Limitations of Lower-Bound Methods

for the Wire Complexity of Boolean Operators

Andrew Drucker

What's this about?

- An introduction to one area of circuit lower bounds work;
- A (partial) explanation of why progress is slow.

What's this about?

• But first: a look at the important theme of

"joint computation"

in complexity theory...

- Key question: when can we <u>cleverly combine</u> two or more computations to gain efficiency?
- Our focus: multiple computations on a shared input.

• First example: Sorting!

$$SORT(a_1, ..., a_n) :=$$

$$Rk_1(a_1, ..., a_n), Rk_2(a_1, ..., a_n), ..., Rk_n(a_1, ..., a_n)$$

• n inputs, n outputs.

First example: Sorting!

$$SORT(a_1, ..., a_n) :=$$

$$Rk_1(a_1, ..., a_n), Rk_2(a_1, ..., a_n), ..., Rk_n(a_1, ..., a_n)$$

- For each i ∈ [n], can determine Rk_i(a₁, ... a_n) using
 ⊙(n) comparisons... [Blum et al., '73]
- But, can compute <u>all</u> values with O(n log n) comparisons!

Second example: Linear transformations

$$L(x_1, ..., x_n) :=$$

$$L_1(x_1, ..., x_n), L_2(x_1, ..., x_n), ..., L_n(x_1, ..., x_n)$$

- For each i, L_i needs $\Theta(n)$ arithmetic operations to compute (individually, and in general).
- But for important examples like L = DFT, can compute L with O(n log n) operations!

Third example: Matrix multiplication

$$Mult(A, B) := A * B$$

- Each <u>output coordinate</u> of an n-by-n MM takes $\Theta(n)$ arithmetic operations.
- [Strassen, others]: can compute A * B with $O(n^{3-\epsilon})$ operations!

Third example: Matrix multiplication

```
Mult(A, B) := A * B
```

```
    Ecohomic for him Manager (n) asithmatic
    op In each of these models/problems, efficient joint computation is the central issue!
    ε
```

Lower bounds

· Main challenge: prove for some explicit operator

$$F(x) = (f_1(x), f_2(x), ..., f_n(x)),$$

and complexity measure C, that

$$C(F) \gg Max_i C(f_i)$$
.

- (Hopefully for important ones like DFT, MM, etc.!)
- "limits to computational synergies."

What's known?

• A brief, partial review for some natural models...

Monotone ckts: an early success story

- Before [Razborov '85], no superlinear LBs for any Boolean function in the monotone circuit model.
- But for Boolean operators, interesting results were long known [Nechiporuk '71, ..., Wegener '82]:
 - \exists monotone $F: \{0, 1\}^n \rightarrow \{0, 1\}^n$ such that: $C_m(f_i) = \Theta(n), \qquad C_m(F) = \Omega(n^2/\log n).$
 - For Boolean matrix mult., and some other natural monotone operators, naïve approaches are ≈ optimal for monotone ckts!

Linear operators: things get (much) trickier

$$L(x): \{0, 1\}^n \to \{0, 1\}^n$$

 $L \in \{0, 1\}^{n \times n}$ described by a 0/1 (F_2) matrix.

Natural computational model: F₂-linear circuits.

Natural cost measure: number of wires.

Linear operators: things get (much) trickier

$$L(x): \{0, 1\}^n \rightarrow \{0, 1\}^n$$

- For random L, L(x) takes $\Theta(n^2/\log n)$ wires to compute by a linear circuit. [Lupanov '56]
- For explicit examples, no superlinear LBs known!
 ... except in constant depth.
- Bounds are quite modest, as we'll see...

Linear operators: things get (much) trickier

$$L(x): \{0, 1\}^n \rightarrow \{0, 1\}^n$$

 More discouragingly (perhaps): best lower bounds known don't even exploit the

linear structure of linear circuits!

- Can get by with "generic" techniques...
- · Don't even know if "non-linearity" helps!

Generic techniques

Generic techniques

- What are these "generic" circuit LB techniques?
- What are their virtues and limitations?
- Next: a model of "generic circuits" used to help understand these issues. ['70s]

• Here, any $F: \{0, 1\}^n \rightarrow \{0, 1\}^n$ can be trivially computed with n^2 gates!

• Here, any $F: \{0, 1\}^n \rightarrow \{0, 1\}^n$ can be trivially computed with n^2 gates!

• Here, any $F: \{0, 1\}^n \rightarrow \{0, 1\}^n$ can be trivially computed with n^2 gates!

• The arb-gates model: a "pure" setting to study efficient joint computation.

 Perhaps surprisingly: we can prove some lower bounds in this model!

Basic idea behind most LBs in the arb-gates model:

-If the edges in C are too few, and the depth too low,

Graph theory → a bottleneck must appear in the circuit.

-Information "can't get through"...

- Lower bounds are then implied for operators F whose circuits require a strong connectivity property.
- Most famous/influential: the superconcentrator property [Valiant '75]. Some $F: \{0, 1\}^n \rightarrow \{0, 1\}^n$ require a circuit C whose graph obeys:

For any S, $T \subseteq (inputs \times outputs)$ with |S| = |T|, \exists vertex-disjoint paths in C matching S with T.

- Lower bounds are then implied for operators F whose circuits require a strong connectivity property.
- Most famous/influential: the superconcentrator property [Valiant '75]. Some F: $\{0, 1\}^n \rightarrow \{0, 1\}^n$ require a circuit C whose graph obeys:

For any S, $T \subseteq (inputs \times outputs)$ with |S| = |T|, \exists vertex-disjoint paths in C matching S with T.

 Other, related connectivity properties can be more widely applicable for lower bounds, e.g. when F is linear...

- Lower bounds are then implied for operators F whose circuits require a strong connectivity property.
- Most famous/influential: the superconcentrator property [Valiant '75]. Some $F: \{0, 1\}^n \rightarrow \{0, 1\}^n$ require a circuit C whose graph obeys:

For any S, $T \subseteq (inputs \times outputs)$ with |S| = |T|, \exists vertex-disjoint paths in C matching S with T.

• [Pudlák '94; Raz-Sphilka '03; Gál et al. '12]

- Lower bounds are then implied for operators F whose circuits require a strong connectivity property.
- Most famous/influential: the superconcentrator property [Valiant '75]. Some $F: \{0, 1\}^n \rightarrow \{0, 1\}^n$ require a circuit C whose graph obeys:

For any S, $T \subseteq (inputs \times outputs)$ with |S| = |T|, \exists vertex-disjoint paths in C matching S with T.

 These sometimes match, but don't beat, superconcentrator LBs.

- Virtues of the known "connectivity-based" lower bounds:
 - They apply to all reasonable Boolean circuit models.
 - They're intuitive.
- Drawbacks:
 - Quantitative bounds leave much to be desired.
 - This weakness is inherent, due to known constructions of sparse, low-depth superconcentrators (and related objects).

Superconcentrator-based lower bounds: [Dolev et al. '83; Alon, Pudlak '94; Pudlak '94; Radhakrishnan, Ta-Shma '00]
 Depth d

Superconcentrator-based lower bounds: [Dolev et al. '83; Alon, Pudlak '94; Pudlak '94; Radhakrishnan, Ta-Shma '00]

```
Depth d
                             Bound
                       \Omega(n \log^2 n / \log \log n)
3
                             \Omega(n \log \log n)
                             \Omega(n \log^* n)
5
                             \Omega(n \log^* n)
                             \Omega(n \log^{**} n)
                             \Omega(n \log^{**} n)
                                                                         (Warning:
                                                                        competing
                             \Omega_d(n \lambda_d(n))
d
                                                                        notations...)
```

Superconcentrator-based lower bounds: [Dolev et al. '83; Alon, Pudlak '94; Pudlak '94; Radhakrishnan, Ta-Shma '00]
 Depth d Bound

```
\Omega(n \log^2 n / \log \log n)
\Omega(n \log \log n)
\Omega(n \log^* n)
\Omega(n \log^* n)
\Omega(n \log^* n)
\Omega(n \log^{**} n)
\Omega(n \log^{**} n)
```

All shown asymptotically tight in these papers!

 Superconcentrator-based lower bounds: [Dolev et al. '83; Alon, Pudlak '94; Pudlak '94; Radhakrishnan, Ta-Shma '00]

Depth d Bound $\Omega(n \log^2 n / \log \log n)$ 3 $\Omega(n \log \log n)$ $\Omega(n \log^* n)$ 5 $\Omega(n \log^* n)$ 6 $\Omega(n \log^{**} n)$ $\Omega(n \log^{**} n)$ $\Omega_{\rm d}(n \lambda_{\rm d}(n))$ d

(Best bounds for explicit linear operators a bit weaker)

LBs of this form proved for explicit linear and non-linear operators

A new dawn?

- 2008: Cherukhin gives a new lower-bound technique for arbitrary-gates circuits:
 - First asymptotic improvements over the superconcentrator-based bounds!
 - An information-theoretic, rather than connectivity-based, lower-bound criterion.
 - (Proof still uses connectivity ideas, though.)
 - Invented for Cyclic Convolution operator;
 described as a general lower-bound technique by [Jukna '12].

Cherukhin's idea

- Given $F = (f_j): \{0, 1\}^n \rightarrow \{0, 1\}^n$, suppose $i \in I \subseteq [n]$.
- Let $f_{j[I,i]}$ be the restriction of f_{j} that sets $x_{i} = 1$ and zeros out (I \ i).
- For $J \subseteq [n]$, define the operator

$$F_{I,J} := (f_{j[I,i]} \mid i \in I, j \in J).$$

Cherukhin's idea

- Define an operator's entropy as
 Ent(F) := log₂ (|range(F)|).
- Cherukhin: $Ent(F_{I,J})$ is a useful measure of "information flow" in F between I,J.
- "Strong Multiscale Entropy" (SME) property
 [Cherukhin, Jukna] says:
 - Roughly speaking: Ent($F_{I,J}$) is large for many pairs I, J, for many choices of a "scale" $p = |I| \approx n/|J|$.

<u>Depth</u> d	Superconc. Bound	SME Bound
2	Ω (n log ² n / log log n)	$\Omega(n^{1.5})$
3	Ω (n log log n)	$\Omega(n \log n)$
4	Ω (n log* n)	$\Omega(n \log \log n)$
5	Ω (n log * n)	Ω (n log* n)
6	Ω (n log** n)	Ω (n log* n)
7	$\Omega(n \log^{**} n)$	$\Omega(n \log^{**} n)$
•		
d	$\Omega_{d}(n \lambda_{d}(n))$	$\Omega_{d}(n \lambda_{d-1}(n))$

What do we get?

<u>Depth</u> d	Superconc. Bound	SME Bound
2 3 4 5 6 7	$\Omega(n \log^2 n / \log \log n)$ $\Omega(n \log \log n)$ $\Omega(n \log^* n)$ $\Omega(n \log^* n)$ $\Omega(n \log^{**} n)$ $\Omega(n \log^{**} n)$ $\Omega(n \log^{**} n)$	$ Ω(n^{1.5}) $ $ Ω(n log n) $ $ Ω(n log log n) $ $ Ω(n log* n) $
d	$\Omega_{d}(n \lambda_{d}(n))$	Ω_{d} (n λ_{d-1} (n))

What do we get?

<u>Depth</u> d	Superconc. Bound	SME Bound	
2 3	$Ω(n log^2 n / log log n)$ $Ω(n log log n)$	$\Omega(n^{1.5})$ $\Omega(n \log n)$	
4	$\Omega(n \log^* n)$	Ω (n log log n)	
5 6	Ω (n log* n) Ω (n log** n)	Ω (n log* n) Ω (n log* n)	
7	$\Omega(n \log^{**} n)$	$\Omega(n \log^{**} n)$	
•			
d	(Note: SME proper for non-linear oper	(Note: SME property only holds for non-linear operators.)	

What do we get?

<u>Depth</u> d	Superconc. Bound	SME Bound
2	Ω (n log ² n / log log n)	$\Omega(n^{1.5})$
3	Ω (n log log n)	Ω (n log n)
4	$\Omega(n \log^* n)$	$\rightarrow \Omega(n \log \log n)$
5	Ω (n log* n)	$\longrightarrow \Omega(n \log^* n)$
6	$\Omega(n \log^{**} n)$	$\longrightarrow \Omega(n \log^* n)$
7	$\Omega(n \log^{**} n)$	$\longrightarrow \Omega(n \log^{**} n)$
•		
d	Can we get a more substantial improvement in these bounds?	

SME - room for improvement?

- Unlike superconcentrator method, limits of the SME criterion were unclear....
- In particular: could the SME criterion, unchanged, imply much better LBs by an improved analysis?
- Our main result: NO.

Our result

Theorem: There's an explicit operator with the SME property, yet computable in depth d with

```
O(n \lambda_{d-1}(n)) wires
```

(in the arb-gates model)

(for d = 2.3 and for even $d \ge 6$).

Our operator: the "Subtree-Copy" problem Input: a string x, regarded as labeling of a full binary tree's leaves:

 Input: a string x, regarded as labeling of a full binary tree's leaves:
 and, a selected node v.

 Output: a string z, obtained by copying v's subtree to the other subtrees of equal height.

• Output: a string z, obtained by copying v's subtree to the other subtrees of equal height.

 Output: a string z, obtained by copying v's subtree to the other subtrees of equal height.

• Output: a string z, obtained by copying v's subtree to the other subtrees of equal height.

 Output: a string z, obtained by copying v's subtree to the other subtrees of equal height.

 Output: a string z, obtained by copying v's subtree to the other subtrees of equal height.

The basic strategy

- Idea: this operator "spreads information" from all parts of x to all of z, at multiple scales;
- The node v is encoded as extra input in a way that helps ensure SME property.
- At the same time, information flow in our tree is restricted, to make easy to implement.

The basic strategy

- Why is Subtree-Copy easy to compute?
- (Glossing many details here...)
- First, simple to compute with O(n) wires, when the height of v is fixed in advance...

The basic strategy

- There are only $\log n$ possible heights of v.

 Using this, can compute Subtree-Copy in depth 3 and $O(n \log n)$ wires.
- Next step: an inductive construction of moreefficient circuits at higher depths...
- Consider the subproblem where v's height promised to lie in some range $[a, b] \subseteq [\log n]$.

Now: remainder basically "divides" into 2^a instances of Subtree-Copy, each of height (b-a).

Now: remainder basically "divides" into 2^a instances of Subtree-Copy, each of height (b-a).

 Solve these smaller instances inductively, using a lower-depth circuit!

Then, "fan out" the result to the rest of
 z.

- Then, "fan out" the result to the rest of
 z.
- Smaller-size instances → inefficiency hurts us less.

- Main remaining challenge: partition the possible heights of v into "buckets" $[a_i,b_i]$, to minimize the wires in resulting circuit.
- Similar sorts of inductive optimizations have been done before, in diff't settings...

```
[Dolev et al. '83],
[Gál, Hansen, Koucký, Pudlák, Viola '12]
```

Other results

- We prove more results showing that previous, simpler LB criteria do not work beyond depth 2.
 One example:
- Jukna's simplified entropy criterion [Jukna '10]: gave elegant proof that naïve GF(2) matrix mult. is asymptotically optimal in depth 2.
- We show: this LB criterion gives no superlinear bound for depth 3.
 - -Best lower bounds for d > 2 are connectivity-based [Raz, Shpilka '03]

Open questions

- New LB techniques that escape the limitations of known ones?
- Natural proofs-type barriers for LBs in the arbitrary gates, or linear circuits model? [Aleknovich '03]
- Draw more connections between the theory of individual Boolean function complexity, and that of joint complexity? [Baur-Strassen '83; Vassilevska Williams, Williams '10]

Thanks!