
Jeffrey D. Ullman
Stanford University

 Foto Afrati (NTUA)
 Anish Das Sarma (Google)
 Semih Salihoglu (Stanford)
 U.

2

 Map-Reduce job =

 Map function (inputs -> key-value pairs) +

 Keys not unique!

 Reduce function (key and list of values -> outputs).

 Map and Reduce Tasks apply Map or Reduce
function to (typically) many inputs.

 Unit of parallelism.

 Mapper = application of the Map function to a
single input.

 Reducer = application of the Reduce function to
a single key-(list of values) pair.

4

 Join of R(A,B) with S(B,C) is the set of tuples
(a,b,c) such that (a,b) is in R and (b,c) is in S.

 Mappers need to send R(a,b) and S(b,c) to the
same reducer, so they can be joined there.

 Mapper output: key = B-value, value = relation
and other component (A or C).

 Example: R(1,2) -> (2, (R,1))

 S(2,3) -> (2, (S,3))

5

6

Mapper
for R(1,2)

R(1,2) (2, (R,1))

Mapper
for R(4,2)

R(4,2)

Mapper
for S(2,3)

S(2,3)

Mapper
for S(5,6)

S(5,6)

(2, (R,4))

(2, (S,3))

(5, (S,6))

 There is a reducer for each key.
 Every key-value pair generated by any mapper

is sent to the reducer for its key.

7

8

Mapper
for R(1,2)

(2, (R,1))

Mapper
for R(4,2)

Mapper
for S(2,3)

Mapper
for S(5,6)

(2, (R,4))

(2, (S,3))

(5, (S,6))

Reducer
for B = 2

Reducer
for B = 5

 The input to each reducer is organized by the
system into a pair:

 The key.

 The list of values associated with that key.

9

10

Reducer
for B = 2

Reducer
for B = 5

(2, [(R,1), (R,4), (S,3)])

(5, [(S,6)])

 Given key b and a list of values that are either
(R, ai) or (S, cj), output each triple (ai, b, cj).

 Thus, the number of outputs made by a reducer is
the product of the number of R’s on the list and the
number of S’s on the list.

11

12

Reducer
for B = 2

Reducer
for B = 5

(2, [(R,1), (R,4), (S,3)])

(5, [(S,6)])

(1,2,3), (4,2,3)

 Data consists of records for 3000 drugs.

 List of patients taking, dates, diagnoses.

 About 1M of data per drug.

 Problem is to find drug interactions.

 Example: two drugs that when taken together
increase the risk of heart attack.

 Must examine each pair of drugs and compare
their data.

14

 The first attempt used the following plan:

 Key = set of two drugs {i, j}.

 Value = the record for one of these drugs.

 Given drug i and its record Ri, the mapper
generates all key-value pairs ({i, j}, Ri), where j is
any other drug besides i.

 Each reducer receives its key and a list of the
two records for that pair: ({i, j}, [Ri, Rj]).

15

16

Mapper
for drug 2

Mapper
for drug 1

Mapper
for drug 3

Drug 1 data {1, 2}
Reducer
for {1,2}

Reducer
for {2,3}

Reducer
for {1,3}

Drug 1 data {1, 3}

Drug 2 data {1, 2}

Drug 2 data {2, 3}

Drug 3 data {1, 3}

Drug 3 data {2, 3}

17

Mapper
for drug 2

Mapper
for drug 1

Mapper
for drug 3

Drug 1 data {1, 2}
Reducer
for {1,2}

Reducer
for {2,3}

Reducer
for {1,3}

Drug 1 data {1, 3}

Drug 2 data {1, 2}

Drug 2 data {2, 3}

Drug 3 data {1, 3}

Drug 3 data {2, 3}

18

Drug 1 data {1, 2} Reducer
for {1,2}

Reducer
for {2,3}

Reducer
for {1,3}

Drug 1 data

Drug 2 data

Drug 2 data {2, 3}

Drug 3 data {1, 3}

Drug 3 data

 3000 drugs
 times 2999 key-value pairs per drug
 times 1,000,000 bytes per key-value pair
 = 9 terabytes communicated over a 1Gb

Ethernet
 = 90,000 seconds of network use.

19

 They grouped the drugs into 30 groups of 100
drugs each.

 Say G1 = drugs 1-100, G2 = drugs 101-200,…, G30 =
drugs 2901-3000.

 Let g(i) = the number of the group into which drug i
goes.

20

 A key is a set of two group numbers.
 The mapper for drug i produces 29 key-value

pairs.

 Each key is the set containing g(i) and one of the
other group numbers.

 The value is a pair consisting of the drug number i
and the megabyte-long record for drug i.

21

 The reducer for pair of groups {m, n} gets that
key and a list of 200 drug records – the drugs
belonging to groups m and n.

 Its job is to compare each record from group m
with each record from group n.

 Special case: also compare records in group n with
each other, if m = n+1 or if n = 30 and m = 1.

 Notice each pair of records is compared at
exactly one reducer, so the total computation is
not increased.

22

 The big difference is in the communication
requirement.

 Now, each of 3000 drugs’ 1MB records is
replicated 29 times.

 Communication cost = 87GB, vs. 9TB.

23

1. A set of inputs.

 Example: the drug records.

2. A set of outputs.

 Example: One output for each pair of drugs.

3. A many-many relationship between each
output and the inputs needed to compute it.

 Example: The output for the pair of drugs {i, j} is
related to inputs i and j.

25

26

Drug 1

Drug 2

Drug 3

Drug 4

Output 1-2

Output 1-3

Output 2-4

Output 1-4

Output 2-3

Output 3-4

27

 =

i

j j

i

 Reducer size, denoted q, is the maximum
number of inputs that a given reducer can have.

 I.e., the length of the value list.

 Limit might be based on how many inputs can
be handled in main memory.

 Or: make q low to force lots of parallelism.

28

 The average number of key-value pairs created
by each mapper is the replication rate.

 Denoted r.

 Represents the communication cost per input.

29

 Suppose we use g groups and d drugs.
 A reducer needs two groups, so q = 2d/g.
 Each of the d inputs is sent to g-1 reducers, or

approximately r = g.
 Replace g by r in q = 2d/g to get r = 2d/q.

30

Tradeoff!
The bigger the reducers,
the less communication.

 What we did gives an upper bound on r as a
function of q.

 A solid investigation of map-reduce algorithms
for a problem includes lower bounds.

 Proofs that you cannot have lower r for a given q.

31

 A mapping schema for a problem and a reducer
size q is an assignment of inputs to sets of
reducers, with two conditions:

1. No reducer is assigned more than q inputs.

2. For every output, there is some reducer that
receives all of the inputs associated with that
output.

 Say the reducer covers the output.

32

 Every map-reduce algorithm has a mapping
schema.

 The requirement that there be a mapping
schema is what distinguishes map-reduce
algorithms from general parallel algorithms.

33

 d drugs, reducer size q.
 Each drug has to meet each of the d-1 other

drugs at some reducer.
 If a drug is sent to a reducer, then at most q-1

other drugs are there.
 Thus, each drug is sent to at least (d-1)/(q-1)

reducers, and r > (d-1)/(q-1).
 Half the r from the algorithm we described.
 Better algorithm gives r = d/q + 1, so lower

bound is actually tight.

34

 The problem with the algorithm dividing inputs
into g groups is that members of a group
appear together at many reducers.

 Thus, each reducer can only productively compare
about half the pairs it has available to it.

 Better: use smaller groups, with each reducer
getting many little groups.

 Eliminates almost all the redundancy.

35

 Assume d inputs.
 Let p be a prime, where p2 divides d.
 Divide inputs into p2 groups of d/p2 inputs each.
 Name the groups (i, j), where 0 < i, j < p.
 Use p(p+1) reducers, organized into p+1 teams

of p reducers each.
 For 0 < k < p, group (i, j) is sent to the reducer

i+kj (mod p) in group k.
 In the last team (p), group (i, j) is sent to

reducer j.

36

37

i = 0

1

2

1

3

4 3 2

4

j = 0

Team 0

38

i = 0

1

2

1

3

4 3 2

4

j = 0

Team 1

39

i = 0

1

2

1

3

4 3 2

4

j = 0

Team 2

40

i = 0

1

2

1

3

4 3 2

4

j = 0

Team 3

41

i = 0

1

2

1

3

4 3 2

4

j = 0

Team 4

42

i = 0

1

2

1

3

4 3 2

4

j = 0

Team 5

 Let two inputs be in groups (i, j) and (i’, j’).
 If the same group, these inputs obviously share

a reducer.
 If j = j’, then they share a reducer in group p.
 If j j’, then they share a reducer in team k

provided i + kj = i’ + kj’.
 Equivalently, (i-i’) = k(j-j’).
 But since j j’, (j-j’) has an inverse modulo p.
 Thus, team k = (i-i’)(j-j’)-1 has a reducer for

which i + kj = i’ + kj’.

43

 The replication rate r is p+1, since every input is
sent to one reducer in each team.

 The reducer size q is pd/p2 = d/p, since each
reducer gets p groups of size d/p2.

 Thus, r = d/q + 1.
 (d/q + 1) - (d-1)/(q-1) < 1 provided q < d.

 But if q > d, we can do everything in one reducer,
and r = 1.

 The upper bound r < d/q + 1 and the lower
bound r > (d-1)/(q-1) differ by less than 1, and
are integers, so they are equal.

44

 Given a set of bit strings of length b, find all
those that differ in exactly one bit.

 Theorem: r > b/log2q.

46

Algorithms Matching Lower Bound

q = reducer
size

b

2

1

21 2b/2 2b

All inputs

to one

reducer

One reducer

for each output Splitting

Generalized Splitting

47

r = replication
rate

 Assume n n matrices AB = C.
 Theorem: For matrix multiplication, r > 2n2/q.

48

49

=

n/g

n/g

Divide rows of A and columns
of B into g groups gives
r = g = 2n2/q

 A better way: use two map-reduce jobs.
 Job 1: Divide both input matrices into

rectangles.

 Reducer takes two rectangles and produces partial
sums of certain outputs.

 Job 2: Sum the partial sums.

50

51

I

J

J

K

I

K

A C B

For i in I and k in K, contribution
is j in J Aij × Bjk

 One-job method: Total communication = 4n4/q.
 Two-job method Total communication = 4n3/q.

 Since q < n2 (or we really have a serial
implementation), two jobs wins!

52

 Represent problems as input-output mappings.
 MapReduce algorithm is described by a

mapping schema – yields lower bounds on
replication rate as a function of reducer size.

 For “drug interaction”: exact match between
upper and lower bounds.

 For HD = 1 problem: exact match.
 1-job matrix multiplication analyzed exactly.
 But 2-job MM yields better total

communication.

53

