On Consistently Guessing the Output of Algorithms

Andrew Drucker*

Scott Aaronson [Aar] suggested the study of the following computational problem:

Given: a description $\langle Q \rangle$ of an (input-free) Turing machine Q, syntactically restricted to produce at most 1 output bit;

Output: 1 if Q outputs 1; 0 if Q outputs 0. Otherwise (if Q loops), we may output either 0 or 1.

Aaronson calls this the consistent guessing (CG) problem; a familiar diagonalization argument shows that it is incomputable [Aar]. Aaronson asked whether any oracle solving CG can be used to solve the Halting problem (HALT). In this note we give a negative answer to Aaronson's question. In fact, the answer is negative even if HALT is replaced by *any* incomputable language.

This result is not really new; it is a special case of a more general result. The only property of CG that we need in our proof, is that the collection of solutions to CG can be expressed as the set of *infinite paths* in a *computable binary tree* (definitions will follow). Such a collection is referred to as a Π_1^0 *class*. It is known that, for any Π_1^0 class P and any incomputable language L, there is a solution to P that cannot be used to compute L. The techniques we use in this note (which are well-known) also yield a proof of this more general result with no additional effort. See the survey [Cen] for various strengthenings and variants of this result, and for more information on Π_1^0 classes.

First we need to review a bit of standard notation and formalize our assertion. All Turing machines we consider will be syntactically restricted to output at most 1 bit. We will use the letter Q to denote an input-free Turing machine, and M to denote an input-accepting one. Say that

^{*}CSAIL, MIT. Email: adrucker@mit.edu

a language $L \subseteq \{0,1\}^*$ is a solution to CG if, for all input-free, halting machines Q,

$$\langle Q \rangle \in L \iff Q \text{ outputs } 1.$$

Thus, we place no constraint on $\chi_L(\langle Q \rangle)$ when Q is looping. Let CG^{sol} denote the set of solutions to CG.

Let L(M) denote the set of strings accepted by M. Let M^B denote the machine M equipped with oracle access to B. For languages A, B, write $A \leq_T B$ if A Turing-reduces to B. That is,

$$A \leq_T B \iff \exists M : L(M^B) = A.$$

We show the following:

Theorem 1. Let L be incomputable; then there exists a set $A \in CG^{sol}$, such that $L \not\leq_T A$.

Proof. By a (binary) tree, we mean a subset $T \subseteq \{0, 1\}^*$ that is closed under prefixes. That is, if $x \in T$ and x' is a prefix of x, then $x' \in T$. A computable tree is just one whose characteristic function is computable.

An *infinite path* in T is an infinite string $p \in \{0, 1\}^{\omega}$ whose finite prefixes are all in T. We use an important, simple fact about trees:

Fact 1 (König's Lemma). If T is an infinite binary tree, then T contains an infinite path.

Now let L be incomputable; we will construct $A \in CG^{sol}$ such that $L \not\leq_T A$. Our construction will proceed in stages. On each stage $i \geq 0$ we will define a computable tree T_i , such that the following requirements are met:

R0: All infinite paths p in T_0 satisfy $p \in CG^{sol}$;

R1: $T_i \subseteq T_{i-1}$, for i = 1, 2, ...;

R2: Each T_i contains an infinite path;

R3: For $i \ge 1$, let M_i be the i^{th} machine in a standard universal enumeration of (input-accepting) Turing machines. Then we have that for all infinite paths p in T_i , $L(M_i^p) \ne L$.

Under our requirements, it is not hard to see that the intersection $T_{\omega} := \bigcup_{i \geq 0} T_i$ is an infinite tree. Letting p be an infinite path in T_{ω} , **R0** guarantees that $p \in CG^{sol}$, and **R3** guarantees that $L \not\leq_T p$. Thus, constructing T_0, T_1, \ldots will prove the Theorem.¹

Let Q_1, Q_2, \ldots be a standard enumeration of input-free Turing machines. Building T_0 is simple: for a string $v \in \{0, 1\}^n$, let $v \in T_0$ iff the following condition holds: for all $j \leq n$, if Q_j halts with output b in at most n steps, then $v_j = b$.

 T_0 is clearly a computable tree. We verify **R0** and **R2** (the other two requirements don't apply to T_0). It is easily checked that **R0** holds. That **R2** holds is easy to see: for any $p \in CG^{sol}$, all prefixes of p lie in T_0 , so p is an infinite path in T_0 .

Now let $i \geq 1$, and assume T_0, \ldots, T_{i-1} have been constructed satisfying **R0-R3**. To construct T_i , we will need the following notion. A finite string v can be considered as an "incomplete oracle", giving values for oracle queries to strings up to a certain index. For an input-accepting oracle machine M and string x, let $M^v(x) := b$ if on input x and oracle v, M outputs b without ever querying a string whose oracle-value is left undefined by v. Otherwise, we let $M^v(x)$ be undefined.

To define T_i , we will first define an infinite set of "candidate trees"

$$\{ T_{i,y} \}_{y \in \{0,1\}^*}$$
 .

 T_i will be chosen as one of these. For any $y \in \{0,1\}^*$, let $T_{i,y}$ be defined as follows. Let $v \in T_{i,y}$ iff the following conditions both hold:

- (a) $v \in T_{i-1};$
- (b) The computation $M_i^v(y)$ either is undefined, or does not halt within n = |v| steps, or, halts within n steps with output $1 \chi_L(y)$.

Each $T_{i,y}$ is clearly a computable tree. It is also immediate that **R1** is satisfied for any choice of $T_i = T_{i,y}$.

If we can choose y so that $T_i = T_{i,y}$ satisfies **R2**, then **R3** will hold as well, since for any infinite path p in $T_{i,y}$ we will have $M_i^p(y) \neq \chi_L(y)$. We claim that a y must exist; proving this assertion will give us a suitable choice of $T_i = T_{i,y}$, extending our construction to stage i and completing the proof of the Theorem.

¹(Note: although each T_i will be individually computable, the sequence $\{T_i\}$ we construct will not be *uniformly* computable: that is, there will not be an algorithm to decide whether $v \in T_i$, given i and v as inputs.)

Suppose for contradiction's sake that no such y exists. We claim that then L is computable, contrary to our initial assumption. Let P_{i-1} be an algorithm to decide membership in T_{i-1} . Here is our algorithm to decide if $y \in L$:

Algorithm $P_L(y)$:

- 1. Set n := 1.
- 2. Enumerate all length-*n* strings in T_{i-1} , using P_{i-1} . Let $v[n, 1], \ldots, v[n, m]$ be these strings. For each $j \leq m$, simulate $M_i^{v[n,j]}(y)$ for *n* steps. If all of these simulations halt with a common output *b* (without ever querying a value left undefined by the oracle), halt and output *b*; otherwise, set n := n + 1 and repeat Step 2.

We claim that for any y, $P_L(y)$ halts with output $\chi_L(y)$. To see this, let p be an infinite path in T_{i-1} ; such a p exists, since T_{i-1} satisfies **R2**. By our assumption, p is not an infinite path in $T_{i,y}$; suppose that for the length-N prefix $p[1, \ldots, N]$ we have $p[1, \ldots, N] \notin T_{i,y}$. By definition of p, this implies that $M_i^{p[1,\ldots,N]}(y)$ halts in at most N steps with output $\chi_L(y)$.

Now T_{i-1} is a tree, so all prefixes of p are also in T_{i-1} . For no such prefix p' can the computation $M_i^{p'}(y)$ halt with output $1 - \chi_L(y)$. Thus, on no stage n can $P_L(y)$ halt with output $1 - \chi_L(y)$.

The tree $T_{i,y}$ contains no infinite path, so by König's Lemma it is finite. Say that it contains no strings of length N' > 0. Reasoning as above, we find that for each string $v \in T_{i-1} \cap \{0,1\}^{N'}$ we have $M_i^v(y) = \chi_L(y)$. Thus, after at most N' stages, $P_L(y)$ halts with output $\chi_L(y)$. So P_L computes L as claimed. As argued earlier, this completes the proof of the Theorem. \Box

References

- [Aar] Scott Aaronson. Rosser's Theorem via Turing Machines (blog post). http://www.scottaaronson.com/blog/?p=710
- [Cen] Douglas Cenzer. II⁰₁ classes in Computability Theory. Handbook of Computability (ed. E. Griffor), North-Holland Studies in Logic 140 (1999), 37-85. Draft available at http://www.math.ufl.edu/ ~cenzer/research_html/n42.ps