
Efficient Probabilistically Checkable Debates

Andrew Drucker
MIT

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 1/53

Polynomial-time Debates

Given: language L, string x ;

Player 1 argues that x ∈ L; Player 0 argues x /∈ L.

k-round debate:
y = (y 1, y 2, . . . , yk)

y i = i th move; P1 plays odd-numbered moves;∣∣y i
∣∣ ≤ poly(|x |).

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 2/53

Polynomial-time Debates

Polynomial-time verifier: Boolean function V (x , y)

V is a debate system for L if

x ∈ L⇐⇒ P1 wins under optimal play (can force V (x , y) = 1)

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 3/53

Polynomial-time Debates

Theorem (Chandra, Stockmeyer ‘76)

L has a poly(n)-round, polynomial-time debate system

⇐⇒ L ∈ PSPACE.

Debate characterization of PSPACE lets us prove many
natural problems are PSPACE-complete!

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 4/53

Applications

E.g., n-by-n Checkers, Hex, many other 2-player games are
PSPACE-complete:

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 5/53

Probabilistic Verifiers

What happens if we restrict the form of the debate verifier?

Say that a debate system is probabilistically checkable if
V (x , y) inspects only O(1) bits of the debate string y

(and decides debate with perfect completeness and 1/3
soundness, say).

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 6/53

Probabilistic Verifiers

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 7/53

Probabilistic Verifiers

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 8/53

Probabilistic Verifiers

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 9/53

Probabilistic Verifiers

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 10/53

Probabilistic Verifiers

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 11/53

Probabilistic Verifiers

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 12/53

Probabilistic Verifiers

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 13/53

Probabilistic Verifiers

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 14/53

Probabilistic Verifiers

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 15/53

Probabilistic Verifiers

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 16/53

Probabilistic Verifiers

Theorem (Condon, Feigenbaum, Lund, Shor ‘95)

L ∈ PSPACE⇔

L has a poly(n)-round, probabilistically checkable debate system
(PCDS),

with a verifier using O(log n) bits of randomness.

(“PCP Characterization of PSPACE”)

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 17/53

PCP Characterizations of Complexity Classes

Analogous PCP characterizations were shown for:

1 Polynomial Hierarchy [Ko, Lin ‘94];

2 IP = PSPACE [CFLS ‘97];

3 AM [D. ‘11].

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 18/53

Our result

We strengthen [CFLS]:

Theorem
Suppose L ∈ PSPACE has a poly-time debate system defined by
uniform circuits of size s = s(n).

Then, L has a PCDS with a debate of total bitlength Õ(s),

whose verifier uses log s + log(polylog(s)) bits of randomness.

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 19/53

Applications

Like the PCP Theorem, the PCDS Theorem of [CFLS] has
implications for hardness of approximation.

(For PSPACE-hardness, naturally!)

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 20/53

A natural PSPACE-complete problem

Input: a 3-CNF formula

ψ(z1, . . . , zt)

Game: Players take turns assigning values to z1, z2, . . .

P1 wants to maximize fraction of satisfied clauses;
P0 wants to minimize.

Let

Val(ψ)

= (fraction of satisfied clauses of ψ under optimal play).

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 21/53

A natural PSPACE-complete problem

PSPACE-complete to compute Val(ψ) exactly.

[CFLS] implies: PSPACE-complete to compute Val(ψ) to
within a suff. small additive error ε > 0.

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 22/53

Application

Improved parameters −→ better conditional hardness results!

Suppose computing Val(ψ) exactly requires T (n) = nω(1)

time on length-n inputs (infinitely often).

Then, [CFLS] ⇒ computing Val(ψ)± ε requires time T (nα),
for some α < 1.

Our improvement implies:
computing Val(ψ)± ε requires T (n/ polylog n) time.

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 23/53

Our debate system

A brief sketch of our construction...

Main Step: Efficiently transform an ordinary debate system
for L ∈ PSPACE into one that is “stable.”

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 24/53

Stable debate systems

Given: an ordinary debate system V (x ; y 1, . . . , yk) for L.

Say that V is stable if:

for all x /∈ L, Player 0 can force y = (y 1, . . . , yk) to be
Ω(1)-far in relative distance from any y ′ for which
V (x ; y ′) = 1.

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 25/53

Stable debate systems

How to turn ordinary debates into stable ones?

Our tool: new application of error-resilient communication
protocols.

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 26/53

Error-resilient communication

Analogue of error-correcting encoding for 2-way
communication [Schulman ‘93]

Alice and Bob want to hold a chatroom conversation, of a
total length T bits.

Unreliable channel: adversary can corrupt a δ fraction of the
transmitted bits (adaptively).

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 27/53

Error-resilient communication

Theorem (Schulman, ‘93 — Informal)

There is a protocol to simulate T -bit conversations, that uses
T ′ = O(T) bits of communication and succeeds against up to
T ′/240 corrupted bits.

[Braverman, Rao ‘11]: new protocol PBR with better
parameters: tolerates nearly 1/8 fraction of errors—and,
simpler!

Both protocols make inspired use of special codes called tree
codes.

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 28/53

Terminology

perfect execution of PBR : no transmission errors occur

else, noisy execution

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 29/53

Our application

Let V be an ordinary debate system for L, definable by
size-s(n) circuits.

In V ′, suppose we can “force” players to encode their moves
in V using a perfect execution of PBR . Then:

Claim: V ′ is stable!

Proof: enough to show: perfect executions with distinct
outcomes are well-separated in Hamming distance.

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 30/53

Proof idea

Suppose this perfect execution

is T ′/10-close in Hamming distance to this one:

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 31/53

Proof idea

Then, this noisy execution

has ≤ T ′/10 transmission errors, and causes PBR to fail.

Can’t happen!

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 32/53

Forcing compliance

So, V ′ is stable.—Technicality: stable for perfect executions...

How to make the debaters follow PBR?

(Need to do so efficiently.)

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 33/53

Forcing compliance

Lemma
There is an O(1)-round debate system DBR , definable by uniform
circuits of size O(T), to decide whether a communication
transcript w is a valid perfect execution of PBR [T].

Use DBR as a “sub-debate” to make our overall debate stable.

Property that O(1) rounds are used is important:
can easily make DBR itself stable (using error-correcting
codes).

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 34/53

Forcing compliance

Lemma
There is an O(1)-round debate system DBR , definable by uniform
circuits of size O(T), to decide whether a communication
transcript w is a valid perfect execution of PBR [T].

Proving the lemma—our main technical challenge:

1 No explicit examples of tree codes known! (Debaters have to
“guess and check” a code to use.)

2 No efficient decoder known for any tree code.
3 Most significantly, the use of tree codes in the Braverman-Rao

protocol is somewhat complex, and our efficiency requirements
are severe.

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 35/53

Stable → prob. checkable

Final step: convert our stable debate system into a
probabilistically checkable one.

Key tool: PCPs of Proximity (PCPPs)
[Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan ‘04;
Dinur, Reingold ‘04].

Powerful variant of PCPs; we use an efficient construction
from [Dinur ‘07].

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 36/53

Stable → prob. checkable

Basic idea:

1 Run our stable debate for L;
2 Ask Player 1 to “certify” his victory, using a PCPP.

PCPP-like objects also used in [CFLS] (in a different way).

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 37/53

More on error-resilient communication

A small peek...

First, what are “conversations” exactly?

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 38/53

What are “conversations?”

Setting: binary tree of depth
T

vspace.5 emAlice’s input: X

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 39/53

What are “conversations?”

Setting: binary tree of depth
T

Alice’s input: X , a degree-1
subset of odd-depth edges.

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 40/53

What are “conversations?”

Setting: binary tree of depth
T

Alice’s input: X , a degree-1
subset of odd-depth edges.

Bob’s input: Y , a degree-1
subset of even-depth edges

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 41/53

What are “conversations?”

Setting: binary tree of depth
T

Alice’s input: X , a degree-1
subset of odd-depth edges.

Bob’s input: Y , a degree-1
subset of even-depth edges

Output: the path P
determined by X ,Y

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 42/53

What are “conversations?”

Our application:

X ,Y = P1, P0 strategies in V

P = resulting debate string

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 43/53

What are “conversations?”

Also known as the Pointer Jumping problem (PJT).

[Schulman ‘93]: ∃ an error-resilient protocol to solve PJT
using O(T) bits of communication.

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 44/53

Tree codes

k-ary tree code of depth d :

C : [k]≤d −→ Σ

Labeling of edges of the complete k-ary tree of depth d .

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 45/53

Example

Here k = 2, d = 3,

Σ = {a, b, c}.

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 46/53

Example

For a path P, define

C (P)

as the concatenation of labels
along P.

E.g., C (0, 0) = (a, c)

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 47/53

Example

Note: if P, P ′ agree for t
steps, so will C (P) and C (P ′).

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 48/53

The distance property

Say that C is a tree code of
distance α ∈ [0, 1], if:

For all pairs P, P ′ of equal
length, C (P) and C (P ′) differ
on at least an α fraction of
places where they could differ!

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 49/53

The distance property

Braverman-Rao protocol for PJT requires 5-ary tree codes of
depth d = Θ(T), distance α = Ω(1), alphabet size
|Σ| = O(1).
(Schulman: similar.)

These exist, but no explicit construction is known.

(Explicit ↔ C (·) computable in time poly(T).)

Schulman gave a probabilistic construction using O(T) bits of
randomness—good enough for our application!

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 50/53

Schulman’s tree codes

Fix k (arity of tree); let p = Ok(1)� k be a prime.

The random seed: r = (r1, . . . , rd) ∈ Fd
p (d = depth).

The tree code:

C(r)(x1, . . . , xt) :=
t∑

j=1

xj · rt+1−j .

Has distance Ω(1) w.h.p.!

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 51/53

An open question

Debates where P0 plays randomly also characterize PSPACE
[Shamir ‘90].

[CFLS ‘97]: these debates can also be made prob. checkable.

Give a similar efficiency improvement for these debates?

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 52/53

Thanks!

Andrew Drucker MIT, Efficient Probabilistically Checkable Debates 53/53

