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Abstract

We give two nondeterministic reductions which yield new direct product theorems (DPTs)
for Boolean circuits. In these theorems one assumes that a target function f is mildly hard
against nondeterministic circuits, and concludes that the direct product f⊗t is extremely hard
against (only polynomially smaller) probabilistic circuits. The main advantage of these results
compared with previous DPTs is the strength of the size bound in our conclusion.

As an application, we show that if NP is not in coNP/poly then, for every PPT algorithm
attempting to produce satisfying assigments to Boolean formulas, there are infinitely many
instances where the algorithm’s success probability is nearly-exponentially small. This furthers
a project of Paturi and Pudlák [STOC’10].
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1 Introduction

This work contributes to two central areas of study in complexity theory: hardness amplification
on the one hand, and the complexity of NP search problems on the other.

1.1 Hardness amplification and direct product theorems

In the general hardness amplification project, we assume that we have identified a function f that
is “mildly hard” to compute, for some class C of resource-bounded algorithms. Our goal is to derive
a second function f ′ that is “extremely hard” to compute, for some possibly-different class C′. In
our initial discussion we will focus on the case where f : {0, 1}n → {0, 1}d, f ′ : {0, 1}n′ → {0, 1}d′

are finite functions, and C, C′ are two sets of probabilistic Boolean circuits, but we note that the
project can be studied in other models as well.

The notion of difficulty suggested above can be formalized in two ways (both relevant to our
work). Let p ∈ [0, 1]. In the average-case setting, let us say that f is p-hard for C with respect
to an input distribution D if, on an input x ∼ D, every algorithm in C computes f(x) correctly
with probability at most p. In the worst-case setting, we say that f is worst-case p-hard for a
class C of randomized algorithms if, for every algorithm C ∈ C, there is an input x such that
PrC [C(x) = f(x)] ≤ p. In either setting, from a “mild” hardness guarantee p = 1 − ε for C in
computing f , we want to obtain a much stronger bound p′ � 1 for the second class C′ in computing
f ′.

There are several motivations to pursue hardness amplification. First, the security of most
modern cryptographic primitives, such as one-way functions and public-key cryptosystems, inher-
ently requires the existence of computational problems, solvable in NP, which possess a strong
average-case hardness guarantee. While the mere existence of hard-on-average problems in NP
is not known to be sufficient for doing cryptography, a better understanding of the sources of
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average-case hardness seems necessary for making progress in the foundations of cryptography.
Moreover, hardness-amplification techniques in complexity theory have also helped to inspire tools
for the security-amplification of cryptographic primitives. (See, e.g., [Gol07] for background on the
complexity-theoretic underpinnings of modern cryptography and on ideas of security amplification.)

Second, average-case hardness is also inherent in the fundamental concept of pseudorandom-
ness: a pseudorandom source is information-theoretically distinguishable from random bits, yet the
distinguishing task must be computationally hard-on-average. Techniques of hardness amplification
have played a key role in important constructions of pseudorandom generators [HILL99, IW97].

Third, hardness amplification, and in particular the direct product approach to amplifying
hardness, is interesting in its own right, and helps us to critically examine some of our most basic
intuitions about computation, as we will describe.

Given a function f as above and t ∈ N+, let f⊗t : {0, 1}n×t → {0, 1}d×t, the t-fold direct product
of f , be the function which takes t length-n inputs (x1, . . . , xt) and outputs (f(x1), . . . , f(xt)). A
direct product theorem (DPT) is any result upper-bounding the success bound p′ for computing f⊗t

in terms of an assumed success bound p for f (and, possibly, other parameters).
When f is Boolean, the direct product construction can be considered along with the related

“t-fold XOR” f⊕t(x1, . . . , xt) :=
⊕
f(xj) (i.e., the sum mod 2). An “XOR lemma” is any result

upper-bounding the success bound p′ for computing f⊕t in terms of an assumed success bound p
for f . The original XOR lemma was stated by Yao in unpublished work, with the first published
proof due to Levin [Lev87]; see [GNW11] for more information on the lemma’s history and several
proofs. Unlike the direct product, the t-fold XOR f⊕t is itself a Boolean function, which can be
advantageous in applications of hardness amplification, but which can also be a disadvantage since
this limits its average-case hardness (an algorithm may compute f⊕t with success probability 1/2
by guessing a random bit). Several works show how in some settings XOR lemmas may be obtained
from DPTs [GL89, GNW11] or vice versa [NRS99, VW08]. We will not prove or use XOR lemmas
in this work; we merely point out that their study is often intimately linked with the study of direct
product theorems (indeed, XOR lemmas are even referred to as “direct product theorems” in some
papers).

The motivation for the direct product construction is as follows. Let C≤s be the class of proba-
bilistic Boolean circuits of size at most s. It would appear that, if any circuit C ∈ C≤s has success
probability at most p < 1 in computing f , then any circuit C ′ ∈ C≤s should have success probability
not much more than pt in computing f⊗t. The intuition here is that combining the t “unrelated”
computations should not help much, and simply trying to solve each instance separately would be
a nearly-optimal strategy.

This hypothesis can be considered in both the worst-case and the average-case setting; in the
latter, if f is p-hard with respect to inputs drawn from D, then it is natural to study the difficulty
of computing f⊗t with t inputs drawn independently from D.1

One might even be tempted to make the bolder conjecture that f⊗t is pt-hard against circuits in
C≤t·s, but this was shown by Shaltiel to fail badly in the average-case setting [Sha03]. So what kind
of DPT is known to hold in the circuit model? A version of the following theorem, with slightly
weaker parameters, was proved in [GNW11, first version in ’95] ; a tighter argument leading to the

1“Derandomized” variants of the scenario, in which the t inputs are not fully independent, have also been studied,
and powerful “derandomized” DPTs were obtained, notably in [IW97, IJKW10]. We will not consider these in the
present paper. Neither will we consider “XOR lemmas”, which analyze a variant of the direct product construction
in the case where f is Boolean [GNW11].
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bounds given below is described in [Wig97]. In the form of the DPT stated below, the focus is on
getting a success probability bound of at most some ε > 0 for f⊗t, where t is chosen accordingly.

Theorem 1.1 (see [GNW11], Lemma 7, and [Wig97], Theorems 2.9, 2.10). Suppose the Boolean
function f : {0, 1}n → {0, 1} is p-hard for circuits of size s with respect to input distribution D, for

some p < 1. For an appropriate t = Θ
(

ln(1/ε)
1−p

)
, the function f⊗t is ε-hard with respect to D⊗t for

circuits with size bounded by s′, where

s′ = Θ

(
ε · s

ln(1/ε)

)
.

This is a powerful and elegant result, but one whose parameters can be disappointing in many
situations. The size bound s′ degrades quickly as ε→ 0; if s ≤ poly(n), i.e., if our initial hardness
assumption is against circuits of some fixed-polynomial size (and p = 2/3, say), then Theorem 1.1
cannot give a success bound of n−ω(1) against any nontrivial class of circuits. In unpublished
work, Steven Rudich has observed that this barrier is inescapable for a certain class of “black-
box,” relativizing, deterministic (or probabilistic) reductions (see [GNW11] for more discussion).
The limitations of more general black-box hardness-amplification reductions have been extensively
studied, particularly for the case of XOR lemmas and other reductions that produce a Boolean
function; Shaltiel and Viola’s work [SV10] is one notable contribution which also provides a good
guide to this literature.

1.2 Our new direct product theorems

In this work we show that, if we are willing to assume that our starting function f is somewhat
hard to compute by nondeterministic circuits, then we obtain very strong hardness results for f⊗t

against the class of probabilistic circuits. The direct product theorems we prove have quantitative
parameters that are far superior to those in Theorem 1.1.

Our first direct product theorem holds for the worst-case setting. We show:

Theorem 1.2. Let f = {fn} be a family of Boolean functions on n input bits, and suppose that f
is “hard for nondeterministic circuits” in the sense that f /∈ NP/poly ∩ coNP/poly.2

Now let 100 ≤ t(n) ≤ poly(n) be a parameter, and let {Cn}n>0 be any family of polynomial-size,
probabilistic circuits outputting t(n) bits. Then for infinitely many choices of n and x ∈ {0, 1}n×t(n),

Pr[Cn(x) = f⊗t(n)
n (x)] < exp (−Ω(t(n))) .

Like all known DPTs in the circuit setting, this result is proved in its contrapositive form;
it follows straightforwardly from our Theorem 4.1. The latter is a nondeterministic direct product

reduction—a method for transforming a probabilistic circuit that weakly approximates f
⊗t(n)
n into a

nondeterministic circuit that computes fn with much greater confidence. In the present reduction,
we get a nondeterministic circuit that computes fn exactly. This transformation incurs only a
polynomial blowup in circuit size. The reduction is fully black-box, but is not subject to the
limitations identified by Rudich due to its use of nondeterminism.

Our next DPT holds for the average-case setting, and applies to input distributions that are
efficiently sampleable.

2Here, strictly speaking we mean that the language Lf := f−1(1) is not in NP/poly ∩ coNP/poly.
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Theorem 1.3. Let {fn} be a family of Boolean functions on n input bits. Let D = {Dn} be a
family of input distributions, sampleable by a polynomial-size family of circuits. Let δn ∈ [.5, 1] be
a parameter. Suppose that f is “hard for nondeterministic circuits with respect to D” in the sense
that, for all families {Gn} of polynomial-size nondeterministic circuits, if n is sufficiently large then

Pr
x∼Dn

[Gn(x) = fn(x)] < 1− εn . 3

Now let 100 ≤ t(n) ≤ poly(n) be a parameter, and let {Cn}n>0 be any family of polynomial-size,

probabilistic circuits outputting t(n) bits. Assume that εn >
212

t(n)1/3
.

Then for sufficiently large n and x ∼ D⊗t(n)
n , we have

Pr[Cn(x) = f⊗t(n)
n (x)] < exp

(
−Ω

(
ε3/2
n

√
t(n)

))
.

This result follows easily from our Theorem 6.1, a nondeterministic direct product reduction for
sampleable distributions. Our two DPTs above, stated for Boolean functions, are special cases of
our general results, in which the functions fn need not be Boolean; there is no adverse dependence
in these results on the range size.

Our nondeterministic direct product reductions are not the first use of nondeterministic reduc-
tions in the study of average-case complexity. In particular, previous authors have exploited nonde-
terminism to give worst-case to average-case reductions for computational problems. In [FL97, first
version in ’92], Feige and Lund gave a nondeterministic worst-case to average-case reduction for
computing the Permanent over large fields. We state one of the resulting theorems on worst-case
success probability for 0-1 matrices, which is interesting to compare with ours:

Theorem 1.4 ([FL97], Theorem 3.6). Suppose there is a γ ∈ (0, 1) and a probabilistic polynomial-
time algorithm P such that, for any n× n input matrix X with 0/1 entries, we have

Pr[P (X) = permZ(X)] ≥ 2−n
γ
.

Then, P#P = PH = AM.

Earlier Amir, Beigel, and Gasarch [ABG03, first version in ’90] had shown somewhat weaker
results for #SAT, the problem of computing the number of satisfying assignments to a Boolean
formula. Thus we have long had a good understanding of the worst-case difficulty against PPT algo-
rithms of #P-complete counting problems. We also have quite strong average-case hardness results
for #P, assuming P#P 6= AM [FL97]. However, #P functions are not believed to be computable
with the power of NP, or even PH (this would collapse PH, since PH ⊆ P#P [Tod91]). This seems
to limit the potential applications of the strong hardness of #P functions, e.g., in cryptography.

As another example of the power of nondeterminism for average-case complexity, we mention a
work of Trevisan and Vadhan; in the course of constructing deterministic extractors for efficiently
sampleable distributions, they gave a nondeterministic worst-case to average-case reduction for the
task of computing an arbitrary low-degree polynomial over a finite field [TV00, Lem. 4.1].

3In the most common definition, a nondeterministic circuit Gn(x) is said to compute a function g(x) if the following
condition holds: g(x) = 1 iff there exists some setting of the nondeterministic gates of Gn causing it to accept input x.
Our Theorem 1.3 is valid if our initial hardness assumption on fn is with respect to this definition. However, for this
result we actually only require hardness with respect to a more restrictive model of nondeterministic computation:
the model of nondeterministic mapping circuits, described in Section 2.2.
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None of these reductions from previous work proceed through a direct product reduction in
our sense. However, [ABG03] considers t-fold direct products f⊗t and gives complexity upper
bounds for functions f such that f⊗t can be computed using few queries to an oracle; some of these
reductions use nondeterminism.

1.3 Application to the success probability of PPT SAT solvers

In a recent work, Paturi and Pudlák [PP10] asked about the achievable worst-case success prob-
ability of PPT heuristics for circuit satisfiability. They argue for the importance of this question
by observing that many of the known exact algorithms for k-SAT and other NP search problems,
which achieve exponential runtimes with an improved exponent over naive search, can be converted
to polynomial-time search heuristics with a success probability attaining nontrivial advantage over
random guessing. Thus, exploring the limitations of PPT search heuristics also illuminates the
limitations of a very natural paradigm for exponential-time computation.

Paturi and Pudlák show the following powerful result (a special case of a more general theorem):
Suppose there is a γ < 1 and a PPT algorithm Psolver that, when given as input a description of
any satisfiable Circuit-SAT instance Ψ with r variables, outputs a satisfying assignment to Ψ with
probability at least q(r) := 2−γr. Then, there is a deterministic circuit family {Cr}r that succeeds
at the same task on r-variable instances of size n ≤ poly(r) with probability 1, and Cr is of size at
most 2r

µ
for some µ < 1.

In fact, Paturi and Pudlák show the conclusion in their result holds even if the algorithm
merely outputs witnesses of satisfiability for some NP verifier for Circuit-SAT, with the probability
guarantee above. The witness need not be a satisfying assignment. (Our own negative results will
not hold in the full generality of this setting. However, all intelligent random guessing algorithms
known to this author for witnessing satisfiability, work by producing actual satisfying assignments.)

In this work, we exploit a simple connection between direct product computations for the sat-
isfiability decision problem for Boolean formulas, and the task of producing satisfying assignments
to such formulas. The connection is simple enough to describe in a single sentence:

(?) If ψ1, . . . , ψt are formulas, and s ∈ [0, t] is a correct guess for the number of satisfiable ψjs,
then the 0/1 values [ψ1 ∈ SAT ], . . . , [ψt ∈ SAT ] can all be inferred given any satisfying
assignment to the formula Ψ(s) which asks for satisfying assignments to at least s of the ψjs.

This observation has been used before in [BH88] for quite different purposes, as we will discuss
shortly. Using this connection together with our worst-case DPT (Theorem 4.1), we prove the
following result, bounding the achievable success probability of polynomial-time heuristics for SAT
solvers under the standard complexity-theoretic assumption that NP is not contained in coNP/poly.

Theorem 1.5. Let γ ∈ (0, 1). Suppose there is a PPT algorithm Psolver that, when given as input a
description of a satisfiable 3-CNF formula Φ, of description length |〈Φ〉| = N , outputs a satisfying
assignment to Φ with probability at least q(N) := 2−N

γ
.

Then, NP ⊆ coNP/poly (and the Polynomial Hierarchy collapses to Σp
3).

In fact, the conclusion would hold even if Psolver were a non-uniform polynomial-size circuit
family rather than a uniform PPT algorithm.

This theorem is incomparable to the result of Paturi and Pudlák. Their result implies a stronger
upper bound for the success probability of SAT solvers, at the cost of assuming that NP has nearly-
exponential circuit complexity. While we admire this past work (and it gave the original motivation
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for our project, although our methods are almost completely different), we also believe that it is
valuable to understand how much one can infer about the difficulty of NP problems, starting
from assumptions about polynomial-time computation alone. The hypothesis that the Polynomial
Hierarchy does not collapse to Σp

3 can be equivalently restated as one such assumption: namely, that
there is no polynomial-time procedure that reduces a 4-round game, described by a Boolean circuit,
to an equivalent 3-round game with the “existential” player taking the first move (see [Pap94, Chap.
17]).

Essentially the same observation (?) above was used earlier by Buss and Hay [BH88] (see
also [Pap94, Chap. 17]) to show the equality of complexity classes PNP

|| = PNP[log]; that is, poly(n)

non-adaptive queries to an NP oracle are equivalent in power to O(log(n)) adaptive queries, at least
for solving decision problems in polynomial time.4 We are not aware of previous work on hardness
amplification using (?). However, many past works have used various connections between direct
product theorems and the difficulty of NP search problems. Indeed, cryptography’s demand for
various types of hard-on-average NP search problems has been a prime motivation for the study
of hardness amplification as far back as Yao’s seminal work [Yao82], and direct product theorems
for NP search problems such as preimage-finding have been an central ingredient in this project
(see [Gol07, Chap. 2]). In the modern “hardness-versus-randomness” paradigm [NW94, IW97] for
obtaining pseudorandom generators (PRGs) under hardness assumptions about E = DTIME[2O(n)],
one important step is to apply a direct product theorem to certain decision problems lying in E.5

Hardness amplification has also been previously applied to NP decision problems to obtain hard-
on-average NP search problems, e.g., in a previous work of ours [Dru11, Thm. 5]; the connection
used there was more complicated than in our present work, and proved a much stronger hardness
for NP search problems under a rather strong assumption on the exponential-time complexity of
NP. Beyond this, a great deal of work has been devoted to amplifying average-case hardness within
the class of NP decision problems (see [O’D02, BT06]); such works avoid both the direct product
construction (which produces a non-Boolean function) and the XOR construction (which may
produce a decision problem outside of NP). Finally, Robin Moser and Dominik Scheder [MS] have
asked whether the achievable worst-case success probability of producing satisfying assignments to
many satisfiable SAT instances obeys a DPT-like statement, if we first assume that SAT requires
exponential time (so that the worst-case success probability of satisfying a single satisfiable instance
is exponentially small for PPT algorithms). This question remains open.

1.4 On the power of bounded queries

Let us mention a further application of Theorem 1.5 in structural complexity theory. The complex-
ity class PFA is defined as the set of all functions f : {0, 1}∗ → {0, 1}∗ computable by a polynomial-
time algorithm with oracle access to the language A. If q(n) ≤ poly(n) is an efficiently computable
integer-valued function, the query-bounded analogue PFA[q(n)] is the corresponding class, under the
restriction that the algorithm makes at most q(n) queries to its oracle on a length-n input.

It is considered likely that for every k > 0, the class PFSAT is a proper superset of PFSAT[nk], and
even of PFA[nk] for an arbitrary oracle A. This is known to hold under a quite strong assumption

4In the reduction used in Buss and Hay’s work, the value s is determined by binary search, whereas our reduction
simply makes a random guess for s. Our goal is to output the values [ψ1 ∈ SAT ], . . . , [ψt ∈ SAT ], whereas in [BH88]
the goal is to compute some Boolean function of these values.

5This is relevant because every PRG must be a one-way function, and the associated preimage-finding task is an
NP search problem which must be hard on average.
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called the NP machine hypothesis [CP07]. However, it is an open question to prove the statement
assuming that the Polynomial Hierarchy is infinite. Under the latter assumption, the best that was
known previously [ABG03] was that PFSAT * PFSAT[q(n)] for q(n) = O(log n).6

Consider the function LEXSAT that, on input a description of a Boolean formula, asks for
the lexicographically first satisfying assignment, if any exist (otherwise the output is 0, say). By
employing binary search, one may easily compute LEXSAT in PFSAT[n], where n is the description
length of the input formula. Now suppose that LEXSAT were computable with n1−ε queries to
any oracle (not necessarily in NP). Then, we could randomly guess the outcomes to the oracle
calls, and efficiently produce a satisfying assignment to any satisfiable ψ, with success probability
≥ 2−n

1−ε
. By Theorem 1.5, this would imply that NP ⊆ coNP/poly. We conclude:

Theorem 1.6. For any ε > 0 and any oracle A, if PFSAT[n] ⊆ PFA[n1−ε], then NP ⊆ coNP/poly.

The approach described here gives equally strong evidence that LEXSAT is not computable in
the analogous bounded-error class BPFA[n1−ε].

1.5 A derandomized DPT for NP languages

In Section 7 we prove a derandomized DPT for languages in NP. In this variant, the instances of
our decision problem are not truly independent, but are instead drawn according to the expander
walk pseudorandom generator of [AKS87]. We give a DPT establishing exponential decay of the
success probability of computing f⊗t under this distribution; the quantitative aspects of this result
are comparable to that of Theorem 1.2. We speculate that this derandomized variant may be
better-suited to some future applications of our results.

1.6 Material deferred to the full version

In the full version we will provide:

1. A quantitatively-improved version of the DPT for sampleable distributions, following a dif-
ferent strategy which involves randomly permuting the indices of the t input instances;

2. Discussion of the relation between item 1 and the open question of Moser and Scheder dis-
cussed previously in Section 1.3;

3. A discussion of how the results of [ABG03] results can be used to derive (weak) DPTs for
the worst-case setting, via hashing techniques in [VV86, PP10]. This does not yield an
alternative proof to our results, but it indicates a further connection between our work and
that of [ABG03].

1.7 Our techniques

We describe and analyze two main nondeterministic direct product reductions in this work. While
there are major technical differences between them, both begin with the same intuition, which we
will describe at a high level here.

Let f be a Boolean function on n input bits, and D a distribution over inputs to f . Suppose
C is a probabilistic circuit that computes f⊗t with some success probability q > 2−ct on inputs

6In fact, if PH 6= Σp3, then it was shown in [ABG03] that PFSAT[q(n)+1] * PFA[q(n)] for every A.
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x = (x1, . . . ,xt) ∼ D⊗t, for some small constant 0 < c � 1. We would like to obtain from C a
nondeterministic circuit computing f with high success probability with respect to D. (To prove
our worst-case direct product reduction, Theorem 4.1, it will suffice to show how to do this for
every D. We can then use the minimax theorem to build a nondeterministic circuit that is correct
on every input.)

Say that an execution of C is j-valid, for 0 ≤ j ≤ t, if it correctly computes f on its first j
inputs. We obviously have

Pr
[
C(x) = f⊗t(x)

]
=
∏
j∈[t]

Pr[j-valid|(j − 1)-valid] > 2−ct .

Thus, for a typical choice of index j, Pr[j-valid|(j − 1)-valid] ≈ 2−c ≈ 1. This motivates us to
choose such an index j = j∗, and to fix some settings y1, . . . , yj

∗−1 to the first (j∗ − 1) inputs.
Then, by storing the values f(y1), . . . , f(yj

∗−1), we can easily recognize a (j∗ − 1)-valid execution
(as specified by a setting to the remaining inputs and to the random bits used by C). Now, given a
single input x ∼ D on which we wish to compute f , we will try to obtain a (j∗− 1)-valid execution
of C on an input-tuple whose first j∗ elements are y1, . . . , yj

∗−1,x. The idea is that, by our choice of
j∗, a “typical” such execution (in which the remaining inputs are drawn from D⊗(t−j∗)) should also
be j∗-valid, and give us the value f(x). This idea essentially follows [GNW11]. In our reduction,
however, nondeterminism will allow us to obtain a (j∗ − 1)-valid execution of C very efficiently,
even when such executions are extremely rare; we simply need to “guess and check.”

This approach requires care, however, because an execution obtained by nondeterministic guess-
ing need not be a representative sample of the population from which it was drawn. Thus, even if
we successfully fix values of y1, . . . , yj

∗−1 and receive an input x ∼ D such that most (j∗− 1)-valid
executions are also j∗-valid, we need a way to “kill off” the “atypical” (j∗ − 1)-valid executions
which fail to be j∗-valid.

For this task, a natural idea is to try to apply random hashing, a well-established tool for
reducing the size of a set and culling atypical elements. The use of randomly selected hash functions
for such purposes, in conjunction with nondeterministic guessing, was pioneered by Goldwasser
and Sipser [GS86] (with related techniques found in [VV86]).7 This technique has an important
requirement, however: to kill all the “atypical” (j∗−1)-valid executions while simultaneously leaving
at least one j∗-valid execution alive, we need to know a good approximation to the probability of a
(j∗−1)-valid execution, conditioned on y1, . . . , yj

∗−1,x. We want this probability to be predictable
with high accuracy based on y1, . . . , yj

∗−1 alone, without any foreknowledge of the input x, so
that a good approximation can be encoded into our final nondeterministic circuit as helpful advice.
To summarize, we hope to find and fix inputs y1, . . . , yj

∗−1, such that with high probability over
x ∼ D, we have:

(i) Pr[j∗-valid|y1, . . . , yj
∗−1,x] ≈ Pr[(j∗ − 1)-valid|y1, . . . , yj

∗−1,x];

(ii) Pr[(j∗ − 1)-valid|y1, . . . , yj
∗−1,x] ≈ Pr[(j∗ − 1)-valid|y1, . . . , yj

∗−1].

7We are aiming to build a nondeterministic circuit, not a probabilistic one; but the eventual plan will be to fix a
polynomial number of representative hash functions as non-uniform advice. Let us also mention that hash families
were used in Paturi and Pudlák’s work [PP10] as well, but in a very different way. Those authors used hash functions
to reduce the amount of randomness used by a SAT solver having a worst-case success probability guarantee, as a
step toward transforming a Circuit-SAT instance into an equivalent instance with fewer variables.
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In each condition above, we will tolerate a (1± .01) multiplicative error in our approximations.
So how do we choose the values y1, . . . , yj

∗−1? The obvious idea is to choose them as independent
samples from D, after selecting j∗ uniformly at random. However, this approach may fail to
guarantee condition (i) above, if the successful direct-product computations of C are “concentrated”
in a pathological way. For example, it may be that C(x1, . . . , xt) always outputs f⊗t(x1, . . . , xt)
provided the first input x1 lies in some “good” set G ⊂ {0, 1}n of probability mass ≈ 2−ct, while if
x1 /∈ G, then C simply outputs random guesses. In this case, condition (i) fails for a typical setting
x1 := y1. Also, condition (ii) is only useful if the conditional probabilities involved are nonzero,
and this may also fail with high probability.

We address these difficulties in two distinct ways in our two direct product reductions:

• In our worst-case reduction (Theorem 4.1), we assume from the start that our C has a
probability ≥ q of computing f⊗t under every input. Then, the problem of zero probabilities
doesn’t arise, and the worst-case success guarantee of C turns out to very usefully constrain
the effects of conditioning on y1, . . . , yj

∗−1 ∼ D.

• In our average-case reduction, we show how to transform C to a second probabilistic circuit C̃
taking some number t′ � t of n-bit inputs, and whose success probability is ≥ .5q on almost
every t′-tuple from D⊗t′ . We call this key attribute the input-confidence property ; it turns
out to be nearly as nearly as useful as the worst-case guarantee assumed in the previous case.

To endow C with the input-confidence property, we regard most of the t input positions
as auxiliary sources of randomness, and concentrate on computing f on the remaining t′

coordinates. This has the effect of “smoothing out” the success probability over the different
possible t′-tuples. In this step and its analysis (which uses Kullback-Leibler divergence) we
are strongly influenced by Raz’s proof of the Parallel Repetition Theorem [Raz98]. Also, in
this transformation, we crucially use that D is sampleable; we need our transformed circuit
to generate its own samples from D in order to be useful.

Let us rename t′ as t in the average-case setting, for uniformity of discussion. In either setting, we
are then able to show that choosing j∗, y1, . . . , yj

∗−1 randomly as before ensures conditions (i) and
(ii) with high probability. This requires careful work, but ultimately derives from elementary facts
about the behavior of random sequences (see Lemma 3.4).

Now, in our average-case direct product reduction for sampleable distributions, we can perform
hashing over all possible outcomes to xj

∗+1, . . . , xt, weighted by their likelihood under D. In
our worst-case direct product reduction, D may not be efficiently sampleable, which causes an
additional challenge. In this setting we will show that in fact, it is adequate to draw xj

∗+1, . . . , xt

independently at random from multisets Sj∗+1, . . . , St, each obtained by sampling a reasonable
(polynomial) number of times from D. These “sparsified” versions of D can be coded into our
nondeterministic circuit. The idea of this sparsification and its analysis are somewhat similar to
(and inspired by) a sparsification step from our previous work on instance compression [Dru12,
Lem. 6.3].

2 Preliminaries

When we speak of probabilistic polynomial-time (PPT) algorithms, we refer to any uniform model
of classical computation, e.g., multi-tape Turing machines. We assume familiarity with the basic
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uniform complexity classes P,NP and coNP and the higher levels Σp
k,Π

p
k of the Polynomial Hierarchy

PH. (For background on complexity classes, consult [AB09, Pap94].)
For a language L ⊆ {0, 1}∗, we let χL denote the characteristic function of L. Let χL|=n :

{0, 1}n → {0, 1} denote its restriction to inputs of length n, and let Ln := L ∩ {0, 1}n. If f :
{0, 1}n → {0, 1}d is a function and t ∈ N+, we let f⊗t : {0, 1}n×t → {0, 1}d×t, the t-fold direct
product of f , be defined by

f⊗t(x1, . . . , xt) := (f(x1), . . . , f(xt)) .

All probability spaces we consider will be finite. For distributions D,D′ over a finite set U , we
let D(u) := Pru∼D[u = u], and for U ′ ⊆ U let D(U ′) := Pru∼D[u ∈ U ′]. Let supp(D), the support
of D, be defined as supp(D) := {u : D(u) > 0}. We let ||D − D′||stat := 1

2

∑
u∈U |D(u) − D′(u)|

denote the statistical distance between D and D′. Equivalently,

||D − D′||stat = max
U ′⊆U

|D(U ′)−D′(U ′)| .

The statistical distance between two random variables X,X ′ is defined as the statistical distance
between their respective distributions.

We use D⊗D′ to denote the distribution over pairs (u,u′) which independently samples u ∼ D
and u′ ∼ D′. We let D⊗k denote k independent samples from D. For a finite multiset S, we write
a ∈r S to indicate that random variable a is sampled uniformly from S (with elements weighted by
their multiplicity in S). We let 1[E] denote the 0/1-valued indicator random variable for an event
E.

If S, S′ are multisets, we use S ∪ S′ to indicate multiset union, and similarly for other multiset
operations.8 We let S×k denote the k-fold Cartesian product of S.

We will appeal to the following form of the Chernoff-Hoeffding bound:

Lemma 2.1. Suppose X1, . . . , Xk are independent random variables in the range [0, 1], each satis-
fying E[Xi] = µ. Let Xavg := 1

k

∑
i∈[k]Xi. Then for ε > 0,

Pr [Xavg ≤ µ− ε] ≤ exp
(
−2ε2k

)
and Pr [Xavg ≥ µ+ ε] ≤ exp

(
−2ε2k

)
.

2.1 Deterministic and probabilistic Boolean circuits

When we refer to Boolean circuits, we will consider the model of Boolean circuits with gates from
{∧,∨,¬}. The ∧,∨ gates are of fanin two. We let size(C) denote the total number of gates in a
(deterministic, probabilistic, or nondeterministic) Boolean circuit C, including input gates and all
other types of gates. Note that size(C) is within a factor 2 of the number of wires in C.

Boolean circuits may compute multiple-output functions, as follows. We consider every Boolean
circuit C to be equipped with an ordering on some nonempty subset of its gates, call these g∗1, . . . , g

∗
d.

We then say that C computes the function which on input x, outputs (g∗1(x), . . . , g∗d(x)). We denote
this function simply as C(x).

A probabilistic Boolean circuit is a circuit C which, in addition to having gates for its regular
input variables x = (x1, . . . , xn), has an additional designated set of (fanin-zero) “random” gates
r = (r1, . . . , rm). We write C(x) to denote the random variable giving the output of C on input x,

8The multiplicity of (s, s′) in the Cartesian product S × S′ is equal to the product of the multiplicity of s in S
with the multiplicity of s′ in S′.
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when the random gates are set to uniform random values. We write Cdet to indicate the underlying
deterministic circuit with input gates (x, r). For a deterministic or probabilistic Boolean circuit C,
we write

C : {0, 1}m → {0, 1}d

to denote that C takes m regular input bits (not including any random gates), and produces d bits
of output.

For a deterministic or probabilistic circuit C : {0, 1}n → {0, 1}, a value δ ∈ [0, 1], a function
f : {0, 1}n → {0, 1}d, and a distribution D over {0, 1}n, we say that C (1 − δ)-computes f with
respect to D if Prx∼D[C(x) = f(x)] ≥ 1− δ.

A sampling circuit is a circuit C with no input gates, but with designated “random” gates r and
output gates g∗1, . . . , g

∗
d. We say that C samples a distribution D on {0, 1}d if a uniformly random

setting to r induces output distribution D. We let C(r) denote the output on the setting r to the
random gates.

2.2 Nondeterministic circuits and nondeterministic mappings

An ordinary nondeterministic circuit is a Boolean circuit C, accompanied with a specification of
three sets of special gates in C:

• a set of input gates x = (x1, . . . , xn);

• a set of fanin-zero “nondeterministic” gates w = (w1, . . . , wm);

• a single “accept/reject” gate g∗0.

We require that the input and nondeterministic gates be disjoint, but otherwise these sets are
allowed to overlap. We say that C(x,w) accepts (x,w) if g∗0(x,w) = 1, otherwise we say C rejects
(x,w). We say that C recognizes a set A ⊆ {0, 1}n, if for all x ∈ {0, 1}n,

x ∈ A ⇐⇒ ∃w : C(x,w) accepts.

If C = {Cn(x,w)}n>0 is a family of nondeterministic circuits, with Cn having n input gates, we
say that C recognizes a language L if each Cn recognizes Ln. The complexity class NP/poly is
defined as {L : there is an ordinary nondeterministic circuit family {Cn} recognizing L, with
size(Cn) ≤ poly(n)}. The class coNP/poly is defined as {L : L ∈ NP/poly}.9 It appears unlikely
that NP ⊆ coNP/poly, as this would imply a collapse of the Polynomial Hierarchy:

Theorem 2.2 ([Yap83]). If NP ⊆ coNP/poly, then PH = Σp
3 = Πp

3.

We will also use a fairly standard model of nondeterministic computation for functions with one
or more bits of output (see [BLS84, BLS85], and [HO02, Sec. 3.3 and App. A.14] for background);
here we specialize the model to the circuit setting and use somewhat different terminology. A
nondeterministic mapping circuit is a circuit C which, in addition to the three classes of designated
gates described above, also has a set of output gates g∗1, . . . , g

∗
d for some d > 0 (these gates may

overlap with the other gate-classes). The mapping defined by C, denoted FC : {0, 1}n → P
(
{0, 1}d

)
,

is defined as

FC(x) := {v ∈ {0, 1}d : ∃w ∈ {0, 1}m such that C accepts (x,w) and (g∗1(x,w), . . . , g∗d(x,w)) = v} .

We will use the following obvious fact:

9(Here, L denotes the complement of L.)
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Proposition 2.3. Let L be a language. Suppose there is a family {Cn}n>0 of nondeterministic
mapping circuits, satisfying

1. For every n and x ∈ {0, 1}n, FCn(x) = {χL(x)};

2. size(Cn) ≤ poly(n).

Then, L ∈ NP/poly ∩ coNP/poly.

We say that a nondeterministic mapping circuit C (1−δ)-defines a function f : {0, 1}n → {0, 1}d
with respect to input distribution D if Prx∼D[FC(x) = {f(x)}] ≥ 1− δ.

2.3 Direct-product solvers

Definition 2.4 (Direct-product solvers). Let n, d, t ∈ N+ be fixed, and let f : {0, 1}n → {0, 1}d be
a function. Let C : {0, 1}n×t → {0, 1}d×t be a probabilistic circuit. Let q, c ∈ [0, 1].

1. Let D be a distribution over {0, 1}n×t. We say that C is a q-direct-product solver for f⊗t

with respect to D if the following holds: if we sample x = (x1, . . . ,xt) ∼ D, then

Pr
[
C(x) = (f(x1), . . . , f(xt))

]
≥ q ,

where the probability is taken over x and over the randomness used by C.

2. We say that the circuit C is a worst-case q-direct-product solver for f⊗t if it satisfies item
1 above for every input distribution D over {0, 1}n×t. Equivalently, for all (x1, . . . , xt) ∈
{0, 1}n×t,

Pr
[
C(x1, . . . , xt) = (f(x1), . . . , f(xt))

]
≥ q .

3. For any (x1, . . . , xt) ∈ {0, 1}n×t, define the confidence

conf(C;x1, . . . , xt) := Pr
[
C(x1, . . . , xt) = (f(x1), . . . , f(xt))

]
.

We say that C is a (c, q)-input-confident direct-product solver for f⊗t with respect to D if
the following holds: if we sample x = (x1, . . . ,xt) ∼ D, then

Pr [conf(C; x) ≥ q] ≥ c .

(Note that any such C is also a q′-direct-product solver for f⊗t with respect to D, where
q′ := qc.)

4. We extend each of the above definitions to families of circuits and input distributions, in the
natural way. Let d(n), t(n) : N+ → N+, q(n) : N+ → [0, 1] be functions. Let C = {Cn}n>0

be a family of probabilistic circuits Cn : {0, 1}n×t(n) → {0, 1}d(n)×t(n). Let D = {Dn}n>0 be a
family of distributions over {0, 1}n×t(n).

We say that C is a q(n)-direct-product solver for f⊗t(n) with respect to D if for any n > 0,
Cn is a q(n)-direct-product solver for f⊗t(n) with respect to Dn. The definitions in items 2
and 3 are extended to circuit and input-distribution families in an analogous fashion.
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If C is a q-direct-product solver for f⊗t with respect to some input distribution, then we may
non-uniformly fix the random gates of C to obtain a deterministic q-direct-product solver for f⊗t

with respect to the same input distribution. This is a standard observation in the study of average-
case complexity. Note, however, that there is no obvious analogue of this transformation for for
worst-case direct-product solvers, or for input-confident direct product solvers, that would allow us
to derandomize while preserving the quality parameters.

2.4 Hash families and their properties

We now introduce a widely-used class of function families called strongly universal hash families.
Let U be a finite set, and let H be a finite family of “hash functions” h : U → Fk2. We say that H
is a strongly universal hash family if, for all u, u′ ∈ U with u 6= v, and for all z, z′ ∈ Fk2, we have

Pr
h∈rH

[h(u) = z ∧ h(u′) = z′] = 2−2k .

We use the following standard, explicit construction:

Proposition 2.5. Given k, ` > 0, consider U := F`2. The family of functions

H`,k :=
{

hA,v : F`2 → Fk2
}
A∈Fk×`2 ,v∈Fk2

given by
hA,v(x) := Ax+ v (with addition over Fk2)

is a strongly universal hash family.

Lemma 2.6. Suppose that k, ` > 0, that U ′ ⊆ U = F`2, and that |U ′| = θ · 2k, for some θ > 0. Say
we select (A, v) ∈r Fk×`2 × Fk2; then,

1− θ−1 < Pr[ 0k ∈ hA,v(U ′) ] ≤ θ . (1)

Proof. Let U ′ = {u1, . . . , um}. For i ∈ [m], define the indicator variable Xi := [hA,v(ui) = 0k].
Note that E[Xi] = 2−k. Let S :=

∑
i∈[m]Xi. Then Pr[0k ∈ hA,v(U ′)] = Pr[S ≥ 1], and by Markov’s

inequality this is at most E[S] =
∑

i∈[m] 2−k = θ. This proves the upper bound.

For the lower bound, note that [0k /∈ hA,v(U ′)] implies S = 0, so that in this case |S−E[S]| = θ.

By Chebyshev’s inequality, this occurs with probability at most E[(S−E[S])2]
θ2

. The strongly universal
property implies that the random variables Xi, Xi′ are pairwise independent, so we have

Pr[0k /∈ hA,v(U ′)] ≤
∑

i∈[m] E[(Xi − 2−k)2]

θ2
=

θ · 2k

θ2
·
(

2−k(1− 2−k)
)
<

1

θ
.

This gives the lower bound in the Lemma’s statement.

Corollary 2.7. Suppose that k, ` > 0 and that U = F`2. Consider two subsets U(i), U(ii) ⊆ U , with

|U(i)| = θ · 2k and |U(ii)| = θ′ · 2k. If (A, v) ∈r Fk×`2 × Fk2, then we have

Pr[0k ∈ (hA,v(U(i)) \ hA,v(U(ii)))] ≥ 1− θ−1 − θ′,

where hA,v is as in Proposition 2.5.
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Proof. First we apply the lower bound of Lemma 2.6 with U ′ := U(i) to find that

Pr[0k /∈ hA,v(U(i))] ≤ θ−1 .

Next we apply the upper bound of Lemma 2.6 with U ′ := U(ii) to find that

Pr[0k ∈ hA,v(U(i))] ≤ θ′ .

Taking a union bound completes the proof.

2.5 A general nondeterministic circuit construction

The following technical lemma, which is slightly complicated to state but conceptually simple, will
be useful in our proofs of Theorems 4.1 and 6.1. Readers may wish to defer studying the lemma
until it is used in its proper context.

Lemma 2.8. Let n, d ∈ N+, and let f : {0, 1}n → {0, 1}d be a function. Let K,N, T ∈ N+ be
additional parameters, and suppose we have identified several sets and mappings, as follows.

• For every u ∈ {0, 1}n, there is a set Vu ⊆ {0, 1}N , partitioned into disjoint subsets {V z
u }z∈{0,1}d;

• For i ∈ [T ], there is a mapping h∗i : {0, 1}N → {0, 1}K ;

• There is a “favorable” set Fav ⊆ {0, 1}n.

Suppose that there is a deterministic circuit CVtest(w, u) : {0, 1}N+u → {0, 1}d+1 that determines
whether w ∈ Vu and, if so, which subset V z

u contains w. Suppose too that, for each i ∈ [T ], there is
a circuit Ch∗i of size O(KN) that computes h∗i .

Say that h∗i is good for u ∈ {0, 1}n if

0K ∈ h∗i

(
V f(u)
u

)
\

 ⋃
z 6=f(u)

h∗i (V z
u )

 .

Finally, assume the following condition:

• For every u ∈ Fav, there are at least .6T indices i ∈ [T ] such that h∗i is good for u.

Then, there exists a nondeterministic mapping circuit C† taking n input bits, such that for all
u ∈ Fav,

FC†(u) = {f(u)} ;

also, we have size(C†) ≤ O((size(CVtest)KN) · T ).

Proof. C† takes input u ∈ {0, 1}n and has nondeterministic variables

w =
(
w1, . . . , wT

)
∈ {0, 1}N×T .

The circuit C†(u,w) acts as follows:
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1. For each i ∈ [T ], define zi ∈ {0, 1}d ∪ {⊥} by

zi :=

{
z if wi ∈ V z

u and h∗i (w
i) = 0K ,

⊥ otherwise (i.e., if wi /∈ Vu or h∗i (w
i) 6= 0K).

2. If there exists a z ∈ {0, 1}d such that at least .6T of the strings zi are equal to z, C ′ accepts
and outputs z (which is necessarily unique). If there is no such z, C ′ rejects.

That C† can be implemented in the desired resource bounds is immediate from our assumptions.
To prove correctness of the construction, consider any u ∈ Fav. By our choice of h∗1, . . . , h

∗
T , there

is a set I ⊆ [T ] of size at least .6T indices i such that h∗i is good for u. For each such i, there

is a string ŵi ∈ V
f(u)
u for which h∗i (ŵ

i) = 0K . Define an assignment w = (w1, . . . , wT ) to the
nondeterministic gates of C ′ by letting

wi :=

{
ŵi if i ∈ I,

0N otherwise.

(Our use of the value 0N here is arbitrary.) Observe that in the execution of C†(u,w), we have
zi = f(u) for each i ∈ I. Thus, C† accepts (u,w) and outputs f(u). This shows f(u) ∈ FC′(u).

To see that FC′(u) ⊆ {f(u)}, consider any z 6= f(u). Note that, for any i ∈ I (for which
h∗i is good for u), we cannot have zi = z under any assignment to w. Thus the number of i for
which zi = z is at most .4T , so C†(u,w) cannot accept with output z. This completes the proof of
Lemma 2.8.

3 Stage-based analysis of direct-product computations

In this section we analyze the behavior of direct-product solvers on inputs (x1, . . . , xt) drawn from a
known probability distribution D over {0, 1}n×t. The case where D is a t-fold product distribution
will be of primary interest to us, although some of our lemmas will apply to non-product input
distributions.

3.1 Valid outputs and the α, β sequences

Here we make some definitions that will be of central importance.

Definition 3.1 (j-valid outputs). Let f : {0, 1}n → {0, 1}d be a function, let (x1, . . . , xt) ∈
{0, 1}n×t, and let z = (z1, . . . , zt) ∈ {0, 1}d×t. For j ∈ [t], say that z is j-valid for (x1, . . . , xt), with
respect to f⊗t, if

z` = f(x`) , for all ` ≤ j .

When the target function f and the reference strings x1, . . . , xt are clear from the context, we will
simply say that z is j-valid. Note that if z is j-valid for (x1, . . . , xt) then it is also j′-valid for
j′ < j. By convention, every z ∈ {0, 1}d×t is said to be 0-valid.

If C is a probabilistic circuit taking a tuple of strings (x1, . . . , xt) as input (with each xj of
equal, predetermined length) and outputting a t-bit string, we say that a particular execution of C
on input (x1, . . . , xt) is j-valid if it outputs some bitstring that is j-valid with respect to the inputs.
We denote this event simply as [C(x1, . . . , xt) is j-valid ].
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Definition 3.2 (α, β sequences). Let n, t ∈ N+ and let f : {0, 1}n → {0, 1}d. Let C : {0, 1}n×t →
{0, 1}d×t be a probabilistic circuit. Let D be a distribution over {0, 1}n×t, and let (x1, . . . ,xt) ∼ D.

Define two sequences of random variables

α0, α1, . . . , αt , β0, β1, . . . , βt−1 ,

as follows. For j ∈ [0, t], we let

αj := Pr

[
C(x1, . . . ,xt) is j-valid

∣∣∣∣x1, . . . ,xj
]
,

with validity defined with respect to f . In other words, if (x1, . . . ,xj) = (x1, . . . , xj), then αj takes
on the value

αj = Pr

[
C(x1, . . . ,xt) is j-valid

∣∣∣∣(x1, . . . ,xj) = (x1, . . . , xj)

]
,

where the probability is taken over the randomness in x1, . . . ,xt and in the randomness used by C.
Similarly, for j ∈ [0, t− 1], define

βj := Pr

[
C(x1, . . . ,xt) is j-valid

∣∣∣∣x1, . . . ,xj+1

]
.

Observe that α0 = β0 = 1. Also, we have αj , βj ≤ 1 and αj+1 ≤ βj .

3.2 A lemma on random sequences

Claim 3.3. 1. The function ln(1 + x), defined on (−1,∞), satisfies

ln(1 + x) ≤

{
x− x2

6 if x ∈ (−1, 1) ,

(ln 2)x if x ≥ 1 .

2. Consequently, for all x ∈ (−1,∞),

ln(1 + x) ≤ x−min

{
x2

6
, .3

}
.

Proof. (1) We have the Taylor series representation

ln(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
, valid for x ∈ (−1, 1) .

This is an alternating series with terms monotonically decreasing in absolute value, so the Leibniz
rule for alternating series tells us that ln(1 + x) ≤ x− x2

2 + x3

3 for x ∈ (−1, 1). For such x we have
x3

3 ≤
x2

3 , which establishes the first half of item 1.
For the other half, observe that the function f(x) = ln(1 + x) satisfies

f ′(x) =
1

1 + x
, f ′′(x) = − 1

(1 + x)2
< 0 ,
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with these expressions valid over its entire domain (−1,∞). Define the linear function g(x) :=
(ln 2)x. We have

f(1) = ln 2 = g(1) and f ′(1) =
1

2
< ln 2 = g′(1) ;

combining this with the fact that f ′′(x) < 0 everywhere implies that f(x) ≤ g(x) for x ≥ 1. This
completes the proof of item 1.

(2) From item 1 it immediately follows that for x ∈ (−1,∞),

ln(1 + x) ≤ x−min

{
x2

6
, (1− ln 2)|x|

}
.

The first term in the min is smaller for x ∈ (−1, 1], and for x ≥ 1 we have (1− ln 2)|x| > .3. This
proves item 2.

Lemma 3.4. Let Y1, Y2, . . . , YT be (possibly dependent) nonnegative random variables satisfying
E[Yi] ≤ 1 for i ∈ [T ]. Let Yprod :=

∏
i∈[T ] Yi. Let i ∈r [T ] be chosen independently of Y1, . . . , Yt.

1. Suppose that there is some q ∈ (0, 1] such that Yprod ≥ q with probability 1. Then,

Pr[Yi ∈ [.99, 1.01]] ≥ 1− 216 ln(1/q)

T
.

2. Suppose instead that for some q ∈ (0, 1] and ζ ∈ [0, 1], we have Pr[Yprod ≥ q] ≥ 1− ζ. Then

Pr [Yi ∈ [.99, 1.012]] ≥ 1− 216 ln (1/q)

T
− 1.1 · 216ζ .

Proof. (1) Let Z1, . . . , ZT be defined by Zi := ln(Yi). Note that Zi is well-defined since Yi > 0,
under our assumption Yprod ≥ q in part 1. Letting Zsum :=

∑
i∈[T ] Zi, note that Zsum = ln(Yprod).

Our assumption in part 1 implies that Zsum ≥ ln q. Thus,∑
i∈[T ]

E[Zi] = E[Zsum] ≥ ln q . (2)

On the other hand, by applying Claim 3.3, item 2, we find that

Zi ≤ (Yi − 1)−min

{
(Yi − 1)2

6
, .3

}
.

Taking expectations and using that E[Yi] ≤ 1,

E[Zi] ≤ −E
[
min

{
(Yi − 1)2

6
, .3

}]
.

Let pi := Pr[Yi /∈ [.99, 1.01]]. Then

E
[
min

{
(Yi − 1)2

6
, .3

}]
≥ pi ·

(.01)2

6
,
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so that
E[Zi] ≤ −

pi
216

.

Combining this with Eq. (2) gives∑
i∈[T ]

pi ≤ −216 ln q = 216 ln(1/q) ,

which implies that

Pr
i∈r[T ]

[Yi /∈ [.99, 1.01]] =
1

T

∑
i∈[T ]

pi ≤
216 ln(1/q)

T
,

as was to be shown.

(2) Note that if ζ > .001, the assertion being made is trivial, since probabilities are always
nonnegative. So let us assume that ζ ∈ [0, .001]. Let (Y ′1 , . . . , Y

′
T ) be random variables jointly

distributed as (Y1, . . . , YT ) conditioned on the event [Yprod ≥ q]. That is, for any (y1, . . . , yT ) ∈ RT ,
Pr[(Y ′1 , . . . , Y

′
T ) = (y1, . . . , yT )] = Pr[(Y1, . . . , YT ) = (y1, . . . , yT )|Yprod ≥ q]. Let c := 1 − ζ; our

assumption in part 2 implies that E[Yi] ≥ c · E[Y ′i ], which gives E[Y ′i ] ≤ 1/c.
Now let Y ′′i := cY ′i ; we have Y ′′i > 0 and E[Y ′′i ] ≤ 1. Let Y ′′prod :=

∏
i∈[T ] Y

′′
i . We have

Y ′′prod ≥ cT q always. Thus we may apply item 1 to the sequence Y ′′1 , . . . , Y
′′
T to find that

Pr
i∈r[T ]

[
Y ′i ∈

[
.99

c
,
1.01

c

]]
= Pr

i∈r[T ]
[Y ′′i ∈ [.99, 1.01]] ≥ 1−

216 ln
(

1
cT q

)
T

. (3)

Then it follows from our definitions that

Pr
i∈r[T ]

[
Yi ∈

[
.99

c
,
1.01

c

]]
≥ c · Pr

i∈r[T ]

[
Y ′i ∈

[
.99

c
,
1.01

c

]]
.

Next, note that our assumption c ∈ [.999, 1] implies that [.99/c, 1.01/c] ⊆ [.99, 1.012], and also that
1/c = 1/(1− ζ) ≤ 1 + 1.01ζ. Using these facts and Eq. (3), we derive the bounds

Pr
i∈r[T ]

[Yi ∈ [.99, 1.012]] ≥ Pr
i∈r[T ]

[
Yi ∈

[
.99

c
,
1.01

c

]]

≥ c ·

1−
216 ln

(
1
cT q

)
T


≥ 1− ζ −

216 ln
(

1
cT q

)
T

≥ 1− ζ −
216 ln

(
(1+1.01ζ)T

q

)
T

= 1− ζ − 216T · ln (1 + 1.01ζ)

T
− 216 ln (1/q)

T

≥ 1− 1.1 · 216ζ − 216 ln (1/q)

T
,

where in the last step we used the bound ln(1 + x) ≤ x. This proves part 2.
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3.3 Behavior of the α, β sequences

Lemma 3.5. Fix n, d, t ∈ N+. Let f : {0, 1}n → {0, 1}d be a function, and let C : {0, 1}n×t →
{0, 1}d×t be a probabilistic circuit. Let q ∈ (0, 1] and ζ ∈ [0, 1] be given.

1. Suppose that C is a (1− ζ, q)-input-confident direct-product solver for f⊗t with respect to an
input distribution D over {0, 1}n×t.
Let x = (x1, . . . ,xt) ∼ D. Let α0, . . . , αt, β0, . . . , βt−1 be as in Definition 3.2, defined with
respect to C and D. Let j ∈r [t] be sampled independently of x. Then with probability at least

1− 216 ln (1/q)

t
− 218ζ ,

we have

αj−1, βj−1 > 0 ,

(
βj−1

αj−1

)
∈ [.99, 1.012] , and

(
αj

βj−1

)
∈ [.99, 1] . (4)

2. Now suppose instead that C is a worst-case q-direct-product solver for f⊗t. Let V be a finite set
and let {Dv}v∈V be a set of distributions indexed by V , with each distribution over {0, 1}n×t.
Let D,D′ be two distributions over V × [t], with the following properties:

(a) If (v, j) ∼ D, then v, j are independent and j is uniform over [t];

(b) ||D−D′|| ≤ γ, for some γ ∈ [0, 1).

Consider the following experiment Expt(D′):

(i) Sample (v′, j′) ∼ D′;

(ii) Sample x = (x1, . . . ,xt) ∼ Dv′;

(iii) Let the sequence α0, . . . , αt, β0, . . . , βt−1 as in Definition 3.2 be defined with respect to
Dv′ and x.

Then with probability at least

1− 216 ln(1/q)

t
− γ

over Expt(D′), we have(
βj−1

αj−1

)
∈ [.99, 1.02] and

(
αj

βj−1

)
∈ [.99, 1] . (5)

Part 1 of Lemma 3.5 will be applied to prove Theorem 6.1, our DPT for sampleable distributions,
and also to prove part 2. Part 2 of the Lemma will be applied in the proof of Theorem 4.1, our
DPT for worst-case direct-product solvers.

Proof. (1) Let T := 2t, and define random variables Y1, . . . , YT as follows: for each ` ∈ [T ], if
` = 2k + 1 then let

Y` :=

{
βk/αk if αk 6= 0 ,

1 otherwise.
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If ` = 2k, let

Y` :=

{
αk/βk−1 if βk−1 6= 0 ,

1 otherwise.

To illustrate the pattern, if all αk, βk are nonzero in some outcome then we have

Y1 =

(
β0

α0

)
= 1 , Y2 =

(
α1

β0

)
, Y3 =

(
β1

α1

)
, . . . , YT =

(
αt
βt−1

)
.

Observe that if αt > 0, then all of α0, . . . , αt−1, β0, . . . , βt−1 are also positive, so that the product
Yprod :=

∏
`∈[T ] Y` equals αt/α0 = αt. By the definition of αt and the input-confidence property of

C, it follows that
Pr [Yprod ≥ q] ≥ 1− ζ .

For the even indices, we have Y2k ≤ 1 always. Also, we claim that E[Y2k+1] = 1. To see this,
just observe that for k ∈ [t(n)] we have the identity E [βk|αk] = αk, which tells us that Y2k+1 has
expected value 1 conditioned on any nonzero value of αk; and if we condition on [αk = 0], then
Y2k+1 = 1 with certainty.

We have verified that the assumptions of Lemma 3.4, part 2 are satisfied by (Y1, . . . , YT ); we
infer that if i ∈r [T ],

Pr [Yi /∈ [.99, 1.012]] ≤ 216 ln (1/q)

T
+ 1.1 · 216ζ =

215 ln (1/q)

t
+ 1.1 · 216ζ .

Recall that T = 2t is even. If we instead choose î ∈r {1, 3, 5, . . . , T−1}, and then select î′ ∈r {̂i, î+1},
then î′ is uniform over [T ] and we get the same bound for Pr

[
Yî′ /∈ [.99, 1.012]

]
. It follows that

Pr
[
Yî /∈ [.99, 1.012] ∨ Yî+1 /∈ [.99, 1.012]

]
≤ 216 ln (1/q)

t
+ 1.1 · 217ζ .

Now, note that j := î/2 is distributed as a uniform element in [t], and that the relations

αj−1, βj−1 > 0 , Yî =

(
βj−1

αj−1

)
, Yî+1 =

(
αj

βj−1

)
hold whenever αt > 0, which happens with probability at least 1 − ζ. Finally, if αt > 0 then

βj−1 > 0 and
(

αj

βj−1

)
≤ 1. So Eq. (4) holds with probability at least

1− 216 ln (1/q)

t
− 218ζ .

This proves part 1 of the Lemma.

(2) First, suppose we run the alternative experiment Expt(D), which samples (v′, j′) according
to D rather than D′. Now, after conditioning upon any outcome [v′ = v] of the first component,
the index j remains uniform over [t] (by property (a) of D). Also, C is a (1, q)-input-confident
direct-product solver for f⊗t with respect to the input distribution Dv. Thus we may set D := Dv
and ζ := 0, and apply Lemma 3.5, part 1 to find that the probability that Eq. (5) holds is at least

1− 216 ln(1/q)
t . Thus in Expt(D), Eq. (5) holds with probability at least 1− 216 ln(1/q)

t .
Now let I, I′ be the indicator variables for the events that Eq. (5) holds in Expt(D),Expt(D′)

respectively. Note that the two experiments are identically defined, except that the first draws a
single sample from D while the second draws a sample from D′. Thus, ||I− I′||stat ≤ ||D−D′||stat ≤
γ, using property (b). This proves part 2 of the Lemma.
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3.4 Analysis of worst-case direct-product solvers: the key experiment

Lemma 3.6. Fix n, d, t,M ∈ N+ with M ≥ 2, and q ∈ (0, 1], ζ ∈ [0, 1]. Let f : {0, 1}n → {0, 1}d be
a function, and suppose the probabilistic circuit C is a worst-case q-direct-product solver for f⊗t.
Let D be a distribution over {0, 1}n, and consider the following experiment Expt∗(D):

1. Let u ∈ {0, 1}n be sampled according to D, and let j ∈r [t];

2. For each j ∈ [t]:

(i) let sj ∈r {M,M + 1,M + 2, . . . , 2M − 1};
(ii) Define a multiset Sj over {0, 1}n, obtained by drawing sj independent samples from D;

(iii) Let Ŝj := Sj ∪ {u} if j = j; otherwise let Ŝj := Sj;

(iv) Let yj ∈r Sj;
(v) Let ŷj := u if j = j; otherwise let ŷj := yj.

3. Define the random variables

α0, α1, . . . , αt, β0, β1, . . . , βt−1, α̂0, α̂1, . . . , α̂t, β̂0, β̂1, . . . , β̂t−1 ,

by the rules

αj := Pr

[
C(y1, . . . ,yt) is j-valid

∣∣∣∣ S1, S2, . . . , St,y
1, . . . ,yj

]
,

α̂j := Pr

[
C(ŷ1, . . . , ŷt) is j-valid

∣∣∣∣ Ŝ1, Ŝ2, . . . , Ŝt, ŷ
1, . . . , ŷj

]
,

βj := Pr

[
C(y1, . . . ,yt) is j-valid

∣∣∣∣ S1, S2, . . . , St,y
1, . . . ,yj+1

]
,

β̂j := Pr

[
C(ŷ1, . . . , ŷt) is j-valid

∣∣∣∣ Ŝ1, Ŝ2, . . . , Ŝt, ŷ
1, . . . , ŷj+1

]
.

Then with probability at least 1− 216 ln(1/q)
t − 1

M , we have(
β̂j−1

αj−1

)
∈ [.98, 1.02] and

(
α̂j

β̂j−1

)
∈ [.99, 1] . (6)

Proof. We aim to apply part 2 of Lemma 3.5 to the sequences α̂0, . . . , α̂t, β̂0, . . . , β̂t. Let S, Ŝ
denote the random tuples (S1, . . . , St) and (Ŝ1, . . . , Ŝt) respectively. Let D denote the distribution
governing the tuple (S, j), and let D′ denote the distribution governing (Ŝ, j). Each t-tuple B =
(B1, . . . , Bt) of multisets over {0, 1}n naturally defines a distribution DB over elements (z1, . . . , zt) ∈
{0, 1}n×t, namely, the product distribution that independently chooses zj ∈r Bj for each j.

The random variable j is uniform over [t] and independent of S, so condition (a) of Lemma 3.5,
part 2 is satisfied by D. For condition (b), note that Ŝ is not fully independent of j. However, we
will show that (Ŝ, j) is quite close in distribution to (S, j):
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Claim 3.7.
∣∣∣∣∣∣(Ŝ1, . . . , Ŝt, j)− (S1, . . . , St, j)

∣∣∣∣∣∣
stat
≤ 1

M .

Proof. We use a coupling argument. First, we generate a random multiset S0 consisting of M
independent samples from D. Now define a random multiset S̃ by letting

S̃ :=

{
Ŝj if sj < 2M − 1 ,

S0 if sj = 2M − 1 .

Note that |S̃| is uniform over {M,M + 1, . . . , 2M − 1}, and its elements are distributed as indepen-
dent samples from D. Thus, if we form the random tuple

(S1, . . . , Sj−1, S̃, Sj+1, . . . , St, j) ,

we see that it is identically distributed to (S1, . . . , Sj, . . . , St, j). Also, we have S̃ = Ŝj unless

sj = 2M − 1, which happens only with probability 1
M ; and we always have Ŝj = Sj for all j 6= j.

This proves our Claim.

Thus condition (b) is satisfied by D,D′ with γ := 1
M .

Observe that, after conditioning on S, the sequence (y1, . . . ,yt) sampled in Expt∗(D) is dis-
tributed precisely according to DS. Similarly, after conditioning on Ŝ, the sequence (ŷ1, . . . , ŷt) is
distributed according to DŜ. We can therefore combine part 2 of Lemma 3.5 with Claim 3.7 to find

that, with probability at least 1− 216 ln(1/q)
t − 1

M over Expt∗(D), we have(
β̂j−1

α̂j−1

)
∈ [.99, 1.012] and

(
α̂j

β̂j−1

)
∈ [.99, 1] .

Next we will need the following simple but important claim:

Claim 3.8. With probability 1 we have

α̂j−1 =
1

sj + 1
· β̂j−1 +

(
sj

sj + 1

)
· αj−1 .

Proof. Consider any outcome of Expt∗(D), which is fully determined by the values of the random
variables

(S1, . . . , St,y
1, . . . ,yt, j,u) = (S∗1 , . . . , S

∗
t , y

1, . . . , yt, j, u) .

Under these conditionings, observe that α̂j−1 equals the probability that the output of the compu-
tation C(y1, . . . , yj−1, zj , zj+1, . . . , zt) is (j − 1)-valid, where

(zj , zj+1, . . . , zt) ∈r ((S∗j ∪ {u})× S∗j+1 × . . .× S∗t ) .

This distribution on (zj , zj+1, . . . , zt) can be equivalently realized as follows:

1. First, let a ∈r [sj + 1] (noting here that sj = |S∗j |);

2. If a = sj + 1, let zj := u and sample (zj+1, . . . , zt) ∈r (S∗j+1 × . . . × S∗t ); otherwise choose

(zj , zj+1, . . . , zt) ∈r (S∗j × S∗j+1 × . . .× S∗t ).
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On the other hand, β̂j−1 equals the probability that C(y1, . . . , yj−1, u, zj+1, zj+2, . . . , zt) is (j− 1)-
valid, where (zj+1, . . . , zt) ∈r (S∗j+1× . . .×S∗t ); and αj−1 equals the probability that C(y1, . . . , yj−1,

zj , zj+1, . . . , zt) is (j − 1)-valid, where (zj , . . . , zt) ∈r (S∗j × . . . × S∗t ). Combining these facts with
our observations about α̂j−1 yields the Claim.

Now, suppose that
β̂j−1 ≥ .99 · α̂j−1 ,

which, as we have seen, occurs with high probability. Using Claim 3.8, this implies that

β̂j−1

.99
≥ 1

sj + 1
· β̂j−1 +

(
sj

sj + 1

)
· αj−1 ,

so that (
1

.99
− 1

sj + 1

)
·
β̂j−1

αj−1
≥
(

sj
sj + 1

)
,

which simplifies to
β̂j−1

αj−1
≥
(

99sj
100sj + 1

)
.

This is greater than .98. By a similar calculation, if β̂j−1 ≤ 1.012 · α̂j−1 then

β̂j−1

αj−1
≤
(

1012 · sj
1000sj − 12

)
,

which is less than 1.02 since sj ≥ 2. Combining our work, we conclude that with probability at

least 1− 216 ln(1/q)
t − 1

M , Eq. (6) is satisfied. This completes the proof of Lemma 3.6.

4 The main DPT for worst-case direct-product solvers

In this section, we prove:

Theorem 4.1. Let n, d, t ∈ N+, with t ≥ 100. Let q ∈ (0, 1], and let f : {0, 1}n → {0, 1}d be
a function. Suppose there is a probabilistic circuit C : {0, 1}n×t → {0, 1}d×t, such that C is a
worst-case q-direct-product solver for f⊗t. Assume that

q ≥ exp

(
− t

3 · 105

)
.

Then, there is a nondeterministic mapping circuit C∗ with n input bits and d output bits, such that
FC∗(u) = {f(u)} for every u ∈ {0, 1}n, and for which

size(C∗) ≤ poly(size(C)) .

Theorem 1.2 from the Introduction follows from this more general result:
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Proof of Theorem 1.2. Let f = {fn} satisfy the hypothesis of Theorem 1.2. Suppose for contradic-
tion’s sake that there is a family of probabilistic circuits {Cn} of size at most nk for some k > 0,
such that for all sufficiently large n and all x ∈ {0, 1}n×t(n),

q := Pr[Cn(x) = f⊗t(n)
n (x)] ≥ exp

(
− t(n)

3 · 105

)
.

Then by applying Theorem 4.1, to sufficiently large values of n, we find that there is a family {C∗n}
of nondeterministic mapping circuits on n input bits, each with a single output bit, such that for
all u ∈ {0, 1}n,

FC∗n(u) = {fn(u)} ,
and satisfying

size(C∗n) ≤ poly(size(Cn)) = poly(nk) = poly(n) .

By Proposition 2.3, we conclude that f ∈ NP/poly ∩ coNP/poly. This contradicts our initial
hypothesis, proving the Theorem.

Proof of Theorem 4.1. Let δ := 105 ln(1/q)
t . Note that δ < .49 by our assumption on q. As our main

technical effort in this section, we will prove the following lemma:

Claim 4.2. For any distribution D over {0, 1}n, there is a nondeterministic mapping circuit C ′ =
C ′D that (1− δ)-defines f with respect to D, and for which size(C ′) ≤ size(C)a for some a > 0.

We defer the proof of Claim 4.2. Our Theorem follows from this Claim by a standard type
of minimax argument (following [Yao77]), which we give next. Consider the following two-player,
simultaneous-move, zero-sum game G:

• Player 1: Chooses an input u ∈ {0, 1}n;

• Player 2: Chooses a nondeterministic mapping circuit C ′ with n input bits and d output
bits, for which size(C ′) ≤ size(C)a;

• Payoff to Player 2: A reward of 1 if FC′(u) = {f(u)}, or 0 otherwise.

By our Claim, for every mixed strategy u ∼ D Player 1 may use, there is a pure strategy C ′D
for Player 2 that gives expected payoff greater than .51 for Player 2. By the minimax theorem,
there exists a single mixed strategy C for Player 2 that achieves expected payoff at least .51 against
every pure strategy u for Player 1. This is a distribution over circuits of size at most size(C)a.
Fix any u ∈ {0, 1}n. By Lemma 2.1, if we take H = O(n) large enough, and sample C1, . . . , CH
independently from C, then with probability greater than 1− 2−n, we have FCi(u) = {f(u)} for at
least .505 · H indices i ∈ [H]. By a union bound, there exists a possible outcome C∗1 , . . . , C

∗
H for

which this occurs for every u ∈ {0, 1}n.10

Let w1, . . . , wH denote the nondeterministic gate-sets for C∗1 , . . . , C
∗
H respectively (their lengths

may differ). We define C∗, with input u ∈ {0, 1}n and nondeterministic gates w = (w1, . . . , wH), as
follows. C∗ first evaluates C∗i (u,wi) for each i ∈ [H]. If there is some z ∈ {0, 1}d such that at least
.505 ·H of the circuits C∗i accept with output value z, then C∗ accepts and outputs z; otherwise,
C∗ rejects. It is immediate from our construction that FC∗(u) = {f(u)} for each u ∈ {0, 1}n, and
clearly we can achieve size(C∗) ≤ O (H · size(C)a) ≤ poly(size(C)).11

10We remark that this step is an instance of the “strategy sparsification” technique of [LY94, Alt94].
11Recall here that size(C) ≥ max{nt, dt}, since we count input and output gates towards the circuit size.
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Proof of Claim 4.2. Fix any distribution D over {0, 1}n. Our construction of the circuit C ′ = C ′D
will require some preliminary work. First, refer to the experiment Expt∗(D) of Lemma 3.6, defined
with respect to D, C, n, d, t, f , and with M := dt/ ln(1/q)e. With the random variables αj , α̂j , βj , β̂j
as defined in that experiment, let us fix outcomes to the random variables

s1, . . . , st, S1, . . . , St, j, y1, . . . ,yt

that maximize the probability that Eq. (6) holds, where the probability is now taken over u ∼ D.
Let Λ denote the collection of random variables whose values we are fixing, and let [Λ = λ] denote
the particular setting we are making. Let j∗ ∈ [t] denote the fixed outcome to j. (In our circuit
construction, we will effectively ignore the values yj for j > j∗.)

When in Expt∗(D) we condition on [Λ = λ], Eq. (6) holds with probability at least 1 −
216 ln(1/q)

t − 1
M ≥

(216+1) ln(1/q)
t , which is > 1 − δ by our setting. Also, under our conditioning, u

remains undetermined and is distributed according to D.
Note that our settings determine outcomes to α0, . . . , αt, β0, . . . , βt−1. The value αj∗−1 > 0

in particular will be useful to us in defining our circuit. Abusing notation somewhat, we now let
s1, . . . , st, S1, . . . , St, α0, . . . , αt, β0, . . . , βt−1 denote the fixed outcomes to these variables. For each
j ∈ [t], let

Sj = { yj,` }`∈[sj ]

be an indexing of Sj (with some elements possibly appearing multiple times, according to their
multiplicity in Sj). We define a mapping `∗ : [t] → N+ by the relation that, for our outcomes to
y1, . . . ,yt, we have

yj = yj,`
∗(j) .

As another important piece of non-uniform data in our construction, we will need to know the
values taken by f on y1,`∗(1), . . . , yj

∗−1,`∗(j∗−1). For j ∈ [j∗ − 1], we let

ẑj := f(yj,`
∗(j)) .

Next we make some further definitions and observations. Suppose the probabilistic circuit C
uses R bits of randomness (we may assume R > 0, or else we would have q = 1 and the Claim
would be a triviality). Recall that Cdet(x1, . . . , xt; r) : {0, 1}n×t+R → {0, 1} denotes C considered
as a deterministic circuit with random string r as part of its input. For any string u ∈ {0, 1}n, we
define a viable certificate for u as a tuple

w = (mj∗+1,mj∗+2, . . . ,mt, r) ∈ [sj∗+1]× . . .× [st]× {0, 1}R

for which the first (j∗ − 1) length-d output blocks of the computation

Cdet
(
y1,`∗(1), . . . , yj

∗−1,`∗(j∗−1), u, yj
∗+1,mj∗+1 , . . . , yt,mt ; r

)
(7)

equal (ẑ1, . . . , ẑj
∗−1). For such a w and z ∈ {0, 1}d, we say that w is a viable z-certificate for u if

the (j∗)th output block of the computation in Eq. (7) equals z, i.e., if in this computation C makes
the “guess” that f(u) equals z.

We fix some natural encoding of [sj∗+1] × . . . × [st] × {0, 1}R in which each element w has a
unique representation as a binary string in {0, 1}N ; here, we may take N ≤ R + O(t log2M) ≤
poly(size(C)). Let Vu ⊆ {0, 1}N denote the set of viable certificates for u, and for z ∈ {0, 1}d, let
V z
u ⊆ Vu denote the viable z-certificates for u. The sets V z

u form a partition of Vu.
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Claim 4.3. Let us condition on [Λ = λ] as above in Expt∗(D). Then,

1. For the random variable u over {0, 1}n, the equality

|Vu| = 2R

 t∏
j=j∗+1

sj

 · β̂j∗−1 (8)

holds with probability 1.

2. Also, we have the equality

∣∣∣V f(u)
u

∣∣∣ = 2R

 t∏
j=j∗+1

sj

 · α̂j∗ , (9)

and therefore ∣∣∣V f(u)
u

∣∣∣
|Vu|

=
α̂j∗

β̂j∗−1

. (10)

Proof. (1) Condition further on any possible outcome [u = u] in Expt∗(D). Together with our
prior conditioning [Λ = λ], this determines the values of Ŝ1, . . . , Ŝt, α̂1, . . . , α̂t, β̂1, . . . , β̂t. Under
this conditioning, we see from the definition that

β̂j∗−1 = Pr

[
C(ŷ1, . . . , ŷt) is (j∗ − 1)-valid

∣∣∣∣ Ŝ1, Ŝ2, . . . , Ŝt, ŷ
1, . . . , ŷj

∗
]

(11)

= Pr
[
C(y1,`∗(1), . . . , yj

∗−1,`∗(j∗−1), u, vj
∗+1, . . . ,vt) is (j∗ − 1)-valid

]
, (12)

where we sample (vj
∗+1, . . . ,vt) ∈r Sj∗+1 × . . . × St (and where validity is with respect to f).

Here, Sj∗+1, . . . , St are our fixed values under [Λ = λ], and the probability in Eq. (12) is taken over
vj
∗+1, . . . ,vt and over the random bits r used by C.

Let us calculate the probability in Eq. (12). The selection of (vj
∗+1, . . . ,vt) may be equivalently

performed by choosing (mj∗+1, . . . ,mt) ∈r [sj∗+1] × . . . × [st], and setting vj := yj,mj for j ∈
{j∗ + 1, . . . , t}. There are

(∏t
j=j∗+1 sj

)
· 2R possible outcomes to (mj∗+1, . . . ,mt, r), each one

equally likely. The outcomes that cause the computation indicated in Eq. (12) to be (j∗ − 1)-valid
are, under our definition, precisely those for which

(mj∗+1, . . . ,mt, r) ∈ Vu .

Thus, under our conditioning [u = u] we have

β̂j∗−1 =
|Vu|

2R
(∏t

j=j∗+1 sj

) , i.e., |Vu| = 2R

 t∏
j=j∗+1

sj

 β̂j∗−1 .

As u was an arbitrary outcome to u, we have proved part 1 of the Claim.
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(2) Condition again on any possible outcome [u = u] in Expt∗(D). Then we have

α̂j∗ = Pr

[
C(ŷ1, . . . , ŷt) is j∗-valid

∣∣∣∣ Ŝ1, Ŝ2, . . . , Ŝt, ŷ
1, . . . , ŷj

∗
]

(13)

= Pr
[
C(y1,`∗(1), . . . , yj

∗−1,`∗(j∗−1), u, vj
∗+1, . . . ,vt) is (j∗ − 1)-valid

]
, (14)

where again (vj
∗+1, . . . ,vt) ∈r Sj∗+1 × . . .× St. Let these vj be generated by (mj∗+1, . . . ,mt) just

as in part 1. The outcomes that cause the computation in Eq. (14) to be j∗-valid are exactly those
for which the following two conditions hold:

1. (mj∗+1, . . . ,mt, r) ∈ Vu;

2. The (j∗)th output block of Cdet(y1,`∗(1), . . . , yj
∗−1,`∗(j∗−1), u, vj

∗+1, . . . ,vt; r) equals f(u).

These outcomes are exactly those for which (mj∗+1, . . . ,mt, r) ∈ V
f(u)
u . Then by a calculation

following that in part 1, we can verify that Eq. (9) holds under [u = u]. As u was arbitrary, Eq. (9)
holds identically. Combining this with part 1 gives Eq. (10).

We have chosen the settings [Λ = λ] so that Eq. (6) holds with high probability over u ∼ D.

Using Claim 4.3, this implies that
∣∣∣V f(u)

u

∣∣∣ ≈ |Vu| with high probability, i.e., almost all viable

certificates for u correctly guess f(u). Furthermore, by both parts of Claim 4.3 and the first

condition of Eq. (6), both of
∣∣∣V f(u)

u

∣∣∣ , |Vu| are (with high probability) approximately equal to ρ :=

2R
(∏t

j=j∗+1 sj

)
αj∗−1; this latter quantity is determined by the setting [Λ = λ], and does not

depend on u.
This motivates our strategy for building a nondeterministic mapping circuit to compute f on an

input u sampled from D. First, we choose a random hash function h from a strongly universal hash
family with domain U := {0, 1}N (identified with FN2 ), and with a range space of size determined
by ρ. We consider an element of U “dead” unless it maps to the all-0 vector under h; our aim
is to “kill off” all of the viable certificates making incorrect guesses for f(u), while leaving alive
some viable certificate that makes a correct guess. Corollary 2.7, combined with our control on the

sizes of |Vu|,
∣∣∣V f(u)

u

∣∣∣, makes it possible to ensure this outcome with reasonable success probability.

Nondeterminism will then allow us to guess and verify a live, viable certificate.
To make this strategy succeed with the required probability, we will perform repeated trials,

selecting multiple hash functions and taking a majority vote over the trials. In the end we will
remove the randomness in these trials and apply Lemma 2.8 to obtain our final nondeterministic
circuit.

Let
K := dlog2 ρ− 4e ,

and let
HN,K =

{
hA,v : FN2 → FK2

}
A∈FK×N2 ,v∈FK2

be the strongly universal hash family given by Proposition 2.5. Note that K = O(R + Mt) =
O(R+ t2) ≤ poly(size(C)). Under our setting [Λ = λ], say that hA,v ∈ HN,K is good for u ∈ {0, 1}n
if

0K ∈ hA,v

(
V f(u)
u

)
\

 ⋃
z 6=f(u)

hA,v (V z
u )

 .
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Say that a string u ∈ {0, 1}n, contained in the support of D, is favorable, and write u ∈ Fav, if
Eq. (6) holds under [Λ = λ,u = u]. By our choice of λ we have Pru∼D[u ∈ Fav] ≥ 1− δ.

Claim 4.4. Suppose u is favorable. If (A, v) ∈r FK×N2 × FK2 , then

Pr[hA,v is good for u] > .75 .

Proof. Define the set

V wrong
u :=

⋃
z 6=f(u)

V z
u .

Under the conditioning [Λ = λ,u = u] in Expt∗(D), which defines outcomes to β̂j∗−1, α̂j∗ , part 2
of Claim 4.3 tells us that ∣∣∣V f(u)

u

∣∣∣
|Vu|

=
α̂j∗

β̂j∗−1

.

As u is favorable, this implies∣∣∣V f(u)
u

∣∣∣
|Vu|

∈ [.99, 1] , and so
|V wrong
u |
|Vu|

≤ .01 . (15)

Next, part 1 of Claim 4.3 combined with Eq. (6) tells us that

|Vu|
ρ

=
|Vu|

2R
(∏t

j=j∗+1 sj

)
αj∗−1

=
β̂j∗−1

αj∗−1
∈ [.98, 1.02] . (16)

Define real numbers θ, θ′ by the relations

|Vu| = θ · 2K , |V wrong
u | = θ′ · 2K .

By Eqs. (15)-(16) and our setting K = dlog2 ρ− 2e, we have the bounds

θ ≥ 8 · .98 > 7 , θ ≤ 16 · 1.02 < 17 , θ′ ≤ .01θ .

We apply Corollary 2.7, with U := FN2 , U(i) := Vu, and U(ii) := V wrong
u (there is no requirement that

U(i), U(ii) be disjoint) to find that

Pr
A,v

[
0K ∈ hA,v (Vu) \ hA,v (V wrong

u )
]
≥ 1− θ−1 − .1θ > .75 ,

where we used the fact that 1 − x−1 − .01x > .75 for x ∈ [7, 17]. Thus hA,v is good for u with
probability greater than .75. This proves the Claim.

Let T := 40n. We consider T -tuples

h =
(
hA1,v1 , . . . , hAT ,vT

)
∈
(
HN,K

)×T
.

Suppose we select the functions (Ai, vi) independently as (Ai, vi) ∈r FK×N2 × FK2 . For any u ∈
{0, 1}n, let

X+(u) :=
∑
i∈[T ]

1
[
hAi,vi is good for u

]
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Fix attention to any favorable u. By using Claim 4.4 and applying Lemma 2.1 to X+(u), we find
that with probability at least 1− exp(−2(.15)2 · T ) > 1− 2−2n,

X+(u) ≥ .6T . (17)

Taking a union bound, we conclude that with probability at least 1− 2n · 2−2n > 0, Eq. (17) holds
for every favorable u ∈ {0, 1}n. Thus there exists a choice

h = (h∗1, . . . , h
∗
T ) =

(
hA1,v1 , . . . , hAT ,vT

)
such that Eq. (17) holds for every u ∈ Fav.

We are now ready to construct our circuit C ′ promised in the statement of Claim 4.2, by
appealing to Lemma 2.8. First, each hash function h∗i is determined by the values (N,K) and
the pair (Ai, vi), which can be specified by O(KN) bits. Using this description, we can directly
compute h∗i (w) for a given w ∈ {0, 1}N using O(KN) gates, as needed.

Let us next consider the problem of testing membership in the sets Vu, V
z
u . Our encoding of

elements of [sj∗+1]×. . .×[st]×{0, 1}R as strings in {0, 1}N can be explicitly defined given the values
sj∗+1, . . . , st, and these are specifiable with O(t log2M) = O(t log2 t) bits. The multisets S1, . . . , St
we used, and the distinguished elements y1,`∗(1), . . . , yt,`

∗(t), are specifiable with O(tMn) = O(t2n)
bits; given these sets, we can efficiently determine whether w is a well-formed representative of an
element of [sj∗+1]× . . .× [st]×{0, 1}R and, if so, map it to the input to Cdet it represents under the
correspondence presented in Eq. (7). By performing this mapping, evaluating Cdet on the resulting
input, and comparing its output to the hard-coded values ẑ1, . . . , ẑj

∗−1, we can determine which
set V z

u (if any) contains a given w ∈ {0, 1}N . This can be performed by a circuit CVtest(w, u) with
at most size(C) + poly(n+ d+ t) ≤ poly(size(C)) gates.

Thus, we may apply Lemma 2.8 to obtain a nondeterministic mapping circuit C† on n input
gates, of size size(C†) ≤ poly(size(C)), such that FC†(u) = {f(u)} for every u ∈ Fav. Recall that
Pru∼D[u ∈ Fav] ≥ 1− δ. Thus C† (1− δ)-defines f with respect to D. So we may choose C† as our
desired circuit C ′, finding that size(C†) ≤ size(C)a for an appropriately large a > 0. This proves
Claim 4.2, completing the proof of Theorem 4.1.

5 The success probability of SAT solvers

For k ∈ N+, a k-CNF is a Boolean formula ψ of the form ψ =
∧
iDi, where each Di is a disjunction

of exactly k terms; here, a term is a literal or negated literal.
In this section we prove:

Theorem 5.1 (Theorem 1.5, restated). Let γ ∈ (0, 1). Suppose there is a PPT algorithm Psolver

that, when given as input a description of a satisfiable 3-CNF formula Φ, of description length
|〈Φ〉| = N , outputs a satisfying assignment to Φ with probability at least q(N) := 2−N

γ
.

Then, NP ⊆ coNP/poly.

We will need the following straightforward lemma.

Lemma 5.2. There is a deterministic polynomial-time algorithm M that takes as inputs descrip-
tions of 3-CNF formulas ψ1, ψ2, . . . , ψt and a value s ≥ 0, and outputs a 3-CNF formula Ψ(s) that
is satisfiable if and only if at least s of the ψj’s are satisfiable. Moreover, Ψ(s) contains designated
variables y = (y1, . . . , yt) such that for each j ∈ [t], if Ψ(s) has a satisfying assignment with yj set

to 1, then ψj is satisfiable. If ψj has mj clauses, then Ψ(s) has O
(
t+

∑
j∈[t]mj

)
clauses.
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Proof. Consider Boolean strings y of length t. It is a standard fact that for any s ≥ 0 we can
explicitly (in polynomial time) construct a fanin-two Boolean circuit G(s)(y) over {∧,∨,¬} with
O(t) gates, that accepts exactly if the Hamming weight ||y||1 is at least s.

Next we rename the variables of each ψj if necessary to ensure that for j 6= j′, ψj and ψj
′
contain

disjoint sets of variables. Let xj denote the input variables to ψj . Then for each j we construct a
circuit Hj(xj , yj) that accepts exactly if [yj = 0 ∨ ψj(xj) = 1]. This Hj can be implemented with
O(mj) gates.

Define a circuit F (s)(x1, . . . , xt, y) which outputs G(s)(y) ∧
(∧

j∈[t]H
j(xj , yj)

)
. Using Cook’s

reduction again, we derive from F (s) a 3-CNF formula Ψ(s)(y1, . . . , yt, z1, . . . , zT ), such that Φ(s)(y, ·)
is satisfiable exactly if there are settings to x1, . . . , xt such that F (s)(x1, . . . , xt, y) = 1. This is the
case exactly if [||y||1 ≥ s] ∧ [∀j with yj = 1, ψj is satisfiable]. We have established the correctness
of our reduction. The number of clauses in Ψ(s) is bounded by a constant factor times the number

of gates in F (s), which is O
(
t+
∑

j∈[t]mj

)
, so Ψ(s) obeys the required size bound; and Ψ(s) can

be constructed in polynomial time as needed.

The next lemma connects the task of satisfying 3CNFs to direct-product computations for
3SAT.

Lemma 5.3. Let Psolver be a PPT algorithm that takes as input a description of a 3-CNF formula
Φ. Assume that there is a nonincreasing function

q : N→ (0, 1] ,

such that, whenever Φ is a satisfiable 3-CNF of description length N , Psolver(〈Ψ〉) outputs a satis-
fying assignment to Φ with probability at least q(N).

Then there is a PPT algorithm Pdecider that takes as input an arbitrary-size list 〈〈ψ1〉, . . . , 〈ψt〉〉
of descriptions of 3-CNFs, and outputs a length-t Boolean string v = (v1, . . . , vt), giving guesses
for the satisfiability status of each ψi, i.e., for the values

(
χ3SAT(〈ψ1〉), . . . , χ3SAT(〈ψt〉)

)
.

Pdecider has the following property: if each ψj has description length |〈ψj〉| = n, then for some
N = O(nt · log2(nt)), we have

Pr
[
(v1, . . . , vt) =

(
χSAT(〈ψ1〉), . . . , χSAT(〈ψt〉)

)]
≥ q(N)

t+ 1
.

Proof. Pdecider first guesses a value s ∈r {0, 1, . . . , t}. It then constructs the formula Ψ(s) defined
by (ψ1, . . . , ψt, s) as in Lemma 5.2, and applies Psolver to 〈Ψ(s)〉. If Psolver returns a satisfying
assignment to Ψ(s), with setting (y1, . . . , yt) to the y-variables, then Pdecider outputs (v1, . . . , vt) :=
(y1, . . . , yt). Otherwise Pdecider sets v1, . . . , vt arbitrarily.

Pdecider is clearly polynomial-time. We analyze its success probability when given as input
descriptions of 3-CNFs ψ1, . . . , ψt, each of description length n. Let S ⊆ [t] denote the set of
indices j for which ψj is satisfiable. With probability at least 1

t+1 , Pdecider sets s := |S|. Let us

condition on this event. Now Ψ(s) is satisfiable, and (by our guarantee on the y-variables from
Lemma 5.2) is satisfiable only by assignments for which ||y||1 ≥ s while yj = 0 for all j /∈ S. For
such assignments, we have (y1, . . . , yt) =

(
χ3SAT(〈ψ1〉), . . . , χ3SAT(〈ψt〉)

)
.

Thus, Pdecider succeeds provided that Psolver finds a satisfying assignment to Ψ(s); by the success
property of Psolver occurs with probability at least q(N), where we define N as an upper bound
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on the description length |〈Ψ(s)〉|. (Here we are using that q(·) is nonincreasing.) We may take
N = O(nt · log2(nt)), since Ψ(s) has O(nt) clauses. Overall, our success probability is at least
q(N)/(t+ 1). This proves Lemma 5.3.

Proof of Theorem 5.1. We apply Lemma 5.3 to Psolver, q(·) to obtain a second PPT algorithm
Pdecider as described in that Lemma. Fixing any values of n, t, we can construct a probabilis-
tic Boolean circuit Cn,t : {0, 1}n×t → {0, 1}t such that on input (〈ψ1〉, . . . , 〈ψt〉) ∈ {0, 1}n×t, the
circuit Cn,t simulates an execution of Pdecider on input 〈〈ψ1〉, . . . , 〈ψt〉〉. Here, we may ensure
size(Cn,t) ≤ poly(n + t) by using any standard translation of algorithms to circuits. From the
property of Pdecider guaranteed by Lemma 5.3, we find that Cn,t is a worst-case q′-direct-product
solver for (χ3SAT,n)⊗t, where

q′ =
q(κnt · log2(nt))

t+ 1
= 2−(κnt log2(nt)γ)γ−log2(t+1) , (18)

for some absolute constant κ > 0.
Let ρ := 2γ/(1 − γ); we now fix t := dnρe. Then (nt · log2(nt))γ = O

(
n(1+ρ)γ · log2(nt)γ

)
=

O
(
nγ(1+γ)/(1−γ) · log2(nt)γ

)
= o(nρ). Also, log2(t + 1) = O(log2 n) = o(nρ). Thus, for sufficiently

large n we have

(κnt · log2(nt))γ + log2(t+ 1) <
t

3 · 105
,

so that, using Eq. (18), we have

q′ ≥ 2−t/(3·105) ≥ exp

(
−t

3 · 105

)
.

We can therefore apply Theorem 4.1 to Cn,t, with f := χ3SAT,n, to obtain a nondeterministic
mapping circuit C∗n on n input bits, such that FC∗n(〈ψ〉) = {χ3SAT(〈ψ〉)} for all formulas ψ of
description length n, and for which size(C∗) ≤ poly(size(Cn,t)) ≤ poly(n + t) ≤ polyγ(n). It
follows from Proposition 2.3 that 3SAT ∈ coNP/poly. As 3SAT is NP-complete, this proves the
Theorem.

6 The DPT for sampleable distributions

In this section we prove:

Theorem 6.1. Let n, d, t ∈ N+ with t > 1. Let f : {0, 1}n → {0, 1}d, and let q ∈ (0, 1). Let
D be a distribution over {0, 1}n sampleable by a probabilistic circuit CD -samp. Suppose there is a
probabilistic circuit C : {0, 1}n×t → {0, 1}t, such that C is a q-direct-product solver for f⊗t with
respect to D⊗t.

Let
ε ∈ [1/t, 1)

be given. Assume that ε > 212

t1/3
. Assume also that

q ≥ exp

(
−ε

3/2
√
t

1013

)
; (19)
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then, there is a nondeterministic mapping circuit C∗ε on n input bits that (1 − ε)-defines f with
respect to D, and such that

size(C∗ε ) ≤ poly (size(C) + size(CD -samp)) .

In the size bound on C∗ε above, there is no hidden dependence on ε. This result readily implies
Theorem 1.3:

Proof of Theorem 1.3. Let f = {fn} satisfy the hypothesis of Theorem 1.3. Suppose for contradic-
tion’s sake that there is an infinite set S ⊆ N, and a family of probabilistic circuits {Cn} of size at

most nk for some k > 0, such that for all n ∈ S and all x ∼ D⊗t(n)
n ,

q := Pr[Cn(x) = f⊗t(n)
n (x)] ≥ exp

(
−
ε

3/2
n

√
t(n)

108

)
.

We have also εn >
212

t(n)1/3
.

Let {Csamp,n} be the polynomial-sized sampling circuit family, assumed to exist, for which
Csamp,n samples Dn. Suppose size(Csamp,n) ≤ nk

′
. Then by applying Theorem 6.1 to each n ∈ S,

we find that there is a family {C∗n,εn}n∈S of nondeterministic mapping circuits on n input bits, each
with a single output bit; for each n ∈ S, C∗n,εn is a circuit that (1− εn)-defines fn with respect to
Dn, and satisfies

size(C∗n,εn) ≤ poly(size(Cn) + size(Csamp,n)) = poly(nk + nk
′
) = poly(n) .

This contradiction to our hypothesis proves the Theorem.

6.1 A “confidence-building” lemma

Our first step toward proving Theorem 6.1 will be to give a reduction which converts a direct-
product solver into an input-confident direct-product solver. This will occupy us in Section 6.1,
where our goal is to prove the following lemma.

Lemma 6.2. Fix n, d, t ∈ N+ and q, ξ ∈ (0, 1). Let D be a distribution over {0, 1}n, sampleable
by a probabilistic circuit CD -samp with s non-output gates. Let f : {0, 1}n → {0, 1}d, and suppose
the deterministic circuit C is a q-direct-product solver for f⊗t with respect to the input distribution
D⊗t over {0, 1}n×t.

Fix any t′ ∈ [t]. Let k := bt/t′c, and let

ζ := min

(
.6

1− ξ
√

log2(1/q)/k ,
1− e−1q1/k

1− ξ

)
.

Assume that ζ < 1. Then there is a probabilistic circuit

C̃ : {0, 1}n×t′ → {0, 1}t′ ,

satisfying
size(C̃) ≤ size(C) + st ,

such that C̃ is a (1 − ζ, ξq)-input-confident direct product solver for f⊗t
′

with respect to the input
distribution D⊗t′.
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Note that the efficiency of this reduction depends on the ease of sampling from D. If D is the
uniform distribution on {0, 1}n, then for CD -samp we may take a circuit all of whose n gates are
designated both as random gates and as output gates. Then s = 0, and for the circuit C̃ obtained
from Lemma 6.2 we have size(C̃) = size(C). The added efficiency of the reduction in such cases is
not important for our main results; we merely point it out.

For our work in proving Lemma 6.2 we will need some additional definitions and facts. Suppose
B is a finite set, k > 0 is an integer, and ν is a (possibly non-product) distribution over B×k. For
i ∈ [k], let ν(i) denote the distribution over B governing the ith coordinate of ν. Also, if A ⊆ B×k

is assigned nonzero probability by ν, we let νA denote the distribution of a random variable u ∼ ν
after conditioning on [u ∈ A]. If ν(A) = 0 then νA is left undefined.

We will use the following well-known, non-symmetric measure of difference between random
variables (see [CT06] for more information).

Definition 6.3 (KL divergence). The (binary) Kullback-Leibler divergence, or KL divergence
between two distributions R,R′, denoted DKL(R||R′), is defined as follows. If supp(R) ⊆ supp(R′),
set

DKL(R||R′) :=
∑

x∈supp(R)

R(x) · log2

(
R(x)

R′(x)

)
;

otherwise set DKL(R||R′) := +∞.

Note that if ||R−R′||stat = 1 then DKL(R||R′) = +∞. We define the KL divergence DKL(Z||Z ′)
between two random variables as the divergence between the corresponding distributions.

Fact 6.4. [Raz98, Special case of Lemma 3.3] Suppose µ is a distribution over a finite set B. Let
k > 0, and let ν be any distribution over B×k. Then,

DKL

(
ν||µ⊗k

)
≥
∑
i∈[k]

DKL

(
ν(i)||µ

)
.

Fact 6.5. [Raz98, Lemma 3.5] Let B be a finite set, k > 0, and suppose π is any distribution over
B×k. Suppose that V ⊆ B×k satisfies π(B) > 0. Then,

DKL (πA||π) = − log2(π(A)) .

The next corollary follows a similar use of Lemmas 6.4 and 6.5 in [Raz98].

Corollary 6.6. Let µ be a distribution over the finite set B, and k > 0. Suppose that A ⊆ B×k

satisfies µ⊗k(A) ≥ q > 0. Let us use the notation ν := (µ⊗k)A. If we let

γi := DKL

(
ν(i)||µ

)
,

then
1

k

∑
i∈[k]

γi ≤
log2(1/q)

k
.

Proof. First, Lemma 6.5, applied to π := µ⊗k, tells us that

DKL

(
ν||µ⊗k

)
= DKL (πA||π) = − log2(µ⊗k(A)) ≤ log2(1/q) .

Next, Lemma 6.5 tells us that
∑

i∈[k] γi ≤ DKL

(
ν||µ⊗k

)
. Combining these facts gives the result.
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We will also use the following important relation between KL divergence and statistical dis-
tance [CT06] (see Lemma 11.6.1, p. 370).

Lemma 6.7 (Pinsker’s inequality, stated for binary KL divergence). For any random variables
Z,Z ′,

D(Z||Z ′) ≥ 2

ln 2
· ||Z − Z ′||2stat .

When ||Z−Z ′||stat ≈ 1, the following bound, due to Vajda (see [FHT03, RW09]), gives a better
bound on the divergence than Pinsker’s inequality.

Lemma 6.8 (Vajda’s inequality, stated for binary KL divergence). For any random variables Z,Z ′,
let ∆ := ||Z − Z ′||stat. If ∆ < 1 we have

D(Z||Z ′) ≥ 1

ln 2

(
ln

(
1 + ∆

1−∆

)
− 2∆

1 + ∆

)
≥ 1

ln 2

(
ln

(
1

1−∆

)
− 1

)
,

which implies
∆ ≤ 1− e−12−D(Z||Z′) .

Lemma 6.9. Let B be a finite set, and µ a distribution over B. Let k ≥ 2 be an integer and let
A ⊆ B×k. Suppose that A is “large” according to the product measure µ⊗k; that is, µ⊗k(A) ≥ q for
some q ∈ (0, 1).

Consider the following experiment Expt†(µ):

1. Sample b = (b1, . . . ,bk) ∼ µ⊗k;

2. For i ∈ [k], define τi, a random variable in [0, 1] determined by bi, by

τi := Pr

[
(b1, . . . ,bk) ∈ A

∣∣∣∣bi] .

Fix ξ ∈ (0, 1), and for each i ∈ [k], let ζi := Pr[τi < ξq]. Then,

1

k

∑
i∈[k]

ζi ≤ min

(
.6

1− ξ

√
log2(1/q)

k
,

1

1− ξ

(
1− e−1q1/k

))
.

In particular, there exists an i ∈ [k] with ζi ≤ min

(
.6

1−ξ

√
log2(1/q)

k , 1
1−ξ

(
1− e−1q1/k

))
.

Proof. We will prove that for any i ∈ [k],

ζi ≤ min

(
.6

1− ξ

√
DKL

(
ν(i)||µ

)
,

1− e−12−DKL(ν(i)||µ)

1− ξ

)
.

It will follow that

1

k

∑
i∈[k]

ζi ≤
.6

1− ξ

1

k

∑
i∈[k]

√
DKL

(
ν(i)||µ

) ≤ .6

1− ξ

√√√√1

k

∑
i∈[k]

DKL

(
ν(i)||µ

)
≤ .6

1− ξ

√
log2(1/q)

k
,

35



where in the last two steps we used Jensen’s inequality and Corollary 6.6. Similarly, it will follow
that

1

k

∑
i∈[k]

ζi ≤
1

1− ξ

1− e−1 · 1

k

∑
i∈[k]

2−DKL(ν(i)||µ)


≤ 1

1− ξ

(
1− e−12−

1
k

∑
i∈[k]DKL(ν(i)||µ)

)
≤ 1

1− ξ

(
1− e−1q1/k

)
.

So fix attention to some i ∈ [k]. For notational simplicity, let us assume i = 1; the other cases
are handled identically. Define

B− :=

{
b ∈ B : Pr

(b2,...,bk)∼µ⊗(k−1)

[
(b,b2, . . . ,bk) ∈ A

]
< ξq

}
, A′ := A ∩ {(b1, . . . , bk) : b1 ∈ B−} ,

and observe that we have
ζ1 = µ(B−) .

Also, it follows from the definition of ν = (µ⊗k)A that we have

ν(1)(B−) =
µ⊗k(A′)

µ⊗k(A)
. (20)

The numerator on the right-hand side of Eq. (20) is at most µ(B−) · ((1− ξ)q) by definition of B−,
while the denominator is at least q, by our assumption on A. Thus,

ν(1)(B−) ≤ ξ · µ(B−) ,

which implies that
||ν(1) − µ||stat ≥ (1− ξ) · µ(B−) . (21)

On the other hand, Lemma 6.7 tells us that

||ν(1) − µ||stat ≤

√
ln 2 ·DKL

(
ν(1)||µ

)
2

≤ .6
√
DKL

(
ν(1)||µ

)
.

Combining this with Eq. (21) gives

ζ1 = µ(B−) ≤ .6

1− ξ

√
DKL

(
ν(1)||µ

)
,

as claimed.
Similarly, Lemma 6.8 tells us that

||ν(1) − µ||stat ≤ 1− e−12−DKL(ν(1)||µ) ,

which when combined with Eq. (21) gives

ζ1 ≤
1− e−12−DKL(ν(1)||µ)

1− ξ
.

This proves Lemma 6.9.

36



Proof of Lemma 6.2. First we make a definition. Let (x1, . . . , xt) denote the t blocks of input
variables to C, with each xj consisting of n bits. Given a pair U, V of disjoint subsets of [t], with U
nonempty, and given a mapping Φ : V → {0, 1}n describing an assignment to the blocks (xj)j∈V ,
define a probabilistic circuit

CU,V,Φ : {0, 1}n×|U | → {0, 1}|U | ,

obtained from C, as follows. First, each input block xj with j ∈ V is fixed to the assignment Φ(j).
Next, if the designated output gates of C are

{ g∗j,e }j∈[t],e∈[d] ,

where g∗j,e tries to compute the eth bit of f(xj), then the output gates of CU,V,Φ are {g∗j,e}j∈U,e∈[d].

Finally, for each of the blocks (xj)j∈[t]\(U∪V ), we construct a separate copy of CD -samp, and identify
xj with the output gates of the corresponding copy of CD -samp. The inputs to each such copy of
CD -samp are regarded as random gates in CU,V,Φ; the blocks (xj)j∈U are left as the designated input
gates of CU,V,Φ.

Our plan is to take C̃ := CU∗,V ∗,Φ∗ , for suitably chosen (U∗, V ∗,Φ∗). As a first step, note that
we may write t = kt′ + `, for some 0 ≤ ` < t′. Set V ∗ := {j : kt′ < j < t}, a possibly-empty
set. For any Φ : V → {0, 1}n, let qΦ ∈ [0, 1] be the maximal value such that C[t]\V ∗,V ∗,Φ is a

qΦ-direct-product solver for f⊗(t−`) with respect to the input distribution D⊗(t−`). By averaging
over settings to Φ induced by outcomes of D⊗` to (xj)j∈V ∗ and applying our assumption on C, we
conclude there exists a Φ such that qΦ ≥ q. Let us fix Φ∗ as any such mapping.

Next, for i ∈ [k], let Ui be the interval {(i− 1)k+ 1, . . . , (i− 1)k+ t′}, so that |Ui| = t′ and the
sets U1, . . . , Uk, V

∗ form a partition of [t]. We will choose U∗ as one of our sets Ui, and will apply
Lemma 6.9 to find a choice of i with good properties. Define the finite set B := {0, 1}n×t′ , and the
distribution µ := D⊗t′ over B. Define

A := {x = (x1, . . . , xkt
′
) ∈ {0, 1}n×kt′ : C[t]\V ∗,V ∗,Φ∗(x) = (f(x1), . . . , f(xkt

′
))} .

Note that, as ([t] \ V ∗) ∪ V ∗ = [t], the circuit C[t]\V ∗,V ∗,Φ∗ is deterministic (no copies of CD -samp

are introduced), so that A is well-defined. We may regard A as a subset of Bk; by our choice of Φ∗

we have
µ⊗k(A) ≥ q.

Lemma 6.9 tells us that there is an i∗ ∈ [k] for which, if we choose (b1, . . . ,bk) ∼ µ⊗k, then with
probability at least 1− ζ, we have

Pr

[
(b1, . . . ,bk) ∈ A

∣∣∣∣bi∗] ≥ ξq .

Thus, if we modify C[t]\V ∗,V ∗,Φ∗ by supplying all blocks (xj)j /∈Ui∗∪V ∗ with an independent random
sample from D (not considered as part of the input), and by using {g∗j,e}j∈Ui∗ ,e∈[d] as the designated

output gates, we obtain a (1 − ζ, ξq)-input-confident direct-product solver for f⊗t
′

with respect
to the input distribution D⊗t′ over the remaining input blocks (xj)j∈Ui∗ . Now observe that the
modification we have just described is precisely implemented by CUi∗ ,V ∗,Φ∗ . This circuit has at
most size(C) + st gates, since we have obtained it from C by fixing some input gate values, adding
fewer than t copies of CD -samp (with output gates of these copies identified with gates in C), and
changing the designated type of other gates. This proves Lemma 6.2.
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6.2 A DPT for input-confident direct-product solvers

In the previous section we showed how to endow direct-product solvers with the input-confidence
property; in this section we will show how to exploit this property. The DPT we show here for
input-confident direct-product solvers may also be of interest in its own right. We prove:

Theorem 6.10. Fix n, d, t′ ∈ N+ and ζ ∈ [0, 1), q′ ∈ (0, 1]. Let D be a distribution over {0, 1}n,
sampled by the circuit CD -samp. Let f : {0, 1}n → {0, 1}d. Suppose the probabilistic circuit C is a
(1 − ζ, q′)-input-confident direct-product solver for f⊗t

′
with respect to the input distribution D⊗t′

over {0, 1}n×t′.
Let δ := 216 ln(1/q′)

t′ + 218ζ. Then there is a nondeterministic mapping circuit C ′ : {0, 1}n →
{0, 1}d that (1− δ)-defines f with respect to input distribution D, and such that

size(C ′) ≤ poly(size(C) + size(CD -samp)) .

Proof. Let x = (x1, . . . ,xt
′
) ∼ D⊗t′ . Let α0, . . . , αt, β0, . . . , βt′−1 be as in Definition 3.2, defined

with respect to C, f , and x. Let j ∈r [t′] be sampled independently of x. Now let us fix a j∗ ∈ [t′]
and settings

[j = j∗, x1 = y1, . . . ,xj
∗−1 = yj

∗−1] (22)

that maximize the probability that Eq. (4) holds. Let Λ denote the collection of variables whose
values we are setting, and let [Λ = λ] denote the event described in Eq. (22).12 By Part 1 of
Lemma 3.5, Eq. (4) holds with probability at least 1 − δ after conditioning on [Λ = λ]. Our
setting [Λ = λ] determines the value of αj∗−1 > 0, but (in general) do not determine βj∗−1, αj∗ .
Also, under our conditioning, xj

∗
, . . . ,xt

′
remain undetermined and are distributed as independent

samples from D.
For j ∈ [j∗ − 1], let

ẑj := f(yj) .

Suppose that the circuit C has R random gates, and that the sampling circuit CD -samp uses Rsamp

random gates; we may assume R,Rsamp > 0. For any u ∈ {0, 1}n, we define a viable certificate for
u as a tuple

w =
(
rj
∗+1, . . . , rt

′
, r
)
∈ {0, 1}Rsamp×(t′−j∗)+R

for which the first (j∗ − 1) length-d output blocks of the computation

Cdet
(
y1, . . . , yj

∗−1, u, CD -samp(rj
∗+1), . . . , CD -samp(rt

′
); r

)
(23)

equal (ẑ1, . . . , ẑj
∗−1). Set

N := Rsamp · (t′ − j∗) +R .

We let Vu ⊆ {0, 1}N denote the viable certificates for u. For z ∈ {0, 1}d, we say that w ∈ Vu is a
viable z-certificate for u if the (j∗)th output block of the computation in Eq. (23) equals z. Let V z

u

denote the viable z-certificates for u.

Claim 6.11. Let us condition on [Λ = λ] as above. Then,

12Note, here and in what follows, that our notation indicates a similarity with our work in the proof of Claim 4.2,
but that significant differences are also present. For example, our setting [Λ = λ] here plays an analogous role to the
setting [Λ = λ] in that proof, but the random variables being fixed are different.
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1. Defining the random variable u := xj over {0, 1}n, the equality

|Vu| = 2N · βj∗−1 (24)

holds with probability 1.

2. Also, we have the equality ∣∣∣V f(u)
u

∣∣∣ = 2N · αj∗ , (25)

and therefore ∣∣∣V f(u)
u

∣∣∣
|Vu|

=
αj∗

βj∗−1
. (26)

Proof. (1) Condition further on any possible outcome [u = u]. Under this conditioning, we see
that

βj∗−1 = Pr

[
C(x1, . . . ,xt

′
) is (j∗ − 1)-valid

∣∣∣∣ x1, . . . ,xj
∗
]

(27)

= Pr
[
C(y1, . . . , yj

∗−1, u, vj
∗+1, . . . ,vt

′
) is (j∗ − 1)-valid

]
, (28)

where validity is defined with respect to f , and where we sample vj
∗+1, . . . ,vt

′
independently from

D. Equivalently, in Eq. (28) we may regard vj
∗+1, . . . ,vt

′
as being sampled by independent copies

of CD -samp. Now we may regard the probability in Eq. (28) as being taken over uniform random
seeds rj

∗+1, . . . , rt
′

to (t′ − j∗) copies of CD -samp, and over a uniform setting r ∈ {0, 1}R to the
random gates in C.

There are 2Rsamp×(t′−j∗)+R equally-likely outcomes to (rj
∗+1, . . . , rt

′
, r). The outcomes that

cause the computation indicated in Eq. (12) to be (j∗− 1)-valid are, under our definition, precisely
those for which (rj

∗+1, . . . , rt
′
, r) ∈ Vu. Thus, under our conditioning [u = u] we have

βj∗−1 =
|Vu|

2Rsamp×(t′−j∗)+R =
|Vu|
2N

.

This proves part 1 of the Claim.

(2) Condition again on any outcome [u = u]. Under this conditioning, we see that

αj∗ = Pr

[
C(x1, . . . ,xt

′
) is j∗-valid

∣∣∣∣ x1, . . . ,xj
∗
]

(29)

= Pr
[
C(y1, . . . , yj

∗−1, u, vj
∗+1, . . . ,vt

′
) is j∗-valid

]
, (30)

where we sample vj
∗+1, . . . ,vt

′
independently from D; these may again be regarded as sampled

by independent copies of CD -samp, with random gate-sets rj
∗+1, . . . , rt

′
. Again let r denote the

random gates of C. The settings to (rj
∗+1, . . . , rt

′
, r) that cause the computation in Eq. (12) to be

j∗-valid are precisely those for which (rj
∗+1, . . . , rt

′
, r) ∈ V f(u)

u . Thus, conditioned on [u = u] we
have αj∗ = |Vu|/2N . This proves part 2.

39



Next, let K := d(N − 4) + log2(αj∗−1)e, and let

HN,K =
{
hA,v : FN2 → FK2

}
A∈FK×N2 ,v∈FK2

be the hash family given by Proposition 2.5. Under the setting [Λ = λ], say that hA,v ∈ HN,K is
good for u ∈ {0, 1}n if

0K ∈ hA,v

(
V f(u)
u

)
\

 ⋃
z 6=f(u)

hA,v (V z
u )

 .

Say that a string u ∈ {0, 1}n, satisfying D(u) > 0, is favorable, and write u ∈ Fav, if Eq. (4)
holds under [Λ = λ,xj

∗
= u]. By our choice of λ, we have Pru∼D[u ∈ Fav] ≥ 1− δ.

Claim 6.12. Suppose u is favorable. If (A, v) ∈r FK×N2 × FK2 , then

Pr[hA,v is good for u] > .75 .

Proof. Define

V wrong
u :=

⋃
z 6=f(u)

V z
u .

Under the conditioning [Λ = λ,xj
∗

= u], which defines outcomes to βj∗−1, αj∗ , part 2 of Claim 4.3
tells us that ∣∣∣V f(u)

u

∣∣∣
|Vu|

=
αj∗

βj∗−1
.

As u is favorable, this gives∣∣∣V f(u)
u

∣∣∣
|Vu|

∈ [.99, 1] , and so
|V wrong
u |
|Vu|

≤ .01 .

Next we combine part 1 of Claim 6.11 with Eq. (4) to find that

|Vu|
2N · αj∗−1

=
βj∗−1

αj∗−1
∈ [.99, 1.012] ;

we also have 2K ∈ [2−4 · 2Nαj∗−1, 2
−3 · 2Nαj∗−1], so that

θ :=
|Vu|
2K

∈ [8 · .99, 16 · 1.012] ⊂ [7, 17] and θ′ :=
|V wrong
u |
2K

≤ .01θ .

We apply Corollary 2.7 with U := FN2 , U(i) := Vu, and U(ii) := V wrong
u ; by the same calculations

used to prove Claim 4.4, we find that

Pr
A,v

[
0K ∈ hA,v (Vu) \ hA,v (V wrong

u )
]
> .75 .

This proves Claim 6.12.
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Let T := 40n. Suppose we select T hash functions (hA1,v1 , . . . , hAT ,vT ) independently, with

hAi,vi ∈r HN,K . For any u ∈ {0, 1}n, let

X+(u) :=
∑
i∈[T ]

1
[
hAi,vi is good for u

]
.

Consider any favorable u. By using Claim 4.4 and applying Lemma 2.1 to X+(u), we find that
with probability at least 1− exp(−2(.15)2 · T ) > 1− 2−2n,

X+(u) ≥ .6T . (31)

Then with positive probability, Eq. (31) holds for every favorable u ∈ {0, 1}n. Thus there exists
some choice

h = (h∗1, . . . , h
∗
T ) =

(
hA1,v1 , . . . , hAT ,vT

)
such that Eq. (31) holds for every favorable u.

We can now apply Lemma 2.8, just as in the proof of Claim 4.2. We note that under our current
settings, N,K, T ≤ poly(size(C)+size(CD -samp)), and each hash function h∗i can be evaluated using
O(KN) gates. The one novel element is that to check whether a string w ∈ {0, 1}N lies in the
set Vu (as defined here), and if so to determine which V z

u contains it, now requires the evaluation
of CD -samp on (t − j∗) given random seeds, as in Eq. (23). The total number of gates needed for
CVtest is polynomial in size(C) + size(CD -samp). We obtain a circuit C† of size ≤ poly(size(C) +
size(CD -samp)), such that FC†(u) = {f(u)} for every u ∈ Fav. As Pru∼D[u ∈ Fav] ≥ 1 − δ, we
conclude that C† (1 − δ)-defines f with respect to D, and is a suitable choice for C ′. This proves
Theorem 6.10.

6.3 Proof of Theorem 6.1

Theorem 6.13 (Theorem 6.1, restated). Let n, d, t ∈ N+ with t > 1. Let f : {0, 1}n → {0, 1}d,
and let q ∈ (0, 1). Let D be a distribution over {0, 1}n sampleable by a probabilistic circuit CD -samp.
Suppose there is a probabilistic circuit C : {0, 1}n×t → {0, 1}t, such that C is a q-direct-product
solver for f⊗t with respect to D⊗t.

Let ε ∈ (0, 1) be given, satisfying ε > 212

t1/3
. Assume also that

q ≥ exp

(
−ε

3/2
√
t

1013

)
; (32)

then, there is a nondeterministic mapping circuit C∗ε on n input bits that (1 − ε)-defines f with
respect to D, and such that

size(C∗ε ) ≤ poly (size(C) + size(CD -samp)) .

Proof. To dispose of an easy case, suppose first that εt ≤ 1. Then, we have

q ≥ exp

(
−ε · (εt)

1/2

1013

)
≥ exp

(
− ε

1013

)
> 1− ε ,

where in the last step we used that e−x ≥ 1−x for x ≥ 0. In other words, our success guarantee for
C in computing f⊗t is already at least the desired success guarantee for computing a single instance
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of f . We non-uniformly fix inputs x2, . . . , xt to C that maximize the probability over x ∼ D that
C(x, x2, . . . , xt) = f⊗t(x, x2, . . . , xt). We obtain the desired circuit C∗ε as the circuit which outputs
just the first d output bits of this computation.

So from now on let us assume ε ∈ [1/t, 1). Let us set

t′ :=
⌈√

(εt)
⌉
, ξ := exp

(
−ε

3/2
√
t

218

)
.

ξ is at most 1/2 by our assumption ε > 212

t1/3
, i.e., ε3/2

√
t > 218. Also, from our assumption

ε ∈ [1/t, 1), we have
1 ≤ t′ ≤ min(t, 2

√
εt) .

Thus we may apply Lemma 6.2 with our choice of t′, ξ, to obtain a probabilistic circuit

C̃ : {0, 1}n×t′ → {0, 1}t′ ,

satisfying
size(C̃) ≤ size(C) + size(CD -samp) · t ,

such that C̃ is a (1− ζ, ξq)-input-confident direct product solver for f⊗t
′

with respect to the input
distribution D⊗t′ ; we have

ζ =
.6

1− ξ

√
log2(1/q)

bt/t′c

≤ 2

√
log2(1/q)t′

t

< 2−19ε ,

where we used the fact that ξ ≤ 1/2 as well as our assumption in Eq. (32). Next, we apply
Theorem 6.10 to C̃, with q′ := ξq; we obtain a nondeterministic mapping circuit C ′ : {0, 1}n →
{0, 1}d that (1− δ)-defines f with respect to input distribution D, where

δ =
216

t′
ln

(
1

ξq

)
+ 218ζ

≤ ε/2 + ε/2 = ε

(here, we again used Eq. (32). Also, as guaranteed by Theorem 6.10, we have

size(C ′) ≤ poly(size(C̃) + size(CD -samp)) ≤ poly(size(C) + size(CD -samp)) .

Thus we may take C ′ as our desired circuit C∗ε . This proves Theorem 6.1.

7 A derandomized direct product theorem

7.1 Expander walks and the theorem statement

Thus far, we have focused on the task of computing a function f evaluated on t independent
inputs x1, . . . , xt. In this section we consider the setting in which the strings xj are not fully
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independent, but instead represent the t steps of a random walk on an expander graph over vertex
set {0, 1}n. Such a collection of inputs can be sampled using n+O(t) random bits. We will show
that, if f is the characteristic function of a language L ∈ NP that is mildly hard on average against
nondeterministic mapping circuits (with respect to the uniform input distribution), then computing
f on these t pseudorandom inputs is extremely hard.

More formally, we will study the well-known expander-walk generator of [AKS87]. This is a
polynomial-time computable function which, for each n ≥ 1, t ≥ 2, maps a seed

w = (w1, s1, s2, . . . , st−1) ∈ {0, 1}n+4(t−1)

to a string
GENn,t(w) = (v1, . . . , vt) ∈ {0, 1}n×t ,

as we will describe next. The behavior of GENn,t is defined in terms of a graph Gn with vertex
set V (Gn) = {0, 1}n. The graph Gn is undirected (with self-loops and multiple edges allowed) and
k-regular for some k = O(1), with normalized second eigenvalue λn at most some fixed constant
λ < 1. The graph family used must be strongly explicit, in the sense that there is a polynomial-
time algorithm Madj(v, s) which, given v ∈ {0, 1}n and s ∈ {0, 1}dlog2 ke (considered to represent
an integer in {1, . . . , k}), outputs the sth neighbor of v in Gn according to some fixed ordering.
By using the classical construction due to Margulis [Mar73], along with explicit eigenvalue bounds
due to Gabber and Gallil [GG81], we may obtain such an explicit graph family with λ = .99 and
k = 16, so that log2 k = 4.13 We fix such a graph family in the definition of our generators GENn,t

for the remainder of the paper.
The values v1, . . . , vt always represent a walk of length t in Gn. They are defined inductively by

setting v1 := w1 and, for j > 1, setting

vj := Madj(v
j−1, sj−1) .

Throughout Section 7, we will freely use vj(w) to denote the jth vertex output by GENn,t(w), and
v(w) to denote (v1(w), . . . , vt(w)); the values n, t will be clear from the context.

Given a language L, an input length n, and a t ≥ 2, we consider the composed function
(χ⊗tL,n ◦GENn,t) : {0, 1}n+4(t−1) → {0, 1}t which acts as

(χ⊗tL,n ◦GENn,t)(w) = (χL(v1(w)), χL(v2(w)), . . . , χL(vt(w))) .

We study the difficulty of computing χ⊗tL,n on inputs drawn from the expander-walk generator,
where the circuit is given the seed w as input. Our goal in this section is to prove the following
theorem:

Theorem 7.1. Fix n ≥ 1, t ≥ 2. Let L be a language, and suppose Ln ⊆ {0, 1}n is recognized by an
ordinary nondeterministic circuit Crec (see Section 2.2). Suppose also that there is a probabilistic
circuit C : {0, 1}n×t → {0, 1}t that Q∗-computes (χ⊗tL,n ◦ GENn,t) with respect to the uniform

distribution on {0, 1}n+4(t−1).

13We don’t attempt to optimize the degree and expansion parameters. The Margulis construction is 8-regular and
has vertex set Zm × Zm for m > 1. If n is even, we take the Margulis graph over {0, 1}n and double each edge. If
n is odd, we double each vertex v in the Margulis graph over {0, 1}n−1, and connect each copy to both copies of its
original neighbors. See [HLW06] for general background on expander graphs, and [HLW06, Sec. 8] for details on the
Margulis graphs.
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Let ε > 0. If

Q∗ ≥ 1600

ε
· exp

(
−ε2t

2 · 109

)
,

then there is a nondeterministic mapping circuit C∗ε : {0, 1}n → {0, 1} that (1−ε)-defines χL,n with
respect to the uniform distribution on {0, 1}n, and that satisfies

size(C∗ε ) ≤ poly(size(C) + size(Crec)) .

(In the size bound above there is no hidden dependence on ε.)

In Section 7.2 we will prove some useful probabilistic lemmas about expander walks, and in
Section 7.3 we will apply them to prove Theorem 7.1.

7.2 Probabilistic analysis of expander walks

To analyze the behavior of our generator, we will use a powerful result known as the “strong
Chernoff bound for expander walks” [WX05, WX08, Hea08].

Theorem 7.2. [Hea08] Let G = (V,E) be a k-regular graph with normalized second eigenvalue
λ ∈ (0, 1), let t > 0, and let f1, . . . , ft : V → [0, 1] have expectations µ1, . . . , µt (over a uniform
choice of input v ∈ V ). Taking a random walk v1, . . . , vt on G, with uniformly chosen starting
vertex,14 we have for all θ > 0,

Pr

∑
j∈[t]

fj(v
j)−

∑
j∈[t]

µj ≥ θt

 ≤ e−
θ2(1−λ)t

4 .

We have the same probability bound for the event
[∑

j∈[t] fj(v
j)−

∑
j∈[t] µj ≤ −θt

]
.

Our analysis of expander walks on Gn will focus upon a “good” subset of interestA ⊆ {0, 1}n+4(t−1).
We will establish that if A is “large,” then for most indices j ∈ [t], drawing w uniformly at random
and conditioning on the value vj(w) is unlikely to significantly affect the probability that w ∈ A.
For brevity, we will use

w ∼ W

to denote the uniform distribution w ∈r {0, 1}n+4(t−1).
Define

Q := Pr
w∼W

[w ∈ A] = W(A) (33)

and, for each j ∈ [t] and v ∈ {0, 1}n, define the conditional probability

Q[v, j] := Pr
w∼W

[w ∈ A|vj(w) = v] . (34)

Define the “exceptional” sets

B+
j := {v ∈ {0, 1}n : Q[v, j] > 1.01Q} , B−j := {v ∈ {0, 1}n : Q[v, j] < .99Q} ,

14Each vj in turn is chosen as the neighbor of vj−1 along an edge uniformly selected from the edges of vj−1.
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and let

ζ+
j :=

|B+
j |

2n
, ζ−j :=

|B−j |
2n

.

Let

ζ+
avg :=

1

t

∑
j∈[t]

ζ+
j , ζ−avg :=

1

t

∑
j∈[t]

ζ−j .

Lemma 7.3. Assume that

Q ≥ 800

ε
· exp

(
− ε2t

2.56 · 108

)
,

for some ε > 0. Then, we have

ζ+
avg ≤ ε/4 and ζ−avg ≤ ε/4 .

Proof. LetWA denote a sample fromW conditioned on landing in A; this is the uniform distribution
over A. We let VjA denote the distribution on the jth-step vertex vj(w) when w ∼ WA.

Claim 7.4. For each j ∈ [t],

VjA(B+
j )− ζ+

j ≥ .01ζ+
j and ζ−j − V

j
A(B−j ) ≥ .01ζ−j .

Proof. We will assume j = 1, the other cases being handled identically. Define

A+ := {w ∈ A : v1(w) ∈ B+
1 } .

We have

V1
A(B+

1 ) =
|A+|
|A|

(35)

By the definition of B+
1 , we have

|A+|
2n+4(t−1)

≥ |B
+
1 |

2n
· (1.01Q) ,

while
|A+|

2n+4(t−1)
= Q .

Thus, Eq. (35) implies

V1
A(B+

1 ) ≥ 1.01 · |B
+
1 |

2n
. (36)

This gives the first part of the Claim. For the second part, define

A− := {w ∈ A : v1(w) ∈ B−1 } .

We have

V1
A(B−1 ) =

|A−|
|A|

(37)

From the definition of B−1 , we see that

|A−|
2n+4(t−1)

≤ |B
−
1 |

2n
· (.99Q) ,
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while again |A|
2n+4(t−1) = Q. Thus, Eq. (37) implies

V1
A(B−1 ) ≤ .99 · |B

−
1 |

2n
. (38)

This gives the second part, proving the Claim.

For each j ∈ [t], define functions f+
j , f

−
j : {0, 1}n → {0, 1} by

f+
j (v) := 1[v ∈ B+

j ] , f−j (v) := 1[v ∈ B−j ] .

We have
Ev∈r{0,1}n [f+

j (v)] = ζ+
j , Ev∈r{0,1}n [f−j (v)] = ζ−j . (39)

Given a string w ∈ {0, 1}n+4(t−1), define

F+(w) :=
∑
j∈[t]

f+
j (vj(w)) , F−(w) :=

∑
j∈[n]

f−j (vj(w)) .

By Theorem 7.2 and the definition of the generator GENn,t, for θ > 0 we have

Pr
w∼W

F+(w)−
∑
j∈[t]

ζ+
j ≥ θt

 ≤ e−
θ2(.01)t

4 , (40)

where we used our upper bound λ ≤ .99 on the normalized second eigenvalue of Gn. Similarly,

Pr
w∼W

F−(w)−
∑
j∈[t]

ζ−j ≤ −θt

 ≤ e−
θ2(.01)t

4 . (41)

On the other hand, Claim 7.4 tells us that

Ew∼WA
[f+
j (v)] ≥ 1.01ζ+

j , (42)

so that, summing,

Ew∼WA
[F+(w)] ≥ 1.01

∑
j∈[t]

ζ+
j . (43)

Similarly,

Ew∼WA
[F−(w)] ≤ .99

∑
j∈[t]

ζ−j . (44)

Now, a basic calculation shows that, for any random variable X taking values in the interval [0, t],
and any γ > 0, we have

Pr[X ≥ (1− γ)E[X]] ≥ γ · E[X]

t− (1− γ)E[X]
≥ γ · E[X]

t
(45)

and (by Markov’s inequality)

Pr[X ≤ (1 + γ)E[X]] ≥ 1− 1

1 + γ
. (46)
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From Eqs. (43) and (45) we compute that

Pr
w∼WA

F+(w) ≥ 1.005 ·
∑
j∈[t]

ζ+
j

 ≥ 5
1010E[F+(w)]

t

≥
5
(

1.01
∑

j∈[t] ζ
+
j

)
1010t

= .005ζ+
avg . (47)

Similarly, from Eqs. (44) and (46) we compute that

Pr
w∼WA

F−(w) ≤ .995 ·
∑
j∈[t]

ζ+
j

 ≥ 1− .99

.995
> .005 . (48)

Combining the definition Q := Prw∼W [w ∈ A] with Eq. (47), we find

Pr
w∼W

F+(w)−
∑
j∈[t]

ζ+
j ≥ .005

∑
j∈[t]

ζ+
j

 ≥ Q · .005ζ+
avg (49)

and, using Eq. (47) similarly we obtain

Pr
w∼W

F−(w)−
∑
j∈[t]

ζ−j ≤ −.005
∑
j∈[t]

ζ+
j

 ≥ Q · .005 . (50)

Combining Eq. (49) with Eq. (40) under the setting θ := .005
t

∑
j∈[t] ζ

+
j = .005ζ+

avg, we find that

.005Q · ζ+
avg ≤ exp

(
−
(
.005ζ+

avg

)2
t

400

)
,

or equivalently,

Q ≤
(

200

ζ+
avg

)
· exp

(
−

(ζ+
avg)2t

1.6 · 107

)
.

(We are assuming here that ζ+
avg > 0; if ζ+

avg = 0 then there is nothing to prove.) Note that
the right-hand side above is an decreasing function of ζ+

avg on (0, 1]. By our assumption on Q in
Lemma 7.3, we find that ζ+

avg ≤ ε/4. This proves the first assertion of Lemma 7.3.
Next, combining Eq. (49) with Eq. (40) under the setting θ := .005ζ−avg, we have

.005Q ≤ exp

(
−
(
.005ζ−avg

)2
t

400

)
,

and using our assumption on Q again, this implies ζ−avg ≤ ε/4, completing the proof of Lemma 7.3.
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The next Lemma requires some further setup. Let A ⊆ {0, 1}n+4(t−1) as in Lemma 7.3, with
Prw∈r{0,1}n+4(t−1) [w ∈ A] = Q. For each w ∈ A, suppose there is an associated index set

Badw ⊆ [t] .

For w /∈ A, define Badw := ∅. For v ∈ {0, 1}n, j ∈ [t], define the conditional probability

Q◦[v, j] := Pr
w∼W

[w ∈ A ∧ j /∈ Badw|vj(w) = v] . (51)

Note that Q◦[v, j] ≤ Q[v, j]. Define

B◦j := {v ∈ {0, 1}n : Q◦[v, j] < Q[v, j]− .01Q} ,

and set

ζ◦j := |B◦j |/2n , ζ◦avg :=
1

t

∑
j∈[t]

ζ◦j .

Lemma 7.5. Assume that Badw is “small” for almost all strings w ∈ A:

Pr
w∼WA

[
|Badw| >

εt

800

]
≤ ε

800
. (52)

Then,
ζ◦avg ≤ ε/4 .

Proof. For any v, j, we have

Q◦[v, j] ≥ Pr
w∼W

[w ∈ A|vj(w) = v]− Pr
w∼W

[j ∈ Badw|vj(w) = v]

= Q[v, j]− 2n · Pr
w∼W

[j ∈ Badw ∧ vj(w) = v] . (53)

Summing over all v, j and using Eq. (52), along with the fact that Badw = ∅ for w /∈ A, we find
that ∑

v∈{0,1}n,j∈[t]

(Q[v, j]−Q◦[v, j]) ≤ 2n
∑
j∈[t]

Pr
w∼W

[j ∈ Badw]

= 2n · Ew∼W [|Badw|]

≤ 2n ·Q · εt
400

. (54)

On the other hand, for each j, using the definition of B◦j we have∑
v∈{0,1}n

(Q[v, j]−Q◦[v, j]) ≥ |B◦j | · (.01Q) .

Summing this over all j, and combining with Eq. (54), we have

.01Q
∑
j∈[t]

|B◦j | ≤
2nQεt

400
,

or equivalently,

ζ◦avg =
1

t

∑
j∈[t]

ζ◦j ≤ ε/4.
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7.3 Applying the lemmas

Proof of Theorem 7.1. First, we may assume that C is deterministic (by fixing any internal ran-
domness to maximize the success probability). Let C1(w), . . . , Ct(w) denote the t bits output by
C on input v. Let Wsuc ⊆ {0, 1}n+4(t−1), the successful seeds, be the set of strings w for which

C(w) = (χ⊗tL,n ◦GENn,t)(w) .

Let ρ := |Ln|/2n. Let Wattr ⊆ {0, 1}n+4(t−1), the attractive seeds, be the set of w which satisfy the
following two conditions:

1. The number of indices j ∈ [t] for which Cj(w) = 1 is in the range[(
ρ− ε

1600

)
t,
(
ρ+

ε

1600

)
t
]

;

2. For every j such that Cj(w) = 1, we also have χL(vj(w)) = 1.

There is no inclusion relation between the sets Wsuc,Wattr. The idea, however, is that Wattr

will act as a reasonable surrogate for Wsuc; this surrogate set has the advantage of being efficiently
recognizable using nondeterminism.

For any v = (v1, . . . , vt) ∈ {0, 1}n×t, let

#L(v) := |{j ∈ [t] : vj ∈ L}| .

Next, define functions f1, . . . , ft : {0, 1}n → {0, 1} by letting fj(v) := χL(v) for all j. Recall that
W denotes the uniform distribution on {0, 1}n+4(t−1). Applying Theorem 7.2 to these functions
with θ := ε/1600, and using the definition of GENn,t, we have

Pr
w∼W

[
|#L(v(w))− ρt| > εt

1600

]
< 2 exp

(
− (.01)ε2t

4 · (1600)2

)
< 2 exp

(
− ε2t

2 · 109

)
. (55)

Define
Q := Pr

w∼W
[w ∈Wattr] .

Using Eq. (55) and our largeness assumption on Q∗, we have

Q ≥ Pr
w∼W

[w ∈Wsuc ∩Wattr] > Q∗ − 2 exp

(
− ε2t

2 · 109

)
> Q∗/2 .

(We note that Q may even be larger than Q∗.) Set

A := Wattr .

We have Prw∈r{0,1}N [w ∈ A] = Q > Q∗/2, and from this we verify that the hypothesis of Lemma 7.3
is satisfied. Thus, we have ζ+

avg, ζ
−
avg ≤ ε/4, where ζ+

avg, ζavg are as defined in Section 7.2.
Next, for each w ∈ A, define the set

Badw := {j ∈ [t] : Cj(w) = 0 6= χL(vj(w))} . (56)
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For w /∈ A, let Badw := ∅. Note that for w ∈ A,

|Badw| ≤ #L(v(w))−
(
ρ− ε

1600

)
t .

This is at most εt
800 provided #L(v(w)) ≤

(
ρ+ ε

1600

)
t, which, by another appeal to Theorem 7.2,

occurs with probability greater than 1− exp
(
− ε2t

2·109

)
over w ∼ W. Thus,

Pr
w∼WA

[
|Badw| >

εt

800

]
≤

Prw∼W
[
|Badw| > εt

800

]
Q

≤ Q−1 exp

(
− ε2t

2 · 109

)
≤ ε

800
, (57)

using our assumption on Q∗ and the fact that Q ≥ Q∗/2.
With the termsQ◦[v, j], B◦j , ζ

◦
j , ζ
◦
avg as defined in Section 7.2, we have verified that the hypothesis

of Lemma 7.5 is satisfied. We apply that Lemma to find that ζ◦avg ≤ ε/4. Combining this with our
finding that ζ+

avg, ζ
−
avg ≤ ε/4, we conclude that there is an index j∗ ∈ [t] for which

ζ+
j∗ + ζ−j∗ + ζ◦j∗ ≤ 3ε/4 .

We fix one such value j∗. We are now ready to build our circuit C∗ε . To do so, we will aim to apply
Lemma 2.8. Suppose that Crec, the ordinary nondeterministic circuit recognizing Ln, has m > 0
nondeterministic gates. We set

N := (n+ 4(t− 1)) + 1 + (m+ 1)t , K := d(N − 4) + log2Qe .

We consider strings x ∈ {0, 1}N as having the form

x = (w, a, y0, y1, y2, . . . , yt) ,

where w ∈ {0, 1}n+4(t−1), a ∈ {0, 1}, and yj ∈ {0, 1}m for j ∈ [0, t]. Now we define our sets

V b
u ⊆ {0, 1}N , u ∈ {0, 1}n , b ∈ {0, 1}

as in Lemma 2.8. We let x ∈ V 1
u exactly if a = 1 and Cdet

rec (u, y0) = 1 (noting that this implies
u ∈ L). We let x ∈ V 0

u exactly if the following conditions hold:

1. a = 0;

2. vj
∗
(w) = u;

3. Cj∗(w) = 0;

4. The number of indices j ∈ [t] such that Cj(w) = 1 is in the range[(
ρ− ε

1600

)
t,
(
ρ+

ε

1600

)
t
]

;

5. For each j ∈ [t] for which Cj(w) = 1, we have Cdet
rec (u, yj) = 1.
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Note that conditions 4-5 imply that w ∈ A = Wattr.
The sets V 1

u , V
0
u are disjoint by construction. It is clear that given a tuple (x, u) ∈ {0, 1}N+n,

one can test whether x ∈ V 1
u ∪V 0

u (and if so, which of the two sets contains x) using a circuit CVtest

of size poly(n+ t+m+ size(Crec) + size(C)) = poly(size(Crec) + size(C)).15

Define a set of favorable length-n inputs Fav ⊆ {0, 1}n by letting

Fav := {u : Q◦[u, j∗] ≥ .98Q ∧Q[u, j∗] ≤ 1.01Q} . (58)

We claim that Fav is large. Suppose that u /∈ B+
j∗ ∪B

−
j∗ ∪B◦j∗ . Then, by the definitions, we have

Q[u, j∗] ∈ [.99Q, 1.01Q] , Q◦[u, j∗] ≥ Q[u, j∗]− .01Q ≥ .98Q ,

so that u ∈ Fav. Thus,

|Fav| ≥ 2n − |B+
j∗ | − |B

−
j∗ | − |B

◦
j∗ | = 2n(1− ζ+

j∗ − ζ
−
j∗ − ζ

◦
j∗) ≥ (1− 3ε/4)2n .

As in our other direct product reductions, we will apply hashing. However, we will slightly
modify the approach to fit the present proof. Let

N ′ := n+ 4(t− 1) , K := 4t− 8 + dlog2 (Q)e ,

and let
HN ′,K =

{
hA,v : FN

′
2 → FK2

}
A∈FK×N′2 ,v∈FK2

be the hash family as given by Proposition 2.5. For A ∈ FK×N
′

2 , v ∈ FK2 , define ĥA,v : {0, 1}N →
{0, 1}K as follows: on input x = (w, a, y0, y1, y2, . . . , yt),

1. If a = 0, let ĥA,v(x) := hA,v(w);

2. If a = 1, let ĥA,v(x) := 0K .

Now fix any u ∈ Fav, and suppose that (A, v) ∈r FK×N
′

2 × FK2 ; we will analyze the behavior of the

random hash function ĥA,v upon the sets V 0
u , V

1
u .

First, suppose that u ∈ Fav ∩ L. By definition of Crec, there exists a y ∈ {0, 1}m such that
Cdet

rec (u, y) = 1. We verify that by taking x := (w, 1, y, 0m, . . . , 0m), we have x ∈ V 1
u , and also

ĥA,v(x) = 0K with probability 1. Next, define Wu ⊆ {0, 1}n+4(t−1) by

Wu := {w : w appears as the first input block in some x ∈ V 0
u } .

We will upper-bound |Wu|. (This set’s size, rather than the absolute size of V 0
u , is the relevant

quantity for our current hashing experiment.) We have observed previously that any w ∈Wu must
lie in A = Wattr. Consulting our definition of Badw from Eq. (56) and items 2-3 from the definition
of V 0

u , we see that it must also hold that j∗ ∈ Badw.

15The only non-uniformity required in the construction of CVtest are the two integer thresholds needed to verify
condition 3 above, which are specifiable with 2dlog2 te bits.
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Recalling that W denotes the uniform distribution on {0, 1}n+4(t−1), it follows that

|Wu| ≤ 2n+4(t−1) · Pr
w∼W

[vj
∗
(w) = u ∧ w ∈ A ∧ j∗ ∈ Badw]

= 24(t−1) · Pr
w∼W

[w ∈ A ∧ j∗ ∈ Badw|vj
∗
(w) = u]

= 24(t−1)(Q[u, j∗]−Q◦[u, j∗])
≤ 24(t−1)(.02Q[u, j∗])

≤ 24(t−1)(.021Q) ,

where in the last three steps we used Eqs. (34), (51) and (58) and the assumption u ∈ Fav. By our
setting to K, we therefore have

|Wu| ≤ .021 · 16 · 2K < .34 · 2K .

By Lemma 2.6, applied with U ′ := Wu ⊆ {0, 1}N
′
, we find that

Pr
A,v

[0K ∈ hA,v(Wu)] < .34 .

Now if ĥA,v(x) = 0K for some x = (w, a, y0, . . . , yt) ∈ V 0
u , we must have w ∈ Wu, a = 0, and

hA,v(w) = 0K . Thus, we also have

Pr
A,v

[0K ∈ ĥA,v(V 0
u )] < .34 . (59)

Next, suppose that u ∈ Fav∩L. We have already observed that for u ∈ L, the set V 1
u is empty.

To analyze the behavior of the random hash function ĥA,v upon V 0
u , we define

Wu := {w : w appears as the first input block in some x ∈ V 0
u }

just as in the previous case. This time, however, we will lower-bound |Wu|. Consider any w ∈
{0, 1}n+4(t−1) for which [vj

∗
(w) = u ∧ w ∈ A] holds. Let J ⊆ [t] be the set of indices j for which

Cj(w) = 1. As w ∈ A, we have |J | ∈ [(ρ− ε/1600)t, (ρ+ ε/1600)t], and we have vj(w) ∈ L for each
j ∈ J (in particular, this means that j∗ /∈ J). For each j ∈ J , let yj ∈ {0, 1}m be an assignment
for which Cdet

rec (vj(w), yj) = 1; these are guaranteed to exist by the correctness of Crec.
For j ∈ [t], define ŷj := yj if j ∈ J , otherwise ŷj := 0m. Define x ∈ {0, 1}N by

x := (w, 0, 0m, ŷ1, . . . , ŷm) .

It is immediate to check that x ∈ V 0
u . Thus w ∈Wu. We then have

|Wu| ≥ 2n+4(t−1) · Pr
w∼W

[vj
∗
(w) = u ∧ w ∈ A]

= 24(t−1) · Pr
w∼W

[w ∈ A|vj∗(w) = u]

= 24(t−1)Q[u, j∗]

≥ 24(t−1) · (.98Q)

≥ .98 · 8 · 2K .
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Then by Lemma 2.6, applied with U ′ := Wu, we find that

Pr
A,v

[0K ∈ hA,v(Wu)] > 1− (7.84)−1 > .87 .

Similarly to the previous case, it follows that

Pr
A,v

[0K ∈ ĥA,v(V 0
u )] > .87 . (60)

Let T := 300n. Let us sample T hash functions (ĥA1,v1 , . . . , ĥAT ,vT ) independently, with

(Ai, vi) ∈r FK×N
′

2 × FK2 . Say that ĥAi,vi is good for u ∈ {0, 1}n if

0K ∈ ĥAi,vi
(
V χL(u)
u

)
\ ĥAi,vi

(
V 1−χL(u)
u

)
.

Our calculations imply that for every u ∈ Fav, each individual ĥAi,vi is good for u with probability
greater than .66, and these events are independent. For any u ∈ {0, 1}n, let

X+(u) :=
∑
i∈[T ]

1
[
hAi,vi is good for u

]
.

Consider any u ∈ Fav. By using Claim 4.4 and applying Lemma 2.1 to X+(u), we find that with
probability at least 1− exp(−2(.06)2 · T ) > 1− 2−2n,

X+(u) ≥ .6T . (61)

Then with positive probability, Eq. (61) holds for every u ∈ Fav; so there exists some choice

h = (h∗1, . . . , h
∗
T ) =

(
ĥA1,v1 , . . . , ĥAT ,vT

)
such that Eq. (61) holds for every u ∈ Fav.

Note too that the hash functions ĥA,v are each computable by a circuit of size O(KN ′) ≤
O(KN). We have verified that all of the assumptions of Lemma 2.8 are satisfied, with f := χL,n;
we conclude that there exists a nondeterministic mapping circuit C† taking n input bits, such that
for all u ∈ Fav, we have FC†(u) = {χL(u)}; also, we have

size(C†) ≤ O((size(CVtest)·KNT ) ≤ O(poly(size(Crec)+size(C))·KNT ) ≤ poly(size(Crec)+size(C)) .

We take C∗ε := C†; as |Fav| > (1− ε)2n, this proves Theorem 7.1.
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