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 Map-Reduce job =  

 Map function (inputs -> key-value pairs) + 

 Keys not unique!  

 Reduce function (key and list of values -> outputs). 

 Map and Reduce Tasks apply Map or Reduce 
function to (typically) many inputs. 

 Unit of parallelism. 

 Mapper = application of the Map function to a 
single input. 

 Reducer = application of the Reduce function to 
a single key-(list of values) pair. 
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 Join of R(A,B) with S(B,C) is the set of tuples 
(a,b,c) such that (a,b) is in R and (b,c) is in S. 

 Mappers need to send R(a,b) and S(b,c) to the 
same reducer, so they can be joined there. 

 Mapper output: key = B-value, value = relation 
and other component (A or C). 

 Example: R(1,2) -> (2, (R,1)) 

      S(2,3) -> (2, (S,3)) 
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Mapper 
for R(1,2) 

R(1,2) (2, (R,1)) 

Mapper 
for R(4,2) 

R(4,2) 

Mapper 
for S(2,3) 

S(2,3) 

Mapper 
for S(5,6) 

S(5,6) 

(2, (R,4)) 

(2, (S,3)) 

(5, (S,6)) 



 There is a reducer for each key. 
 Every key-value pair generated by any mapper 

is sent to the reducer for its key. 
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Mapper 
for R(1,2) 

(2, (R,1)) 

Mapper 
for R(4,2) 

Mapper 
for S(2,3) 

Mapper 
for S(5,6) 

(2, (R,4)) 

(2, (S,3)) 

(5, (S,6)) 

Reducer 
for B = 2 

Reducer 
for B = 5 



 The input to each reducer is organized by the 
system into a pair: 

 The key. 

 The list of values associated with that key. 
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Reducer 
for B = 2 

Reducer 
for B = 5 

(2, [(R,1), (R,4), (S,3)]) 

(5, [(S,6)]) 



 Given key b and a list of values that are either 
(R, ai) or (S, cj), output each triple (ai, b, cj). 

 Thus, the number of outputs made by a reducer is 
the product of the number of R’s on the list and the 
number of S’s on the list. 
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Reducer 
for B = 2 

Reducer 
for B = 5 

(2, [(R,1), (R,4), (S,3)]) 

(5, [(S,6)]) 

(1,2,3), (4,2,3) 





 Data consists of records for 3000 drugs. 

 List of patients taking, dates, diagnoses. 

 About 1M of data per drug. 

 Problem is to find drug interactions. 

 Example: two drugs that when taken together 
increase the risk of heart attack. 

 Must examine each pair of drugs and compare 
their data. 
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 The first attempt used the following plan: 

 Key = set of two drugs {i, j}. 

 Value = the record for one of these drugs. 

 Given drug i and its record Ri, the mapper 
generates all key-value pairs ({i, j}, Ri), where j is 
any other drug besides i. 

 Each reducer receives its key and a list of the 
two records for that pair: ({i, j}, [Ri, Rj]). 
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Mapper 
for drug 2 

Mapper 
for drug 1 

Mapper 
for drug 3 

Drug 1 data {1, 2} 
Reducer 
for {1,2} 

Reducer 
for {2,3} 

Reducer 
for {1,3} 

Drug 1 data {1, 3} 

Drug 2 data {1, 2} 

Drug 2 data {2, 3} 

Drug 3 data {1, 3} 

Drug 3 data {2, 3} 
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Mapper 
for drug 2 

Mapper 
for drug 1 

Mapper 
for drug 3 

Drug 1 data {1, 2} 
Reducer 
for {1,2} 

Reducer 
for {2,3} 

Reducer 
for {1,3} 

Drug 1 data {1, 3} 

Drug 2 data {1, 2} 

Drug 2 data {2, 3} 

Drug 3 data {1, 3} 

Drug 3 data {2, 3} 
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Drug 1 data {1, 2} Reducer 
for {1,2} 

Reducer 
for {2,3} 

Reducer 
for {1,3} 

Drug 1 data 

Drug 2 data 

Drug 2 data {2, 3} 

Drug 3 data {1, 3} 

Drug 3 data 



 3000 drugs 
 times 2999 key-value pairs per drug 
 times 1,000,000 bytes per key-value pair 
 = 9 terabytes communicated over a 1Gb 

Ethernet 
 = 90,000 seconds of network use. 
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 They grouped the drugs into 30 groups of 100 
drugs each. 

 Say G1 = drugs 1-100, G2 = drugs 101-200,…, G30 = 
drugs 2901-3000. 

 Let g(i) = the number of the group into which drug i 
goes. 
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 A key is a set of two group numbers. 
 The mapper for drug i produces 29 key-value 

pairs. 

 Each key is the set containing g(i) and one of the 
other group numbers. 

 The value is a pair consisting of the drug number i 
and the megabyte-long record for drug i. 
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 The reducer for pair of groups {m, n} gets that 
key and a list of 200 drug records – the drugs 
belonging to groups m and n. 

 Its job is to compare each record from group m 
with each record from group n. 

 Special case: also compare records in group n with 
each other, if m = n+1 or if n = 30 and m = 1. 

 Notice each pair of records is compared at 
exactly one reducer, so the total computation is 
not increased. 
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 The big difference is in the communication 
requirement. 

 Now, each of 3000 drugs’ 1MB records is 
replicated 29 times. 

 Communication cost = 87GB, vs. 9TB. 
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1. A set of inputs. 

 Example: the drug records. 

2. A set of outputs. 

 Example: One output for each pair of drugs. 

3. A many-many relationship between each 
output and the inputs needed to compute it. 

 Example: The output for the pair of drugs {i, j} is 
related to inputs i and j. 
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Drug 1 

Drug 2 

Drug 3 

Drug 4 

Output 1-2 

Output 1-3 

Output 2-4 

Output 1-4 

Output 2-3 

Output 3-4 
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 Reducer size, denoted q, is the maximum 
number of inputs that a given reducer can have. 

 I.e., the length of the value list. 

 Limit might be based on how many inputs can 
be handled in main memory. 

 Or: make q low to force lots of parallelism. 

28 



 The average number of key-value pairs created 
by each mapper is the replication rate. 

 Denoted r. 

 Represents the communication cost per input. 
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 Suppose we use g groups and d drugs. 
 A reducer needs two groups, so q = 2d/g. 
 Each of the d inputs is sent to g-1 reducers, or 

approximately r = g. 
 Replace g by r in q = 2d/g to get r = 2d/q. 
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Tradeoff! 
The bigger the reducers, 
the less communication. 



 What we did gives an upper bound on r as a 
function of q. 

 A solid investigation of map-reduce algorithms 
for a problem includes lower bounds. 

 Proofs that you cannot have lower r for a given q. 
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 A mapping schema for a problem and a reducer 
size q is an assignment of inputs to sets of 
reducers, with two conditions: 

1. No reducer is assigned more than q inputs. 

2. For every output, there is some reducer that 
receives all of the inputs associated with that 
output. 

 Say the reducer covers the output. 
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 Every map-reduce algorithm has a mapping 
schema. 

 The requirement that there be a mapping 
schema is what distinguishes map-reduce 
algorithms from general parallel algorithms. 
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 d drugs, reducer size q. 
 Each drug has to meet each of the d-1 other 

drugs at some reducer. 
 If a drug is sent to a reducer, then at most q-1 

other drugs are there. 
 Thus, each drug is sent to at least (d-1)/(q-1) 

reducers, and r > (d-1)/(q-1). 
 Half the r from the algorithm we described. 
 Better algorithm gives r = d/q + 1, so lower 

bound is actually tight. 
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 The problem with the algorithm dividing inputs 
into g groups is that members of a group 
appear together at many reducers. 

 Thus, each reducer can only productively compare 
about half the pairs it has available to it. 

 Better: use smaller groups, with each reducer 
getting many little groups. 

 Eliminates almost all the redundancy. 
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 Assume d inputs. 
 Let p be a prime, where p2 divides d. 
 Divide inputs into p2 groups of d/p2 inputs each. 
 Name the groups (i, j), where 0 < i, j < p. 
 Use p(p+1) reducers, organized into p+1 teams 

of p reducers each. 
 For 0 < k < p, group (i, j) is sent to the reducer 

i+kj (mod p) in group k. 
 In the last team (p), group (i, j) is sent to 

reducer j. 
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i = 0 

1 

2 

1 

3 

4 3 2 

4 

j = 0 

Team 0 
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i = 0 

1 

2 

1 

3 

4 3 2 

4 

j = 0 

Team 1 
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i = 0 

1 

2 

1 

3 

4 3 2 

4 

j = 0 

Team 2 
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i = 0 

1 

2 

1 

3 

4 3 2 

4 

j = 0 

Team 3 
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i = 0 

1 

2 

1 

3 

4 3 2 

4 

j = 0 

Team 4 
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i = 0 

1 

2 

1 

3 

4 3 2 

4 

j = 0 

Team 5 



 Let two inputs be in groups (i, j) and (i’, j’). 
 If the same group, these inputs obviously share 

a reducer. 
 If j = j’, then they share a reducer in group p. 
 If j  j’, then they share a reducer in team k 

provided i + kj = i’ + kj’. 
 Equivalently, (i-i’) = k(j-j’). 
 But since j  j’, (j-j’) has an inverse modulo p. 
 Thus, team k = (i-i’)(j-j’)-1 has a reducer for 

which i + kj = i’ + kj’. 
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 The replication rate r is p+1, since every input is 
sent to one reducer in each team. 

 The reducer size q is pd/p2 = d/p, since each 
reducer gets p groups of size d/p2. 

 Thus, r = d/q + 1. 
 (d/q + 1) - (d-1)/(q-1) < 1 provided q < d. 

 But if q > d, we can do everything in one reducer, 
and r = 1. 

 The upper bound r < d/q + 1 and the lower 
bound r > (d-1)/(q-1) differ by less than 1, and 
are integers, so they are equal. 

44 





 Given a set of bit strings of length b, find all 
those that differ in exactly one bit. 

 Theorem: r > b/log2q. 
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Algorithms Matching Lower Bound 

q = reducer 
size 
 

b 

2 

1 

21 2b/2 2b 

All inputs 

to one 

reducer 

One reducer 

for each output Splitting 

Generalized Splitting 
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r = replication 
rate  



 Assume n  n matrices AB = C. 
 Theorem: For matrix multiplication, r > 2n2/q. 
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= 

n/g 

n/g 

Divide rows of A and columns 
of B into g groups gives 
r = g = 2n2/q 



 A better way: use two map-reduce jobs. 
 Job 1: Divide both input matrices into 

rectangles. 

 Reducer takes two rectangles and produces partial 
sums of certain outputs. 

 Job 2: Sum the partial sums. 
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I 

J 

J 

K 

I 

K 

A C B 

For i in I and k in K, contribution 
is j in J Aij × Bjk 



 One-job method: Total communication = 4n4/q. 
 Two-job method Total communication = 4n3/q. 

 Since q < n2 (or we really have a serial 
implementation), two jobs wins! 
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 Represent problems as input-output mappings. 
 MapReduce algorithm is described by a 

mapping schema – yields lower bounds on 
replication rate as a function of reducer size. 

 For “drug interaction”: exact match between 
upper and lower bounds. 

 For HD = 1 problem: exact match. 
 1-job matrix multiplication analyzed exactly. 
 But 2-job MM yields better total 

communication. 
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