Limitations of Lower-Bound
Me’rbods

for the Wire Complexity of
Boolean Operators

Andrew Drucker
MIT

!!I!G\ ! ”!I! G!OU\ l

« An introduction to one area of circuit lower bounds
work;

A (partial) explanation of why progress is slow.

What's this about?

* But first: a look at the important theme of

"joint computation”

in complexity theory...

 Key question: when can we cleverly combine two or
more computations to gain efficiency?

« Our focus: multiple computations on a shared input.

+ First example: Sorting!

SORT(ay, ... a,) :

Rkq(aq, ... a,) , Rk,(ay, ... a,) , .. , Rk (qay, ... a,)

* ninputs, n outputs.

Joint computation

+ First example: Sorting!

SORT(ay, ... a,) :

Rki(ay, ... a,) , Rkx(ay, ... a,) , .. , Rk (qay, ... a,)

* For eachi € [n], can determine Rk.(a, a,) using
O(n) comparisons... [Blum et al., ‘73]

« But, can compute all values with O(n log n)
comparisons!

Joint computation

« Second example: Linear transformations
L(xq, ... X,) =
Li(xq, ... X)), Lo(Xq, ... X)) o o, Li(Xq, o X4)

* For each i, L;needs O(n) arithmetic operations to
compute (individually, and in general).

 But for important examples like L = DFT, can compute
L with O(n log n) operations!

Joint computation
« Third example: Matrix multiplication
Mult(A,B) = A*B

« Each output coordinate of an n-by-n MM takes O(n)
arithmetic operations.

. [S’rr'assen, others]: can compute A * B with O(n3-¢)
operations!

Joint computation

« Third example: Matrix multiplication

Mult(A,B) = A*B

A" - a n*n‘. -* ‘.c -— [V L.. [V ‘A AA L"“A n,.-\ -_:L".“A :
« Ec tic

°F In each of these models/problems, efficient
s joint computation is the central issuel)
o - €

OP‘JI AT ITVIIJ.

!OWZF' !OUH!S

* Main challenge: prove for some explicit operator

F(x) = (f1(x), f2(x), .. Fo(x)),

and complexity measure C, that

- C(F) > Max; C(f)) .
* (Hopefully for important ones like DFT, MM, etc.!)

 "limits to computational synergies.”

* A brief, partial review for some natural models...

Mono!one cE!s: an early success

story

 Before [Razborov '85], no superlinear LBs for any
Boolean function in the monotone circuit model.

 But for Boolean operators, interesting results were
long known [Nechiporuk 71, .. , Wegener '82]:

— dmonotone F: {0, 1}» = {0, 1}" such that:
C.(f) = ©(n), C,.(F) = Q(n?/log n).

— For Boolean matrix mult., and some other natural monotone
operators, ndive approaches are % optimal for monotone ckts!

things get (much) trickier

L(x): {O, 1}r > {O, 1}~

L € {0, 1}nxn described by a 0/1 (F,) matrix.

* Natural computational model: F,-linear circuits.

* Natural cost measure: number of wires.

" Linearoperatorss

things get (much) trickier

L(x): {O, 1}r > {O, 1}~

« For random L, L(x) takes ©(n%/log n) wires to compute
by a linear circuit. [Lupanov '56]

« For explicit examples, no superlinear LBs knownl!
.. except in constant depth.

* Bounds are quite modest, as we'll see...

" Linearoperatorss

things get (much) trickier

L(x): {O, 1}r > {O, 1}~

* More discouragingly (perhaps): best lower bounds
known don't even exploit the

linear structure of linear circuits!

 Can get by with "generic” techniques...

« Don't even know if "non-linearity” helps!

!enemc ‘rec!nlques

« What are these "generic” circuit LB techniques?
* What are their virtues and limitations?

* Next: a model of "generic circuits” used to help
understand these issues. ['70s]

me arbitrary-gate moFe

« Here, any F: {0, 1}» > {0, 1}" can be trivially computed
with n? gates!

\ !e ar!|!rar'y-ga!es mo!el

« Here, any F: {0, 1}» > {0, 1}" can be trivially computed
with n? gates!

4)
No joint
savings! Boo!

T!e ar!i’rmry-ga’res mo!el

« Here, any F: {0, 1}» > {0, 1}" can be trivially computed
with n? gates!

4)
No joint
savings! Boo!

« The arb-gates model: a "pure” setting to study
efficient joint computation.

W@q itrary-gates mode

* Perhaps surprisingly: we can prove some lower bounds
in this modell

Connectivity arguments

* Basic idea behind most LBs in the arb-gates model:

-If the edges in C are too few, and the
depth too low,

Graph theory > a bottleneck must
appear in the circuit.

-Information “can't get through”...

e
Connectivity arguments

 Lower bounds are then implied for operators F whose
circuits require a strong connectivity property.

* Most famous/influential: the superconcentrator
property [Valiant '75]. Some F: {O, 1}" - {0, 1}
require a circuit C whose graph obeys:

~Forany S, T S (inputs x outputs) with
S| =|T|, 3 vertex-disjoint paths inC
matching S with T,

Connectivity arguments

 Lower bounds are then implied for operators F whose
circuits require a strong connectivity property.

* Most famous/influential: the superconcentrator
property [Valiant '75]. Some F: {O, 1}" - {0, 1}
require a circuit C whose graph obeys:

~Forany S, T S (inputs x outputs) with
S| =|T|, 3 vertex-disjoint paths inC
matching S with T.

« Other, related connectivity properties can be more

widely applicable for lower bounds, e.g. when F is
linear .

S
Connectivity arguments

 Lower bounds are then implied for operators F whose
circuits require a strong connectivity property.

* Most famous/influential: the superconcentrator
property [Valiant '75]. Some F: {O, 1}" - {0, 1}
require a circuit C whose graph obeys:

~Forany S, T S (inputs x outputs) with
S| =|T|, 3 vertex-disjoint paths inC
matching S with T.

* [Pudldk '94; Raz-Sphilka '03; Gal et al. '12]

S
Connectivity arguments

 Lower bounds are then implied for operators F whose
circuits require a strong connectivity property.

* Most famous/influential: the superconcentrator
property [Valiant '75]. Some F: {O, 1}" - {0, 1}
require a circuit C whose graph obeys:

~Forany S, T S (inputs x outputs) with
S| =|T|, 3 vertex-disjoint paths inC
matching S with T.

 These sometimes match, but don't beat,
superconcentrator LBs.

Connectivity arguments

* Virtues of the known "connectivity-based" lower
bounds:

- They apply to all reasonable Boolean circuit models.

- They're intuitive.

 Drawbacks:
- Quantitative bounds leave much to be desired.

- This weakness is inherent, due to known constructions of
sparse, low-depth superconcentrators (and related objects).

at do we get:

 Superconcentrator-based lower bounds: [Dolev et al.
'‘83; Alon, Pudlak '94; Pudlak '94; Radhakrishnan, Ta-Shma '00]

Depth d Bound

2 Q(n log® n/ log log n)
3 Q(n log log n)

4 Q(n log™ n)

5 Q(n log™ n)

6 Q(n log™ n)

7 Q(n log™ n)

d Qq(n Ay (n))

 Superconcentrator-based lower bounds: [Dolev et al.
'‘83; Alon, Pudlak '94; Pudlak '94; Radhakrishnan, Ta-Shma '00]

Depth d

N OOl b W N

a

Bound

o we geft”

Q(n log® n/ log log n)

Q(n log log n)
Q(n log™ n)
Q(n log™ n)
Q(n log™ n)
Q(n log™ n)

Q4(n Aq (n))

-

(Warning:
competing
hotations...)

What do we get?

 Superconcentrator-based lower bounds: [Dolev et al.
'‘83; Alon, Pudlak '94; Pudlak '94; Radhakrishnan, Ta-Shma '00]

Depth d Bound

2 Q(n log® n/ log log n)
3 Q(n log log n)

4 Q(n log™ n)

5 Q(n log™ n)

6 Q(n log™ n)

7 Q(n log™ n)

All shown asymptotically tight in these papers!

What do we get?

 Superconcentrator-based lower bounds: [Dolev et al.
'‘83; Alon, Pudlak '94; Pudlak '94; Radhakrishnan, Ta-Shma '00]

Depth d Bound

(Best bounds

2 Q(nlog?n/loglogn) <————— forexplicit
_— linear

3 Qln Iog*log ") operators a bit
4 Q(n log™ n) weaker)
5 Q(n log™ n
6 Q(I 9**) LBs of this

(n °9 n) form proved
7 Q(n log™ n) » for explicit

linear and non-
linear
operators

d Qq(n Ay (n))

S
A hew dawn?

« 2008: Cherukhin gives a new lower-bound technique
for arbitrary-gates circuits:

— First asymptotic improvements over the
superconcentrator-based bounds!

— An information-theoretic, rather than
connectivity-based, lower-bound criterion.

(Proof still uses connectivity ideas, though.)

— Invented for Cyclic Convolution operator;
described as a general lower-bound technique by
[Jukna '12].

!I!ZI"U!I!IH S I!ZC(

» Given F = (f;): {0, 1}"> {0, 1}, suppose i € I < [n].

* Let f; 1 ;; be the restriction of f; that sets x; =1 and
zeros out (I \ i).

* For J < [n], define the operator

Fry=(fpy i€l jeET)

S
Cherukhin's idea

« Define an operator's entropy as
Ent(F) := log, (|range(F)|).

* Cherukhin: Ent(F; ;) is a useful measure of
“information flow" in F between I, J.

« "Strong Multiscale Entropy” (SME) property
[Cherukhin, Jukna] says:
— Roughly speaking: Ent(F; ;) is large for many pairs
I, J, for many choices of a “scale” p = |[I| & n/|J]|.

at do we get:
Depth d Superconc. Bound SME Bound
2 Q(n log? n / log log n) Q(nld)
3 Q(n log log n) Q(n log n)
4 Q(n log™ n) Q(n log log n)
5 Q(n log™ n) Q(n log™ n)
6 Q(n log™ n) Q(n log™ n)
7 Q(n log™ n) Q(n log™ n)

d Qy(n Agy (n)) Qq(n Ay (n))

w!a‘r !o we ge’r!

Depth d Superconc. Bound SME Bound
2 Q(n log? n / log log n) Q(n!->)

3 Q(n log log n) Q(n log n)

4 Q(n log™ n) :Q Q(n log log n)
5 Q(n log™ n) Q(n log™ n)

6 Q(n log™ n) \ Q(n log™ n)

7 Q(n log™ n) \ Q(n log™ n)

4 (Note: SME property only holds

for non-linear operators.)

Depth d

NOOl b~ W

at do we get:

Superconc. Bound SME Bound
Q(n log? n / log log n) Q(nld)

Q(n log log n) Q(n log n)

Q(h log™ n) :Q Q(n log log n)

Q(n log™ n) Q(n log™ n)

Q(n log™ n) \ Q(n log™ n)

Q(n log™ n) \ Q(n log™ n)

Can we get a more substantial
improvement in these bounds?

SME - room for improvement?

 Unlike superconcentrator method, limits of the SME
criterion were unclear....

* In particular: could the SME criterion, unchanged,
imply much better LBs by an improved analysis?

 Our main result: NO.

!ur I"ZSUH

« Theorem: There's an explicit operator with the SME
property, yet computable in depth d with

O(n Ay (n)) wires

(in the arb-gates model)
(for d = 2,3 and for even d > 6).

Our operator:
the "Subtree-Copy" problem

« Input: a string x, regarded as labeling of a full binary
tree's leaves:

X= 0110010111010001
\ l
I

nh= 2k

« Input: a string x, regarded as labeling of a full binary
tree's leaves: f and, a selected node v.

/K

X= 0110010111010001

« Output: a string z, obtained by copying v's subtree to
the other subtrees _ of equal height.

/K

X= 0110010111010001

« Output: a string z, obtained by copying v's subtree to
the other subtrees _ of equal height.

A

X= 01100101/1101/0001

« Output: a string z, obtained by copying v's subtree to
the other subtrees _ of equal height.

—

A

01100101/11011101]

« Output: a string z, obtained by copying v's subtree to
the other subtrees _ of equal height.

A

01101101/1101/1101

« Output: a string z, obtained by copying v's subtree to
the other subtrees _ of equal height.

C—

A

110111011101/1101

« Output: a string z, obtained by copying v's subtree to
the other subtrees _ of equal height.

/K

Zz= 1101110111011101

S
The basic strategy

 Idea: this operator "spreads information” from all
parts of x to all of z, at multiple scales;

* The node v is encoded as extra input in a way that
helps ensure SME property.

« At the same time, information flow in our tree is
restricted, fo make easy to implement.

\ !e !asm s!ra!egy

« Why is Subtree-Copy easy to compute?
 (Glossing many details here...)

 First, simple to compute with O(n) wires, when the
height of v is fixed in advance...

/

x= 0110010111010001

X = @110101101001

81

x= [0/110/0/1011101/0001
V\

81

x= [0/110/0/1011101/0001
V\

81
/ / l\ (fanout to z)

x= [0/110/0/1011101/0001
V\

81 82 83 84

/ / l\ (fanout to z)

The basic strategy

« There are only log n possible heights of v.

Using this, can compute Subtree-Copy in depth 3 and
O(n log n) wires.

* Next step: an inductive construction of more-
efficient circuits at higher depths...

 Consider the subproblem where v's height promised to
lie in some range [a, b] € [log n].

b

b)

x= 0110010111010001

3 -

AR

x= 0110010111010001

First: "shrink the problem” by extracting
the relevant subtree of height b.

AR

x= 0110010111010001

First: "shrink the problem” by extracting
the relevant subtree of height b.

AT

x= 0110010111010001

First: "shrink the problem” by extracting
the relevant subtree of height b.

U4

11010001

First: "shrink the problem” by extracting
the relevant subtree of height b.

b

3 -

a=1 L

11010001

Now: remainder basically "divides” into 2°
instances of Subtree-Copy, each of height
(b - a).

b

3 -

a=1 L

11010001

Now: remainder basically "divides” into 2°
instances of Subtree-Copy, each of height
(b - a).

b

3 -

a=1 L

11010001

 Solve these smaller instances inductively,
using a lower-depth circuit!

b

3 -

a=1 L

11010001

e Then, “fan out" the result to the rest of
Z.

b

3 ~

a=1 L

11010001

« Then, “fan out" the result to the rest of
y4

« Smaller-size instances > inefficiency
hurts us less.

« Main remaining challenge: partition the possible
heights of v into "buckets” [a;, b;] , to minimize the
wires in resulting circuit.

 Similar sorts of inductive optimizations have been
done before, in diff't settings...

[Dolev et al. '83],
[Gal, Hansen, Koucky, Pudldk, Viola '12]

e
Other results

« We prove more results showing that previous, simpler
LB criteria do not work beyond depth 2.

One example:

« Jukna's simplified entropy criterion [Jukna '10]: gave
elegant proof that naive GF(2) matrix mult. is
asymptotically optimal in depth 2.

« We show: this LB criterion gives no superlinear bound
for depth 3.
-Best lower bounds for d > 2 are connectivity-based
[Raz, Shpilka '03]

S
Open questions

* New LB techniques that escape the limitations of
known ones?

« Natural proofs-type barriers for LBs in the arbitrary
gates, or linear circuits model? [Aleknovich ‘03]

* Draw more connections between the theory of
individual Boolean function complexity, and that of

joint complexity? [Baur-Strassen '83; Vassilevska
Williams, Williams '10]

Thanks!

