof of Theorem 5.1.3 from the Introduction.

222

Proof of Theorem 5.7.5. (1.) This time, if Eq. (5.17) holds, we just apply item 2 of

Theorem 5.7.1 to L itself.

(2.) In this case we apply item 1 of Theorem 5.7.3 to L.

5.7.3 f-compression of NP-complete languages for general f

As discussed in Section 5.1.3, our techniques, combined with ideas of [FS11, Section 7],

imply some limitations to e�cient strong f -compression of SAT or other NP-complete

languages, for any “reasonable” combining function f .

Theorem 5.7.6. Suppose f : {0, 1}⇤ ! {0, 1} depends on all coordinates, and sup-

pose that R is a strong f -compression reduction for an NP-complete language L with

a target language L0 2 NP, computable in deterministic30 polynomial time. Then

NP ✓ coNP/poly.

Proof sketch. Suppose the strong f -compression reduction maps inputs (x1, . . . , xt) 2
{0, 1}t⇥n to an output z of length at most nc (independent of t); we have

z 2 L0 () f(L(x1), . . . , L(xt)) = 1 .

Fix an input length n, and let N := n2c+1. If f is non-monotone on inputs of size N ,

say with respect to the first coordinate, then we can non-uniformly fix some N � 1

strings x2, . . . , xN 2 {0, 1}n such that for x 2 {0, 1}n,

R(x, x2, . . . , xN) 2 L0 () L(x) = 0 .

This reduces the membership question for Ln to a membership question for L0 2 NP.

Otherwise, f is monotone for length-N inputs. Then by results of Nisan [Nis91],

we can “embed” an AND or OR of size
p
N into fN . That is, there exists some

subset S ✓ [N] of size at least
p
N = nc+.5, and an assignment to all inputs to f

outside of S, such that the restricted function is an AND or OR of its remaining

30(this assumption is for simplicity)

223

NOTE: As we noted in a correction to the chapter Intro, Subsection 5.7.3 contains a bug and Thm. 5.7.6 is wrong. Consult the ECCC revision of the paper for a corrected result.

coordinates. Thus, there exists a collection (x`)`/2S of length-n inputs to R, such that

for any setting to the remaining (length-n) inputs with indices in S,

R(x1, x2, . . . , xN) 2 L0 () OP`2S (L(x`)) = 1 ,

where here OP is either AND or OR. Thus for this input length n, we have (non-

uniformly) either an AND-compression or OR-compression reduction from L to target

L0, compressing by a polynomial amount. In either case, we can apply the techniques

of Section 5.7.2 to get a non-uniform proof system for membership in Ln. Combining

our work for each input length, we find that L 2 NP/poly. As L is NP-complete, the

Theorem is proved.

5.7.4 Limits to strong compression for parametrized prob-

lems

Next, we use Theorem 5.7.1 to give evidence against strong compressibility for “ex-

pressive” parametrized problems. The result we give below is a simple-to-state, repre-

sentative example; the quantitative settings studied here are not the only interesting

ones our techniques can handle.

Theorem 5.7.7. Say that P is OR-expressive or AND-expressive, e.g., one of the

problems listed in Theorems 5.5.5 and 5.5.6. Suppose additionally that P is strongly

PPT-compressible31 with error bound ⇠(m, k, w) satisfying ⇠(m, k, 1)  .5�k�O(1) (in-

dependent of m), i.e., with success probability � .5+ k�O(1). Then, every language in

NP is many-to-one reducible in non-uniform polynomial time to a problem in pr- SZK

(and NP ✓ coNP/poly).

Theorem 5.1.2 from the Introduction follows, by considering the special cases

P = OR(SAT) and P = AND(SAT).

Proof of Theorem 5.7.7. Suppose first that P is OR-expressive, with respect to the

NP-complete language L and with some parameter S(n)  poly(n). We apply item

31(as in Definition 5.5.8)

224

(End caution)

1 of Lemma 5.5.10 to L and the assumed strong compression reduction for P . Using

some function T (n)  poly(n) to be determined, and with w(n) := 1, we obtain a

PPT-OR-compression for L with parameters

t
1

(n) = T (n), t
2

(n)  S(n) · nO(1), ⇠0(n)  2�n .

(Here, the bound on t
2

is independent of the choice of T (n).) We evaluate

(1� 2⇠0(n))2 �
s

ln 2

2
· t2(n) + 1

t
1

(n)
� (1� 4 · 2�n)�

s
ln 2

2
· S(n) · n

O(1) + 1

T (n)
,

for some a > 0 (using S(n)  poly(n)). The expression above can be made greater

than .5 for large n by choosing a su�ciently fast-growing T (n)  poly(n). Under

such a setting, Eq (5.17) holds for (t
1

(n), t
2

(n), ⇠0(n)). We can then apply the first

assertion of Theorem 5.7.5, item 1 to our PPT-OR-compression for L, which yields

the desired conclusion.

The case where P is AND-expressive is handled analogously; in this case we apply

Lemma 5.5.10, item 2 and the first assertion of Theorem 5.7.4, item 2.

We can also apply Theorem 5.7.3 to show that, if any NP-complete language L

is PPT-OR-compressible by an error-free reduction with t
2

(n) = O(t
1

(n) log(t
1

(n))),

then NP has non-uniform perfect zero-knowledge proofs. From a deterministic AND-

compression reduction for L of this type, we get non-uniform perfect zero-knowledge

proofs for coNP. (Note that unlike pr- SZK, pr-PZK is not known to be closed under

complement.)

5.7.5 Application to problems with polynomial kernelizations

In this section we prove new limits to e�cient compression for the Satisfiability prob-

lem on d-CNFs, and for some problems on graphs and hypergraphs, partially extend-

ing results of Dell and Van Melkebeek [DvM10] to handle two-sided error. First, we

need some background.

225

Definition 5.7.8 (Hypergraphs, vertex covers, and cliques). For any integer d � 2,

a d-uniform hypergraph, or d-hypergraph, is a set H of size-d subsets of a vertex set

V = [N]. A vertex cover in a d-uniform hypergraph H is a subset of vertices that

intersects all hyperedges in H. A subset V 0 ✓ V is a clique in H if every size-d subset

of V 0 is a member of H.

Clearly H has a vertex cover of size s exactly if the “complement” hypergraph

H := {e : |e| = d ^ e /2 H} contains a clique of size N � s.

Definition 5.7.9. Define the parametrized problems

d-Vertex Cover := {h(H, s), 1Ni : H is a d-hypergraph on [N] and contains a vertex cover of size s} ,

d-Clique := {h(H, s), 1Ni : H is a d-hypergraph on [N] and contains a clique of size s} .32

Also define the parametrized d-CNF Satisfiability problem

d-SATpar := {h , 1Ni : is a satisfiable d-CNF on N variables} .

We will prove new limits on e�cient compression for these problems with the help

of the following powerful, ingenious reduction of Dell and Van Melkebeek.

Theorem 5.7.10 ([DvM10], Lemma 2). Fix d � 2, and let T (n) : N+ ! N+ be

polynomially bounded. There is a deterministic polynomial-time OR-compression re-

duction33 R⇤ for L = 3-SAT,34 with target language L0 = d-Clique. For the first

parameter we have t
1

(n) = T (n). The d-Clique instance h(H, s), 1Ni output by R⇤

satisfies

N = O
�
n ·max

�
n, T (n)1/d+o(1)

��
.

By straightforwardly combining Theorem 5.7.10 with our Theorem 5.7.4, we will

prove the following theorem:

32This is a di↵erent parametrized problem than the two clique-based problems mentioned in
Section 5.5.2.

33(as in Definition 5.4.20)
34Here 3-SAT is just the usual language {h i : is a satisfiable 3-CNF}.

226

Theorem 5.7.11. Let d � 2, " > 0 be given. There is a � = �(d, ") > 0 for which the

following holds. Suppose that d-Clique has a polynomial-time compression reduction

with output-size bound O(Nd�") and success probability .5+N��; that is (in the terms

of Definition 5.5.7), suppose that d-Clique is PPT-compressible with parameters c, ⇠

satisfying

c(M,N, 1)  O(Nd�"), ⇠(M,N, 1)  .5�N�� ,

with any target language L0.

Then, every language in NP is many-to-one reducible in non-uniform polynomial

time to a problem in pr- SZK (and NP ✓ coNP/poly).

The same result holds if we replace d-Clique with d-Vertex Cover or d-SATpar.

Theorem 5.7.11 gives a version of [DvM10, Theorems 1 and 2] that applies to prob-

abilistic reductions with two-sided error. However, our result does not apply to the

more general setting of oracle communication protocols, to which those earlier results

do apply (for co-nondeterministic protocols, and protocols avoiding false negatives).

Dell and Van Melkebeek use their techniques to show compression lower bounds

for several other interesting graph problems (including the Feedback Vertex Set,

Bounded-Degree Deletion, and Non-Planar Deletion problems) via reductions from 2-

Vertex Cover [DvM10, Section 5.2]. Using our results and the reductions in [DvM10],

one can also obtain similarly strong compression lower bounds for these problems for

the two-sided error setting.

Proof of Theorem 5.7.11. We already described a simple reduction (in both direc-

tions) between the d-Vertex Cover and d-Clique problems that preserves the param-

eter N . Also, an instance of d-Vertex Cover on N vertices is e�ciently reducible to

a d-SAT instance over O(N) variables [DvM10, Lemma 5]. Thus, it su�ces to prove

the result for d-Clique.

Let R be the compression reduction assumed to exist for d-Clique, with the value

� > 0 to be determined later. Let C > d be a large integer value, also to be

determined.

We will define an OR-compression reduction R0 for L = 3-SAT and target language

227

L0 from our assumption; this will allow us to apply Theorem 5.7.5. R0 works as follows.

We let t
1

(n) := nC . On input formulas
1

, . . . , nC , each of bit-length n, the reduction

first computes h(H, s), 1Ni := R⇤(
1

, . . . , nC), where R⇤ is as in Theorem 5.7.10.

Next, R0 outputs the value z := R(h(H, s), 1Ni).

R0 is clearly polynomial-time computable. To analyze R0, fix length-n formulas

1

, . . . , nC , and let

b :=
nC_

j=1

[j 2 3-SAT] .

By the OR-compression property of the deterministic mapping R⇤, we have

[b = 1] () h(H, s), 1Ni 2 d-Clique .

Then by the assumed reliability guarantee of R,

Pr[L0(z) = b] � .5 +N��

� .5 +
�
O
�
n ·max

�
n, nC/d+o(1)

�����

� .5 + n��(1+C/d)+o(1) .

Thus the error bound ⇠(n) of our reduction R0 is at most .5 � n��(1+C/d)+o(1). Also,

by the compression guarantee of R, the output z satisfies

|z|  O(Nd�")

 O
⇣�

n1+C/d+o(1)
�d�"⌘

 O
�
nC�1+o(1)

�
,

with the last step valid provided we take C > d(d + 1)/". Thus as an output-size

bound for R0, we may take t
2

(n) = O
�
nC�1+o(1)

�
. We evaluate

(1� 2⇠(n))2 �
s

ln 2

2
· t2(n) + 1

t
1

(n)
� 4n�2(�(1+C/d)�o(1)) �O(n�.5+o(1))

� n�⌦(1) ,

228

provided we take � < .25(1 + C/d)�1. Thus under these settings, Eq. (5.17) holds.

Then Theorem 5.7.5, item 1 gives the desired conclusion, since L = 3-SAT is NP-

complete.

5.8 Extension to quantum compression

In this section we will show that our results on OR- and AND-compression have

analogues for the model in which the compression scheme is allowed to be a quantum

algorithm, outputting a quantum state.

We assume familiarity with the basics of quantum computing and quantum in-

formation (for the needed background, consult [NC00]). However, readers without

this background should be able to follow the overall structure of the argument if

they are willing to regard “qubits,” “quantum operations” “quantum algorithms,”

and “quantum measurements” as certain types of black-box objects, and accept some

known facts about them. In particular, a “mixed state on m qubits” is a “quantum

superposition” over classical m-bit strings. Let

MSm

denote the collection of m-qubit mixed states. (MSm can be identified with the set of

2m-by-2m, trace-1, positive-semidefinite complex matrices.)

A “quantum operation” is a certain type of mapping OP : MSm ! MSm0 , for

some m,m0 > 0. (The operations allowed by quantum physics are the completely pos-

itive, trace-preserving (CPTP) maps ; these are a subset of the linear transformations

mapping MSm ⇢ Cm⇥m into MSm0 ⇢ Cm0⇥m0
.) We let

OPm,m0

denote the valid quantum operations from m-qubit into m0-qubit states.

“Quantum measurements” are measurements performed on quantum states to

yield information about these states; in the quantum setting, measurements are in-

229

herently probabilistic, and alter the states being measured. See [NC00, Chapter 2]

for a formal definition. Quantum states turn out to inherit some of the information-

theoretic limitations of their classical counterparts; this fact will be the basis for our

results on quantum compression.

5.8.1 Trace distance and distinguishability of quantum states

The trace distance is a metric on mixed quantum states from a shared state space [NC00];

we denote the trace distance between ⇢, ⇢0 2 MSm by ||⇢ � ⇢0||
tr

2 [0, 1]. Formally,

treating ⇢, ⇢0 as matrices,

||⇢� ⇢0||
tr

:=
1

2
Tr

hp
(⇢� ⇢0)2

i
.

This distance is intimately related to the distinguishability of quantum states. Sup-

pose ⇢, ⇢0 are two known states, and we are sent one or the other, each with equal

probability (depending on the outcome of an unbiased coin flip b 2 {0, 1}). We want

to guess b, by applying some series of quantum operations and measurements. For

any ⇢, ⇢0, it is known [NC00, Theorem 9.1] that our success probability at this task is

maximized by using a single binary measurement,35 depending on ⇢, ⇢0, and that our

maximum achievable success probability equals

1

2
(1 + ||⇢� ⇢0||

tr

) .

A probability distribution over mixed states is again a mixed state. Thus for a

distribution D over a finite universe U and a mapping R : U ! MSm, R(D) defines

a quantum state. We use the following standard claim concerning such states, which

follows from the distinguishability characterization of || · ||
tr

:

Claim 5.8.1. For any distributions D,D0 over a shared finite universe U , and any

35(i.e., a measurement with two possible outcomes)

230

mapping R : U ! MSm, we have

||R(D)�R(D0)||
tr

 ||D �D0||
stat

.

Similarly, for any valid quantum operation OP 2 OPm,m0 and states ⇢, ⇢0 2 MSm, we

have

||OP (⇢)�OP (⇢0)||
tr

 ||⇢� ⇢0||
tr

.

5.8.2 Quantum f-compression

The following notion of quantum compression is modeled on Definition 5.4.20. The

definition is made slightly more complicated by the fact that we no longer have the

notion of a “target language” for our reduction; instead, we will require that the

answer to our original instance of the decision problem f � L be recoverable by some

quantum measurement performed on the output state. (This measurement need not

be e�ciently performable, however.)

Definition 5.8.2 (Quantum f -compression reductions). Let L be a language, and

let f : {0, 1}⇤ ! {0, 1} be a Boolean function. Let t
1

(n), t
2

(n) : N+ ! N+ and

⇠(n) : N+ ! [0, 1] be given.

A quantum f -compression reduction for L, with parameters t
1

(n), t
2

(n), ⇠(n), is

a mapping R(x1, . . . , xm) outputting a mixed state ⇢. There must also exist a family

of (not necessarily e�ciently-performable) binary quantum measurements {Mn}n>0

on t
2

(n)-qubit states. We require the following properties: for all (x1, . . . , xt1(n)) 2
{0, 1}t1(n)⇥n,

1. The state ⇢ = R(x1, . . . , xt1(n)) is on t
2

(n) qubits;

2. We have

Pr
⇥Mn(⇢) = f

�
L(x1), . . . , L(xt1(n))

�⇤ � 1� ⇠(n) .

If some reduction R as above is computable in quantum polynomial time, we say

231

that L is QPT-f -compressible with parameters (t
1

(n), t
2

(n), ⇠(n)).

5.8.3 Quantum complexity classes

We will be using the class QIP[k] of languages definable by k-message, quantum

interative proof systems [Wat03]. Our treatment of these proof systems will be in-

formal, since all the technical properties we need are summarized in theorems from

prior work (for details see [Wat03, Wat02]). These are proof systems in which a

computationally-unbounded Prover exchanges quantum messages with a quantum

polynomial-time Verifier; a total of k = k(n) messages are exchanged. Verifier sends

the first message if k is even, or Prover if k is odd, and the parties alternate thereafter.

We take QIP :=
S

c>0

QIP[nc].

It was shown in [Wat03, KW00] that for any 3  k(n)  poly(n), PSPACE ✓
QIP[k(n)] = QIP[3]; the latter class was recently shown to equal PSPACE [JJUW11].

Importantly for us, however, the class QIP[2] is not known to contain even coNP. The

power of 3-message quantum proof systems is in contrast to the classical (private-coin)

interactive-proof classes IP[k(n)], where for any constant k � 2, IP[k] = IP[2] = AM,

and the latter class is believed to be much weaker than IP[poly(n)] = PSPACE.

In what follows, we will actually find it more convenient to work with the promise-

problem classes pr-QIP[k].36 The results we’ve summarized carry over to the promise

setting as well.

A model of quantum statistical zero-knowledge proofs was proposed byWatrous [Wat02],

and used to define the class QSZK of promise problems having polynomial-time proof

systems of this type.37 We will use pr-QSZK to denote this class. Watrous showed

in [Wat02] that Sahai and Vadhan’s “statistical distance characterization” of pr- SZK,

embodied in Definition 5.4.13, has a quantum analogue. First, we need a promise

problem involving trace distance. For a quantum circuit C with an m-qubit output

36This is to avoid having to define non-uniform versions of these classes, just as we avoided defining
non-uniform versions of AM and SZK.

37Watrous’s original model was of honest-verifier quantum statistical zero-knowledge proof sys-
tems; he later showed that these proof systems are equivalent in power to “cheating-verifier”
ones [Wat09].

232

register, let ⇢C denote the output state of C on some fixed input state (say, the

all-zeros state). We consider circuits built from a fixed, finite “universal” gate-set

(see [NC00, Chapter 4]).

Definition 5.8.3. For parameters 0  d  D  1, define the promise problem

TD�Dd = (⇧Y ,⇧N) as follows:

⇧Y := {hC,C 0i : ||⇢C � ⇢C0 ||
tr

� D} ,

⇧N := {hC,C 0i : ||⇢C � ⇢C0 ||
tr

 d} .

In this definition, both d = d(n) and D = D(n) may be parameters depending on the

input length n = |hC,C 0i|. (Here, the input description is a classical bit-string.)

Then, appealing to the result of [Wat02], we can use the following definition.

Definition 5.8.4. Let pr-QSZK be defined as the class of promise problems for which

there is a many-to-one (classical, deterministic) polynomial-time reduction from ⇧ to

TD�2/31/3.

Theorem 5.8.5 ([Wat02]). pr-QSZK is closed under complement.

Theorem 5.8.6 ([Wat02]). pr-QSZK ✓ pr-QIP[2] \ pr- coQIP[2].

For upper bounds on the complexity of TD�D(n)
d(n) , we have the following two results,

analogous to Theorems 5.4.15 and 5.4.14.

Theorem 5.8.7 (Follows from [Wat02]). Suppose 0  d = d(n) < D = D(n)  1 are

polynomial-time computable, and satisfy D > d+ 1

poly(n) . Then, TD
�D
d 2 pr-QIP[2].

If we drop the requirement that d,D be computable, but keep the gap requirement,

then TD�Dd is many-to-one reducible in non-uniform (classical, deterministic) poly-

nomial time to a problem in pr-QIP[2].

Theorem 5.8.7 follows from a “distinguishing protocol” analogous to that in The-

orem 5.4.15.38 Unlike the classical case, there is no known “non-uniform derandom-

38In [Wat02] only the case where D, d are constants is studied, but the result extends easily to
when they are functions of n. Also, the second case, where we merely have the gap requirement, is
not explicitly analyzed, but follows by a trivial modification of the proof of [Wat02, Theorem 4].

233

ization” result known for QIP[2] (or for other quantum classes). However, we do have

a satisfying analogue of Theorem 5.4.14:

Theorem 5.8.8 (Follows from [Wat02]). Suppose 0  d = d(n) < D = D(n)  1 are

polynomial-time computable, and satisfy D2 > d+ 1

poly(n) . Then, TD
�D
d 2 pr-QSZK.

If we drop the requirement that d,D be computable, but keep the gap requirement,

then TD�Dd is many-to-one reducible in non-uniform (classical, deterministic) poly-

nomial time to a problem in pr-QSZK.

5.8.4 Quantum distributional stability

We will use a quantum analogue of the distributional stability property:

Definition 5.8.9. Let t, t0, n 2 N+. Given a mapping F : {0, 1}t⇥n ! MSt0, and a

collection D
1

, . . . ,DT of mutually independent distributions over {0, 1}n, for j 2 [t]

let

�j := E
y⇠D

j

⇥||F (D
1

, . . . ,Dj�1, y,Dj+1

, . . . ,Dt)� F (D
1

, . . . ,Dt)||
tr

⇤
.

For � 2 [0, 1], say that F is �-quantumly-distributionally stable (or �-QDS) with

respect to D
1

, . . . ,Dt if

1

t

tX

j=1

�j  � .

The next lemma is analogous to Lemma 5.6.2.

Lemma 5.8.10. Let t, t0, n 2 N+. Let R : {0, 1}t⇥n ! MSt0 be given.

Then, R is �-QDS with respect to any input distributions D
1

, . . . ,Dt, where we

may take either of the bounds

1. � :=
q

ln 2

2

· t0

t ;

2. � := 1� 2�
t

0
t

�2.

The slight improvement in the bounds comes from the fact that R outputs exactly

t0 qubits. The proof of Lemma 5.8.10 is very similar to that of Lemma 5.6.2, and is

described in Section 5.11.

234

5.8.5 Building quantum disguising distributions

Next we prove quantum analogues of our Disguising-Distribution Lemmas. First, we

have the following analogue of Lemma 5.6.3:

Lemma 5.8.11. Let t, t0 2 N+, and let F (x1, . . . , xT) : {0, 1}T⇥n ! MSt0 be given.

Suppose F is �-QDS with respect to input distribution D⌦T , for every distribution D
over {0, 1}n.

Fix some distribution D over {0, 1}n, and let x1, . . . , xd be independently sampled

from D. Let k⇤ ⇠ U
[d]. Let bD denote the distribution defined by sampling uniformly

from the multiset {xk}k 6=k⇤. Define

�j := E
k⇤,x1,...,xd

h ���
���R

⇣
bD⌦(j�1), xk⇤ , bD⌦(T�j)

⌘
� R

⇣
bD⌦T

⌘���
���
tr

i
,

where all the bDs are to be mutually independent (for fixed values of x1, . . . , xk and

k⇤). Then,
1

T

tX

j=1

�j  � + 2T/d .

Proof. The proof is identical to that of Lemma 5.6.3, except that we replace statistical

distance with trace distance39 and appeal to Claim 5.8.1 to argue that applying R

does not increase trace distance between states.

After establishing a quantum analogue of Lemma 5.6.4, we have:

Lemma 5.8.12. Suppose F obeys the assumptions of Lemma 5.8.11. Let S ✓ {0, 1}n,
and fix d > 0. Given any " > 0, let s := d(.5 ln 2)n/"2e. Then there exists a collection

K
1

, . . . , Ks of size-d multisets contained in S, such that for every y 2 S the following

holds:

E
a⇠U[s],j⇤⇠U[t]

h ���
���F

⇣
U⌦(j⇤�1)K

a

, y,U⌦(T�j⇤)K
a

⌘
� F

�U⌦TK
a

����
���
tr

i
 � + 2T/(d+ 1) + " .

39(where appropriate—the input distributions we manipulate still are to be compared in statistical
distance)

235

The proof is identical to that of Lemma 5.6.5, but again replacing statistical

distance with trace distance. Then, by a proof analogous to that of Lemma 5.6.6, we

obtain:

Lemma 5.8.13 (Quantum Disguising-Distribution Lemma). Let R(x1, . . . , xt) :

{0, 1}t⇥n ! MSt0 be any possibly-randomized mapping, where n, t, t0 2 N+. Let

S ✓ {0, 1}n, and fix d > 0. Given any " > 0, let s := d(.5 ln 2)n/"2e. Let

b� := min

(r
ln 2

2
· t
0

t
, 1� 2�

t

0
t

�2
)

.

Then there exists a collection K
1

, . . . , Ks of size-d multisets contained in S, such that

for every y 2 S, we have

E
a⇠U[s],j⇤⇠U[t]

h ���
���R

⇣
U⌦(j⇤�1)K

a

, y, U⌦(t�j⇤)K
a

⌘
� R

�U⌦tK
a

����
���
tr

i

 b� + 2t/(d+ 1) + " .

5.8.6 Complexity upper bounds from quantum compression

schemes

Now we are ready to prove a quantum analogue of Theorem 5.7.1.

Theorem 5.8.14. Let L be any language. Suppose there is a QPT-OR-compression

reduction R(x1, . . . , xt) : {0, 1}t1(n)⇥n ! MSt2(n) for L with (not necessarily com-

putable) parameters t
1

(n), t
2

(n) : N+ ! N+, and with error bound ⇠(n) < .5. Let

b� := min

(r
ln 2

2
· t
0

t
, 1� 2�

t

0
t

�2
)

.

1. If for some c > 0 we have

(1� 2⇠(n))� b� � 1

nc
, (5.18)

then there is a non-uniform (classical, deterministic) polynomial-time many-to-

236

one reduction from L to a problem in pr-QIP[2].

2. If we have the stronger bound

(1� 2⇠(n))2 � b� � 1

nc
, (5.19)

then L has a non-uniform (classical, deterministic) polynomial-time many-to-

one reduction to a problem in pr-QSZK.

Proof of Theorem 5.8.14. The proof is closely analogous to that of Theorem 5.7.1,

except that our non-uniform reduction, on input y, outputs a description hC,C 0i of
a pair of quantum circuits. If y 2 L, then ||⇢C � ⇢C0 ||

tr

� D(n) := 1 � 2⇠(n); while

if y /2 L, we have ||⇢C � ⇢C0 ||
tr

 d(n) := 2~ � 1 + 1

nc

. Applying Theorems 5.8.7

and 5.8.8 gives us the complexity upper bounds in items 1 and 2.

Using Theorem 5.8.14, we can prove quantum versions of Theorems 5.7.4 and 5.7.5,

giving evidence against e�cient quantum OR- and AND-compression for NP-complete

languages, under the assumption that such languages are not non-uniformly reducible

to problems in pr-QIP[2], or alternatively, in pr-QSZK. A quantum analogue of The-

orem 5.7.3, item 1 can be proved. We can also give an analogue of Theorem 5.7.7

regarding quantum compression for “expressive” parametrized problems. All of these

quantum results treat compression reductions where the output state is of size deter-

mined by the various input parameters.

5.9 Alternative proofs of distributional stability

5.9.1 A proof based on Raz’s lemma

R. Impagliazzo and S. Vadhan noted a similarity between distributional stability

lemmas and a probabilistic lemma implicit in work of Raz [Raz98]. Vadhan pointed

us to the following convenient form, given by Shaltiel in [Sha10, Lemma 3.1]:

237

Lemma 5.9.1. There is a c > 0 for which the following holds. Let X1, . . . , X t be

i.i.d. random variables, and T an event with Pr[T] � 2��. Then for the conditioned

variables Xj
[T]

we have

Ej⇠U[t]
[||Xj

[T]

�Xj||
stat

]  " :=

r
c�

t
.

With this lemma we can derive a distributional stability result as follows. Suppose

R : St ! {0, 1}t0 is given, and consider independent inputs Xj ⇠ D to R. We let R

denote the random output value. For any output z of R, Lemma 5.9.1 above implies

that

Ei⇠U[n]
[||Xj

[R=z] �Xj||
stat

] 
p
c log

2

(1/Pr[R = z])/t .

Taking expectations over z ⇠ R and using Jensen’s inequality,

Ez⇠R,i⇠U[n]
[||Xj

[R=z] �Xj||
stat

]  Ez

hp
c log

2

(1/Pr[R = z])/t
i


p

Ez [c log
2

(1/Pr[R = z])/t]

=
p
c ·Hrv(t0)/t

(by the definition of Shannon entropy)

<
p
c(t0 + 1)/t .

Let R0 = R(Y 1, . . . , Y t) denote a sample of R based on inputs Y 1, . . . , Y t ⇠ D⌦t that
are independent of X1, . . . , X t. Now the crucial observation is that, for each j 2 [t],

we have the chain of equalities

Ez[||Xj
[R=z] �Xj||

stat

] = ||(Xj,R)� (Xj,R0)||
stat

= Exj⇠D[||R[Xj

=xj

]

�R||
stat

] .

Each equality follows from the “distinguishability interpretation” of statistical dis-

tance. Combining we get

Exj⇠D[||R[Xj

=xj

]

�R||
stat

] <
p
c(t0 + 1)/t) ,

238

which is comparable to what we got from the previous approach (up to constant

factors; here we have assumed i.i.d. variables Xj, but this is not essential for this

approach).

5.9.2 A proof based on the Average Encoding Theorem

The Average Encoding Theorem of [KNTSZ07] is a tool in quantum information

theory, that has the following classical analogue. (See [SV08, Fact 5], where a purely

classical proof is given. We restate the result slightly, converting from `1 distance to

statistical distance.)

Theorem 5.9.2. Let X,M be random variables. Let ⇧ be the distribution governing

M . Then for the conditioned distributions ⇧
[X=x] we have

X

x

Pr[X = x] · ||⇧
[X=x] � ⇧||

stat


r

ln 2 · I(X;M)

2
.

Using Theorem 5.9.2 along with techniques suggested by Nayak and similar to

those in the proof of [KNTSZ07, Theorem 5.4],40 we can derive a distributional-

stability result as follows. Again say we are given R : St ! {0, 1}t0 , and consider

independent inputs Xj ⇠ D to R, giving an output distribution denoted R. Applying

Theorem 5.9.2 to X := Xj,M := R, we have

Exj⇠Xj

⇥||R
[Xj

=x] �R||
stat

⇤ 
r

ln 2 · I(Xj;R)

2
.

Averaging over j 2 [t] and applying Jensen’s inequality and Lemma 5.4.4, we obtain

Ej⇠U[t],xj⇠Xj

⇥||R
[Xj

=x] �R||
stat

⇤  Ej⇠U[t]

"r
ln 2 · I(Xj;R)

2

#


s

ln 2 · Ej⇠U[t]
[I(Xj;R)]

2

40(That proof uses a version of the Average Encoding Theorem that treats Hellinger distance
rather than statistical distance.)

239


r

ln 2 · (t0 + 1)

2t
.

5.10 Our original distributional stability lemma

In this section we include our original proof of a distributional stability lemma, based

on coding-theoretic ideas. This lemma proves a distributional stability result for

mappings R : {0, 1}t⇥n ! {0, 1}t0 , where t0 + 2  t. In an earlier draft, we used

more complicated ideas to prove complexity upper bounds from AND-compression

reductions where t0 = O(t log t). This latter case can now be handled in the same way

as the case t0 ⌧ t, using the alternative bound on distributional stability provided by

Lemma 5.6.2, item 2.

First, we provide some further needed background.

5.10.1 Entropy and the unreliability of compressive encod-

ings

It is a basic principle of information theory that one cannot reliably encode a uniformly-

generated t-bit message by an encoding of length t�2 or less. (We can save essentially

one bit by using a variable-length output.) Below we state and prove a standard claim

that generalizes this fact, giving quantitative bounds on the reliability of compressive

encoding methods.

Lemma 5.10.1. Let t 2 N+, and let U be some finite universe. Say we are given a

possibly-randomized “encoding” function

Enc(x, y) : {0, 1}t ⇥ {0, 1}N ! U ,

depending on a “message” input x 2 {0, 1}t along with a “public randomness” input

y 2 {0, 1}N . (Enc may also have additional internal randomness.) Say we are also

240

given a (possibly-randomized, possibly-unreliable) “decoding” function

Dec(x, y) : U ⇥ {0, 1}N ! {0, 1}t ,

that also has access to the public randomness y.

Suppose X, Y are two independent random variables over {0, 1}t, {0, 1}N respec-

tively. For j 2 [t], let

pj := Pr
X,Y

[Decj(Enc(X, Y), Y) = Xj] ,

where X = (X
1

, . . . , Xt), and where Decj is the jth output bit of Dec.

Let pavg :=
1

t

Pt
j=1

pj. Then, we must have

H(pavg) � 1

t
(Hrv(X)� log

2

(|U |)) .

Our proof is closely modeled on the proof of a corresponding, but deeper, quantum

result [KdW04, Appendix B].41. To prove Lemma 5.10.1, we will use another basic

information-theoretic fact, Fano’s inequality:

Lemma 5.10.2 (Fano). [CT06, Chapter 2] Suppose Zin, Zout are two random vari-

ables: Zin an “input message” over some alphabet ⌃, and Zout an “output message”

over any domain. Let eZin be a (possibly-randomized) function of Zout, that attempts

to recover the value Zin. Let

perr := Pr[eZin 6= Zin] .

Here the randomness is over the entire experiment. Then, we have

H(perr) + perr · log
2

(|⌃|� 1) � Hrv(Zin|Zout) .

We only use the case |⌃| = 2, so the second term on the left-hand side vanishes.

41(or, Appendix A in the arxiv version. This part of [KdW04] is itself a rederivation of a result
from [Nay99b]; a similar result and proof appears in Nayak’s thesis [Nay99a, Theorem 3.2.8].)

241

Proof of Lemma 5.10.1. First we ask whether pavg � .5. If not, we simply negate

all of the decoding functions Decj, giving the modified average success probability

p0avg = 1�pavg, for which H(p0avg) = H(pavg). Next, note that the success probabilities

pj are taken over the randomness both in X and in Y (as well as in Enc,Dec). As Y

is independent of X, we may non-uniformly fix some setting to Y that maximizes the

sum of the conditional success probabilities. Then the re-modified average success

probability satisfies p00avg � p0avg � .5. As H(·) is decreasing on [.5, 1], any lower bound

proved for H(p00avg) will also lower-bound the H(pavg) for the original encoding scheme

with public randomness. Thus in the remainder of the proof, we assume pavg � .5 and

that the scheme uses no public randomness: our encoding Enc applies to X alone,

and our decoding functions apply to the message Enc(X) alone.

The chain rule for conditional entropy and the subadditivity of entropy imply that

Hrv(X|Enc(X)) =
tX

j=1

Hrv(Xj|X1

, . . . , Xj�1, Enc(X)) 
tX

j=1

Hrv(Xj|Enc(X)) .

(5.20)

Next, we apply Fano’s inequality, with Zin := Xj, and Zout := Enc(X). Thus in

this analysis we simply view (Xj0)j0 6=j as additional sources of randomness in the

encoding process. We let eZin := Decj(Enc(X)). Xj is binary—⌃ = {0, 1}—so

Fano’s inequality gives

H(pj) = H(1� pj) � Hrv(Xj|Enc(X)) .

Summing over j and using Eq. (5.20),

tX

j=1

H(pj) � Hrv(X|Enc(X))

� Hrv(X)�Hrv(Enc(X)) , (5.21)

again using subadditivity. Now, Enc(X) is a message over U , so Hrv(Enc(X)) 
log

2

(|U |). Also, the function H is concave on [0, 1]. Applying these observations to

242

Eq. (5.21), and using Jensen’s inequality, we have

H(pavg) � 1

t

tX

j=1

H(pj) � 1

t
(Hrv(X)� log

2

(|U |)) .

5.10.2 Bounds on the inverse entropy function

For ↵ 2 [0, 1], we will denote by H�1
+

(↵) the unique H-preimage of ↵ in the range

[.5, 1]. Similarly, let H�1� (↵) denote the unique H-preimage of ↵ in the range [0, .5].

The following bounds on the inverse entropy function are useful in understanding the

bounds provided by our original distributional stability lemma (Lemma 5.10.4, to be

presented shortly). These bounds on H�1
+

(·) are meant to be simple and illustrative,

and are not quite best-possible.

Lemma 5.10.3. We have the following facts:

1. If m > 0 is su�ciently large, then H�1
+

(1/m) < 1� 1/(4m log
2

m).

2. H�1
+

(1� �)  .5 +
p
ln 2

2

p
� +O(�3/2).

Proof. (1.) First consider any value p 2 (0, 1/2). We can upper-bound H(p) in the

following way:

H(p) = p log
2

(1/p) + (1� p| {z }
1

) log
2

(1/(1� p)| {z }
1+2p

)

< p log
2

(1/p) + 2p|{z}
(using log(1+c)<c for c>0)

< 3p log
2

(1/p) .

From this, one can easily verify that for m � 106, we have

H

✓
1

4m log
2

m

◆
<

1

m
.

243

Thus for such m,

H�1�

✓
1

m

◆
>

1

4m log
2

m
,

so that

H�1
+

✓
1

m

◆
= 1�H�1�

✓
1

m

◆
< 1� 1

4m log
2

m
,

giving item 1.

(2.) The binary entropy function H is infinitely di↵erentiable on (0, 1), with

H(.5) = 1, H 0(.5) = 0, H 00(.5) = �4(ln 2)�1 .

Thus for � 2 [0, .25) we have

H(.5 + �)  1� 4(ln 2)�1�2 +O(�3) .

By considering settings � :=
p
ln 2

2

p
� ± O(�3/2) and using that H(·) is decreasing on

(.5, 1), we verify item 2.

5.10.3 The lemma

Lemma 5.10.4. Let R(x1, . . . , xt) : {0, 1}t⇥n ! {0, 1}t0 be any possibly-randomized

mapping, where t, t0 2 N+ satisfy t0 + 2  t.

Then, R is �-distributionally stable with respect to any input distributions D
1

, . . . ,Dt,

where

� := 2H�1
+

✓
1� t0 + 1

t

◆
� 1 .

We will prove Lemma 5.10.4 by a reduction to an encoding/decoding task that

allows us to apply Lemma 5.10.1.

Proof of Lemma 5.10.4. Let D
1

, . . . ,Dt be independent distributions over {0, 1}n,
and for j 2 [t], let �j be as in Definition 5.6.1 for F := R.

Consider the following encoding/decoding experiment involving t “Receivers.” In

the experiment, we will use R as a communication channel to attempt to transmit t

244

bits b
1

, . . . , bt. Receiver j 2 [t] will be responsible for attempting to recover the value

bj. Formally:

1. For j 2 [t], let yj, wj ⇠ Dj (here yj, wj are independent of each other and of all

other yj
0
, wj0);

2. Also, and independently, for j 2 [t] let bj ⇠ U{0,1};

3. If bj = 0, let xj := yj. Otherwise, let xj := wj;

4. Let z := R(x1, . . . , xt) (a possibly-randomized value), and let z be sent to the

Receivers. Let {yj}j2[t] be visible to the receivers as public randomness;

5. Each Receiver j outputs a guess b̃j for bj, based on the values of the two random

variables yj and z). Specifically, Receiver j uses the maximum-likelihood rule

b̃j := ML(b|yj, z), described in Section 5.2.1.

Note that in making the guess b̃j, Receiver j does not inspect the values yj
0
, j0 6= j.

We analyze this experiment. First observe that, conditioned on a value yj seen by

Receiver j and on the value bj 2 {0, 1} (which Receiver j does not see in the actual

experiment), but leaving the other values {yj0}j 6=j unconditioned, the conditional

distribution on z is that z ⇠ R(D
1

, . . . ,Dj�1, yj,Dj+1

, . . . ,Dt) if bj = 0, and z ⇠
R(D

1

, . . . ,Dj, . . . ,Dt) if bj = 1.

Also, bj is unbiased and independent of yj. Thus, by the distinguishability inter-

pretation of statistical distance (see Section 5.2.1), Receiver j’s success probability in

guessing bj, conditioned exclusively on an observed value yj, equals

1

2

�
1 +

����R(D
1

, . . . ,Dj�1, yj,Dj+1

, . . . ,Dt)�R(D
1

, . . . ,Dj, . . . ,Dt)
����

stat

�
.

Thus Receiver j’s overall success probability in the experiment is precisely 1

2

(1 +

�j), where �j is as in the definition of distributional stability for R with respect to

D
1

, . . . ,Dt.

In our present setup, we can regard

z = R(x1, . . . , xt) =: Enc(b
1

, . . . , bt, y
1, . . . , yt)

245

as a randomized encoding function of b
1

, . . . , bt, with public randomness y1, . . . , yt

and additional private randomness w1, . . . , wt. Similarly, we can view

(b̃
1

, . . . , b̃t) =: Dec(z, y1, . . . , yt)

as a (deterministic) decoding function. The success probability of our encoding/decoding

experiment in successfully decoding bj is
1

2

(1 + �j).

Now Hrv(b1, . . . , bt) = t, and Hrv(Enc(b
1

, . . . , bt, y1, . . . , yt))  log
2

���{0, 1}t0��� <
t0 + 1. Applying Lemma 5.10.1, we find that

H

1

2

1 +

1

t

tX

j=1

�j

!!
� 1

t
(t� (t0 + 1)) = 1� t0 + 1

t
,

which implies that

1

t

tX

j=1

�j  2H�1
+

✓
1� t0 + 1

t

◆
� 1 = � .

Thus, R is �-DS with respect to D
1

, . . . ,Dt. As these distributions were arbitrary,

this proves Lemma 5.10.4.

It is also possible to give a slightly shorter and more direct proof of Lemma 5.10.4,

using the same basic information-theoretic steps from the proof of Lemma 5.10.1; one

can apply these to steps 1-4 of the experiment described above, without defining the

decoding process.42 However, we feel that the reduction to encoding/decoding is more

intuitive, and more clearly illustrates a general idea that has been useful in various

settings, e.g., in [Reg11].

5.11 Proof of quantum distributional stability

Here we describe how Lemma 5.8.10 is proved. We use various concepts and results of

quantum information theory. In particular, we assume familiarity with the notion of

42I thank James Lee and Avi Wigderson for suggesting to find a more direct information-theoretic
proof.

246

bipartite and reduced states. We let S(⇢) := �Tr(⇢ log
2

⇢) denote the Von Neumann

entropy of a quantum state (here, identifying ⇢ with its density matrix). In analogy

to the classical case, the entropy of a d-qubit state can be shown to be at least 0 and

at most d. For a bipartite state ⇢A,B on subsystems A,B, we let ⇢A (resp. ⇢B) denote

the reduced state over A (resp.B)

We define the quantum mutual information between subsystems A,B of a bipartite

state ⇢AB as

Iq(A;B) := S(⇢A) + S(⇢B)� S(⇢AB) .

See [NC00], and Chapter 11 in particular, for more background in quantum infor-

mation.

We will sometimes speak of quantum systems containing a subsystem that is a

classical random variable X. By this we mean a state of form

⇢X,Y =
X

x2supp(X)

Pr[X = x] · |xihx|⌦ �x , (5.22)

for some collection of quantum states {�x} on a fixed number of qubits (the “Y -

subsystem”).

Lemma 5.11.1. [NC00, Theorem 11.8.5, p. 513] For a classical random variable

X, and a state of the form in Eq. (5.22), we have

S(⇢X,Y) = H(X) +
X

x

Pr[X = x]S(�x) .

In particular, considering the case where Y is an empty register, we have S(⇢X) =

H(X).

We have the following elementary bound on the quantum mutual information

between a classical message and its quantum encoding.43

Lemma 5.11.2. For a classical random variable X, and a state of the form in

43I thank Scott Aaronson and Thomas Vidick for helping me to understand this fact.

247

Eq. (5.22), with the states {�x} on d qubits, we have

Iq(X : Y) = S(⇢Y)�
X

x

Pr[X = x]S(�x)  d .

Proof. Using Lemma 5.11.1, we calculate

Iq(X : Y) = S(⇢X) + S(⇢Y)� S(⇢XY)

= H(X) + S(⇢Y)�
"
H(X) +

X

x

Pr[X = x]S(�x)

#

= S(⇢Y)�
X

x

Pr[X = x]S(�x)

 d ,

since ⇢Y consists of d qubits and S(�x) � 0 for each x.

Not all properties of classical entropy and mutual information are inherited by

their quantum counterparts.44 However, we have [Nay99a, p. 33 and Appendix A]:

Fact 5.11.3. Quantum mutual information obeys the following properties, for all

X, Y, Z:

1. Iq(X;Y) = Iq(Y ;X) � 0;

2. Iq(X; (Y, Z)) = Iq(X;Y) + Iq((X, Y);Z)� Iq(Y ;Z);

3. (Strong subadditivity) Iq(X; (Y, Z)) � Iq(X;Y);

4. Iq(X;Z) = 0 if the subsystems X,Z are independent classical random variables.

Item 3 is a nontrivial fact in the quantum setting, with multiple equivalent for-

mulations; see [NC00, Chapter 11].

With these facts in hand, the proof of Lemma 5.11.4 below exactly follows that

of Lemma 5.4.4.
44For example, it is not generally true that S(⇢AB)  S(⇢A) by analogy with the fact that

Hrv((X,Y)) � Hrv(X). Fact 5.4.1. Note, though, that we don’t use this classical fact in proving
Lemma 5.6.2.

248

Lemma 5.11.4. If X1, . . . , X t are independent classical random variables and Y a

quantum subsystem, then

Iq(Y ; (X1, . . . , X t)) �
X

j2[t]
Iq(Y ;Xj) .

Next, we need quantum analogues of Pinsker’s and Vajda’s inequalities. For mixed

states ⇢, � over the same number of qubits, define the relative entropy (a quantum

analogue of Kullback-Leibler divergence) as

S(⇢||�) := Tr(⇢ log
2

(�))� S(⇢) .

We also have the following analogue of Fact 5.4.6 [KNTSZ07, p. 10]:

Fact 5.11.5. I(A;B) = S(⇢AB||⇢A ⌦ ⇢B).

A quantum Pinsker inequality was explicitly proved in [KNTSZ07, Theorem III.1].45

However, that proof actually demonstrates a more general principle:

Theorem 5.11.6 ([KNTSZ07]). Suppose that for some ↵, � � 0, the (classical)

statistical distance and Kullback-Leibler divergence obey the relationship

||X � Y ||
stat

� ↵ =) D
KL

(X||Y) � � .

for every pair of classical distributions X, Y .

Then, for any pair ⇢, � of quantum states,

||⇢� �||
tr

� ↵ =) S(⇢||�) � � .

Combining this principle with the classical Pinsker and Vajda inequalities, we

obtain:

45An earlier version appears in [OP04].

249

Corollary 5.11.7 (Quantum Pinsker inequality). For any states ⇢, �,

S(⇢||�) � 2

ln 2
· ||⇢� ⇢0||2

tr

Corollary 5.11.8 (Quantum Vajda inequality). For any states ⇢, �,

S(⇢||�) � 1

ln 2

✓
ln

✓
1

1� ||⇢� �||
tr

◆
� 1

◆
.

In the quantum setting we let R denote the mixed quantum state R(X1, . . . , X t),

where Xj ⇠ Dj. The inequality

Iq((X
1, . . . , X t);R)  t0

follows from Lemma 5.11.1, since R 2 MSt0 . With the assembled tools in hand,

the proof of Lemma 5.8.10 is essentially identical to that of Lemma 5.6.2. The one

di↵erence is that the classical equality

||(Xj,R)�(Y j,R)||
stat

= Exj⇠D
j

⇥����R
�D

1

, . . . ,Dj�1, xj,Dj+1

, . . . ,Dt

��R (D
1

, . . . ,Dt)
����

stat

⇤

we used there is replaced by the inequality

||(Xj,R)�(Y j⌦R)||
tr

� Exj⇠D
j

⇥����R
�D

1

, . . . ,Dj�1, xj,Dj+1

, . . . ,Dt

��R (D
1

, . . . ,Dt)
����

tr

⇤
.

This inequality follows by considering the experiment that first measures the Xj

register, then performs an optimal distinguishing measurement on R conditioned on

the outcome of the first measurement. Note that this inequality goes in the needed

direction.

5.12 Questions for further study

1. Can we extend the limitations we show on e�cient compression for AND(SAT)

and OR(SAT), to give corresponding lower bounds on the cost of solving these

250

problems in the oracle communication model studied by Dell and Van Melke-

beek [DvM10]? These authors were able to extend the lower bounds of [FS11] for

OR(SAT) to this more general setting. Proceeding by straightforward analogy

in our case seems to fail, however.

2. Using our results on the infeasibility of compression for AND(SAT), can we

extend the work of [DvM10] to prove new kernel-size lower bounds for interesting

problems with polynomial kernels, under the assumption NP * coNP/poly?

3. Can we obtain a better quantitative understanding of the limits to e�cient f -

compression of NP-complete languages, where f is a combining function other

than OR or AND? The case f =
Wm

i=1

⇣Vm
j=1

xi,j
⌘
is an interesting candidate

for study.

As noted in Section 5.1.3, our methods imply infeasibility of strong f -compression

to any target language, for any monotone combining f depending on all vari-

ables. We can also handle non-monotone f , provided the sensitivity s(f) satis-

fies s(f) = n⌦(1). (See [BdW02] for background on sensitivity.)

If f is non-monotone and depends on all variables, but has low sensitivity,

we seem to need the additional requirement that the target language L0 be in

NP in order to prove compression lower bounds (under the assumption NP *

coNP/poly). As a concrete example of a question this leaves open: is there a

strong f -compression reduction from SAT to any target language L0 (beyond

NP), when f is the “index function”

f(x
1

, . . . , x
logn, y1, . . . , yn) := yx ?

4. Can we find other applications for the Disguising-Distribution Lemma?

251

NOTE: The last 2 paragraphs of Question 3 are incorrect due to the mistake in Sec. 5.7.3. However, the open problem about the Index function below is solved by the methods of our revised ECCC paper.

5.13 Chapter acknowledgments

I thank Scott Aaronson, Hans Bodlaender, Holger Dell, Lance Fortnow, Russell Im-

pagliazzo, James Lee, Dieter van Melkebeek, Ashwin Nayak, Karolina Soltys, Salil

Vadhan, Thomas Vidick, Avi Wigderson, Ryan Williams, and several anonymous re-

viewers for helpful comments. Thanks especially to Russell, Ashwin, and Salil for

allowing me to include their alternative proof suggestions.

252

Bibliography

[Aar05] Scott Aaronson. Limitations of quantum advice and one-way communi-
cation. Theory of Computing, 1(1):1–28, 2005. Earlier version in CCC
’04.

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of
Boolean functions. Combinatorica, 7(1):1–22, 1987.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

[ABG+01] Andris Ambainis, Harry Buhrman, William I. Gasarch, Bala Kalyana-
sundaram, and Leen Torenvliet. The communication complexity of enu-
meration, elimination, and selection. J. Comput. Syst. Sci., 63(2):148–
185, 2001. Earlier version in CCC ’00.

[Adl78] Leonard M. Adleman. Two theorems on random polynomial time. In
19th IEEE FOCS, pages 75–83, 1978.

[AFW81] L. Auslander, E. Feig, and S. Winograd. Direct sums of bilinear algo-
rithms. Linear Algebra and its Applications, 38:175 – 192, 1981.

[AH91] William Aiello and Johan H̊astad. Statistical zero-knowledge languages
can be recognized in two rounds. J. Comput. Syst. Sci., 42(3):327–345,
1991.

[AHPV05] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Ge-
ometric approximation via coresets, 2005. Survey article.

[AKW90] Noga Alon, Mauricio Karchmer, and Avi Wigderson. Linear circuits
over GF(2). SIAM J. Comput., 19(6):1064–1067, 1990.

[Alt94] Ingo Althöfer. On sparse approximations to randomized strategies and
convex combinations. Linear Algebra and its Applications, 199, Supple-
ment 1(0):339 – 355, 1994.

[AMRR11] Andris Ambainis, Löıck Magnin, Martin Roetteler, and Jérémie Roland.
Symmetry-assisted adversaries for quantum state generation. In IEEE
Conference on Computational Complexity, pages 167–177, 2011.

253

[And87] A. E. Andreev. A method for obtaining e�cient lower bounds for mono-
tone complexity. Algebra and Logic, 26:1–18, 1987.

[AP94] Noga Alon and Pavel Pudlák. Superconcentrators of depths 2 and 3;
odd levels help (rarely). J. Comput. Syst. Sci., 48(1):194–202, 1994.

[ASdW09] Andris Ambainis, Robert Spalek, and Ronald de Wolf. A new quantum
lower bound method, with applications to direct product theorems and
time-space tradeo↵s. Algorithmica, 55(3):422–461, 2009. Earlier version
in STOC ’06.

[Aus06] David Austin. How Google finds your needle in the web’s
haystack (AMS feature column, online), December 2006.
http://www.ams.org/samplings/feature-column/fcarc-pagerank.

[BBCR10] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to com-
press interactive communication. In 42nd ACM STOC, pages 67–76,
2010.

[BDFH09] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny
Hermelin. On problems without polynomial kernels. J. Comput. Syst.
Sci., 75(8):423–434, 2009. Earlier version in ICALP ’08.

[BDKW10] Amos Beimel, Sebastian Ben Daniel, Eyal Kushilevitz, and Enav Wein-
reb. Choosing, agreeing, and eliminating in communication complexity.
In 37th ICALP, pages 451–462, 2010.

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision
tree complexity: a survey. Theor. Comput. Sci., 288(1):21–43, 2002.

[BFP+73] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest,
and Robert Endre Tarjan. Time bounds for selection. J. Comput. Syst.
Sci., 7(4):448–461, 1973.

[BG81] Charles H. Bennett and John Gill. Relative to a random oracle A, PA !=

NPA != co-NPA with probability 1. SIAM J. Comput., 10(1):96–113,
1981.

[BH08] Harry Buhrman and John M. Hitchcock. NP-hard sets are exponentially
dense unless coNP ✓ NP/poly. In IEEE Conference on Computational
Complexity, pages 1–7, 2008.

[BI87] Manuel Blum and Russell Impagliazzo. Generic oracles and oracle
classes (extended abstract). In FOCS, pages 118–126, 1987.

[Bir67] Garrett Birkho↵. Lattice Theory. American Mathematical Society, 1967.

254

[BJK11a] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Cross-
composition: A new technique for kernelization lower bounds. In
STACS, pages 165–176, 2011.

[BJK11b] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernel
bounds for path and cycle problems. In IPEC, pages 145–158, 2011.

[BJK11c] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Prepro-
cessing for treewidth: A combinatorial analysis through kernelization.
In 38th ICALP, pages 437–448, 2011.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM J. Comput., 13(4):850–
864, 1984. Earlier version in FOCS ’82.

[BNRdW07] Harry Buhrman, Ilan Newman, Hein Röhrig, and Ronald de Wolf.
Robust polynomials and quantum algorithms. Theory Comput. Syst.,
40(4):379–395, 2007. Earlier version in STACS ’05.

[BR11] Mark Braverman and Anup Rao. Information equals amortized com-
munication. In 52nd IEEE FOCS, pages 748–757, 2011.

[Bra12] Mark Braverman. Interactive information complexity. In 44th ACM
STOC, pages 505–524, 2012.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives.
Theor. Comput. Sci., 22:317–330, 1983.

[Bsh89] Nader H. Bshouty. On the extended direct sum conjecture. In 21st ACM
STOC, pages 177–185, 1989.

[Bsh98] Nader H. Bshouty. On the direct sum conjecture in the straight line
model. J. Complexity, 14(1):49–62, 1998. Earlier version in ESA ’93.

[BTY11] Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel
bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci.,
412(35):4570–4578, 2011. Earlier version in ESA ’09.

[Bub86] Siegfried Bublitz. Decomposition of graphs and monotone formula size
of homogeneous functions. Acta Informatica, 23(6):689–696, 1986.

[Buh] Harry Buhrman. Personal communication.

[CCDF97] Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows.
Advice classes of parameterized tractability. Annals of Pure and Applied
Logic, 84(1):119 – 138, 1997.

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit
Sahai. Exposure-resilient functions and all-or-nothing transforms. In
EUROCRYPT, pages 453–469, 2000.

255

[CFL83] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Lower
bounds for constant depth circuits for prefix problems. In 10th ICALP,
pages 109–117, 1983.

[CFL85] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Un-
bounded fan-in circuits and associative functions. J. Comput. Syst. Sci.,
30(2):222–234, 1985.

[CFM11] Yijia Chen, Jörg Flum, and Moritz Müller. Lower bounds for kernel-
izations and other preprocessing procedures. Theory Comput. Syst.,
48(4):803–839, 2011. Earlier version in CiE ’09.

[CGS12] Marek Cygan, Harold N. Gabow, and Piotr Sankowski. Algorithmic
applications of Baur-Strassen’s theorem: Shortest cycles, diameter and
matchings. CoRR, abs/1204.1616, 2012.

[Che08a] Dmitriy Yu. Cherukhin. Lower bounds for Boolean circuits with finite
depth and arbitrary gates. Electronic Colloquium on Computational
Complexity (ECCC), TR08-032, 2008.

[Che08b] Dmitriy Yu. Cherukhin. Lower bounds for depth-2 and depth-3 Boolean
circuits with arbitrary gates. In 3rd CSR, pages 122–133, 2008.

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 3rd edition, 2009.

[com10] comScore. comscore reports global search market growth
of 46 percent in 2009 (web article), January 2010.
http://www.comscore.com/Press Events/Press Releases/
2010/1/Global Search Market Grows 46 Percent in 2009.

[CRR90] Leonard S. Charlap, Howard D. Rees, and David P. Robbins. The
asymptotic probability that a random biased matrix is invertible. Dis-
crete Mathematics, 82(2):153–163, 1990.

[CSWY01] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih
Yao. Informational complexity and the direct sum problem for simulta-
neous message complexity. In 42nd IEEE FOCS, pages 270–278, 2001.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley-Interscience, 2nd edition, 2006.

[DDPW83] Danny Dolev, Cynthia Dwork, Nicholas Pippenger, and Avi Wigder-
son. Superconcentrators, generalizers and generalized connectors with
limited depth (preliminary version). In 15th ACM STOC, pages 42–51,
1983.

[DF99] R. G. Downey and M.R. Fellows. Parametrized Complexity. Springer
(Monographs in Computer Science), 1st edition, 1999.

256

[DLS09] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility
through colors and IDs. In 36th ICALP, pages 378–389, 2009.

[DM12] Holger Dell and Dániel Marx. Kernelization of packing problems. In
23rd ACM-SIAM SODA, pages 68–81, 2012.

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Mea-
sure for the Analysis of Randomized Algorithms. Cambridge University
Press, 1st edition, 2009.

[Dru12] Andrew Drucker. Improved direct product theorems for randomized
query complexity. Computational Complexity, 21(2):197–244, 2012.

[DvM10] Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial
sparsification unless the polynomial-time hierarchy collapses. In 42nd
ACM STOC, pages 251–260, 2010.

[FGM+89] Martin Fürer, Oded Goldreich, Yishay Mansour, Michael Sipser, and
Stathis Zachos. On completeness and soundness in interactive proof
systems. Advances in Computing Research, 5:429–442, 1989.

[FHT03] Alexei A. Fedotov, Peter Harremoës, and Flemming Topsøe. Refine-
ments of Pinsker’s inequality. IEEE Transactions on Information The-
ory, 49(6):1491–1498, 2003.

[FKNN95] Tomás Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized
communication complexity. SIAM J. Comput., 24(4):736–750, 1995.
Earlier version in FOCS ’91.

[For87] Lance Fortnow. The complexity of perfect zero-knowledge (extended
abstract). In 19th ACM STOC, pages 204–209, 1987.

[For89] Lance Fortnow. Complexity-theoretic aspects of interactive proof sys-
tems, 1989. Ph.D. thesis, MIT LCS.

[FP11] Franz Franchetti and Markus Püschel. FFT (Fast Fourier Transform).
In David A. Padua, editor, Encyclopedia of Parallel Computing, pages
658–671. Springer, 2011.

[FRPU94] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Comput-
ing with noisy information. SIAM J. Comput., 23(5):1001–1018, 1994.
Earlier version in STOC ’90.

[FS11] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compres-
sion and succinct PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106,
2011. Earlier version in STOC ’08.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, cir-
cuits, and the polynomial-time hierarchy. Mathematical Systems Theory,
17(1):13–27, 1984. Earlier version in FOCS ’81.

257

[FW84] Ephraim Feig and Shmuel Winograd. On the direct sum conjecture.
Linear Algebra and its Applications, 63:193 – 219, 1984.

[FZ77] Charles M. Fiduccia and Yechezkel Zalcstein. Algebras having linear
multiplicative complexities. J. ACM, 24(2):311–331, 1977.

[GG81] M. J. Fischer Giulia Galbiati. On the complexity of 2-output boolean
networks. Theor. Comput. Sci., 16:177–185, 1981.

[GHK+12] Anna Gál, Kristo↵er Arnsfelt Hansen, Michal Koucký, Pavel Pudlák,
and Emanuele Viola. Tight bounds on computing error-correcting codes
by bounded-depth circuits with arbitrary gates. In 44th ACM STOC,
pages 479–494, 2012.

[GN07] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and prob-
lem kernelization. SIGACT News, 38(1):31–45, 2007.

[GNW95] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-
lemma. Electronic Colloquium on Computational Complexity (ECCC),
TR95-050, 1995.

[Gol10] Oded Goldreich. A brief introduction to property testing. In Oded
Goldreich, editor, Property Testing, volume 6390 of Lecture Notes in
Computer Science, pages 1–5. Springer, 2010.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins
in interactive proof systems. In 18th ACM STOC, pages 59–68, 1986.

[GSV98] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier sta-
tistical zero-knowledge equals general statistical zero-knowledge. In 30th
ACM STOC, pages 399–408, 1998.

[GV11] Oded Goldreich and Salil P. Vadhan. On the complexity of computa-
tional problems regarding distributions (a survey). Electronic Collo-
quium on Computational Complexity (ECCC), TR11-004:4, 2011.

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits.
In 18th ACM STOC, pages 6–20, 1986.

[HH91] Juris Hartmanis and Lane A. Hemachandra. One-way functions and the
nonisomorphism of NP-complete sets. Theor. Comput. Sci., 81(1):155–
163, 1991.

[HJMR10] Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Rad-
hakrishnan. The communication complexity of correlation. IEEE Trans-
actions on Information Theory, 56(1):438–449, 2010. Earlier version in
CCC ’07.

258

[HN10] Danny Harnik and Moni Naor. On the compressibility of NP instances
and cryptographic applications. SIAM J. Comput., 39(5):1667–1713,
2010. Earlier version in FOCS ’06.

[HS11] Thomas Holenstein and Grant Schoenebeck. General hardness ampli-
fication of predicates and puzzles - (extended abstract). In 8th TCC,
pages 19–36, 2011.

[HW12] Danny Hermelin and Xi Wu. Weak compositions and their applica-
tions to polynomial lower bounds for kernelization. In 23rd ACM-SIAM
SODA, pages 104–113, 2012.

[IJKW10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi
Wigderson. Uniform direct product theorems: Simplified, optimized,
and derandomized. SIAM J. Comput., 39(4):1637–1665, 2010. Earlier
version in STOC ’08.

[IK10] Russell Impagliazzo and Valentine Kabanets. Constructive proofs of
concentration bounds. In 14th RANDOM, pages 617–631, 2010.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard prob-
lems. In 36th IEEE FOCS, pages 538–545, 1995.

[IPS97] Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. Size-
depth tradeo↵s for threshold circuits. SIAM J. Comput., 26(3):693–707,
1997. Earlier version in STOC ’93.

[IRW94] Russell Impagliazzo, Ran Raz, and Avi Wigderson. A direct product
theorem. In IEEE Structure in Complexity Theory Conference, pages
88–96, 1994.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires expo-
nential circuits: Derandomizing the XOR lemma. In 29th ACM STOC,
pages 220–229, 1997.

[Jai10a] Rahul Jain. Strong direct product conjecture holds for all relations
in public coin randomized one-way communication complexity. CoRR,
abs/1010.0522, 2010.

[Jai10b] Rahul Jain. A strong direct product theorem for two-way public coin
communication complexity. CoRR, abs/1010.0846, 2010.

[JáJ92] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley,
1992.

[JJUW11] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP
= PSPACE. J. ACM, 58(6):30, 2011. Earlier version in STOC ’10.

259

[JKS10] Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum
results for deterministic and randomized decision tree complexity. Inf.
Process. Lett., 110:893–897, 2010.

[JPY12] Rahul Jain, Attila Pereszlényi, and Penghui Yao. A direct product the-
orem for bounded-round public-coin randomized communication com-
plexity. CoRR, abs/1201.1666, 2012.

[JRS03] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A direct sum
theorem in communication complexity via message compression. In 30th
ICALP, pages 300–315, 2003.

[JS10] Stasys Jukna and Georg Schnitger. Circuits with arbitrary gates for
random operators. CoRR, abs/1004.5236, 2010.

[JT86] Joseph JáJá and Jean Takche. On the validity of the direct sum con-
jecture. SIAM J. Comput., 15(4):1004–1020, 1986.

[Juk10a] Stasys Jukna. Entropy of operators or why matrix multiplication is hard
for depth-two circuits. Theory Comput. Syst., 46(2):301–310, 2010.

[Juk10b] Stasys Jukna. Representing (0, 1)-matrices by Boolean circuits. Discrete
Mathematics, 310(1):184–187, 2010.

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers.
Algorithms and Combinatorics Series, #27. Springer-Verlag New York,
LLC, 2012.

[KdW04] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for
2-query locally decodable codes via a quantum argument. J. Comput.
Syst. Sci., 69(3):395–420, 2004. Earlier version in STOC ’03.

[Kla10] Hartmut Klauck. A strong direct product theorem for disjointness. In
42nd ACM STOC, pages 77–86, 2010.

[KN96] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cam-
bridge University Press, 1996.

[KNTSZ07] Hartmut Klauck, Ashwin Nayak, Amnon Ta-Shma, and David Zucker-
man. Interaction in quantum communication. IEEE Transactions on
Information Theory, 53(6):1970–1982, 2007.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume III:
Sorting and Searching. Addison-Wesley, 1973.

[Kor03] A. D. Korshunov. Monotone Boolean functions. Russian Math. Surveys,
58:929–1001, 2003.

260

[Kra12] Stefan Kratsch. Co-nondeterminism in compositions: a kernelization
lower bound for a Ramsey-type problem. In 23rd ACM-SIAM SODA,
pages 114–122, 2012.

[KRW95] Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic
depth lower bounds via the direct sum in communication complexity.
Computational Complexity, 5(3/4):191–204, 1995. Earlier version in
Structure in Complexity Theory Conference ’91.

[KŠdW07] Hartmut Klauck, Robert Špalek, and Ronald de Wolf. Quantum and
classical strong direct product theorems and optimal time-space trade-
o↵s. SIAM J. Comput., 36(5):1472–1493, 2007. Earlier version in FOCS
’04.

[KW00] Alexei Kitaev and John Watrous. Parallelization, amplification, and
exponential time simulation of quantum interactive proof systems. In
32nd ACM STOC, pages 608–617, 2000.

[KW12] Stefan Kratsch and Magnus Wahlström. Compression via matroids: a
randomized polynomial kernel for odd cycle transversal. In 23rd ACM-
SIAM SODA, pages 94–103, 2012.

[Lan12] J. M. Landsberg. Tensors: Geometry and Applications. Graduate Stud-
ies in Mathematics, vol. 128. American Mathematical Society, 2012.

[LMM03] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing
large games using simple strategies. In 4th ACM Conference on Elec-
tronic Commerce, pages 36–41, 2003.

[Lok09] Satyanarayana V. Lokam. Complexity lower bounds using linear algebra.
Foundations and Trends in Theoretical Computer Science, 4(1-2):1–155,
2009.

[LR12] Troy Lee and Jérémie Roland. A strong direct product theorem for quan-
tum query complexity. In IEEE Conference on Computational Complex-
ity, pages 236–246, 2012.

[LSŠ08] Troy Lee, Adi Shraibman, and Robert Špalek. A direct product theorem
for discrepancy. In IEEE Conference on Computational Complexity,
pages 71–80, 2008.

[Lup56] O.B. Lupanov. On rectifier and switching-and-rectifier schemes. Dokl.
Akad. Nauk SSSR, 111:1171–1174, 1956.

[LY94] Richard J. Lipton and Neal E. Young. Simple strategies for large zero-
sum games with applications to complexity theory. In 26th ACM STOC,
pages 734–740, 1994.

261

[Mau02] Ueli M. Maurer. Indistinguishability of random systems. In Lars R.
Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Com-
puter Science, pages 110–132. Springer, 2002.

[Meh79] Kurt Mehlhorn. Some remarks on Boolean sums. Acta Inf., 12:371–375,
1979.

[MMRV02] Konstantin Makarychev, Yury Makarychev, Andrei E. Romashchenko,
and Nikolai K. Vereshchagin. A new class of non-Shannon-type in-
equalities for entropies. Communications in Information and Systems,
2(2):147–166, 2002.

[MPR07] Ueli M. Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguisha-
bility amplification. In Alfred Menezes, editor, CRYPTO, volume 4622
of Lecture Notes in Computer Science, pages 130–149. Springer, 2007.

[Mut05] S. Muthukrishnan. Data streams: Algorithms and applications. Foun-
dations and Trends in Theoretical Computer Science, 1(2), 2005.

[Nay99a] Ashwin Nayak. Lower bounds for Quantum Computation and Commu-
nication. PhD thesis, University of California, Berkeley, 1999.

[Nay99b] Ashwin Nayak. Optimal lower bounds for quantum automata and ran-
dom access codes. In 40th IEEE FOCS, pages 369–377, 1999.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

[Nec71] E. I. Nechiporuk. On a Boolean matrix. Syst.Th.Res., 21:236–239, 1971.

[Nis91] Noam Nisan. CREW PRAMs and decision trees. SIAM J. Comput.,
20(6):999–1007, 1991. Earlier version in STOC ’89.

[NRS99] Noam Nisan, Steven Rudich, and Michael E. Saks. Products and help
bits in decision trees. SIAM J. Comput., 28(3):1035–1050, 1999. Earlier
version in FOCS ’94.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput.
Syst. Sci., 49(2):149–167, 1994. Earlier version in FOCS ’88.

[NW95] Noam Nisan and Avi Wigderson. On the complexity of bilinear forms:
dedicated to the memory of Jacques Morgenstern. In 27th ACM STOC,
pages 723–732, 1995.

[Oka00] Tatsuaki Okamoto. On relationships between statistical zero-knowledge
proofs. J. Comput. Syst. Sci., 60(1):47–108, 2000. Earlier version in
STOC ’96.

262

[OP04] Masanori Ohya and Denes Petz. Quantum Entropy and its Use. Texts
and Monographs in Physics. Springer-Verlag, Heidelberg, 2nd edition,
2004.

[Pau76] Wolfgang J. Paul. Realizing Boolean functions on disjoint sets of vari-
ables. Theor. Comput. Sci., 2(3):383–396, 1976.

[Pip80] Nicholas Pippenger. On another Boolean matrix. Theor. Comput. Sci.,
11:49–56, 1980.

[Pos11] Alexey Pospelov. Faster polynomial multiplication via discrete Fourier
transforms. In 6th CSR, pages 91–104, 2011.

[PR94] P. Pudlák and V. Rödl. Some combinatorial-algebraic problems from
complexity theory. Discrete Mathematics, 136(1-3):253 – 279, 1994.

[Pud94] Pavel Pudlák. Communication in bounded depth circuits. Combinator-
ica, 14(2):203–216, 1994.

[PV76] Nicholas Pippenger and Leslie G. Valiant. Shifting graphs and their
applications. J. ACM, 23(3):423–432, 1976.

[PY82] Nicholas Pippenger and Andrew C.-C. Yao. Rearrangeable networks
with limited depth. SIAM Journal on Algebraic and Discrete Methods,
3:411–417, 1982.

[Raz85a] A. A. Razborov. Lower bounds for the monotone complexity of some
boolean functions. Dokl. Ak. Nauk. SSSR, 281:798–801, 1985. In Rus-
sian. English translation in: Soy. Math. Dokl., 31 (1985), 354-357.

[Raz85b] A. A. Razborov. Lower bounds on monotone network complexity of the
logical permanent. Mat. Zametki, 37:887–900, 1985. In Russian. English
translation in: Math. Notes of the Academy of Sciences of the USSR 37
(1985), 485-493.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–
803, 1998. Earlier version in STOC ’95.

[Reg11] Oded Regev. Entropy-based bounds on dimension reduction in L
1

.
arXiv:1108.1283v3, 2011.

[RR12] Ran Raz and Ricky Rosen. A strong parallel repetition theorem for
projection games on expanders. In IEEE Conference on Computational
Complexity, pages 247–257, 2012.

[RRV02] Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the ran-
domness and reducing the error in Trevisan’s extractors. J. Comput.
Syst. Sci., 65(1):97–128, 2002. Earlier version in STOC ’99.

263

[RS03] Ran Raz and Amir Shpilka. Lower bounds for matrix product in
bounded depth circuits with arbitrary gates. SIAM J. Comput.,
32(2):488–513, 2003. Earlier version in STOC ’01.

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers,
extractors, and depth-two superconcentrators. SIAM J. Discrete Math.,
13(1):2–24, 2000. Earlier version in FOCS ’97.

[RW09] Mark D. Reid and Robert C. Williamson. Generalised Pinsker inequal-
ities. In COLT, 2009.

[Sav02] Petr Savický. On determinism versus unambiquous nondeterminism
for decision trees. Electronic Colloquium on Computational Complexity
(ECCC), TR02-009, 2002.

[Sch77] A. Schönhage. Schnelle multiplikation von polynomen über körpern der
charakteristic 2. Acta Informatica, 7:395–398, 1977.

[Sch81] Arnold Schönhage. Partial and total matrix multiplication. SIAM J.
Comput., 10(3):434–455, 1981.

[Sha03] Ronen Shaltiel. Towards proving strong direct product theorems. Com-
putational Complexity, 12(1-2):1–22, 2003. Earlier version in CCC ’01.

[Sha10] Ronen Shaltiel. Derandomized parallel repetition theorems for free
games. In IEEE Conference on Computational Complexity, pages 28–37,
2010.

[She11] Alexander A. Sherstov. Strong direct product theorems for quantum
communication and query complexity. In 43rd ACM STOC, pages 41–
50, 2011.

[Sto86] Quentin F. Stout. Meshes with multiple buses. In 27th IEEE FOCS,
pages 264–273, 1986.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numer. Math.,
13:354–356, 1969.

[Str73a] Volker Strassen. Die berechnungskomplexität von elementarsym-
metrischen funktionen und von interpolationskoe�zienten. Numerische
Mathematik, 20:238–251, 1973.

[Str73b] Volker Strassen. Vermeidung von divisionen. Journal für die reine und
angewandte Mathematik, 1973:184–202, 1973. In German.

[SV03] Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero
knowledge. J. ACM, 50(2):196–249, 2003.

264

[SV08] Pranab Sen and Srinivasan Venkatesh. Lower bounds for predecessor
searching in the cell probe model. J. Comput. Syst. Sci., 74(3):364–385,
2008. Earlier version in CCC ’03.

[Tar89] Gábor Tardos. Query complexity, or why is it di�cult to seperate NP a

cap coNPa from Pa by random oracles a? Combinatorica, 9(4):385–392,
1989.

[Uhl74] D. Uhlig. On the synthesis of self-correcting schemes from functional
elements with a small number of reliable elements. Mathematical Notes,
15:558–562, 1974.

[Ung09] Falk Unger. A probabilistic inequality with applications to threshold
direct-product theorems. In 50th IEEE FOCS, pages 221–229, 2009.

[Val76] Leslie G. Valiant. Graph-theoretic properties in computational com-
plexity. Journal of Computer and System Sciences, 13(3):278 – 285,
1976.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity.
In 6th MFCS, pages 162–176, 1977.

[Vio09] Emanuele Viola. On the power of small-depth computation. Foundations
and Trends in Theoretical Computer Science, 5(1):1–72, 2009.

[vL99] J. H. van Lint. Introduction to coding theory, volume 86 of Graduate
Texts in Mathematics. Springer-Verlag, Berlin, 3rd edition, 1999.

[Š08] Robert Špalek. The multiplicative quantum adversary. In IEEE Con-
ference on Computational Complexity, pages 237–248, 2008.

[VW08] Emanuele Viola and Avi Wigderson. Norms, XOR lemmas, and lower
bounds for polynomials and protocols. Theory of Computing, 4(1):137–
168, 2008. Earlier version in CCC ’07.

[Wat02] John Watrous. Limits on the power of quantum statistical zero-
knowledge. In 43rd IEEE FOCS, pages 459–468, 2002.

[Wat03] John Watrous. PSPACE has constant-round quantum interactive proof
systems. Theor. Comput. Sci., 292(3):575–588, 2003. Earlier version in
FOCS ’99.

[Wat09] JohnWatrous. Zero-knowledge against quantum attacks. SIAM J. Com-
put., 39(1):25–58, 2009. Earlier version in STOC ’06.

[Weg91] Ingo Wegener. The Complexity of Boolean Functions. Wiley Teubner
on Applicable Theory in Computer Science. John Wiley and Sons Ltd.,
1991.

265

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than
Coppersmith-Winograd. In 44th ACM STOC, pages 887–898, 2012.

[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equiva-
lences between path, matrix and triangle problems. In 51st IEEE FOCS,
pages 645–654, 2010.

[Yao77] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified
measure of complexity (extended abstract). In 18th FOCS, pages 222–
227, 1977.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions
(extended abstract). In 23rd ACM FOCS, pages 80–91, 1982.

[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by
oracles (preliminary version). In 26th IEEE FOCS, pages 1–10, 1985.

[Yap83] Chee-Keng Yap. Some consequences of non-uniform conditions on uni-
form classes. Theor. Comput. Sci., 26:287–300, 1983.

[ZY97] Zhen Zhang and Raymond W. Yeung. A non-Shannon-type conditional
inequality of information quantities. IEEE Transactions on Information
Theory, 43(6):1982–1986, 1997.

266

	Introduction
	Efficient joint computation
	Limits to computational synergies
	Disjoint inputs
	The disjoint-inputs intuition, and the direct sum and direct product problems
	Background on the direct sum problem
	Background on the direct product problem

	Lower bounds for multiple functions of a shared input
	The query and communication models
	Circuit models
	The arbitrary-gates and linear algebraic circuit models

	Other work in joint computation
	Joint compression of problem instances
	Parallel repetition theorems for 2-prover games
	Reductions and equivalences between operators and decision problems
	The Baur-Strassen theorem

	Our contributions
	Improved direct product theorems for randomized query complexity
	A universality result for joint complexity in the decision tree model
	Limitations of lower-bound methods for the wire complexity of Boolean operators
	New limits to classical and quantum instance compression

	Improved Direct Product Theorems for Randomized Query Complexity
	Results of this chapter
	Our methods
	Organization of the chapter

	Preliminaries
	Randomized decision trees and query complexity
	Binomial distributions and Chernoff bounds

	Proof of Theorem 2.0.1
	Tightness of the bounds in Theorem 2.0.1
	Proof of Theorem 2.0.2
	Threshold direct product theorems
	A gambling lemma
	Application to threshold DPTs
	Direct product theorems for learning tasks

	Proof of the XOR lemma
	Direct product theorems for search problems and errorless heuristics
	Search problems
	Errorless heuristics

	A direct product theorem for decision tree size
	DPTs for dynamic interaction
	Questions for future work
	Chapter acknowledgments

	Joint Complexity in the Decision Tree Model
	Results of this chapter
	Comparison with Shannon entropy
	Economic cost functions, computational models, and universality
	Outline and methods

	Definitions and preliminary results
	Vectors and economic cost functions
	Decision trees and joint cost functions
	Search problems and TUSPs
	Set systems and hitting sets

	Proof of Theorem 3.0.1
	First steps
	Bins and mystery bins
	Application of mystery bins
	Construction of mystery bins

	Chapter acknowledgments

	Limitations of Lower-Bound Methods for the Wire Complexity of Boolean Operators
	Known lower-bound methods for wire complexity
	The Strong Multiscale Entropy method
	Two simpler lower-bound methods

	Our contributions
	Limitations of entropy-based methods
	Results on linear transformations

	Preliminaries
	Wire complexity of operators
	Representing linear operators relative to different bases
	A hashing lemma

	Entropy and circuit lower bounds
	Entropy of operators
	Strong Multiscale Entropy

	Limitations of the SME lower-bound criterion
	The DIR operator
	Establishing the SME property for `39`42`"613A``45`47`"603ADIR
	Efficient bounded-depth circuits for `39`42`"613A``45`47`"603ADIR

	Limits of Jukna's entropy method, and a separation of depths 2 and 3
	Representing random linear operators
	Tightness of Jukna's pairwise-distance lower bound for depth 2
	The pairwise-distance method fails for depth 3
	Easy bases for representing linear operators
	Chapter acknowledgments

	New Limits to Classical and Quantum Instance Compression
	Background and new results
	Instance compression and parametrized problems
	Previous work: results and motivation
	Our results
	Our techniques
	Organization of the chapter

	Preliminaries I
	Statistical distance and distinguishability

	Proof of Theorem 5.1.1
	Preliminaries II
	Information theory background
	Basic complexity classes and promise problems
	Arthur-Merlin protocols
	Statistical zero-knowledge and the SD problem
	f-compression reductions

	Parametrized problems and parametrized compression
	Parametrized problems
	OR-expressive and AND-expressive parametrized problems
	Parametrized compression
	Connecting parametrized compression and f-compression

	Technical lemmas
	Distributional stability
	Sparsified distributional stability
	Building disguising distributions

	Limits to efficient (classical) compression
	Complexity upper bounds from OR-compression schemes
	Application to AND- and OR-compression of NP-complete languages
	f-compression of NP-complete languages for general f
	Limits to strong compression for parametrized problems
	Application to problems with polynomial kernelizations

	Extension to quantum compression
	Trace distance and distinguishability of quantum states
	Quantum f-compression
	Quantum complexity classes
	Quantum distributional stability
	Building quantum disguising distributions
	Complexity upper bounds from quantum compression schemes

	Alternative proofs of distributional stability
	A proof based on Raz's lemma
	A proof based on the Average Encoding Theorem

	Our original distributional stability lemma
	Entropy and the unreliability of compressive encodings
	Bounds on the inverse entropy function
	The lemma

	Proof of quantum distributional stability
	Questions for further study
	Chapter acknowledgments

