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ABSTRACT
We study the setting in which the bits of an unknown infinite
binary sequence x are revealed sequentially to an observer.
We show that very limited assumptions about x allow one
to make successful predictions about unseen bits of x. First,
we study the problem of successfully predicting a single 0
from among the bits of x. In our model we have only one
chance to make a prediction, but may do so at a time of our
choosing. This model is applicable to a variety of situations
in which we want to perform an action of fixed duration,
and need to predict a “safe” time-interval to perform it.

Letting Nt denote the number of 1s among the first t bits
of x, we say that x is “ε-weakly sparse” if lim inf(Nt/t) ≤ ε.
Our main result is a randomized algorithm that, given any
ε-weakly sparse sequence x, predicts a 0 of x with success
probability as close as desired to 1−ε. Thus we can perform
this task with essentially the same success probability as
under the much stronger assumption that each bit of x takes
the value 1 independently with probability ε.

We apply this result to show how to successfully predict a
bit (0 or 1) under a broad class of possible assumptions on
the sequence x. The assumptions are stated in terms of the
behavior of a finite automaton M reading the bits of x. We
also propose and solve a variant of the well-studied“ignorant
forecasting” problem. For every ε > 0, we give a randomized
forecasting algorithm Sε that, given sequential access to a
binary sequence x, makes a prediction of the form: “A p
fraction of the next N bits will be 1s.” (The algorithm gets
to choose p, N , and the time of the prediction.) For any fixed
sequence x, the forecast fraction p is accurate to within ±ε
with probability 1− ε.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Non-numerical algorithms
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1. INTRODUCTION
Suppose that the bits of an unknown infinite binary se-

quence x = (x1, x2, . . .) are revealed to us sequentially, and
our goal is to make a nontrivial prediction about unseen
bits. As a canonical example (which we will study closely),
suppose we wish to make a single, successful prediction that
some unseen bit of our choosing will be 0. This generic
“0-prediction” task is applicable in many settings. In partic-
ular, it applies whenever we are trying to predict some“safe”
time to perform some action of unit-duration, based on past
observations: here, [xt = 0] represents safe conditions dur-
ing the t-th possible time-slot for our action, while [xt = 1]
represents dangerous (unacceptable) conditions. Note that
we model time as discrete, and model “safety” as an all-or-
nothing matter. If after observing x1, . . . , xt−1 we predict
“xt = 0,” and our prediction is false, we regard this as a
catastrophic failure. Similarly, if we observe the entire infi-
nite sequence, without ever announcing a 0-prediction, this
is also regarded as a failure.

We ask: under what assumptions on the sequence x can we
make a correct 0-prediction and perform our action safely?
Obviously, if x is all-1s then we cannot, so we must make
some assumption. One natural approach to this kind of
situation is to assume the sequence x is generated according
to some probabilistic model. For example, we might assume
that each bit represents the outcome of an independent coin
toss with some fixed bias p. More complicated probabilistic
assumptions, involving dependence between the bits, can
also be considered.

However, in applications we may be unlikely to have a de-
tailed idea of how the bits of x are generated. It may be that
rather than having a probabilistic model in mind, we merely
know or conjecture some constraint obeyed by x. We then
ask whether there exists a strategy which allows successful
0-prediction (at least, with sufficiently high probability), for
any sequence obeying the constraint. This model will be our
focus in the present paper.

For example, suppose that based on initial observations,
the bits of x seem individually to equal 1 with probability at
most .05, but that we suspect they are not fully independent.
In such cases, we may make the weaker assumption that the



limiting density of 1s is at most .05. Note that this condition
holds with probability 1 if the bits are generated by indepen-
dent .05-biased trials, so our limiting-density constraint can
be considered a natural relaxation of this simple probabilis-
tic model. We may then ask whether there exists a strategy
that allows a successful 0-prediction with success probabil-
ity nearly .95 under this relaxed assumption. (Happily, the
answer is Yes; this will follow from our main result.)

1.1 Relation to previous work
Our work studies prediction under adversarial uncertainty.

In such problems, an observer tries to make predictions
about successive states of nature, without assuming that
these states are governed by some known probability dis-
tribution. Instead, nature is regarded as an adversary who
makes choices in an attempt to thwart the observer’s pre-
diction strategy. The focus is on understanding what kinds
of predictions can be made under very limited assumptions
about the behavior of nature.

Adversarial prediction is a broad topic, but two strands
of research are particularly related to our work. The first
strand is the study of gales and their relatives. Gales are
a class of betting systems generalizing martingales; their
study is fundamental for the theory of effective dimension
in theoretical computer science (see [8] for a survey). The
basic idea is as follows. An infinite sequence x is chosen from
some known subset A of the space {0, 1}ω of infinite binary
sequences. A gambler is invited to gamble on predicting
the bits of x as they are sequentially revealed; the gambler
has a finite initial fortune and cannot go into debt. The
basic question is, for which subsets A can the gambler be
guaranteed long-term success in gambling, for any choice
of x ∈ A? This question can be studied under different
meanings of “success” for the gambler, and under more- or
less-favorable classes of bets offered by the casino.

Intuitively, the difficulty of gambling successfully on an
unknown x ∈ A is a measure of the “largeness” of the set A.
In fact, this perspective was shown to yield new characteri-
zations of two important measures of fractal dimensionality.
Lutz [9] gave a characterization of the Hausdorff dimension
of subsets of {0, 1}ω in terms of gales, while Athreya, Hitch-
cock, Lutz, and Mayordomo [1] showed a gale characteriza-
tion of the packing dimension. These works also investigated
gales with a requirement that the gambler follows a compu-
tationally bounded betting strategy; using such gales, the
authors explored new notions of “effective dimension” for
complexity classes in computational complexity theory.1

The second strand of related work is the so-called forecast-
ing problem in decision theory (see [4] for an early, influen-
tial discussion). In this problem, an infinite binary sequence
x ∈ {0, 1}ω is once again revealed sequentially; we typically
think of the t-th bit as indicating whether it rained on the
t-th day at some location of interest. Each day a weather
forecaster is asked to give, not an absolute prediction of
whether it will rain tomorrow, but instead some estimate of
the probability of rain tomorrow. In order to keep his job,
the forecaster is expected to make forecasts which are cali-
brated : roughly speaking, this means that if we consider all

1Computationally bounded betting and prediction schemes
have also been used to study individual sequences x, rather
than sets of sequences. This approach has been followed
using various resource bounds and measures of predictive
success; see, e.g., [11, 10].

the days for which the forecaster predicted some probability
p of rain, about a p fraction turn out rainy (see [7] for more
precise definitions).

In the adversarial setting, a forecaster must make such
forecasts without knowledge of the probability distribution
governing nature. An extreme case is the well-studied “ig-
norant forecaster” model, in which the forecaster is allowed
no assumptions whatsoever about the sequence x. It is a
remarkable fact, shown by Foster and Vohra [7], that there
exists a randomized ignorant forecasting scheme whose fore-
casts are calibrated in the limit.

This result was extended by Sandroni [12]. The calibra-
tion criterion is just one of many conceivable “tests” with
which we might judge a forecaster’s knowledge on the ba-
sis of his forecasts and the observed outcomes. Foster and
Vohra’s result showed that the calibration test can be passed
even by an ignorant forecaster; but conceivably some other
test of knowledge could be more meaningful. A reasonable
class of tests to consider are those that can be passed with
some high probability 1 − ε by a forecaster who knows the
actual distribution D governing nature, for any possible set-
ting of D. However, Sandroni showed that any such test
can also be passed with probability 1 − ε by an ignorant
forecaster! Fortnow and Vohra [6] give evidence that the
ignorant strategies provided by Sandroni’s result cannot in
general be computed in polynomial time, even if the test is
polynomial-time computable.2

In both of the strands of research described above, re-
searchers have typically looked for prediction schemes that
have some desirable long-term, aggregate property. In the
gale setting, the focus is on betting strategies that may lose
money on certain bets, but that succeed in the limit; in the
forecasting problem, an ignorant forecaster wants his fore-
casts to appear competent overall, but is not required to
give definite predictions of whether or not it will rain on
any given day. By contrast, in our 0-prediction problem,
we want to perform an action successfully just once, and we
stake everything on the outcome. Our focus is on making
a single prediction, with success probability as close to 1 as
possible.

In a later section of the paper we will also study a variant
of the ignorant forecasting scenario. Following [7, 12], we
will make no assumption about the observation sequence x.
Our goal will be to make a single forecast at a time of our
choosing, of the following form: “A p fraction of the next N
observations will take the value 1.” We will seek to maximize
the accuracy of our prediction, as well as the likelihood of
falling within the desired accuracy. This forecasting variant
is conceptually linked to our 0-prediction problem by its
focus on making a single prediction with high confidence.

1.2 Our results on the 0-prediction problem
To appreciate the kinds of prediction-strategies that are

possible, let us first consider a simple but instructive ex-
ample. Suppose we know that at most one bit will ever
equal 1. Even under this very-restrictive assumption, it is
not hard to see that any deterministic 0-prediction strategy
must fail on some sequences (either by making an incorrect
prediction, or by waiting forever to see a 1 that never ar-
rives). Thus, we are naturally led to consider a randomized

2The tests considered in [12, 6] are required to halt with an
answer in a fixed finite timeframe. See [6, 3] for references
to work in which this restriction is relaxed.



strategy. Fixing some δ > 0, consider the strategy which
chooses a value t? ∈ {1, 2, . . . , d1/δe} uniformly, and makes
a 0-prediction at time t?. One can verify that this strategy
fails with probability at most d1/δe−1 ≤ δ.

Note that this error probability is over the randomness in
the algorithm, not the sequence x; we regard the sequence as
chosen by an adversary who knows the prediction strategy,
but not the outcomes of the strategy’s randomness. We are
interested in strategies which succeed with high probability
against any choice by the adversary (obeying the assumed
constraint).

An easy modification of the above algorithm lets the us
succeed with probability 1− δ against a sequence promised
to contain at most M 1s, for any fixed M < ∞. However,
it may come as a surprise that we can succeed in the 0-
prediction task with probability 1 − δ under much weaker
assumptions. For example, we can do so under the assump-
tion that the number of 1s is merely finite, with no upper
bound M known in advance. In fact, we can handle an infi-
nite number of 1s and still make a 0-prediction successfully,
under the assumption that their limiting density is 0; that
is, under the assumption that limt→∞

1
t

∑
1≤i≤t xi = 0.

For any ε > 0, say that a sequence is ε-weakly sparse if

lim
s→∞

inf
t≥s

1

t

∑
1≤i≤t

xi ≤ ε.

Our main result on 0-prediction is that there is a prediction
strategy S = Sε that makes a 0-prediction with success-
fully with probability as close as desired to 1− ε, under the
assumption that the sequence x given is ε-weakly sparse.
(Simple examples show that this is optimal.) We state our
result formally in Section 2, after setting up the necessary
definitions. This result easily implies our claim that success-
ful 0-predictions can be performed on sequences with finitely
many 1s or with limiting density 0, although these special
cases can also be handled more simply.

We feel that the techniques used to prove this result are of
independent interest, and could find other applications. The
basic idea of our 0-prediction strategy is easy to state. The
prediction strategy maintains a stack of “chips;” observing
0s increases the stack height, while observing 1s decreases
it. The height of the stack at a given time reflects the algo-
rithm’s “courage,” and determines its likelihood to predict
a 0. While this basic approach is intuitive, implementing
it correctly and proving the strategy’s correctness is a deli-
cate task. Our analysis involves a careful study of individual
chips’ contributions to the success and failure probabilities.

Our result bears some resemblance to known results in
dimension theory. Let Aε−ws ⊆ {0, 1}ω denote the set of
ε-weakly sparse infinite binary sequences. Eggleston [5, 2]
showed that for ε ≤ 1/2, the Hausdorff dimension of Aε−ws
is equal to the binary entropy H(ε). More recently, Lutz [9]
gave an alternative proof using his gale characterization of
Hausdorff dimension (Lutz also calculated the “effective di-
mension” of Aε−ws according to several definitions). Lutz
upper-bounds the Hausdorff dimension of Aε−ws by giving
a gale betting strategy that “succeeds” (in the appropri-
ate sense) against all x ∈ Aε−ws. This betting strategy,
which is simple and elegant, does not appear to be appli-
cable to our problem. Indeed, a major difference between
our work and the study of gales is that gale betting strate-
gies are deterministic (at least under standard definitions [9,
1]), whereas randomization plays a crucial role in our 0-

prediction-strategies.

1.3 Further results
In Section 4, we prove a variant of our result on 0-prediction,

in a a modified setting in which we are allowed to predict
either a 0 or a 1. We define a condition on the binary se-
quence x that is significantly more general than ε-weak spar-
sity as defined in Section 1.2, and that still allows a bit to be
predicted with high confidence. The condition is stated in
terms of a finite automaton M that reads x: we assume that
x causes M to enter a designated set of “bad” states B only
infrequently. A certain “strong accessibility” assumption on
the set B is needed for our result. Also, we caution that
our algorithm’s success guarantee in this problem is not as
quantitatively strong as our result on 0-prediction; this is
unavoidable, as will be shown.

Next, in Section 5, we study a problem closely related to
the “ignorant forecasting” problem discussed earlier, where
(as in the 0-prediction problem) a single prediction is to be
made. In the“density prediction game,” an arbitrary infinite
binary sequence is chosen by Nature, and its bits are revealed
to us sequentially. Our goal is to make a single forecast of
the form

“A p fraction of the next N bits will be 1s.”

We are allowed to choose p,N , and the time at which we
make our forecast.

Fixing a binary sequence x, we say that a forecast de-
scribed by (p,N), and made after viewing xt, is ε-successful
on x if the fraction of 1s among xt+1, . . . , xt+N is in the
range (p − ε, p + ε). For δ, ε > 0, we say that a (random-
ized) forecasting strategy S is (δ, ε)-successful if for every
x ∈ {0, 1}ω,

Pr[S is ε-successful on x] ≥ 1− δ.

In Section 5 we show the following, perhaps surprising,
result:

Theorem 1. For any δ, ε > 0, there exists a (δ, ε)-successful
forecasting strategy.

The proof uses a (seemingly folklore) technique from the
analysis of martingales. My understanding of this technique
benefited greatly from conversations with Russell Impagli-
azzo.

2. PRELIMINARIES AND THE MAIN THE-
OREM

First we develop a formal basis to state and prove our
main result on 0-prediction. N = {1, 2, . . .} denotes the
positive whole numbers. For N ∈ N, [N ] denotes the set
{1, 2, . . . , N}. {0, 1}ω denotes the set of all infinite bit-
sequences b = (b1, b2, . . .).

A 0-prediction strategy is a collection

S = {πS,b : b ∈ {0, 1}ω},

where each πS,b is a probability distribution over N ∪ {∞}.
We require that for all b = (b1, b2, . . .), b

′ = (b′1, b
′
2, . . .), and

all i ∈ N,

(b1, . . . , bi−1) = (b′1, . . . , b
′
i−1)⇒ πS,b(i) = πS,b′(i). (1)

That is, πS,b(i) depends only on b1, . . . , bi−1.



Let us interpret the above definition. A 0-prediction strat-
egy defines, for each sequence b and each i ∈ N, a probability
πS,b(i) that, when facing the sequence b, the predictor will
make the prediction “bi = 0.” There is also some probability
πS,b(∞) that the predictor will wait forever without making
a prediction. Whether it succeeds or fails, the strategy only
makes a prediction at most once, so these probabilities sum
to 1. Eq. (1) requires that the decision whether to predict
a 0 at position i depends only upon what it has seen of the
sequence during the first (i−1) steps. The strategies we an-
alyze in this paper will be defined in such a way that Eq. (1)
obviously holds.

Given a 0-prediction strategy S, define the success prob-
ability

Suc(S, b) :=
∑

i∈N:bi=0

πS,b(i)

as the probability that, facing b, the strategy makes a suc-
cessful 0-prediction. Similarly, define the false-guess proba-
bility

False(S, b) :=
∑

i∈N:bi=1

πS,b(i) = 1− Suc(S, b)− πS,b(∞)

as the probability that the strategy S leads to an incorrect
0-prediction on sequence b. For a subset A ⊆ {0, 1}ω, define

Suc(S, A) := inf
b∈A

Suc(S, b).

We can now formally state our main result on 0-prediction:

Theorem 2. Fix ε ∈ (0, 1) and let Aε−ws := {b : b is
ε−weakly sparse}. Then for all γ > 0, there exists a strategy
Sε,γ such that

Suc(Sε,γ , Aε−ws) > 1− ε− γ.

Furthermore, Sε,γ has the following “safety” property: for
any sequence b ∈ {0, 1}ω, the false-guess probability False(S, b)
is at most ε+ γ.

It is not hard to see that Theorem 2 is optimal for 0-
prediction strategies against Aε−ws. For consider a ran-
domly generated sequence bbb where the events [bbbi = 1] oc-
cur independently, with E[bbbi] = min{1, ε + 2−i}. Then
[limt→∞(bbb1 + . . . + bbbt)/t = ε] occurs with probability 1.
On the other hand, any 0-prediction strategy S has success
probability less than 1 − ε against bbb. Thus, for any S we
can find a particular sequence b for which limt→∞(b1 + . . .+
bt)/t = ε and which causes S to succeed with probability
less than 1− ε.

3. PROOF OF THEOREM 2
First we observe that, if we can construct a strategy S

such that Suc(S, Aε−ws) > 1−ε−γ, then the “safety” prop-
erty claimed for S in the theorem statement will follow im-
mediately. For suppose to the contrary that some sequence
b ∈ {0, 1}ω satisfies False(S, b) > ε + γ. Then there exists
m ∈ N such that

∑
i≤m:bi=1 πS,b(i) > ε + γ. If we define

b′ ∈ {0, 1}ω by

b′i :=

{
bi if i ≤ m,
0 if i > m,

then b′ ∈ Aε−ws and False(S, b′) > ε+ γ, contradicting our
assumption on S.

To construct the strategy S, we use a family of 0-prediction
strategies for attempting to make a 0-prediction within a fi-
nite, bounded interval of time. The following lemma is our
key tool, and is interesting in its own right.

Lemma 1. For any δ ∈ (0, 1) and integer K > 1, there
exists a strategy T = TK,δ such that for all b ∈ {0, 1}ω:

(i) The 0-prediction time of T is always in [K] ∪ {∞}.
That is, for K < i <∞, we have πT ,b(i) = 0;

(ii) If (b1 + . . .+ bK−1)/(K− 1) ≤ δ′ < δ, then πT ,b(∞) ≤
1− Ω((δ − δ′)2/δ);

(iii) The false-guess probability satisfies

False(T , b) ≤ δ

1− δ Suc(T , b) +O

(
δ

(1− δ)K

)
.

We defer the proof of Lemma 1, and use it to prove The-
orem 2.

Proof of Theorem 2. Fix settings of ε, γ > 0; we may
assume ε + γ ≤ 1, or there is nothing to prove. Let ε1 :=
ε+ γ/3, ε2 := ε+ 2γ/3. We also use a large integer K > 1,
to be specified later. Divide N into a sequence of intervals
I1 = {1, 2, . . . ,K}, I2 = {K + 1, . . . , 5K}, and so on, where
Ir has length r2K.

Let S = Sε,γ be the 0-prediction strategy which does
the following: first, follow the strategy TK,ε2 (as given by
Lemma 1) during the time interval I1. If no 0-prediction is
made during these steps, then run the strategy T4K,ε2 on the
interval I2, after shifting the indices of I2 appropriately (so
that T4K,ε2 considers its input sequence to begin on bK+1).
Similarly, for each r > 0, if we reach the interval Ir with-
out a 0-prediction, we execute the strategy Tr2K,ε2 on the
interval Ir, after shifting indices appropriately.

We will show that ifK is sufficiently large, Suc(S, Aε−ws) >
1− ε− γ as required. Fix any b = (b1, b2, . . .) ∈ Aε−ws. Let

αr :=
(∑

i∈Ir bi
)
/|Ir| be the fraction of 1-entries in b during

interval Ir. We will use the following easy claim:

Claim 1. For infinitely many r, αr ≤ ε1.

Proof. Suppose to the contrary that αr > ε1 when r ≥
R. Consider an interval {1, 2, . . . ,M} large enough to prop-
erly contain I1, I2, . . . , IR. Let t ≥ R be such that It ⊆ [M ]
but that It+1 * [M ]. Let α? be the fraction of 1-entries
in [M ] ∩ It+1; we set α? := 0 if [M ] ∩ It+1 = ∅. With
NM = (b1 + . . .+ bM ), we have the expression

NM
M

=
∑
r≤t

|Ir|
M
· αr +

|[M ] ∩ It+1|
M

· α?

which expresses the 1-density (fraction of 1s) in b in the
positions {1, . . . ,M} as a weighted average of the 1-densities
in I1, . . . , It and in [M ] ∩ It+1.

Note that

|[M ] ∩ It+1|
M

≤ |It+1|
M

≤ (t+ 1)2K∑
r≤t r

2K
= O(1/t)→ 0,

as M → ∞. Now αr > ε1 when r ≥ R, so for sufficiently
large M we have NM/M ≥ (ε1 + ε)/2 > ε. But this contra-
dicts the fact that b ∈ Aε−ws, proving the Claim.



Fix r > 0. If Ir = {j, . . . , k} and αr = (bj + . . .+ bk)/(k−
j + 1) ≤ ε1, then we also have (bj + . . . + bk−1)/(k − j) <
ε + γ/2 if r is large enough. For any such r, condition (ii)
of Lemma 1 tells us that if our 0-prediction strategy reaches
the interval Ir, it will make a 0-prediction during Ir with
probability Ω((γ/6)2/ε2). There are infinitely many such
r, by Claim 1. Thus, the strategy eventually makes a 0-
prediction with probability 1. It follows that False(S, b) =
1− Suc(S, b).

For r > 0, let Pr = Pr(b) be defined as the probability that
S reaches Ir without making a 0-prediction earlier (about
some position occurring before Ir). Let b[Ir] denote the
sequence b, shifted to begin at the first bit of Ir. Then
we can reexpress the false-guess probability of S on b, and
bound this quantity, as follows:

False(S, b) =
∑
r≥1

Pr · False(Tr2K,ε2 , b[Ir])

≤
∑
r≥1

Pr ·
(

ε2
1− ε2

Suc(Tr2K,ε2 , b[Ir]) +O

(
ε2

(1− ε2)r2K

))
(by condition (iii) of Lemma 1)

=
ε2

1− ε2

∑
r≥1

Pr · Suc(Tr2K,ε2 , b[Ir])

+O

(
ε2

(1− ε2)K

)
(using the fact that

∑
r>0 r

−2 <∞)

=
ε2

1− ε2
Suc(S, b) +O

(
ε2

(1− ε2)K

)
.

Thus,

False(S, b) = 1−Suc(S, b) ≤ ε2
1− ε2

Suc(S, b)+O
(

ε2
(1− ε2)K

)
,

which implies

Suc(S, b) ≥ 1− ε2 −O
(

ε2
(1− ε2)K

)

= 1− (ε+ 2γ/3)−O
(

ε2
(1− ε2)K

)
.

By setting K � ε2γ
−1(1 − ε2)−1 sufficiently large, we can

conclude Suc(S, b) > 1− ε− 3γ/4. This proves Theorem 2.

Proof of Lemma 1. By an easy approximation argument,
it suffices to prove the result for the case when δ is rational.
So assume

δ = p/d,

for some integers 0 < p < d, and let

q := d− p.

The 0-prediction strategy T is as follows. First, pick a
value t? ∈ [K] uniformly at random. Do not make any
0-predictions for steps 1, 2, . . . , t? − 1. During this time,
maintain an ordered stack of “chips,” initially empty. For
1 ≤ i < t?, after viewing bi, if bi = 0 then add p chips to the
top of the stack; if bi = 1 then remove q chips from the top
of the stack—or, if the stack contains fewer than q chips,
remove all the chips. After this modification to the stack,
we say that the bit bi has been “processed.”

For 0 ≤ i ≤ K − 1, let Hi denote the number of chips
on the stack after processing b1, . . . , bi (so, H0 = 0). After
processing bt?−1, sample from a 0/1-valued random variable
X, with expectation

E[X] :=
Ht?−1

dK
.

(Note that this expectation is at most p(K−1)
dK

< 1, so the
definition makes sense.) Predict a 0 at step t? if X = 1,
otherwise make no prediction at any step.

Note that the variable Ht can be regarded as a measure
of the strategy’s “courage” after processing b1, . . . , bt, as in
our sketch-description in Section 1.2. We now verify that
T has the desired properties. Condition (i) in Lemma 1 is
clearly satisfied. Before verifying conditions (ii) and (iii), we
first sketch why they hold. For (ii), the idea is that if much
less than a δ fraction of b1, . . . , bK−1 are 1s, then the stack
of chips will be of significant height after processing these
bits. Since the stack doesn’t grow too quickly, we conclude
that the average stack height during these steps is signif-
icant, which implies that the strategy makes a prediction
with noticeable probability.

For (iii), the idea is that for any chip c, if c stays on the
stack for a significant amount of time, then the fraction of
1s appearing during the interval in which c was on the stack
must be not much more than δ. Thus c’s contribution to
the false-guess probability is not much more than δ/(1− δ)
times c’s contribution to the success probability. On the
other hand, chips c which don’t stay on the stack very long
make only a small contribution to the false-guess probability.

Now we formally verify condition (ii). Fix some sequence
b. First note that the placement and removal of chips,
and the height sequence H0, . . . , HK−1, can be defined in
terms of b alone, without reference to the algorithm’s ran-
dom choices. Throughout our analysis we consider the stack
to continue to evolve as a function of the bits b1, . . . , bK−1,
regardless of the algorithm’s choices.

Suppose b1 + . . . + bK−1 ≤ δ′(K − 1), where δ′ < δ; we
ask, how large can πT ,b(∞) be? From the definition of T ,
we compute

πT ,b(∞) = 1− 1

K

∑
t∈[K]

Ht−1

dK
= 1− 1

dK2

∑
0≤t<K

Ht. (2)

Now, for a chip c, let mc ∈ N denote the number of indices
i < K for which c was on the stack immediately after pro-
cessing bi. (We consider each chip to be “unique;” that is, it
is added to the stack at most once.) We can reexpress the
sum appearing in Eq. (2) as∑

0≤t<K

Ht =
∑
c

mc.

We will lower-bound this sum by considering the contribu-
tion made by chips that are never removed from the stack—
that is, chips which remain after processing bK−1. We call
such chips “persistent.” First, we argue that there are many
persistent chips. By our assumption, at least p·(1−δ′)(K−1)
chips are added to the stack in total, while at most q ·δ′(K−
1) chips are ever removed. Thus the number of persistent
chips is at least

p(1− δ′)(K − 1)− qδ′(K − 1)



= [p(1− δ)− qδ︸ ︷︷ ︸
=0

+ (p+ q)︸ ︷︷ ︸
=d

(δ − δ′)](K − 1)

= (δ − δ′)d(K − 1),

where we used p/q = δ/(1− δ). Let J := (δ − δ′)d(K − 1).
Pick any J persistent chips, and number them c(1), . . . , c(J)
so that j′ < j ≤ J implies c(j′) appears above c(j) on the
stack after processing bK−1. This means c(j′) was added to
the stack no earlier than c(j), so that mc(j′) ≤ mc(j). At
most p chips are added for every processed bit of b, and if c(j)
was added while processing the (K−i)-th bit, thenmc(j) = i.
Thus, by our indexing we conclude mc(j) ≥ dj/pe ≥ j/p.
Summing over j, we obtain∑

persistent c

mc ≥
J∑
j=1

j/p =
J(J + 1)

2p

>
(δ − δ′)2d2(K − 1)2

2p
=

(δ − δ′)2d(K − 1)2

2δ
.

Finally, returning to Eq. (2), we compute

πT ,b(∞) = 1− 1

dK2

∑
c

mc < 1− 1

dK2
· (δ − δ′)2d(K − 1)2

2δ

< 1− (δ − δ′)2

8δ
,

since K > 1. This establishes condition (ii).
Now we verify condition (iii). Fix any sequence b. From

our definitions, we have the expressions

Suc(S, b) =
1

K

∑
t∈[K]:bt=0

Ht−1

dK
,

False(S, b) =
1

K

∑
t∈[K]:bt=1

Ht−1

dK
,

so that

False(S, b)− (p/q) Suc(S, b)

=
1

dK2

 ∑
t∈[K]:bt=1

Ht−1 −
∑

t∈[K]:bt=0

(p/q)Ht−1

 . (3)

We regard the quantity Ht−1 as being composed of a con-
tribution of 1 from each of the chips on the stack after pro-
cessing bt−1. We rewrite the right-hand side of Eq. (3) as a
sum of the total contributions from each chip. For a chip c,
and for z ∈ {0, 1}, let

nc,z ≥ 0

denote the number of indices t ∈ [K] for which the follow-
ing holds: bt = z, and c is on the stack immediately after
processing bt−1. We then have

False(S, b)− (p/q) Suc(S, b) =
1

dK2

∑
c

(nc,1 − (p/q)nc,0).

(4)
Fix attention to some chip c, which was placed on the

stack while processing the ic-th bit, for some ic ∈ [K − 1].
First assume that c was later removed from the stack, and
let jc ∈ [K − 1] be the index of the bit whose processing

caused c to be removed (thus, bjc = 1). Then the stack
was not empty after processing bits ic, . . . , jc − 1, since in
particular, the stack contained c. Thus each 1 appearing
in (bic+1, . . . bjc−1) caused exactly q chips to be removed
from the stack. The removal caused by [bjc = 1] removes
some number rc ≤ q of chips. Also, each 0 appearing in the
same range causes p chips to be added. Now nc,0, nc,1 count
the number of 0s and 1s respectively among (bic+1, . . . , bjc).
Thus we have

Hjc −Hic = pnc,0 − q(nc,1 − 1)− rc ≤ pnc,0 − q(nc,1 − 1),

or rearranging,

nc,1 − (p/q)nc,0 ≤ (Hic −Hjc)/q + 1. (5)

The chip c is added to the stack with p−1 other chips while
processing bit ic. Later, c is removed from the stack when
processing bit jc, along with at most q−1 other chips. Thus
we have

Hic −Hjc ≤ p+ q − 1,

and combining this with Eq. (5) gives

nc,1 − (p/q)nc,0 ≤ (p+ q − 1)/q + 1 < p/q + 2. (6)

Next suppose c was added after processing bit ic ∈ [K −
1], but never removed from the stack. Then the stack was
nonempty after processing bit ic and remained nonempty
from then on, so each 1 in bic+1, . . . , bK−1 caused exactly q
chips to be removed. By reasoning similar to the previous
case, we get

nc,1 − (p/q)nc,0 = (Hic −HK−1)/q.

Now, c was added along with p−1 other chips after process-
ing bic , and c remains on the stack after processing bK−1. It
follows that Hic −HK−1 ≤ p− 1, so

nc,1 − (p/q)nc,0 ≤ (p− 1)/q. (7)

Plugging Eqs. (6) and (7) into Eq. (4), we bound

False(S, b)−(p/q) Suc(S, b) < 1

dK2

∑
c

(p/q+2) <
p2/q + 2p

dK

(since at most p(K − 1) chips are ever used)

=
1

K

(
p

q
· p
d

+
2p

d

)
=

1

K

(
δ

1− δ · δ + 2δ

)
= O

(
δ

(1− δ)K

)
.

Since (p/q) = δ/(1− δ), this establishes condition (iii), and
completes the proof of Lemma 1.

4. PREDICTION UNDER AUTOMATA-BASED
ASSUMPTIONS

In this section we present an variant of Theorem 2 that is
able to predict single bits from classes of binary sequences
that are modeled upon the 0-weakly sparse sequences (ε-
weak sparsity is defined in Section 1.2; here we are setting
ε := 0), but that are significantly more general.

4.1 Bit-prediction algorithms
Our result concerns a problem in which a predictor is

asked to correctly predict a single bit of their choice from
a sequence x. Unlike the 0-prediction problem, here the
predictor is allowed to predict either a 0 or a 1. Thus we
need to modify our definition of 0-prediction strategies (in



the obvious way), as follows. A bit-prediction strategy is a
collection

S = {πS,b : b ∈ {0, 1}ω},

where each πS,b is now a probability distribution over (N×
{0, 1}) ∪ {∞}. We require that for all b = (b1, b2, . . .), b

′ =
(b′1, b

′
2, . . .), and all i ∈ N, z ∈ {0, 1},

(b1, . . . , bi−1) = (b′1, . . . , b
′
i−1)⇒ πS,b((i, z)) = πS,b′((i, z)).

That is, πS,b((i, z)) depends only on b1, . . . , bi−1. As in the
0-prediction setting, our bit-prediction strategies will be de-
fined so that this constraint clearly holds.

Define the success probability

Sucbit-pred(S, b) :=
∑
i∈N

πS,b((i, bi))

as the probability that S correctly predicts a bit of b. For a
subset A ⊆ {0, 1}ω, define

Sucbit-pred(S, A) := inf
b∈A

Sucbit-pred(S, b).

4.2 Finite automata
To state our result, we need the familiar notion of a finite

automaton over a binary alphabet. Formally, this is a 3-
tuple M = (Q, s,∆), where:

• Q is a finite set of states;

• s ∈ Q is the designated starting state;

• ∆ : Q× {0, 1} → Q is the transition function.

For q ∈ Q, B ⊆ Q, say that B is accessible from q if there
exists a sequence y1, . . . , ym of bits and a sequence q0 =
q, q1, . . . , qm of states, such that

1. ∆(qi, yi+1) = qi+1 for i = 0, 1, . . . ,m− 1;

2. qm ∈ B.

Say that B is strongly accessible if, for any state q that is
accessible from the starting state s, B is accessible from q.

Finite automata operate on infinite sequences x ∈ {0, 1}ω
as follows: we let q0(x) := s, and inductively for t ≥ 1 we
define

qt(x) := ∆(qt−1(x), xt).

We say that qt(x) is the state of M after t steps on the
sequence x.

For a state q ∈ Q we define Vq(x), the visits to q on x, as

Vq(x) := {t ≥ 0 : qt(x) = q}.

Similarly, for B ⊆ Q, define VB(x) as VB(x) := {t ≥ 0 :
qt(x) ∈ B}.

4.3 Statement of the result
Say we are presented with the bits of some unknown x ∈
{0, 1}ω sequentially. We assume that x is “nice” in the fol-
lowing sense: for some known finite automaton M , there is
a set B ⊆ Q of “bad” states of M , which we assume M visits
only infrequently when M is run on x. We show that, if B
is strongly accessible, we can successfully predict a bit of x
with high probability.

In this section we say that a sequence x is weakly sparse
if it is 0-weakly sparse as defined in Section 1.2, i.e., if

lim
s→∞

inf
t≥s

1

t

∑
1≤i≤t

xi = 0.

We say that a subset S ⊆ {0, 1, 2, . . .} is weakly sparse if its
characteristic sequence is weakly sparse. We prove:

Theorem 3. Let M = (Q, s,∆) be a finite automaton,
and let B ⊆ Q be a strongly accessible set of states. Define

AB,ws := {x ∈ {0, 1}ω : VB(x) is weakly sparse}.

Then for all ε > 0, there exists a bit-prediction strategy S =
Sε such that

Sucbit-pred(S, AB,ws) > 1− ε.

We make a few remarks before proving Theorem 3. First,
simple examples show that the conclusion of Theorem 3 can
hold even in some cases where B is not strongly accessible.
Finding necessary and sufficient conditions on B could be
an interesting question for future study.

Second, it is natural to ask whether a more “quantitative”
version of Theorem 3 can be given. Let AB,ε−ws be the
set of sequences x for which the characteristic sequence of
VB(x) is ε-weakly sparse. If B is strongly accessible then,
by a slight modification of our proof of Theorem 3, one can
derive a bit-prediction strategy S such that

Sucbit-pred(S, AB,ε−ws) > 1−O
(
`ε1/`

)
,

where ` = |Q| is the number of states of the automaton M .
Something like this weak form of dependence on ε is essen-

tially necessary, as can be seen from the following example.
Let M be an automaton with states Q = {1, 2, . . . , `}, and
define

∆(i, 1) := min{i+ 1, `}, ∆(i, 0) := 1.

Let B := {`}, and consider running M on a sequence bbb of
independent unbiased bits. Then with probability 1, VB(bbb)
is 2−`+1-weakly sparse. On the other hand, no algorithm
can predict a bit of bbb with success probability greater than
1/2.

4.4 Proof of Theorem 3
Let Aws ⊆ {0, 1}ω denote the set of weakly sparse se-

quences. Given a sequence x = (x1, x2, . . .), define ¬x :=
(¬x1,¬x2, . . .). Say that x is co-weakly sparse, and write
x ∈ Aco−ws, if ¬x ∈ Aws. To prove Theorem 3, we need
two lemmas. The following lemma follows easily from The-
orem 2:

Lemma 2. Given δ > 0, there exists a bit-prediction strat-
egy P = Pδ such that

Sucbit-pred(P, Aws ∪Aco−ws) > 1− δ.

P also has the “safety” property that for any x ∈ {0, 1}ω, the
probability that P outputs an incorrect bit-prediction on x is
at most δ.

Proof. First, note that a 0-prediction strategy (as de-
fined in Section 2) can be regarded as a bit-prediction strat-
egy that only ever predicts a 0. Let ε = γ := δ/4. The
bit-prediction strategy P, given access to some sequence b,



simulates the 0-prediction strategy Sε,γ from Theorem 2 on
b, and simultaneously simulates an independent copy of Sε,γ
on ¬b. If Sε,γ(b) ever outputs a prediction (i.e., that the
next bit of b will be 0), P immediately outputs the same
prediction. On the other hand, if Sε,γ(¬b) ever outputs a
prediction (that the next bit of ¬b will be 0), then P predicts
that the next bit of b will be 1. If both simulations output
predictions simultaneously, P makes an arbitrary prediction
for the next bit.

To analyze P, say we are given input sequence b ∈ Aws ∪
Aco−ws. First suppose b ∈ Aws. Then Sε,γ(b) outputs a
correct prediction with probability > 1− ε−γ. Also, by the
safety property of Sε,γ shown in Theorem 2, the probability
that Sε,γ(¬b) outputs an incorrect prediction about ¬b is at
most ε + γ. Thus the probability that P outputs a correct
prediction on b is greater than 1− 2ε− 2γ = 1− δ.

The case where b ∈ Aco−ws is analyzed similarly. Finally,
the safety property of P follows from the safety property of
Sε,γ .

For the next lemma, we need some further definitions. Fix
a finite automaton M = (Q, s,∆). For x ∈ {0, 1}ω, let

Qinf(x) := {q ∈ Q : |Vq(x)| =∞}.

Of course, Qinf(x) is nonempty since Q is finite. If q ∈
Qinf(x), define a sequence x(q) ∈ {0, 1}ω as follows. If
Vq(x) = {t(1), t(2), . . . , } where 0 ≤ t(1) < t(2) < . . ., we
define

x
(q)
i := xt(i)+1.

In words: if M is run on x, the i-th bit of x(q) records the
bit of x seen immediately after the i-th visit to state q. If
q /∈ Qinf(x), we define x(q) ∈ {0, 1}∗ similarly; in this case,

x
(q)
i is undefined if M visits state q fewer than i times while

running on x.
The following lemma gives us a useful property obeyed by

sequences x from the set AB,ws (defined in the statement of
Theorem 3).

Lemma 3. Given M = (Q, s,∆), suppose B ⊆ Q is strongly
accessible. If x ∈ AB,ws, then there exists a state q ∈ Qinf(x)
such that

x(q) ∈ Aws ∪Aco−ws.

Proof. We prove the contrapositive. Assume that all
q ∈ Qinf(x) satisfy x(q) /∈ Aws ∪ Aco−ws; we will show that
x /∈ AB,ws.

Say that a state q ∈ Q is frequent (on x) if there exist
α, β > 0 such that for all T ∈ N,

|Vq(x) ∩ {0, 1, . . . , T − 1}| ≥ αT − β.

Let F denote the set of frequent states. Clearly F ⊆ Qinf(x).
We will show:

1. F = Qinf(x);

2. F contains a state from B.

Item 2 will immediately imply that x /∈ AB,ws, as desired.
For each q ∈ Qinf(x), our assumption x(q) /∈ Aws∪Aco−ws

implies that there is a δq ∈ (0, 1/2) and a Kq > 0 such that
for k ≥ Kq,

δq <
1

k

(
x
(q)
1 + . . .+ x

(q)
k

)
< 1− δq. (8)

Let δ := min δq. Choose a value T ? > 0 such that each q ∈
Qinf(x) appears at leastKq times among (q0(x), q1(x), . . . , qT?−1(x)).
Choose a second value R > 0, such that any q /∈ Qinf(x) oc-
curs fewer thanR times in the infinite sequence (q0(x), q1(x), . . .).

Let ` = |Q|. Fix any t ∈ N satisfying

t ≥ max

{
`R

δ2(`−1)
, T ?

}
.

By simple counting, some q? ∈ Q occurs at least t/` times
in (q0(x), q1(x), . . . , qt−1(x)). We have t/` ≥ R, so this q?

must lie in Qinf(x). Eq. (8) then implies that the states
∆(q?, 0),∆(q?, 1) each appear at least δt/`−1 > δ2t/` times
among (q0(x), q1(x), . . . , qt−1(x)). Now δ2t/` > R, so we
have ∆(q?, 0),∆(q?, 1) ∈ Qinf(x).

Iterating this argument (` − 1) times, we conclude that
every state q reachable from q? by a sequence of (` − 1)
or fewer transitions lies in Qinf(x), and appears at least

δ2(`−1)t/` = Ω(t) times among (q0(x), q1(x), . . . , qt−1(x)).
But every q ∈ Qinf(x) is reachable from q? by at most (`−1)
transitions. Thus F = Qinf(x), proving Item 1 above.

The argument above shows that if q ∈ Qinf(x), then

∆(q, 0),∆(q, 1) ∈ Qinf(x)

as well. Recall that B is strongly accessible; it follows that
Qinf(x)∩B is nonempty, proving Item 2 above. This proves
Lemma 3.

We can now complete the proof of Theorem 3. Let Q =
{p1, . . . , p`}, where ` = |Q|. We may assume ` > 1, for
otherwise AB,ws = ∅ and there is nothing to show. Given
ε > 0, let δ := ε/(2`). We define the algorithm S = Sε as
follows. S runs in parallel ` different simulations

P[1], . . . ,P[`]

of the algorithm Pδ from Lemma 2. P[j] is run, not on the

input sequence x itself, but on the subsequence x(pj). To
determine which simulation receives each successive bit of
x, the algorithm S simply simulates M on the bits of x seen
so far. (Note that, if pj /∈ Qinf(x), then the simulation P[j]
may “stall” indefinitely without receiving any further input
bits.)

Suppose that the simulation P[j] outputs a prediction

z ∈ {0, 1} after seeing the i-th bit of x(pj), and that we
subsequently reach a time t such that qt(x) = pj is the
(i + 1)-st visit to state pj . The algorithm S then predicts

that xt+1 = x
(pj)

i+1 = z.
We now analyze S. Fix any x ∈ AB−ws. By the safety

property of Lemma 2, each P[j] outputs an incorrect pre-
diction with probability at most δ, so the overall probability
of an incorrect prediction is at most `δ = ε/2. Also, since
x ∈ AB,ws, Lemma 3 tells us that there exists a pj ∈ Qinf(x)

such that x(pj) ∈ Aws ∪ Aco−ws. Thus, if P[j] is run in-

dividually on x(pj), P[j] outputs a correct prediction with
probability greater than 1− δ. We conclude that

Sucbit-pred (S, x) > (1− δ)− ε/2 > 1− ε,

using ` > 1. This proves Theorem 3.

5. THE DENSITY PREDICTION GAME
In this section we prove Theorem 1 from Section 1.3.
For any fixed δ, ε, our prediction strategy will work en-

tirely within a finite interval (x1, . . . , xT ) of the sequence x.



We note that, to derive a (δ, ε)-successful strategy over this
interval, it suffices to show that for every distribution D over
{0, 1}T , there exists a strategy SD that is (δ, ε)-successful
when played against D. (This observation follows from the
minimax theorem of game theory, or from the result of San-
droni [12] mentioned in Section 1.1.) However, using this
idea would lead to a nonconstructive proof of Theorem 1,
and in any case does not seem to make the proof any sim-
pler. Thus we will not follow this approach.

Let δ, ε > 0 be given; we give a forecasting strategy S =
Sδ,ε for the density prediction game, and prove that S is
(δ, ε)-successful. Set n := d4/(δε2)e. Our strategy will al-
ways make a prediction about an interval xa, . . . , xb where
a ≤ b ≤ 2n. The strategy S is defined as follows:

1. Choose R ∈ {1, . . . , n} uniformly. Choose S uniformly
from {1, . . . , 2n−R}.

2. Ignore the first t = (S − 1) · 2R bits of x. Observe bits
xt+1, . . . , xt+2R−1 , and let p be the fraction of 1s in this
interval. Immediately after seeing xt+2R−1 , predict:

“Out of the next 2R−1 bits, a p fraction will be 1s.”

We now analyze S. To do so, it is helpful to describe S in
a slightly different fashion. Let us re-index the first 2n bits
of our sequence x, considering each such bit to be indexed
by a string z ∈ {0, 1}n. We use lexicographic order, so that
the sequence is indexed x0n , x0n−11, x0n−210, and so on.

Let T be a directed binary tree of height n, whose ver-
tices at depth i (0 ≤ i ≤ n) are indexed by binary strings
of length i; in particular, the root vertex is labeled by the
empty string. If i < n and y ∈ {0, 1}i, the vertex vy has
left and right children vy0, vy1 respectively. Each leaf vertex
is indexed by an n-bit string z, and any such vertex vz is
labeled with the bit xz.

For y ∈ {0, 1}∗, let Ty denote the subtree of T rooted at
vy. A direct translation of the strategy S into our current
perspective gives the following equivalent description of S:

1’. Choose R ∈ {1, . . . , n} uniformly. Starting at the root
of T , take a directed, unbiased random walk of length
n−R, reaching a vertex vY where Y ∈ {0, 1}n−R.

2’. Observe the bits of x that label leaf vertices in TY 0,
and let p be the fraction of 1s seen among these bits.
Immediately after seeing the last of these bits, predict:

“Out of the next 2R−1 bits of x (i.e., those labeling leaf
vertices in TY 1), a p fraction will be 1s.”

To analyze S in this form, fix any binary sequence x. We
consider the random walk performed in S to be extended to
an unbiased random walk of length n. The walk terminates
at some leaf vertex vZ , where Z = (z1, . . . , zn) is uniform
over {0, 1}n.

For 0 ≤ i ≤ n and y ∈ {0, 1}i, define

ρ(y) := 2i−n
∑

w∈{0,1}n−i

xyw

as the fraction of 1s among the labels of leaf vertices of Ty.
For 0 ≤ t ≤ n, define the random variable

X(t) := ρ(z1, . . . , zt),

defined in terms of Z, where X(0) = ρ(∅). The sequence
X(0), . . . , X(n) is a martingale; we follow a folklore tech-
nique by analyzing the squared differences between terms in

the sequence. First, we have X(t) ∈ [0, 1], so that (X(n) −
X(0))2 ≤ 1. On the other hand,

E[(X(n)−X(0))2] = E

 ∑
0≤t<n

(X(t+ 1)−X(t))

2
= E

 ∑
0≤t<n

(X(t+ 1)−X(t))2

 +

E

2
∑

0≤s<t<n

(X(s+ 1)−X(s))(X(t+ 1)−X(t))

 .
(9)

Now, for 0 ≤ s < t < n and for any outcome of the bits
z1, . . . , zt (which determine X(s), X(s + 1), and X(t)), we
have

E[(X(t+ 1)−X(t))|z1, . . . , zt] =

Ezt+1∈{0,1}[(ρ(z1, . . . , zt+1)]− ρ(z1, . . . , zt)

=
1

2
[ρ(z1, . . . , zt, 0) + ρ(z1, . . . , zt, 1)]− ρ(z1, . . . , zt) = 0.

Thus the second right-hand term in Eq. (9) is 0, and

E[(X(n)−X(0))2] =
∑

0≤t<n

E
[
(X(t+ 1)−X(t))2

]
. (10)

Next we relate this to the accuracy of our guess p. Let p∗

be the fraction of 1s in TY 1, i.e., the quantity S attempts
to predict; note that p∗ and p are both random variables.
From the definitions, we have

p = ρ(Y 0), p∗ = ρ(Y 1), X(n−R) =
1

2
(p+ p∗) .

Also,

X(n−R+ 1) =

{
p if zn−R+1 = 0,
p∗ if zn−R+1 = 1.

Thus we have the identity

(X(n−R+ 1)−X(n−R))2 =
1

4
(p− p∗)2 .

Now, n−R is is uniform over {0, 1, . . . , n−1}, and indepen-
dent of Z. It follows from Eq. (10) that

E[(X(n−R+1)−X(n−R))2] =
1

n
E[(X(n)−X(0))2] ≤ 1/n.

Combining, we have

E[(p− p∗)2] ≤ 4/n. (11)

On the other hand,

E[(p− p∗)2] ≥ Pr[|p− p∗| ≥ ε] · ε2. (12)

Combining Eqs. (11) and (12), we obtain

Pr[|p− p∗| ≥ ε] ≤ 4/(nε2)

≤ δ,

by our setting n = d4/(δε2)e. This proves Theorem 1.



6. QUESTIONS FOR FUTURE WORK

1. Fix some p ∈ [1/2, 1]; is there a satisfying character-
ization of the sets A ⊆ {0, 1}ω for which some bit-
prediction strategy (as defined in Section 4.1) succeeds
with probability ≥ p against all x ∈ A? Perhaps there
is a characterization in terms of some appropriate no-
tion of dimension, analogous to the gale characteriza-
tions of Hausdorff dimension [9] and packing dimen-
sion [1].

2. Could the study of computationally bounded bit-prediction
strategies be of value to the study of complexity classes,
by analogy to the study of computationally bounded
gales in [9, 1] and in related work?

3. Find necessary and sufficient conditions on the set B
of “infrequently visited” states, for the conclusion of
Theorem 3 (in Section 4.3) to hold.

4. Our (δ, ε)-successful forecasting strategy in Section 5
always makes a forecast about an interval of bits within

x1, . . . , xm, where m = 2O(δ−1ε−2). It would be inter-
esting to know whether some alternative strategy could
make forecasts within a much smaller interval—for in-
stance, with m = poly(δ−1, ε−1). It would also be
interesting to look at a setting in which the forecaster
is allowed to make predictions about sets other than
intervals.
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