On Consistently Guessing the Output of Algorithms

Andrew Drucker*

Scott Aaronson [Aar] suggested the study of the following computational
problem:

Given: a description (@) of an (input-free) Turing machine @, syntacti-
cally restricted to produce at most 1 output bit;

Output: 1 if @ outputs 1; 0 if @ outputs 0. Otherwise (if @ loops), we
may output either 0 or 1.

Aaronson calls this the consistent guessing (CG) problem; a familiar diag-
onalization argument shows that it is incomputable [Aar]. Aaronson asked
whether any oracle solving CG can be used to solve the Halting problem
(HALT). In this note we give a negative answer to Aaronson’s question. In
fact, the answer is negative even if HALT is replaced by any incomputable
language.

This result is not really new; it is a special case of a more general result.
The only property of CG that we need in our proof, is that the collection of
solutions to CG can be expressed as the set of infinite paths in a computable
binary tree (definitions will follow). Such a collection is referred to as a II{
class. Tt is known that, for any II{ class P and any incomputable language
L, there is a solution to P that cannot be used to compute L. The techniques
we use in this note (which are well-known) also yield a proof of this more
general result with no additional effort. See the survey [Cen| for various
strengthenings and variants of this result, and for more information on 1Y
classes.

First we need to review a bit of standard notation and formalize our
assertion. All Turing machines we consider will be syntactically restricted
to output at most 1 bit. We will use the letter) to denote an input-
free Turing machine, and M to denote an input-accepting one. Say that

*CSAIL, MIT. Email: adrucker@mit.edu

a language L C {0,1}* is a solution to CG if, for all input-free, halting
machines @),
Qe L <= (@ outputs 1.

Thus, we place no constraint on yr,((Q)) when Q is looping. Let CG*%
denote the set of solutions to CG.

Let L(M) denote the set of strings accepted by M. Let MP? denote the
machine M equipped with oracle access to B. For languages A, B, write
A <p B if A Turing-reduces to B. That is,

A<r B <= 3IM:L(MP)=A
We show the following:

Theorem 1. Let L be incomputable; then there exists a set A € CG**, such
that L £ A.

Proof. By a (binary) tree, we mean a subset 7" C {0, 1}* that is closed under
prefixes. That is, if # € T and 2’ is a prefix of z, then 2’ € T. A computable
tree is just one whose characteristic function is computable.

An infinite path in T is an infinite string p € {0, 1}* whose finite prefixes
are all in 7. We use an important, simple fact about trees:

Fact 1 (Konig’s Lemma). If T is an infinite binary tree, then T contains
an infinite path.

Now let L be incomputable; we will construct A € CG** such that
L £p A. Our construction will proceed in stages. On each stage i > 0 we
will define a computable tree T;, such that the following requirements are
met:

RO: All infinite paths p in Tp satisfy p € CG*;
R1: T, CT; q,fori=1,2,..;
R2: Each T; contains an infinite path;

R3: Fori > 1, let M; be the i*" machine in a standard universal enumera-
tion of (input-accepting) Turing machines. Then we have that for all infinite
paths p in T}, L(M}) # L.

Under our requirements, it is not hard to see that the intersection T, :=
U;>o Ti is an infinite tree. Letting p be an infinite path in 7;,, RO guarantees
that p € CG*°, and R3 guarantees that L £ p. Thus, constructing
To, T4, ... will prove the Theorem.!

Let Q1,Q2, ... be a standard enumeration of input-free Turing machines.
Building Tj is simple: for a string v € {0,1}", let v € Ty iff the following
condition holds: for all j < n, if Q; halts with output b in at most n steps,
then v; = b.

Ty is clearly a computable tree. We verify RO and R2 (the other two
requirements don’t apply to Tp). It is easily checked that RO holds. That
R2 holds is easy to see: for any p € CG*%, all prefixes of p lie in Ty, so p is
an infinite path in Tj.

Now let ¢ > 1, and assume Ty, ..., T;—1 have been constructed satisfying
RO-R3. To construct T;, we will need the following notion. A finite string v
can be considered as an “incomplete oracle”, giving values for oracle queries
to strings up to a certain index. For an input-accepting oracle machine M
and string x, let MY (z) := b if on input x and oracle v, M outputs b without
ever querying a string whose oracle-value is left undefined by v. Otherwise,
we let M?(x) be undefined.

To define T;, we will first define an infinite set of “candidate trees”

{ Tl}y }ye{O,l}* .

T; will be chosen as one of these. For any y € {0,1}*, let T}, be defined as
follows. Let v € T; , iff the following conditions both hold:

(a) v € Ti1;

(b) The computation M/ (y) either is undefined, or does not halt within
n = |v| steps, or, halts within n steps with output 1 — xr(y).

Each T;, is clearly a computable tree. It is also immediate that R1 is
satisfied for any choice of T; = T; ;.

If we can choose y so that T; = T; , satisfies R2, then R3 will hold as
well, since for any infinite path p in T;, we will have M/ (y) # xr(y). We
claim that a y must exist; proving this assertion will give us a suitable choice
of T; = T; , extending our construction to stage ¢ and completing the proof
of the Theorem.

!(Note: although each T} will be individually computable, the sequence {T}} we con-
struct will not be uniformly computable: that is, there will not be an algorithm to decide
whether v € T}, given ¢ and v as inputs.)

Suppose for contradiction’s sake that no such y exists. We claim that
then L is computable, contrary to our initial assumption. Let P;_; be an
algorithm to decide membership in 7;_;. Here is our algorithm to decide if
y e L:

Algorithm Py (y):
1. Set n := 1.

2. Enumerate all length-n strings in T;_1, using P;_1. Let v[n, 1],...,v[n,m]
be these strings. For each j < m, simulate Miv[n’]] (y) for n steps. If all
of these simulations halt with a common output b (without ever query-
ing a value left undefined by the oracle), halt and output b; otherwise,
set n :=n + 1 and repeat Step 2.

We claim that for any y, Pr(y) halts with output x7(y). To see this, let
p be an infinite path in T;_1; such a p exists, since T;_; satisfies R2. By our
assumption, p is not an infinite path in 7; ,; suppose that for the length-N
prefix p[1,..., N] we have p[1,...,N] ¢ T; ,. By definition of p, this implies
that Mf[l""’m (y) halts in at most N steps with output xr.(y).

Now T;_1 is a tree, so all prefixes of p are also in T;_1. For no such prefix
p’ can the computation Mip/ (y) halt with output 1 — x1(y). Thus, on no
stage n can Pr(y) halt with output 1 — x7.(y).

The tree T;, contains no infinite path, so by Konig’s Lemma it is finite.
Say that it contains no strings of length N’ > 0. Reasoning as above, we
find that for each string v € T;_; N {0, 1} we have M?(y) = x1(y). Thus,
after at most N’ stages, Pr(y) halts with output xr,(y). So Pr, computes L
as claimed. As argued earlier, this completes the proof of the Theorem. [J

References

[Aar] Scott Aaronson. Rosser’s Theorem via Turing Machines (blog post).
http://www.scottaaronson.com/blog/?p=710

[Cen] Douglas Cenzer. IIY classes in Computability Theory. Handbook
of Computability (ed. E. Griffor), North-Holland Studies in Logic
140 (1999), 37-85. Draft available at http://www.math.ufl.edu/
~cenzer/research_html/n42.ps

