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Abstract

JCilk is a Java-based multithreaded programming language which extends Java to
provide a dynamic threading model. Specifically, JCilk imports Cilk’s fork-join prim-
itives spawn and sync into Java to provide procedure-call semantics for concurrent
subcomputations. More importantly, JCilk integrates exception handling with multi-
threading by defining semantics consistent with Java’s existing semantics of exception
handling.

JCilk’s strategy of integrating multithreading with Java’s exception semantics
yields some surprising semantic synergies. In particular, JCilk extends Java’s excep-
tion semantics to allow exceptions to be passed from a spawned method to its parent
in a natural way that obviates the need for Cilk’s inlet and abort constructs. This
extension is “faithful” in that it obeys Java’s ordinary serial semantics when executed
on a single processor. When executed in parallel, however, an exception thrown by
a JCilk computation signals its sibling computations to abort, yielding a clean se-
mantics in which only a single exception from the enclosing try block is handled.
To minimize the complexity of reasoning about aborts, JCilk signals them “semisyn-
chronously” so that abort signals do not interrupt ordinary serial code. Because
JCilk uses Java’s normal exception mechanism to propagate an abort throughout a
subcomputation, the programmer can handle clean-up by simply catching a thrown
CilkAbort exception. This thesis documents in detail the designed semantics, the
linguistic decisions we made, and their justifications.

This thesis also describes the structure of JCilk compiler and how it supports the
exception semantics. Specifically, the JCilk compiler performs a two-stage compila-
tion process to support the continuation mechanism required by the runtime system’s
work-stealing algorithm. By performing static analysis, the compiler generates code
to support the “catchlet” and “finallet” mechanisms for handling exceptions.

The design of JCilk represents joint research with John S. Danaher and Charles
E. Leiserson.

Thesis Supervisor: Charles E. Leiserson
Title: Professor
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Chapter 1

Introduction

The proliferation of multiprocessor machines has accentuated the importance of lin-

guistic support for writing parallel programs. Although the shared-memory multi-

processor machine is becoming a commodity, the development of parallel applications

seems to be growing slowly. Most programmers prefer to write serial programs rather

than parallel programs, because writing parallel programs is inherently more challeng-

ing than writing serial programs. When developing parallel software, programmers

must worry about task decomposition, scheduling, communication, and synchroniza-

tion. Parallel software is also more difficult to debug due to issues such as race

conditions and deadlocks, which do not exist in serial software. For programmers to

take advantage of the fast growth in parallel hardware, adequate linguistic support

for writing parallel software is necessary.

Over the past year, together with the rest of the JCilk design team, I have created

a high-level parallel programming language, JCilk, and hammered out a solid set of

semantics for the language. JCilk is a Java-based multithreaded language which aims

to support the development of parallel programs efficiently by automating thread

management and providing simple yet powerful constructs for parallel programming.

Specifically, JCilk extends the semantics of Java [20] by introducing “Cilk-like” [16,46]

linguistic constructs for parallel control.

The original Cilk language provides a dynamic threading model that supports

call-return semantics in a C language [28] context. A dynamic threading model means
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that the execution of a procedure can migrate between processors. The binding

between the procedure and the processor executing the procedure is not determined

at compile time and does may change between activations of the procedure. In Cilk,

when a parent procedure “spawns” a child procedure, the parent can continue to

execute in parallel with the spawned child. The processor executing the parent before

the spawn may be different from the one executing it after the spawn. When the child

returns to the parent, the system handles the synchronization required for the child

to update the parent’s field. The Cilk system also includes a provably good scheduler,

guaranteeing that programs take full advantage of the processors available at runtime.

Cilk provides a set of simple parallel programming constructs to interface with the

dynamic threading model. These constructs are supplied as the language primitives,

and no lengthy protocol is involved to use them. Cilk’s dynamic threading model

and its call-return semantics are particularly appropriate for coding algorithms which

use a divide-and-conquer strategy. The programmer does not need to worry about

tuning the base task granularity, because the parallelism among task computations

is determined at runtime. As a C language extension, however, Cilk inherently lacks

support for modern language features such as object orientation, automated memory

management, and exception handling.

Java, on the other hand, provides these desirable features but supports a totally

different threading model, a static threading model . That means the execution

of a procedure cannot migrate between virtual processors. The binding of the pro-

cedure to a virtual processor is determined at compile time and is persistent across

activations of the procedure. Java’s static threading model is suited for applications

with persistent concurrent tasks, such as displaying multiple independent animations

and doing background computation while waiting for user input. It is not suited

for applications that solve problems using the divide-and-conquer strategy, however.

Specifically, the divide-and-conquer strategy involves recursively splitting tasks into

subtasks, solving them in parallel, and composing their results. With static thread-

ing, the programmer must tune the base task granularity depending on the platform

where the program executes. If the granularity is too small, the cost of constructing
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Property Static threading model Dynamic threading model

Binding determined at compile time determined at runtime
Binding unchanged through may change through
life span activations of a procedure activations of a procedure
Semantics object-based semantics call-return semantics
Creation protocol declarative (“spawn”)
Applications persistent concurrent tasks divide-and-conquer algorithms
Thread relations independent parent-child relations

Figure 1-1: The differences between static threading model and dynamic threading model.
The binding in the first column refers to the binding between a procedure and the processor
executing the procedure.

and managing the virtual processors can be greater than the computation time spent

on the actual task. In addition, the threading support is provided as a library (part

of Java API) but not as a language primitive. The threading model does not sup-

port the passing of exceptions or return values from one thread back to its “parent

thread”.1 Although this threading model is designed to be general purpose, it repre-

sents a tradeoff between expressiveness and convenience. In particular, a protocol is

required in order to use the threading model.

The static threading model and the dynamic threading model are very different,

and they are each suited for different types of applications. Figure 1-1 outlines the

differences between these two models.

Since both Java and Cilk have their own pros and cons, the JCilk design team

attempted to create a new language that combines the desirable features of both. In

particular, we wanted to explore how the dynamic threading model behaves in the

context of Java, which contains a rich set of modern language features that are not

supported by Cilk. In order to achieve this goal, we ported Cilk’s dynamic threading

model and its parallel-programming primitives into Java, integrating them with Java’s

modern language features. When we brought the linguistic primitives from Cilk into

the context of Java, we were faced with the task of ensuring that the new constructs

would interact nicely with Java’s existing constructs. Java’s exception mechanism,

1This statement is true for the threading support in Java 1.4 and earlier versions. Java 1.5 Tiger
provides a mechanism, however, that allows a thread to return a value or throw an exception.
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which has no analogue in C or Cilk, turns out to be the language feature most directly

impacted by the new Cilk-like primitives. Surprisingly, the interaction is synergistic,

not antagonistic.

The remainder of this chapter serves as a basis for understanding JCilk’s seman-

tics. Before we dive deep into JCilk’s semantics, which includes how exception han-

dling can be integrated with Cilk’s parallel-programming primitives, it is important

to understand the language features supported by Java and Cilk that are impacted

by this integration. Section 1.1 gives an overview of Java’s exception-handling mech-

anism and its threading model. Section 1.2 gives some background on Cilk’s parallel-

programming constructs and its dynamic threading model. Section 1.3 overviews the

contributions of JCilk. Section 1.4 concludes the chapter by outlining the structure

of this thesis.

As a fusion of Java and Cilk, JCilk contains other modern language features that

Java offers besides an exception mechanism. Since these features are not the main

focus of the thesis, I do not discuss them here. Interested readers may refer to [20].

1.1 Java

Java [20] provides several significant language features not offered in C [28], which

are specifically designed to make programming easier. This section reviews Java’s

exception handling mechanism and threading model, because they are the language

features most directly impacted by the new Cilk primitives.

Exception handling

One of the most powerful and elegant programming constructs that Java provides is

its exception handling mechanism [20, Ch. 11]. Unlike in C, there are two different

ways to transfer control out of a method in Java. One way is to do an ordinary return

to a method’s caller. Another way is to throw an exception, which terminates the

execution at the point of throw and skips the rest of the method body. In general,

an exception either is triggered by the Java virtual machine when an unexpected
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error occurs (such as the divide-by-zero error) or is explicitly thrown using Java’s

keyword throw by the executing method to indicate the occurrence of an abnormal

situation. The exception, if not caught within the same method using Java’s try and

catch constructs, is propagated upward to the caller. Once an exception occurs, the

throwing method terminates, and the control is transferred nonlocally from the point

where the exception is thrown to a point where the program specifies the exception

is caught. All methods between the throw point and the catch point within the

execution stack are terminated due to the exception, as specified by Java’s termination

model [9].

Java provides two types of exceptions: checked exceptions and unchecked

exceptions [20, Sec. 11.2].2 The proper use of checked exceptions is verified by

any standard Java compiler, while the unchecked ones are not. The unchecked ex-

ceptions include java.lang.Error, java.lang.RuntimeException, and their sub-

classes. These exceptions are exempted from compile-time checking, because they

can occur virtually at any point in the program, and checking them at compile time

would not necessarily establish the correctness of the program. Any other exception

is a checked exception, which must be declared at the method header if the method

can possibly throw it.

Figure 1-2 shows a simple Java method which exercises the exception-handling

mechanism. The try block in lines 5–7 and surrounding the call to method C has a

catch clause in lines 7–9. This code indicates that if C throws an ArithmeticException,

the exception is handled by executing the cleanupC method in line 8. Similarly, dur-

ing any point of execution in lines 4–9, if a NullPointerException occurs, it is han-

dled by the cleanup method in line 11. Once an exception is handled, the execution

continues on from the point after the handler.

When method f1-2 executes, several possible scenarios can happen:

1. If no exception occurs, methods A, B, C, and D are called.

2. If the call to method B, the call to method C, or the call to method cleanupC

2In this thesis, when I refer to exception, I do not mean the Exception class in Java. Rather, I
am using it in a broader sense to include the entire Throwable hierarchy in Java. When I refer to
the actual Exception class, I use “Exception” explicitly with a capitalized “E.”
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1 public void f1-2() {

2 A();

3 try {

4 B();

5 try {

6 C();

7 } catch(ArithmeticException e) {

8 cleanupC();

9 }

10 } catch(NullPointerException e) {

11 cleanup();

12 }

13 D();

14 }

Figure 1-2: A simple Java method that uses try-catch constructs.

throws a NullPointerException, execution completes abruptly at the throw

point, and the control jumps to the catch clause in line 10. Hence, methods

A, B, cleanup, and D are always called. Methods C and cleanupC may also be

called depending on which method threw the exception.

3. If method C throws an ArithmeticException, the control jumps to the catch

clause in line 7. In this case, methods A, B, C, cleanupC, and D are called.

Method cleanupmay also be called, if cleanupC throws a NullPointerException.

4. If any statement in method f1-2 throws an unchecked exception that is not

handled, the exception propagates up to method f1-2’s caller, and method

f1-2 completes abruptly with the reason of the thrown exception. (No checked

exception can be thrown by this method, or the method would not compile.)

Java’s try statement may also contain a finally clause, which is always executed

whether an exception is thrown or not. The execution rule for the finally clause

gives another set of possibilities of how the try statement can turn out. If the try

block completes normally, and the finally clause completes abruptly with the reason

S, the try statement is considered to complete abruptly with the reason S . If the

try block completes abruptly with the reason S and the finally clause completes

normally, the try statement completes abruptly with the reason S . If the try block
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completes abruptly with the reason S and the finally clause completes abruptly

with the reason E, then the try statement completes abruptly with the reason E . In

other words, the exception thrown by the finally clause overwrites the exception

thrown by the try block.

Static threading model

Java provides support for multithreaded programs with static threads. To interact

with the threading model, the programmer explicitly creates several virtual processors

and specifies the procedure to be executed by each processor. The binding between

a procedure and the processor executing the procedure is determined at compile

time and remains unchanged throughout the activations of the procedure. A virtual

processor exits and gets garbage-collected once it completes the computation specified

by the programmer.

A protocol is involved when creating a virtual processor. A virtual processor in

Java is an object, represented as the Thread class. There are two ways for the pro-

grammer to specify a computation to be executed by a Thread object. One way is to

declare a class that extends from the Thread class and overrides the run method in

the class with the desired computation. Another way is to declare a class that imple-

ments the Runnable interface, with desired computation specified in the run method,

and to invoke the Thread constructor with an instance of the Runnable class. When

executing instructions that invoke the constructor and then the start method of

the Thread class, the Java virtual machine creates a Thread object and invokes its

run method. By default, if a Thread object is constructed with a Runnable object,

then the run method in the Runnable object is invoked. Otherwise the Thread’s run

method does nothing and returns, unless it is overriden by its subclass. The com-

putation specified by the programmer for a Thread object may contain instructions

that ask for more Thread objects to be created.

The Thread objects in Java do not communicate with one another directly. The

threading model does not support the passing of exceptions or return values from one

Thread object back to its “parent” Thread object. The Java API interface specifies
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that the run method does not return any value and cannot throw any exceptions.

Any potential exception that can be thrown within the run method must be han-

dled entirely within the method. An unexpected exception terminates the Thread

object, propagates the exception up to the root of its “ThreadGroup,” and kills the

entire program. To circumvent this default behavior, the programmer must override

the ThreadGroup class. 3 The Thread objects can communicate via shared data

structures or share objects allocated in the heap. The programmer must carefully

synchronize between different Thread objects accessing the shared data structures or

objects. For this purpose, Java provides various high-level mechanisms for synchro-

nization.

1.2 Cilk

Cilk encourages programmers to concentrate on how best to divide and parallelize the

computation at hand, leaving the runtime system to worry about load balancing and

task scheduling during execution. This idea is well expressed in Cilk via its dynamic

threading model and provably good scheduler. While Cilk supports these features, it

extends C with only a few keywords for parallel constructs. Since a parallel program

inherently contains certain nondeterminism, Cilk also provides thread atomicity to

ease the difficulty of reasoning about procedure execution. Furthermore, Cilk provides

an abort mechanism to terminate extraneous computation, which is essential for

parallel search algorithms that require speculative computing. This section gives

an overview on the Cilk language in general.

Programming interface

Cilk’s extension of C is simple, requiring only three additional keywords for parallelism

and synchronization: cilk, spawn, and sync.

In Cilk, parallelism is created using the keyword spawn. When a procedure call is

3In general, this protocol is the only way that a programmer can intercept uncaught exceptions
that occur in a Thread object in Java 1.4. Java 1.5 Tiger provides a more convenient mechanism.
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1 cilk int fib(int n) {

2 if(n<2) {

3 return n;

4 } else {

5 int x, y;

6 x = spawn fib(n-1);

7 y = spawn fib(n-2);

8 sync;

9 return (x+y);

10 }

11 }

12 cilk int main(int argc, char *argv[]) {

13 int n, result;

14 n = atoi(argv[1]);

15 result = spawn fib(n);

16 sync;

17 printf("Result: %d\n", result);

18 return 0;

19 }

Figure 1-3: A simple Cilk program to compute the Fibonacci number in parallel (using a
naive exponential-time algorithm).

preceded by the keyword spawn, it is spawned and can be executed in parallel with

the caller. For instance, fib(n-1) in line 6 of Figure 1-3 is spawned by and can be

executed in parallel with fib(n). We refer to the spawned procedure as the child ,

and the spawning procedure as the parent .

The complement of spawn is the keyword sync, which acts as a local barrier and

joins the parallelism forked by spawn together. The Cilk runtime system ensures

that statements after sync are not executed until all procedures spawned before the

sync statement have completed and returned. In Figure 1-3, the values returned by

fib(n-1) and fib(n-2) (i.e., x and y) are not used until after the sync statement

in line 8. Without the sync statement, the values of x and y might be used before

being computed, which would result in a synchronization bug.

The keyword cilk is a function modifier which identifies the declared function as

a cilk procedure . A cilk procedure is analogous to a C function except that it

can be spawned off to execute in parallel. Only a cilk procedure can be spawned,

and an ordinary C function cannot.
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Cilk extends the semantics of C in a natural way so that every Cilk program has a

corresponding legal C program, called the serial elision of the Cilk program. This

serial elision is obtained by eliding all Cilk keywords from the Cilk program. The

serial elision of a Cilk program is always one of the correct interpretations of the Cilk

program under the parallel semantics.

Dynamic threading model

In Cilk, the keywords spawn and sync specify the logical parallelism of the program

rather than the actual parallelism at execution time. A logical thread is a maximal

sequence of nonblocking instructions that ends with a spawn, sync, or return state-

ment. A Cilk program consists of a collection of cilk procedures, and each cilk

procedure consists of a sequence of logical threads. We can model the execution of a

Cilk program as a directed acyclic graph, or dag . Such dag is shown in Figure 1-4,

which illustrates the execution of fib (in Figure 1-3) with argument n = 4. Two

threads are logically in series if there is a directed path between them. Otherwise,

they are logically in parallel. A correct execution of a Cilk program must obey all

dependencies in the dag: a thread cannot be executed until all threads it depends on

have completed.

The number of virtual processors created at runtime does not necessarily corre-

spond to the number of logical threads specified in a Cilk program. Rather, it is

determined at runtime, when the resource availability and processor load are known.

As a program executes, the Cilk scheduler dynamically distributes the logical threads

across the available processors while maintaining the dependencies among the logical

threads. With the abstraction of logical threads, Cilk decouples the parallelism of the

program specified at compile time from the virtual-processor creation at runtime.

Provably good scheduler

To take full advantage of the dynamic threading model, a good scheduler is needed to

distribute the logical threads dynamically across the available processors. The Cilk

runtime system uses a provably good scheduler which implements a “work-stealing”
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Figure 1-4: The DAG representation of the fib program in Figure 1-3, computing n = 4.
Each rectangle in the dag represents a cilk procedure, and each node represents a logical
thread. An arrow between two nodes indicates a precedence dependency between the logical
threads, where the thread at the tail of the arrow must complete before the thread at the
head can begin.

algorithm [8]. The implementation is based on the “work-first” principle [16]. (I

present the work-first principle and the work-stealing algorithm formally in Chap-

ter 3.) It has been shown theoretically [8] and empirically [7, 16] that, the Cilk

scheduler’s work-stealing algorithm schedules threads near optimally. The dynamic

threading model and the provably good scheduler come hand in hand. Both are

integral components in the Cilk runtime system.

Thread atomicity

Cilk guarantees atomicity between threads interacting within one procedure. In a

Cilk program, when a parent spawns off multiple children, the order of the children

returning is nondeterministic, meaning the order of returning can be different in each

run depending on how the threads are scheduled. This nondeterminism is intrin-

sic to parallel computation but makes it difficult to reason about the interactions

between the parent and the returning children. To ease the difficulty of reasoning

about the procedure execution, Cilk guarantees atomicity between the threads that

interact within one procedure. That is, two threads in the same procedure never run
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simultaneously and their instructions don’t interleave. Thus, when a child returns

and updates a local field of the parent, the update is performed atomically with re-

spect to other updates and to the parent. It is still possible to write code with race

conditions, however, since Cilk only guarantees atomicity between threads within one

procedure, but makes no guarantee on threads in different procedures.

Cilk also supports a construct called inlet, which is essentially a local C function

invoked immediately when a spawned child returns, to incorporate the returned value

into a parent’s local field in a more complex manner. Thread atomicity also applies

to inlet threads updating parent’s local fields.

Speculative computing

Some parallel search algorithms, such as branch-and-bound and heuristic search [11],

require speculative computation. In these algorithms, some computations may be

spawned off speculatively, but are later found to be unnecessary. In such cases, one

wishes to terminate these extraneous computations as soon as possible so that they do

not consume system resources. Cilk provides an abort statement to allow speculative

computations to be aborted when their work is rendered unnecessary.

The abort statement in Cilk is usually used together with inlet, since the inlet

function gives the programmer a chance to examine the returned value from the

spawned child and take the appropriate actions accordingly. In the case of specu-

lative computing, the appropriate action can mean aborting other spawned parallel

computations. The abort statement triggers the abort process: the runtime system

chases down all children spawned, and it recursively terminates all descendants of the

procedure that initiated the abort.

The existing abort mechanism in Cilk has two weaknesses, however. First, once

abort is signaled, the aborted children are simply terminated, and they vanish from

the programmer’s perspective, leaving the programmer no chance to cleanup. Second,

the abort signal terminates only descendants that have already been spawned and

have not yet completed, but it does not terminate any future children that have not

yet been spawned. It is the programmer’s responsibility to take care explicitly not
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to spawn any future computations. In practice, this situation is often handled by

setting some flag when the abort occurs, and the programmer explicitly checks the

flag before any subsequent spawn statement in order to prevent future children from

spawning.

1.3 Contributions of JCilk

JCilk introduces a dynamic threading model into Java, making the following research

contributions:

1. defining a faithful extension of Java’s exception-handling semantics for multi-

threading;

2. implementing an implicit abort mechanism as part of those semantics;

3. providing an efficient mechanism to support Java’s “lexical-scope” rule in the

face of concurrency;

4. building a compiler and runtime system to support the JCilk linguistics.

We now examine each of these contributions in turn.

Exception-handling semantics

JCilk defines a concrete set of exception-handling semantics in a concurrent context.

This semantic extension to Java is faithful in that it handles concurrency in spawned

methods using semantics that are consistent with the existing semantics of Java’s try

and catch constructs.

An exception-handling mechanism facilitates production of robust and fault tol-

erant software that can behave reasonably under both normal and unusual circum-

stances. When an unusual circumstance occurs, a procedure might not always have

sufficient knowledge of the context to handle it. Its parent procedure, however, is

likely to have more knowledge of the context and may be able to cope with the un-

usual circumstance better. An exception mechanism allows the child procedure to

communicate the unusual circumstance to its parent procedure.
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Most parallel languages do not provide an exception-handling mechanism. The

parallel languages that do provide exception support, such as [21, 30, 41], are built

upon serial languages, whose support for exceptions is only semantically defined for

serial execution. These parallel languages do not extend the exception-handling se-

mantics to a concurrent context. JCilk is one of the few parallel languages that

address the issue of integrating exception handling with multithreading and the first

to define a concrete set of semantics consistent with the existing serial semantics of

Java’s exception mechanism.

Implicit abort mechanism

JCilk implements an implicit abort mechanism as part of JCilk’s exception semantics.

When multiple JCilk computations are executed in parallel, an exception thrown by

one computation signals its sibling computations to abort. This implicit abort yields

a clean semantics in which only a single exception from the enclosing try block is

handled.

In ordinary Java, an exception causes a nonlocal transfer of control to the catch

clause of the nearest dynamically enclosing try statement whose catch clause handles

the exception. The Java Language Specification [20, pp. 219–220] states,

“During the process of throwing an exception, the Java virtual machine

abruptly completes, one by one, any expressions, statements, method

and constructor invocations, initializers, and field initialization expres-

sions that have begun but not completed execution in the current thread.

This process continues until a handler is found that indicates that it han-

dles that particular exception by naming the class of the exception or a

superclass of the class of the exception.”

In JCilk, we have striven to preserve these semantics while extending them to cope

gracefully with the parallelism provided by the Cilk primitives. Specifically, JCilk

extends the notion of “abruptly completes” to encompass the implicit aborting of any

side computations that have been spawned off and on which the “abrupt completion”
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semantics of the Java exception-handling mechanism depends. It turns out that this

abort mechanism is cleaner to code with than the inlet-based one provided by Cilk. In

particular, JCilk extends Java’s exception semantics to allow exceptions to be passed

from a spawned method to its parent in a natural way so that the need for Cilk’s

inlet and abort constructs is obviated.

The lexical-scope rule

JCilk provides an efficient mechanism to support Java’s “lexical-scope” rule in the

face of concurrency. In JCilk, due to the presence of parallelism, a block of code

may be executed later in time than its lexically subsequent blocks of code. In such

cases, in order to ease the difficulties of reasoning about the local variable states,

JCilk enforces Java’s lexical-scope rule, where the state of a local variable can be

determined lexically. JCilk’s mechanism for enforcing the lexical-scope rule is rather

efficient: the mechanism avoids creating extraneous copies of local variables. In

addition, the implementation of the mechanism exploits the structure of the JCilk

scheduler and creates small overhead only when parallelism is present.

Compiler and runtime system

JCilk’s compiler and runtime system support the JCilk linguistics. The system im-

plementation serves as an important foundation for JCilk’s semantic design. Only

after implementing the actual system, can we be certain that our semantic design is

“reasonable” and not just some semantics on paper. Furthermore, the system allows

us to measure the overhead of supporting mechanisms required by the semantics and

understand the tradeoffs between different options.

A unique feature in the JCilk compiler is its support for the code migration re-

quired by the dynamic threading model. To support code migration, additional issues

were encountered while implementing the JCilk compiler that did not need to be faced

when implementing the Cilk compiler. The Cilk compiler was able to use C’s goto

statements and the flexibility of its pointers to support a “continuation” mechanism.

Java does not provide these facilities directly, however, and thus, JCilk must support
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code migration by other means. The eventual design of the JCilk compiler deploys a

unique two-stage compilation process which implements a intermediate language Go-

Java to support continuations. The GoJava extends Java with support for the goto

statements, but in a limited and specific circumstances. The end result is a JCilk

compiler that supports the code migration while maintaining relative portability and

easy extensibility.

Another mechanism in the JCilk runtime system, which is not found in Cilk, is the

support for implicit abort required by JCilk’s exception semantics. To be specific, the

runtime system builds a data structure, called a “try tree,” during execution to keep

track of any spawned children executing on other processors that may potentially

throw exceptions. This data structure is maintained throughout the execution, but

it imposes only a small overhead.

1.4 Structure of this thesis

This section provides an outline of the remainder of the thesis. This thesis contains

three parts: semantics, implementation, and future perspective.

The first part of the thesis addresses JCilk’s semantics. Chapter 2 presents JCilk’s

full semantics, the design decisions we made throughout the process, and their jus-

tifications. The discussion of JCilk’s semantics focuses on the exception-handling

semantics in concurrent context and how they facilitates the abort mechanism.

The next part of the thesis describes JCilk’s system implementation, which in-

cludes Chapter 3 and Chapter 4. Chapter 3 first reviews the concepts that JCilk

inherits from Cilk and the implementation of Cilk’s compiler. The chapter then ex-

plains how JCilk spins these concepts to implement them in the context of Java.

Chapter 4 presents the new features provided by the JCilk compiler in order to sup-

port semantics found in JCilk but not Cilk. Since I am the main implementer of

the JCilk-1 compiler, I focus heavily on the implementation of the compiler and the

structure of the compiled output. The complementary portion of the system, the

JCilk-1 runtime system was implemented by my collaborator, John Danaher. His
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work is described in his thesis [12], which includes detail about the JCilk-1 runtime

system implementation.

The last part of the thesis puts the JCilk project into perspective. Chapter 5

presents related work, placing JCilk and its exception-handling mechanism into the

context of parallel programming languages. Chapter 6 proposes possible future di-

rections for JCilk and offers some concluding remarks.

Much of this thesis represents collaborative work with John S. Danaher and

Charles E. Leiserson. In particular, Chapter 2 is based on our joint written work [13].
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Chapter 2

JCilk Semantics

JCilk extends the Java language to provide call-return semantics for multithreading,

much as Cilk does for C. Although the original Cilk language provided the basic

semantics for spawn and sync, it provided no semantics for exceptions, because a

spawned Cilk procedure can only return, just as a C function can only return. Java,

however, allows a method to signal an exception, rather than return normally, and

JCilk’s semantics must cope with this eventuality. This chapter shows how JCilk

integrates exception handling with multithreading by defining a semantics consistent

with the existing semantics of Java’s try and catch constructs, but which handles

the concurrency provided by spawned methods.

This chapter, which describes joint research with John S. Danaher and Charles E.

Leiserson, is organized as follows. Section 2.1 describes JCilk’s basic syntax and

semantics and the concepts underlying the language, including the assumption of

“implicit atomicity” and the built-in exception class CilkAbort. Section 2.2 elabo-

rates on how JCilk uses these concepts in its linguistic design and discusses JCilk’s

exception semantics in depth. Section 2.3 offers two examples to demonstrate how

JCilk’s parallel constructs can be used to write applications that involve speculative

computing.
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2.1 Basic semantics

This section concentrates on the basic semantics of JCilk, including JCilk’s philos-

ophy, basic syntax, and the concepts underlying the language. In particular, the

concepts include JCilk’s guarantee of implicit atomicity and its built-in exception

class CilkAbort.

Philosophy

The philosophy behind the JCilk extension to Java follows that of the Cilk extension

to C: the multithreaded language should be a true semantic parallel extension of the

base language. JCilk extends Java1 by adding new keywords that allow the program

to execute in parallel. If the JCilk keywords for parallel control are elided from a

JCilk program, however, a syntactically correct Java program results, which we call

the serial elision of the JCilk program. JCilk is a faithful extension of Java,

because the serial elision of a JCilk program is a correct (but not necessarily sole)

interpretation of the JCilk program under its parallel semantics.

Syntax

Specifically, JCilk introduces three new keywords — cilk, spawn, and sync — which

are the same keywords used to extend C into Cilk, and they have essentially the same

meaning in JCilk as they do in Cilk (see Section 1.2). For the purpose of completeness,

these keywords are presented here again, this time in the context of JCilk.

Analogous to Cilk, in JCilk the keyword cilk is used as a method modifier, and

spawn and sync cannot be used in a Java method unless the method is a cilkmethod.

In order to make parallelism plain to the programmer, JCilk enforces the constraint

that spawn and sync can only be used inside a method declared to be cilk. A

cilk method can call a Java method, but a Java method cannot spawn (or call) a

cilk method. When a parent method spawns a child method, which is accomplished

by preceding the method call with the spawn keyword, the parent can continue to

1Actually, JCilk extends the serial portion of the Java language, and it omits entirely Java’s
support for static multithreading as provided by the Thread class.
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1 cilk int f2-1() {

2 int w = spawn A();

3 int x = B();

4 int y = spawn C();

5 int z = D();

6 sync;

7 return w + x + y + z;

8 }

Figure 2-1: A simple JCilk program.

execute in parallel with its spawned child. The sync keyword acts as a local barrier.

The JCilk runtime system ensures that program control cannot go beyond a sync

statement until all previously spawned children have terminated. In general, until

a cilk method executes a sync statement, it cannot safely use results returned by

previously spawned children.

Different from Cilk, however, in JCilk the cilk keyword can also be used as a

modifier for a try statement. JCilk enforces the constraint that spawn and sync

keywords can only be used within a cilk try block, but not within an ordinary try

block. Placing spawn or sync keywords within a catch or finally clause is illegal

in JCilk, whether the catch or finally clause belongs to a cilk try statement or

to an ordinary try statement. The reason try blocks containing spawn and sync

must be declared cilk is that when an exception occurs, these try statements may

contain multiple threads of control during exception handling. Although the JCilk

compiler could detect and automatically insert a cilk keyword before a try statement

containing spawn or sync, we feel the programmer should be explicitly aware of the

inherent parallelism. We disallow spawn and sync within catch or finally clauses

for implementation simplicity, but we might consider revisiting this decision if a need

arises.

To illustrate how we have introduced these Cilk primitives into Java, consider the

simple JCilk program in Figure 2-1. The method f2-1 spawns off the method A to

run in parallel in line 2, calls the method B normally (serially) in line 3, spawns C

in parallel in line 4, calls method D normally in line 5, and then itself waits at the
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sync in line 6 until the subcomputations A and C have completed. When they both

complete, f2-1 computes the sum of their returned values as its own returned value

in line 7.

Locus of control

When a cilk method is spawned, a locus of control is created for the method

instance, which is more-or-less equivalent to its program counter. When the method

returns, its locus of control is destroyed. For instance, in the simple JCilk program

from Figure 2-1, the spawning of A and C in lines 2 and 4 create two new loci of

control that can execute A and C independently from their parent f2-1.

A cilk method contains only one primary locus of control. When it calls an

ordinary Java (non-cilk) method, we view the Java method as executing using the

cilk method’s primary locus of control. In Figure 2-1, for example, the methods B

and D in lines 3 and 5 execute using f2-1’s primary locus of control.

JCilk allows secondary loci of control to be created as well. In particular, when

a cilk method is spawned, it may return a value that must be incorporated within

the parent method in a more involved way than by simple assignment. Figure 2-2

illustrates a program in which the returned values from spawned methods B and C and

called method D augment the variable y, rather than just assign to it as the return

value from A does to the variable x. Although a child’s locus of control normally

stays within the child, for circumstances such as those in lines 4 and 5, the child’s

locus of control operates for a time in its parent f2-2 to perform the update. JCilk

encapsulates these secondary loci of control using a mechanism from the original Cilk

language, called an inlet , which is a small piece of code that operates within the

parent on behalf of the child. Although Cilk’s inlet keyword does not find its way

into the JCilk language, as we shall see in Section 2.2, the concept of an inlet is used

extensively when handling exceptions in JCilk.
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1 cilk int f2-2() {

2 int x, y = 0;

3 x = spawn A();

4 y += spawn B();

5 y += spawn C();

6 y += D();

7 sync;

8 return x + y;

9 }

Figure 2-2: Implicit atomicity allows programmers to reason about multiple JCilk threads
operating within the same method.

Implicit atomicity

Since reasoning about race conditions between an inlet and the parent, or between

inlets, could be problematic, JCilk supports the idea of implicit atomicity . To

understand this concept, we first define a JCilk thread 2 to be a maximal sequence

of instructions executed by the same locus of control that includes no parallel control.

From a syntactic point of view, a JCilk thread contains no spawn, sync, or exit from

a cilk block (cilk method or cilk try).

For example, the method f2-1 in Figure 2-1 contains four threads:

1. from the beginning of f2-1 to the point in line 2 where the A computation is

actually spawned off,

2. from the point in line 2 where the A computation is actually spawned off to the

point in line 4 where the C computation is actually spawned off,

3. from the point in line 4 where the C computation is actually spawned off to the

sync in line 6,

4. from the sync in line 6 to the point where f2-1 returns.

In Figure 2-2, similar threads can be determined, but in addition, when a spawned

method, such as B in line 4, returns, an inlet runs the updating of y as a separate

thread from the others. JCilk’s support for implicit atomicity guarantees that all

2Although JCilk is implemented using Java’s static threads, JCilk threads and Java’s static
threads are different concepts. Generally, when we say “thread,” we mean a JCilk thread. If we
mean a Java’s static thread, we shall say so explicitly.
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JCilk threads executing in the same method instance operate atomically with respect

to each other; that is, the instructions of the threads do not interleave. Said more

operationally, JCilk’s scheduler performs all its actions between thread boundaries,

and it executes only one of a method’s threads at a time. In the case of f2-2, the

updates of y in lines 4, 5, and 6 are all executed atomically. The updates caused by

the returns of B and C are executed by JCilk’s built-in inlets, and the update caused

by D’s return is executed by f2-2’s primary locus of control.

Implicit atomicity places no constraints on the interactions between two JCilk

threads in different method instances, however, and it still may be possible to write

code with data races within a single method instance. It is the responsibility of the

programmer to handle those interactions using synchronized methods, locks, non-

blocking synchronization (which can be subtle to implement in Java due to its memory

model — see, for example, [19, 31, 42]), and other such techniques. These synchro-

nization issues are not addressed here, because they appear to be orthogonal to the

control issues discussed in this thesis.

The CilkAbort exception

Because of the havoc that can be caused by aborting computations asynchronously,

JCilk leverages the notion of implicit atomicity by ensuring that aborts occur semisyn-

chronously . That means, when a method is aborted, all its loci of control reside at

thread boundaries. JCilk provides a built-in exception3 class CilkAbort, which inher-

its directly from Throwable, as do the built-in Java exception classes Exception and

Error. When JCilk determines that a method must be aborted, it causes CilkAbort

to be thrown in the method. The programmer can choose to catch CilkAbort if

clean-up is desired, but the exception always appears to have been thrown semisyn-

chronously.

Semisynchronous aborts ease the programmer’s task of understanding what hap-

pens when the computation is aborted, limiting the reasoning to those points where

3In keeping with the usage in [20], when we refer to an exception, we mean any instance of the
class Throwable or its subclasses.
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parallel control must be understood anyway. For example, in Figure 2-1 if C throws an

exception when D is executing, then the thread running D will return from D and run

to the sync in line 6 of f2-2 before possibly being aborted. Since aborts are by their

nature nondeterministic, JCilk cannot guarantee that when an exception is thrown,

a computation always immediately aborts when its primary locus of control reaches

the next thread boundary. What it promises is only that when an abort occurs, the

primary locus of control resides at some thread boundary, and likewise for secondary

loci of control.

2.2 Exception semantics

This section discusses the semantics of JCilk exceptions. The section begins with a

simple example of the use of cilk try to illustrate two important notions. The first

is the concept that a primary locus of control can leave a cilk try statement before

the statement completes. The second is the idea of a “catchlet,” which is an inlet

that executes the body of the catch clause of a cilk try. The section then describes

a complete semantics for cilk try, and it concludes with an explanation of how the

CilkAbort exception can be handled by user code.

The cilk try statement

Figure 2-3, which shows an example of the use of cilk try, demonstrates how this

linguistic construct interacts with the spawning of subcomputations. The parent

method f2-3 spawns off the child cilk method A in line 4, but its primary locus of

control continues within the parent, proceeding to spawn off another child B in line 9.

After spawning off method B, the primary locus of control continues in f2-3 until

it hits the sync in line 13, at which point f2-3 is suspended until the two children

complete.

Observe that f2-3’s primary locus of control can continue on beyond the scope

of the cilk try statements even though A and B may yet throw exceptions. If the

primary locus of control were held up at the end of the cilk try block, writing a
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1 cilk int f2-3() {

2 int x, y;

3 cilk try {

4 x = spawn A();

5 } catch(Exception e) {

6 x = 0;

7 }

8 cilk try {

9 y = spawn B();

10 } catch(Exception e) {

11 y = 0;

12 }

13 sync;

14 return x + y;

15 }

Figure 2-3: Handling exceptions with cilk try when aborting is unnecessary.

catch clause would preclude parallelism.

In the code from the figure, if one of the children throws an exception, it is caught

by the corresponding catch clause. The catch clause may execute long after the

primary locus of control has left the cilk try block, however. As with the example

of an inlet updating a local variable in Figure 2-2, if method A signals an exception,

A’s locus of control must operate on f2-3 to execute the catch clause in lines 5–

7. This functionality is provided by a catchlet , which is an inlet that runs on the

parent (in this case f2-3) of the method (in this case A) that threw the exception.

A catchlet runs only after all loci of control executing in the corresponding cilk try

block have completed. As with ordinary inlets, JCilk guarantees that the catchlet

runs atomically with respect to other loci of control running on f2-3.

If the cilk try statement contains a finally clause, a finallet , which is similar to

a catchlet, runs only after all loci of control in the cilk try block have completed and

after the corresponding catchlet has completed. In addition, a finallet runs atomically

with respect to the method’s other loci of control.
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Aborting side computations

We are almost ready to tackle the full semantics of cilk try, which includes the

aborting of side computations when an exception is thrown, but we require one key

concept from the Java language specification [20, Sec. 11.3]:

“A statement or expression is dynamically enclosed by a catch

clause if it appears within the try block of the try statement of which

the catch clause is a part, or if the caller of the statement or expression

is dynamically enclosed by the catch clause.”

In Java code, when an exception is thrown, control is transferred from the code that

caused the exception to the nearest catch clause of a dynamically enclosing try

statement that handles the exception.

JCilk faithfully extends these semantics using the notion of “dynamically enclos-

ing” to determine, in a manner consistent with Java’s notion of “abrupt completion,”

which method instances should be aborted. (See the quotation in Section 1.3.) Specif-

ically, when an exception is thrown, JCilk delivers a CilkAbort exception semisyn-

chronously to the side computations of the exception. The side computations

include any method that is also dynamically enclosed by the catch clause of the

cilk try statement that handles the exception. The side computations also include

the primary locus of control of the method containing that cilk try statement if that

locus of control still resides in the cilk try statement. JCilk thus throws a CilkAbort

exception at the point of the primary locus of control in that case. Moreover, the

CilkAbort is not caught within a to-be-aborted cilk block until all its children have

completed, allowing the side computation to be “unwound” in a structured way from

the leaves up.

Figure 2-4 shows a cilk try statement. If method A throws an exception that is

caught by the catch clause beginning in line 6, the side computation that is signaled

to be aborted includes B and any of its descendants, if it has been spawned but hasn’t

returned. The side computation also includes the primary locus of control for f2-4,

unless it has already exited the cilk try statement. It does not include C, which is
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1 cilk int f2-4() {

2 int x, y, z;

3 cilk try {

4 x = spawn A();

5 y = spawn B();

6 } catch(Exception e) {

7 x = y = 0;

8 handle(e);

9 }

10 z = spawn C();

11 sync;

12 return x + y + z;

13 }

Figure 2-4: Handling exceptions with cilk try when aborting might be necessary.

not dynamically enclosed by the cilk try block.

JCilk makes no guarantees that the CilkAbort is thrown quickly or even at all

when it signals an exception’s side computation to abort. It simply offers a best-effort

attempt to do so. In fact, it would be correct for the signaling of a side computation

to abort to be implemented as a no-op. Linguistically, the side computations are

executed speculatively, and the overall correctness of a programmer’s code must not

depend on whether the “aborted” methods complete normally or abruptly. As we

shall see in Chapter 4, however, JCilk does have a particularly efficient mechanism

for signaling side computations to abort.

The semantics of cilk try

After an exception is thrown, when and how is it handled? We can decompose

exception handling into six actions:

1. An exception is selected to be handled by the catch clause of the nearest dy-

namically enclosing cilk try statement that handles the exception.

2. Its side computation is signaled to be aborted.

3. All dynamically enclosed spawned methods complete, either normally or abruptly

by dint of Action 2.

4. The primary locus of control for the method exits the cilk try block, either
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normally or by dint of Action 2.

5. The catchlet associated with the selected exception is run.

6. If the cilk try contains a finally clause, the associated finallet is run.

These actions operate as follows. If one or more exceptions are thrown, Action 1

selects one of them. Mirroring Java’s cascading abrupt completion, all dynamically

enclosed cilk try statements between the point where the exception is thrown and

where it is caught also select the same exception, even though they do not handle

it. Action 2 is then initiated to signal the side computation to abort. Action 5 is

initiated by Action 1, but it does not run until Actions 3 and 4 complete. Finally,

Action 6 is run. If no exception is thrown, Actions 1, 2, and 5 are not run. The only

dependency is that Action 6 runs only after both Actions 3 and 4 complete.

We made the decision in JCilk that if multiple concurrent exceptions are thrown

to the same cilk block, only one is selected to be handled. In particular, if one

of these exceptions is a CilkAbort exception, the CilkAbort exception is selected

to be handled. The rationale is that the other exceptions come from side computa-

tions, which will be aborted anyway. This decision is consistent with ordinary Java

semantics, and it fits in well with the idea of implicit aborting.

The decision to allow the primary locus of control possibly to exit a cilk try block

with a finally clause before the finallet is run reflects the notion that finally is

generally used to clean up [20, Ch. 11], not to establish a precondition for subsequent

execution. Moreover, JCilk does provide a mechanism to ensure that a finally clause

is executed before the code following the cilk try statement: simply place a sync

statement immediately after the finally clause.

Secondary loci of control within loops

When a primary locus of control executes a loop containing a cilk try statement,

the primary locus of control can exit the cilk try block and proceed to the next

iteration before its catch clause or finally clause is run. A secondary locus of

control eventually executes the catch clause or the finally clause as a catchlet or

a finallet. As in the Cilk language, this situation requires the programmer to reason
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1 cilk int f2-5() {

2 for(int i=0; i<10; i++) {

3 int a = 0;

4 cilk try {

5 a = spawn A(i);

6 } finally {

7 System.out.println("In iteration "

8 + i + " A returns " + a);

9 }

10 }

11 sync;

12 }

Figure 2-5: A loop containing a cilk try illustrating a race condition.

carefully about the code.

In particular, it is possible to write code with a race condition, such as the one

illustrated in Figure 2-5. The programmer is attempting to spawn A(0), A(1), . . .,

A(9) in parallel and print out the values returned for each iteration with the iteration

number i. Unfortunately, the primary locus of control may change the value of i

before a given child completes, in which case the secondary locus of control created

when the child returns will use the wrong value when it executes the print statement

in line 8 in the finally clause.

This situation is called a data race (or, a general race , as defined by Netzer

and Miller [37]), which occurs when two threads operating in parallel both access a

variable and one modifies it. In this case, f2-5’s primary locus of control increments

the value of i in line 2 in parallel with the secondary locus of control executing the

finally block which reads i in line 8. Whereas JCilk’s support for implicit atomicity

guarantees that the finally block executes atomically with respect to f2-5’s primary

locus of control, it does not guarantee that data races do not occur. In this case, the

data race makes the code incorrect.

The race condition in the code from Figure 2-5 can be fixed by declaring a new

loop local variable icopy, as shown in Figure 2-6. The only differences between code

in Figure 2-5 and Figure 2-6 are the additional declaration of a loop variable, icopy

in line 4 and the reading of i replaced with the reading of icopy in line 9. Every time
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1 cilk int f2-6() {

2 for(int i=0; i<10; i++) {

3 int a = 0;

4 int icopy = i;

5 cilk try {

6 a = spawn A(icopy);

7 } finally {

8 System.out.println("In iteration "

9 + icopy + " A returns " + a);

10 }

11 }

12 sync;

13 }

Figure 2-6: JCilk’s lexical-scope rule is exploited to fix the race condition from Figure 2-5.

f2-6 iterates its loop, a new copy of variable icopy is created and initialized with

the current value of i. When the finally clause executes on behalf of an iteration i,

the finally clause reads and prints the corresponding value of icopy as determined

by the lexical-scope rule [5, Sec. 7.4]. The JCilk compiler and runtime system

provide an efficient implementation of the lexical-scope rule which avoids creating

many extraneous versions of loop variables (see Section 4.3).

Handling aborts

In the original Cilk language, when a side computation is aborted, it essentially

just halts and vanishes without giving the programmer any opportunity to clean up

partially completed work. JCilk exploits Java’s exception semantics to provide a

natural way for programmers to handle CilkAbort exceptions.

When JCilk’s exception mechanism signals a method in a side computation to

abort, it causes a CilkAbort to be thrown semisynchronously within the method.

The programmer can catch the CilkAbort exception and restore any modified data

structures to a consistent state. As when any exception is thrown, pertinent finally

clauses, if any, are also executed.

The code in Figure 2-7 shows how CilkAbort exceptions can be caught. If any of

A, B, or C throws an exception while others are still executing, then those others are
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1 cilk void f2-7() {

2 cilk try {

3 spawn A()

4 } catch(CilkAbort e) {

5 cleanupA();

6 }

7 cilk try {

8 spawn B()

9 } catch(CilkAbort e) {

10 cleanupB();

11 }

12 cilk try {

13 spawn C()

14 } catch(CilkAbort e) {

15 cleanupC();

16 }

17 sync;

18 }

Figure 2-7: Catching CilkAbort.

aborted. Any spawned methods that are aborted have their corresponding cleanup

method called.

2.3 Examples of exception semantics

To demonstrate some of the JCilk extensions to Java, this section presents two al-

gorithms coded in JCilk, both of which employ speculative computing. The first

example is a solution to the “Queens” puzzle. The second example is a parallelized

version of the alpha-beta search algorithm [29], which implements the “young brothers

wait” [15] strategy.

The Queens problem

The first example illustrates how the so-called Queens puzzle can be programmed in

JCilk. The goal of the puzzle is to find a configuration of n queens on an n-by-n

chessboard such that no queen attacks another. That is, no two queens occupy the

same row, column, or diagonal. Figure 2-8(a) illustrates a legal configuration of queens
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(a) legal Configuration (b) illegal Configuration

Figure 2-8: Safety of configurations for the Queens puzzle. (a) A legal configuration that
solves the Queens puzzle. (b) An illegal configuration. Both configurations are displayed
on a 4-by-4 board. The crown icons represent the placement of the queens.

on a 4-by-4 board. Figure 2-8(b) illustrates an illegal configuration of queens: the

queens on column 2 and column 3 are attacking each other diagonally, and similarly,

so are the queens on column 1 and column 4.

Figure 2-9 shows how a solution to the Queens puzzle can be programmed in

JCilk. The program would be an ordinary Java program if the three keywords cilk,

spawn, and sync were elided, but the JCilk semantics make this code a highly parallel

program. This implementation uses a speculative parallel search. It spawns many

branches in the hopes of finding a “safe” configuration of the n queens, and when

one branch discovers such a configuration, the others are aborted. JCilk’s exception

mechanism facilitates programming this strategy.
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1 public class Queens {

2 private int n;
...

3 private cilk void queen(int[] cfg, int row) throws Result {

4 if(row == n) {

5 throw new Result(cfg);

6 }

7 for(int col = 0; col < n; col++) {

8 int[] ncfg = new int[n];

9 System.arraycopy(cfg, 0, ncfg, 0, n);

10 ncfg[row] = col;

11 if(safe(row, col, ncfg)) {

12 spawn queen(ncfg, row+1);

13 }

14 }

15 sync;

16 }

17 public static cilk void main(String argv[]) {
...

18 int n = Integer.parseInt(argv[0]);

19 int[] cfg = new int[n];

20 int[] ans = null;

21 cilk try {

22 spawn (new Queens(n)).queen(cfg, 0);

23 } catch(Result e) {

24 ans = (int[]) e.getValue();

25 }

26 sync;

27 if(ans != null) {

28 System.out.print("Solution: ");

29 for(int i = 0; i < n; i++) {

30 System.out.print(ans[i] + " ");

31 }

32 System.out.print("\n");

33 } else {

34 System.out.println("No solutions.");

35 }

36 }

37 }

Figure 2-9: The Queens problem coded in JCilk. The program searches in parallel for a
single solution to the problem of placing n queens on an n-by-n chessboard so that none
attacks another. The search quits when any of its parallel branches finds a safe placement.
The method safe determines whether it is possible to place a new queen on the board in a
particular square. The Result exception (which inherits from class Exception) is used to
notify the main method when a result is found.
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The Queens program works as follows. When the program starts, the mainmethod

constructs a new instance of the class Queens with user input n and spawns off

its queen method to search for a safe configuration. Method queen takes in two

arguments: cfg, which contains the current configuration of queens on the board,

and row, which contains the current row to be searched. The queen method loops

through all columns in the current row (lines 7–14) to find safe positions to place a

queen in the current row. The ordinary Java method safe in line 11, whose definition

we omit for simplicity, determines whether placing a queen in row row and column

col conflicts with other queens already placed on the board. If there is no conflict,

another queen method is spawned to perform the subsearch with the new queen

placed in the position (row, col) in line 12.

The newly spawned subsearch runs in parallel with all other subsearches spawned

so far. The parallel search continues until every row contains a queen, at which point

cfg contains a legal placement of all n queens. The successful queen method throws

the user defined exception Result (whose definition is not shown for simplicity) to

signal that it has found a solution (lines 4–6). That exception is used as a means of

communication between the queen and the main methods.

The program exploits JCilk’s implicit abort semantics to avoid extraneous compu-

tation. When one legal placement is found, some outstanding queen methods might

still be executing; those subsearches are now redundant and should be aborted. The

implicit abort mechanism does exactly what we desire when a side computation throws

an exception: it automatically aborts all sibling computations and their children dy-

namically enclosed in the catching cilk try block. In this example, since the Result

exception propagates all the way up to the main method, all outstanding queen meth-

ods are aborted automatically. Notice that there is a sync statement (line 26 in the

main method) before it proceeds to print out the solution to ensure that all side

computations have terminated.
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Alpha-beta search

We now examine another search algorithm, the parallel minimax search [44]. Like

the Queens problem, this algorithm exploits JCilk’s exception handling mechanism

to abort speculative computations that are found to be unnecessary. In addition, this

JCilk program provides an example which exploits the implicit lexical-scope rule to

ensure correct execution.

Alpha-beta search [29,50] is often used when programming two-player games such

as chess or checkers. It is basically a “minimax” [44] search algorithm applied with

“alpha-beta pruning” [44], a technique for pruning out parts of the game tree so that

more ply of depth can be searched within a given time bound. Alpha-beta search

maintains two values, alpha and beta, which represent the minimum score that the

evaluating player is assured of and the maximum score that the opponent is assured

of, respectively. As the algorithm recursively searches down the game tree, the range

between alpha and beta becomes smaller. When alpha becomes greater than beta,

it means that the current player has reached a position where a move can be made

so good that the opponent will not make the move leading to the position. Hence,

there is no point exploring more moves from that position. This situation is referred

as a beta cutoff , and the rest of the search from that position is pruned. The

basic alpha-beta search algorithm is inherently serial, because the information from

searching one child of a node in the game tree is used to prune subsequent children.

It is difficult to use information gained from searching one child to prune another if

one wishes to search all children in parallel.

One key observation helps to parallelize alpha-beta search: in an optimal game

tree, either all children of a node are searched (the node is maximal), or only

one child needs to be searched to generate a cutoff (the node is singular). This

observation suggests a parallel search strategy called young brothers wait [15]: if

the first child searched fails to generate a cutoff, speculate that the node is maximal,

and thus searching the rest of the children in parallel wastes no work. To implement

this strategy, the parallel alpha-beta algorithm first searches what it considers to be
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the best child. If the score returned by the best child generates a cutoff, the rest of the

children are pruned, and the search returns immediately. Otherwise, the algorithm

speculates that the node is maximal, and spawns off searches of all the remaining

children in parallel. If one of the children returns a score that generates a beta

cutoff, however, the other children are aborted, since their work has been rendered

unnecessary.

Figure 2-10 shows the core of the parallel alpha-beta search, which is taken from

part of a checkers program implemented in JCilk. The algorithm uses the negamax

strategy [29], where scores are always viewed from the perspective of the side to move

in the game tree. Therefore, when subsequent moves are searched, the alpha and

beta values are reversed, and the scores returned are negated. The search method is

assumed to be called with the current board configuration, the depth to search, and

the alpha and beta values that bound the search of the current node. When invoked,

it first checks for the base case by calling the method isDone, which basically returns

true if this node is at the leaf of the game tree (meaning the depth is reached), the

board configuration is a draw, or one side has lost. (The definition for isDone is

omitted for simplicity.) If isDone returns true, the algorithm evaluates and returns

the score of the current board configuration. Otherwise, it generates a list, named

the successors, of legal moves to search, which can be made from the current board

configuration. This successors list hopefully contains the moves in best-first order.

The search begins from ostensibly the best child, which corresponds to the first

move stored in the successors list. When this child returns with a score, alpha

is updated, and the condition for a beta cutoff is checked. If this score generates a

beta cutoff (meaning this node is singular), the score for this node (which is stored

in beta in this case) is returned. If this score does not generate a beta cutoff, the

algorithm then proceeds to spawn off the rest of the children in parallel, with the

remaining moves stored in the successors list. As each of these children returns,

the alpha value is again updated and the condition for a beta cutoff is checked.

If any of these children happens to generate a beta cutoff, a user-defined excep-

tion, ResultException (whose definition is omitted) is thrown, causing all children
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1 private cilk int search(Board board, int depth, int alpha, int beta)

2 throws ResultException {

3 int score1;

4 if(isDone(board, depth)) {

5 return eval(board);

6 }

7 List successors = board.legalMoves();

8 List move = (List) successors.pop_front();

9 Board nextBoard = (Board) board.copy();

10 nextBoard.move(move);

11 cilk try {

12 score1 = spawn search(nextBoard, depth + 1, -beta, -alpha);

13 } catch(ResultException e) {

14 score1 = e.getValue();

15 }

16 sync;

17 score1 = -score1;

18 if(score1 > alpha) {

19 alpha = score1;

20 if(score1 >= beta) {

21 return beta;

22 }

23 }

24 while(mayPlay (successors)) {

25 int score2 = -Integer.MAX_VALUE;

26 move = (List) successors.pop_front();

27 nextBoard = (Board) board.copy();

28 nextBoard.move(move);

29 cilk try {

30 score2 = spawn search(nextBoard, depth + 1, -beta, -alpha);

31 } catch( ResultException e) {

32 score2 = e.getValue();

33 } finally {

34 score2 = -score2;

35 if(score2 > alpha) {

36 alpha = score2;

37 if( score2 >= beta ) {

38 throw new ResultException(beta);

39 }

40 }

41 }

42 }

43 sync;

44 return alpha;

45 }

Figure 2-10: The core of a parallel alpha-beta search.
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spawned in parallel by this node to be aborted. The ResultException contains one

field, which stores the score of the node so that the score can be communicated back

to its parent.

Figure 2-11 shows the code for rootSearch, which initiates the searches from the

root node. The definition of rootSearch is similar to the definition of search, except

that no checks for beta cutoffs are performed, because no beta cutoff can happen at

the root of the game tree. The value for beta is initialized to the maximum value that

can be represented with an int type. One could merge the two methods, rootSearch

and search, with a flag indicating whether the current node is the root node or not.

I decided to separate them into two methods for simplicity.

The code shown in Figure 2-10 and Figure 2-11 exploits three important features

provided by JCilk:

1. implicit abort semantics,

2. the lexical-scope rule,

3. implicit atomicity.

We examine how each feature is exploited in turn.

First, the code exploits JCilk’s implicit abort semantics to abort extraneous com-

putations in a way similar to how the Queens code works, as explained in the Queens

problem earlier in this section.

Second, the code exploits JCilk’s support for the lexical-scope rule. More specifi-

cally, the search method in Figure 2-10 contains a cilk try with a finally clause

within the containing loop. The finally clause (lines 33–41) refers to the loop local

variable score2. Since score2 is declared within the loop (in line 25), the lexical-

scope rule applies. When each finally clause refers to score2, it resolves to the

version corresponding to the iteration to which the finally belongs lexically. This

“correct” resolution of score2 is crucial to the correctness of the alpha-beta code.

Third, the code exploits JCilk’s guarantee of implicit atomicity. In particular,

in the same finally clause in Figure 2-10 (lines 33–41), an assignment to the lo-

cal variable alpha is made (line 36). Even though alpha is written simultaneously
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1 private cilk List rootSearch(Board board) {

2 List bestMove = null;

3 int score1, bestScore = -Integer.MAX_VALUE;

4 int alpha = -Integer.MAX_VALUE, beta = Integer.MAX_VALUE;

5 List successors = board.legalMoves();

6 List move = (List) successors.pop_front();

7 Board nextBoard = (Board) board.copy();

8 nextBoard.move(move);

9 cilk try {

10 score1 = spawn search(nextBoard, 1, -beta, -alpha);

11 } catch(ResultException e) {

12 score1 = e.getValue();

13 }

14 sync;

15 score1 = -score1;

16 if(score1 > bestScore) {

17 bestScore = score1;

18 if(score1 > alpha) {

19 alpha = score1;

20 }

21 bestMove = move;

22 }

23 while(mayPlay(successors)) {

24 int score2 = -Integer.MAX_VALUE;

25 move = (List) successors.pop_front();

26 nextBoard = (Board) board.copy();

27 nextBoard.move(move);

28 cilk try {

29 score2 = spawn search(nextBoard, 1, -beta, -alpha);

30 } catch(ResultException e) {

31 score2 = e.getValue();

32 }

33 score2 = -score2;

34 if(score2 > bestScore) {

35 bestScore = score2;

36 bestMove = move;

37 if(score2 > alpha) {

38 alpha = score2;

39 }

40 }

41 }

42 sync;

43

44 return bestMove;

45 }

Figure 2-11: The root search of parallel alpha-beta.
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by multiple secondary loci of control (executing finally clauses from different it-

erations), no data races exist. JCilk’s guarantee of implicit atomicity allows all the

instantiations of the finally clause to execute atomically with respect to one an-

other. As long as the order of their execution does not affect the correctness of the

result, no data races exist.

This parallel alpha-beta search demonstrates the expressiveness of JCilk’s lan-

guage features and their semantics. Without the support of any one of these three

features, the parallel alpha-beta search could not be programmed so easily. Com-

pared to the parallel alpha-beta search coded in Cilk, this implementation is arguably

cleaner and simpler.
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Chapter 3

Fundamentals of the JCilk-1

Compiler

The JCilk-1 compiler translates JCilk source code into Java bytecode containing li-

brary calls to the runtime system, which schedules threads dynamically according to

available system resources. The blueprint of the JCilk-1 compiler is largely based

on the implementation of the Cilk-5 compiler. This chapter reviews the concepts

JCilk inherits from Cilk and describes how they are expressed in JCilk-1’s compiler

implementation, including the compilation process and the compilation strategy. In

particular, this chapter describes how the JCilk compiler supports the code migra-

tion required by the work-stealing algorithm and how the result is returned from a

spawned child on one processor to its parent on another processor. The complemen-

tary portion of the system, the JCilk-1 runtime system, was mainly implemented by

my collaborator, John Danaher. His work is described in his thesis [12], where the

readers can find more detail about the implementation of the JCilk-1 runtime system.

3.1 Concepts inherited from Cilk

There are three major concepts that JCilk inherits from Cilk: the “work-first” prin-

ciple, the “work-stealing” algorithm, and the “two-clone” compilation strategy. The

work-first principle is used for allocating overhead costs in the implementation. The
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work-stealing algorithm is used by the scheduler. The two-clone compilation strat-

egy is used by the compiler. This section outlines these key concepts. For a more

complete presentation, see [8, 16].

The work-first principle

The work-first principle [16] states:

“Minimize the scheduling overhead borne by the work of a computation.

Specifically, move overheads out of the work and onto the critical path.”

Two important parameters dictate the performance of a Cilk computation: its work ,

which is the execution time of the computation on one processor, and its critical-

path length , which is the execution time of the computation on an infinite number

of processors. In a dag representation of a Cilk computation, one can think of the

work as the sum of the execution times of all logical threads, and the critical path

length as the longest path between the first node (the initial thread) and the last

node (the last thread).

With these two parameters, we can give two fundamental lower bounds as to how

fast a Cilk program can run. Let us denote the execution of a given computation

on P processors as TP . Then, the work of the computation is T1, and the critical-

path length is T∞. The first lower bound is TP ≥ T1/P , because at each time step,

at most P units of work can be executed, and the total work is T1. The second

lower bound is TP ≥ T∞, because a finite number of processors cannot execute faster

than an infinite number of processors. Assuming an ideal parallel computer, Cilk’s

work-stealing scheduler executes in expected time

TP = T1/P +O(T∞). (3.1)

We refer to the first term on the right hand side of Equation 3.1 as thework term ,

and the second term as the critical-path term . The important point is that, all the

costs induced by communication and scheduling are borne by the critical-path term.
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To make these overheads explicit, we define the critical-path overhead to be the

smallest constant c∞ such that

TP ≤ T1/P + c∞T∞. (3.2)

Define the (average) parallelism as P = T1/T∞, which corresponds to the max-

imum possible speedup that the application can obtain. Also define the parallel

slackness to be the ratio P/P . Assuming sufficient parallel slackness, meaning

P/P ≫ c∞, then it follows that T1/P ≫ c∞T∞. Hence, from Inequality 3.2, we ob-

tain that TP ≈ T1/P , which means that we achieve linear speedup when the number

of processors, P is much smaller than the average parallelism P . Thus, when sufficient

parallel slackness exists, the critical-path overhead has little effect on performance.

As mentioned in Section 1.2, for every Cilk program, there is a legal C elision,

which one can use to measure against the 1-processor performance of the Cilk pro-

gram. Define the work overhead to be c1 = T1/Ts, where Ts is the execution time

of the computation by the C elision. Then, incorporating the critical-path and work

overheads into Inequality 3.2 yields

TP ≤ c1Ts/P +O(T∞) (3.3)

≈ c1Ts/P,

assuming the parallel slackness is sufficient (which is the common case). To restate

the work-first principle more precisely, minimize c1, even at the expense of a larger

c∞, because c1 has a larger impact on performance.

The work-first principle pervades the implementation of Cilk-5. Specifically, the

implementation of Cilk’s work-stealing algorithm and compiler are both designed to

minimize the work overhead, sometimes at the cost of a larger critical-path overhead.

JCilk’s implementations follow the same strategy.
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The work-stealing algorithm

Cilk’s runtime system uses a work-stealing algorithm to schedule threads dynamically

according to the available system resources. The basic idea of work-stealing is that if a

processor runs out of work, it takes the initiative and attempts to “steal” work from

other processors. If most processors have work, the migration of threads happens

infrequently, thereby avoiding associated overheads.

Cilk’s work-stealing algorithm operates as follows. A collection of POSIX threads

[26], calledworkers , schedule and execute the logical threads. Each worker maintains

a ready deque (doubly-ended queue), which mirrors C’s call stack and contains

procedure instances ready to be executed. These procedure instances are represented

as the activation frames , each of which contains information required to resume

execution of a particular cilk procedure. Every ready deque has two ends, a head

and a tail , from which activation frames can be added or removed. A worker operates

locally on the tail of its own deque, treating it much as C treats its call stack, pushing

and popping spawned activation frames. When a worker runs out of work to do, it

becomes a thief and attempts to steal an activation frame from another worker,

called its victim . The thief steals the activation frame from the head of the victim’s

deque, which is the opposite end from which the victim is working. Thus, when the

thief steals from the head of the deque, the activation frame stolen is always the oldest

one in the deque. In a dag representation of a Cilk computation, one can think of the

worker as operating in a depth-first fashion and the thief as operating in a breath-first

fashion.

Figure 3-1 shows a simple example of work-stealing. Initially, no workers have

work to do except for worker W1, which has two activation frames in its deque,

representing procedures A and B. Since worker W2 has no work to do, it randomly

chooses W1 to be its victim and attempts to steal from W1. At this point, W1 is

busy working on B, and A (which spawned off B) is available to be stolen. W2 steals

activation frame for A from W1 and starts working on it by resuming the execution

from where W1 left off, which in this case, is the instruction right after spawning
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Figure 3-1: An example of work-stealing. (a) The ready deques of two workers W1 and
W2. (b) The ready deques after the steal. A and B are method instances ready to be
executed. Method A is stolen by W2 in (b).

of B. Later, when W1 finishes working on B, it attempts to return control back to

B’s parent A. Since A has been stolen and is no longer in W1’s deque, instead of

doing an ordinary return, W1 notifies A’s current worker that its subcomputation has

completed, and passes B’s result to A’s current worker. Instead of saying W2, I say

A’s current worker, because it is possible for A’s current worker to be some worker

other than W2, for example, if A spawns off another procedure and is stolen again.

As the work-first principle suggests, one should move most overhead from the

worker to the thief, because actions by the worker contribute to the work term,

whereas actions by the thief contribute heavily to the critical-path term and less

to the work term. The Cilk’s scheduler implements the “THE” protocol [16] which

employs the Dijkstra’s protocol for mutual exclusion [14]. The key idea is that, to

resolve conflicts between two thieves stealing from the same victim, a simple but more

heavyweight lock is used, because this overhead contributes to the critical path term.

To resolve conflicts between a worker and a thief when there is only one frame left in

the ready deque, a more complicated but lightweight Dijkstra-like protocol is used,

and this overhead contributes minimally to the work term.

The two-clone compilation strategy

Cilk’s compiler implements a two-clone compilation strategy, designed to reduce

the work overhead, as dictated by the work-first principle. The strategy is to make

two clones of each cilk procedure — a fast clone and a slow clone. The fast
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clone operates just like the C elision and has little support for parallelism, except

for a small amount of essential bookkeeping. The slow clone has full support for

parallelism, along with its concomitant overhead.

Whenever a procedure is spawned, the fast clone runs. Whenever a procedure is

stolen, however, the stolen procedure is converted into a slow clone. When a steal

happens, we are making progress on the critical path, and hence the overhead of

executing a slow clone is borne by the critical-path term. In addition, since the

Cilk scheduler guarantees that the number of steals is small when sufficient slackness

exists, fast clones are executed most of the time. Therefore, to minimize the work

overhead, we should try to minimize the cost of executing fast clones.

The structure of the Cilk scheduler maintains two invariants which allow us to

minimize overhead in fast clones. First, a fast clone has never been stolen, because

whenever a procedure is stolen, it is converted into a slow clone. Second, the fast

clone’s descendants are also fast clones and have never been stolen, because the strat-

egy of stealing from the heads of ready deques guarantees that parents are always

stolen before their children. These facts allow many optimizations to be performed

in fast clones.

Since the fast clone has never been stolen, it does not need to provide general

support for parallelism, except for a small amount of essential bookkeeping. A spawn

statement in the fast clone is simply converted into an ordinary method call, and the

activation frame of the executing procedure is pushed into the ready deque (via a

call to the runtime system). The bookkeeping required is simply filling the activation

frames with the program counter and the current local variable values. A sync state-

ment is converted into an empty statement, because when a fast clone is executing,

it has no extant children.

The slow clone is similar to the fast clone except that it provides support for

parallel execution, since when a slow clone is executed, it must have been stolen and

is being executed in parallel with its children. The thread atomicity in Cilk guarantees

that a procedure can only be stolen between thread boundaries. Hence, a slow clone

always resumes at a thread boundary. In Cilk, this “continuation” is accomplished
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Figure 3-2: The two-stage compilation process for JCilk programs.

by using a goto statement to jump to the point of resumption, restoring the values

of local variables, and resuming execution. The slow clone knows where to resume

and how to restore the values of local variables, because they are recorded in the

activation frame by the fast clone.

3.2 JCilk-1’s two-stage compilation process

JCilk follows the same concept as Cilk and implements the two-clone compilation

strategy to minimize the work overhead. The implementation is not as straightforward

as in Cilk, however. This section explains what complications I encountered when

implementing the JCilk compiler and how I solved them. To be specific, the JCilk

compiler compiles code in two stages. The first stage compiles a given JCilk program

into GoJava, an intermediate language that I created. The second stage then compiles

the GoJava code into Java bytecode that can be executed by any standard Java

virtual machine. This two-stage compilation process allowed me to implement the

“continuation” mechanism required by the work-stealing algorithm.

Support for continuations

The work-stealing algorithm requires the compiler to support the migration of code

between worker threads. Remember from Section 2.1 that the JCilk keywords define

the boundaries of JCilk threads. These boundaries are points where a migration of
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code can potentially happen; that is, the two JCilk threads separated by a boundary

may be executed by two different workers. When a migration occurs during a steal,

the thief must establish its primary locus of control at the point where the victim left

off, as well as gain access to the state of local variables at that point. The mechanism

to allow this resumption is called a continuation .

The Cilk system, which is implemented in C, supports a continuation mechanism

using goto statements. Cilk’s compiler does source-to-source translation, translating

only Cilk keywords while leaving ordinary C code intact. The generated C code

has the same structure as the original Cilk program, but the keywords cilk, spawn,

and sync are expanded into the C statements and runtime-system calls necessary to

accomplish their functionalities. The goto statements are inserted at places where

a continuation needs to happen, allowing the control of program to jump from the

beginning of a cilk procedure to any point where the continuing logical thread begins.

Ideally, we would have liked to follow the Cilk strategy of performing a JCilk-to-

Java translation, translating only JCilk keywords while leaving ordinary Java code

intact. This approach is consistent with the philosophy that a user should pay the

overhead of running parallel code only when using JCilk’s parallel extensions. A JCilk

program should be compiled so that blocks containing only ordinary Java code run

without slowdown. Unfortunately, adopting this approach for JCilk is problematic,

because the Java language provides no goto statement.

To support a continuation mechanism, I created an intermediate language called

GoJava. This language is a minimal extension of Java that allows the goto statement

in limited and specific circumstances. Since Java bytecode already contains jump

instructions, compiling a GoJava program into standard Java bytecode required min-

imal changes to a Java compiler. Once the support for continuations was present, the

rest of the implementation issues were relatively straightforward.

The eventual design for the JCilk’s compiler contains two stages, illustrated in

Figure 3-2. The first stage is a source-to-source translation from JCilk to GoJava.

This stage expands all JCilk keywords into their effects and leaves ordinary Java

code unaffected. This translation is performed using Polyglot [40], a compiler toolkit
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designed especially for Java language extensions. The second stage of the compilation

process translates GoJava to Java bytecode using Jgo, a compiler for GoJava which I

created by minimally modifying GCJ (the Gnu Compiler for Java) [18]. This second

stage adds no additional overhead as compared to using GCJ directly, maintaining

the property that pure Java code suffers no slowdown.

The advantages of the two-stage approach

When designing the compilation process, we considered other alternatives, but in

comparison, the two-stage approach gives us better extensibility and portability. Not

only does this approach add up to a better research platform, it requires considerably

less engineering effort. There are two main alternatives that we considered.

The first alternative that we considered was to modify an existing Java compiler,

such as GCJ (Gnu Compiler for Java [18]) to translate from JCilk to bytecode directly.

This approach is not ideal because the JCilk compiler would be highly dependent on

the GCJ release. The resulting compiler would have intermixed my code with the

GCJ source and would have required reimplementing JCilk for every new release

of GCJ in order to keep up-to-date. Not long ago, GCC (Gnu Compiler Collection

which includes GCJ) made a new release and reengineered the internal representation

used in its compiler collection. Bringing the compiler current would have caused a

JCilk compiler reimplementation if I had implemented the compiler solely based on

modifying GCJ. Also, since GCJ itself is a complex piece of software, the resulting

JCilk compiler would be more complicated and difficult to maintain or extend than

the one based on Polyglot.

One other alternative that we considered was to modify an existing open source

Java virtual machine and support continuation as a primitive within the virtual ma-

chine. This approach requires substantial engineering effort and has similar problems

as the first alternative. Even though most of the existing open source virtual machines

do not change versions quickly (and thus are easier to maintain), they do not support

the latest version of JDK (Kaffe [1] or LaTTe [36]). Hence, keeping the resulting

compiler up-to-date would still be difficult.
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The two-stage compilation strategy gives us several advantages over other strate-

gies: less engineering effort, cleaner implementation, relative portability, and easy

extensibility. The two-stage compilation strategy has a clean separation between

the translation part (the JCilk-to-GoJava translation) and the compilation part (the

GoJava-to-bytecode compilation). The result is a clean implementation, since all

translation required is done in Polyglot, translating JCilk keywords only. Polyglot

provides us a clean interface in which to build almost anything one would want in

a compiler for a Java language extension. The JCilk compiler is relatively portable,

because Polyglot is implemented in Java and is platform independent. Finally, it is

also easily extensible, because making new extensions simply means implementing

them in Polyglot. These advantages sum up to give us a better research platform

than other alternatives.

JCilk’s use of goto statements is safe

Putting goto statements into Java often raises people’s eyebrows and concerns: does

it violate Java’s safety properties? The short answer is no. The strongest evidence is

that the bytecode generated by the JCilk compiler passes Java’s bytecode verification

and can be executed by any standard Java virtual machine. Safety in Java is enforced

at the bytecode level by the JVM interpreter. Since the JCilk compiler produces legal

Java bytecode, even though it does so through the unorthodox means of GoJava, no

safety properties are sacrificed.

To give a longer answer, JCilk’s use of goto statements is safe, because the JCilk

compiler only inserts them in limited and specific circumstances. The standard Java

virtual machine does provide jump instructions at the bytecode level, and in fact, one

of the jump instructions is called goto, which does an unconditional jump. Therefore,

using the goto bytecode instruction is indeed legal, as long as it does not violate

the constraints on Java bytecode [32, Sec. 4.8]. More specifically, there are two

types of bytecode constraints : static constraints [32, Sec. 4.8.1] and structural

constraints [32, Sec. 4.8.2]. The JCilk compiler follows both constraints strictly.

With respect to static constraints, the Java Virtual Machine Specification [32,
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pg. 134] states,

“The target of each jump and branch instruction (jsr, jsr w, goto,

goto w, ifeq, ifne, ifle, iflt, ifge, ifgt, ifnull, ifnonnull, ificmpeq, ificmpne,

ificmple, ificmplt, ificmpge, ificmpgt, ifacmpeq, ifacmpne) must be the op-

code of an instruction within this method. The target of a jump or branch

instruction must never be the opcode used to specify the operation to be

modified by a wide instruction; a jump or branch target may be the wide

instruction itself.”

JCilk’s use of goto statements follows this static constraint. First, JCilk only uses

goto statements to make local jumps, meaning jumps within the same method. Sec-

ond, since the JCilk compiler inserts goto statements at the Java source-code level,

the goto bytecode can only be inserted between two Java statements and never in

the middle of a statement. In other words, JCilk’s use of goto statements ensure that

the target of the goto instruction is never the opcode used to specify the operation

to be modified by a wide instruction. (The wide instruction modifies the behavior of

another instruction, which can be generated only as part of a statement but never as

a whole statement [32, pp.360-361].)

With respect to structural constraints, the Java Virtual Machine Specification [32,

pg. 137] states,

“No local variable (or local variable pair, in the case of a value of type

long or double) can be accessed before it is assigned a value.”

JCilk’s use of goto statements follows this structural constraint as well. The JCilk

compiler ensures that all variables are properly initialized with the correct values at

the jump destination. Consequently, its use of goto statements never causes errors

such as uninitialized local variables.

The Jgo compiler is designed to be a component of the JCilk compiler, and nor-

mally, it should only be used to compile GoJava code output from the first stage of

JCilk compilation. When the Jgo compiler is used as part of the JCilk compilation

process, the bytecode it generates is safe and conforms to all bytecode constraints on
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the use of goto instructions. These constraints are enforced by JCilk’s first compila-

tion stage when translating from JCilk to GoJava, but not by the second compilation

stage when compiling from GoJava to bytecode, where Jgo is used.

If GoJava were to be used as a stand-alone programming language, however, no

mechanism would enforce a programmer to obey these bytecode constraints, because

the Jgo compiler imposes no restrictions on the use of goto statements. Consequently,

the Jgo compiler should not be used as a general-purpose compiler. Otherwise, it

would be too easy for a programmer to use a goto statement improperly.

When building the JCilk compiler, we decided to implement GoJava as an inter-

mediate language rather than a general-purpose language. This decision was made

for two reasons. First, we did not need GoJava to be a general-purpose language for

the use of JCilk. JCilk only needs to insert goto statements in limited circumstances.

Second, it is not straightforward for a programmer to reason about the proper usage

of goto statements due to the subtleties of Java’s bytecode constraints, which are

not apparent at the Java source-code level. Bringing goto statements into Java for

general use would introduce unnecessary complexities into the language.

To demonstrate why the Jgo compiler should not be used as a general-purpose

compiler, consider the following bytecode constraint. The Java Virtual Machine Spec-

ification [32, pg. 137] states,

“If an instruction can be executed along several different execution

paths, the operand stack must have the same depth (§3.6.2) prior to the

execution of the instruction, regardless of the path taken.”

It is easy to write code that violates this constraint and causes the Jgo compiler

to generate bytecode that is rejected by Java’s bytecode verifier. For instance, a

finally clause is usually invoked with the bytecode instruction jsr, which pushes its

return address when executed [32, pg. 149]. That means, when executing the first

instruction in a finally clause, the return address is expected to be on the top of the

stack, regardless the execution path taken to reach the instruction. The constraint

is violated if a goto statement is used to jump into the middle of a finally clause,
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because a goto statement does an unconditional jump and does not push the return

address onto the stack before the jump. Hence, the stack depth can differ depending

on how the program control reaches the finally clause. While it is unsafe to use

the Jgo as a general-purpose compiler, the JCilk compiler is still safe, because JCilk

semantics simply do not require the use of goto statements in such cases. That

is, the first stage of the JCilk compiler never needs to generate GoJava that uses

goto statements that violate this constraint. Hence, the JCilk compiler enforces this

constraint automatically.

3.3 Compiler support for spawn and sync

With the knowledge of how work-stealing works and how JCilk compiler supports

continuations, this section describes in more detail how the JCilk compiler interacts

with the runtime system to support the basic semantics for spawn and sync. This

section answers questions such as how a method instance is represented in a ready

deque, how the slow clone of a cilk method supports parallelism, and how the inlet

mechanism is implemented in JCilk.

Interacting with the JCilk runtime system

The JCilk compiler interacts with the JCilk runtime system via two classes: the

Worker class and the CilkFrame class. The Worker class represents the workers in

the work-stealing algorithm. The CilkFrame class represents the activation frames

in the ready deque.

An instance of the Worker class acts as a worker described in the work-stealing

algorithm from Section 3.1. The class implements library calls that the compiler

invokes to communicate with the runtime system. Although the runtime system

schedules the JCilk threads and manages the ready deque for each worker, the JCilk

compiler generates calls in the GoJava output to trigger actions to operate on the

ready deque.

An instance of the CilkFrame class acts as an activation frame in a worker’s ready
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deque. The class is, however, a superclass for all activation frames and provides only

an abstraction so that the worker can use it without knowing all the details of a

particular method instance. Since the activation frame contains fields pertinent to

the cilk method which it represents, each cilk method has its own type of activation

frame. An activation frame for a particular cilk method is implemented as a private

inner class (or nested class if the cilk method is static) which extends the CilkFrame

class in the GoJava output generated by the compiler. Each activation frame contains

fields mirroring all local variables of its corresponding cilk method.

To allow a thief to resume execution of the stolen activation frame, the thief needs

to know which method the frame represents and where the execution was left off, that

is, the latest program counter for the method execution. The CilkFrame provides

the abstractions (overridden by each activation frame accordingly) so that the thief

can retrieve the information from the activation frame it steals, but at the same time

be oblivious about the precise fields contained in the frame. The thief figures out

where to resume by reading a field called pc in the CilkFrame, which assimilates the

latest program counter of the method. The thief resumes the correct method by calling

the cilkRun instant method in the CilkFrame. The cilkRun method is overridden by

each activation frame to invoke the appropriate slow clone of its corresponding cilk

method. For brevity, when I say a method is defined in the CilkFrame, the readers can

automatically assume that the method is overridden appropriately by each activation

frame (its subclass), tailored specifically for the frame’s corresponding cilk method.

The cilk method, fib in Figure 3-3 calculates the Fibonacci number of n by

spawning off the calculation for fib(n-1) and fib(n-2) in parallel and returning

their sum after the sync statement. Its corresponding activation frame Fib Frame is

shown in Figure 3-4. The pc field is inherited from CilkFrame, since it is needed across

all frames. The Fib Frame object contains other fields, where each corresponds to a

local variable in the fib method, including the method argument n. The cilkRun

method, invoked by the worker from the runtime system to resume execution of a

stolen method, is overridden to call the slow clone, which is fib Slow in this case.
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1 cilk private int fib(int n) {

2 int x, y;

3 if( n < 2 ) {

4 return n;

5 }

6 x = spawn fib(n-1);

7 y = spawn fib(n-2);

8 sync;

9 return (x + y);

10 }

Figure 3-3: A simple JCilk method that computes the Fibonacci number using a naive
exponential-time algorithm.

1 private class Fib_Frame extends CilkFrame {

2 private int n;

3 private int x;

4 private int y;

5 public Fib_Frame(int n, int pc, int returnEntry) {

6 super(pc, returnEntry);

7 this.n = n;

8 }

9 public void cilkRun(Worker worker) {

10 fib_Slow(worker, this);

11 }

12 }

Figure 3-4: A simplified version of the activation frame for the Fibonacci method shown
in Figure 3-3.

JCilk’s two-clone compilation

JCilk’s compiler, following the design of Cilk’s compiler, implements the two-clone

compilation strategy to minimize the work overhead. Figure 3-5 and Figure 3-6

illustrate the two clones in the GoJava output produced when the fib method is

compiled.

Figure 3-5 shows the simplified GoJava output of fib’s fast clone. The method

body structure remains the same except that a few statements for bookkeeping are

added. First, at the beginning of the method, a call is made to push the Fib Frame
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1 private int fib(int n, Worker worker, int returnEntry) {

2 int x, y;

3 Fib_Frame frame = new Fib_Frame(n, 0, returnEntry);

4 worker.pushFrame(frame);

5 if(n < 2) {

6 return n;

7 }

8 frame.pc = 1;

9 x = fib(n - 1, worker, 1);

10 if(worker.popFrameCheckStart() == worker.STOLEN) {

11 worker.popFrameCheckFinish(new Integer(x), true);

12 return 0;

13 }

14

15 frame.x = x;

16 frame.pc = 2;

17 y = fib(n - 2, worker, 2);

18 if(worker.popFrameCheckStart() == worker.STOLEN) {

19 worker.popFrameCheckFinish(new Integer(y), true);

20 return 0;

21 }

22

23 return x + y;

24 }

Figure 3-5: A simplified version of the fast clone of the compiled Fibonacci method.

into the ready deque of the worker (lines 3–4). The first spawn statement from

the original JCilk program (line 6 in Figure 3-3) has been transformed into several

statements in the fast clone (lines 8–13 in Figure 3-5). Before the call, the pc field

is set, to keep track of the current locus of control, in case the fib method is stolen.

After returning from the first call to fib(n-1), a call is made to the worker in line 10

to see if fib has been stolen. If so, hand the return value to the runtime system and

leave the method. If not, continue onto the next statement. Again, since this is the

fast clone and has never been stolen, there is no need to execute a sync statement.

The sync statement from the original JCilk program has been converted into an

empty statement.

Figure 3-6 shows the simplified GoJava output of fib’s slow clone. The method
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1 private void fib_Slow(Worker worker, CilkFrame frame) {

2 Fib_Frame fibFrame = (Fib_Frame) frame;

3 switch(fibFrame.pc) {

4 case 1:

5 goto cilk_sync1;

6 case 2:

7 goto cilk_sync2;

8 case 3:

9 goto cilk_sync3;

10 }
...

11 fibFrame.pc = 1;

12 fibFrame.x = fib(fibFrame.n - 1, worker, 1);

13 if( worker.popFrameCheckStart() == worker.STOLEN ) {

14 worker.popFrameCheckFinish( new Integer(fibFrame.x), true );

15 return;

16 }

17 cilk_sync1: ;

18 fibFrame.pc = 2;

19 fibFrame.y = fib(fibFrame.n - 2, worker, 2);

20 if( worker.popFrameCheckStart() == worker.STOLEN ) {

21 worker.popFrameCheckFinish( new Integer(fibFrame.y), true );

22 return;

23 }

24 cilk_sync2: ;

25 fibFrame.pc = 3;

26 if( worker.checkSync() == false ) {

27 return;

28 }

29 cilk_sync3: ;

30 worker.setResult( new Integer(fibFrame.x + fibFrame.y) );

31 return;

32 }

Figure 3-6: A simplified version of the slow clone of the compiled Fibonacci method.

is similar to the fast clone except that it contains support for parallel execution. A

switch statement is added at the beginning of the method (lines 3–10) to allow the

thief who stole this method to jump to the appropriate continuation point, which is

specified by the pc field in the frame. Labels are added at all possible continuation
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points, meaning after every spawn and sync statement. For example, if the thief

steals the method after the victim spawns off fib(n-1), the pc read by the thief

would be 1, causing the thief to jump from line 5 to line 17, where the spawning of

fib(n-1) ends. The sync statement from the original JCilk program is converted

into several statements in the slow clone (lines 25–29 in Figure 3-6). A call is made

to the worker in line 26 to ensure that all spawned children have returned. If not, the

method returns to the runtime and will be resumed sometime later when all children

return. When returning a value, the slow clone does not use the ordinary return

statement in Java. Instead, it hands the return value to the worker (as in line 30).

Since the slow clone is always stolen and invoked by the runtime via the cilkRun

method, its actual parent method is not in the same Java call stack, and special care

must be taken to return the slow clone’s value to its parent.

Returning a value to a stolen parent

What happens when a spawned child completes execution and tries to return a value

to its parent, but discovers that its parent has been stolen? In this case, the parent’s

frame is no longer in the same Java call stack and is being executed by a different

worker. Instead of executing an ordinary Java return, the child must somehow find

its way to return the value to the stolen parent. The inlet mechanism, described in

Chapter 2, allows the child to return to a parent on a different worker.

Since the parent is stolen, it is being executed as a slow clone, which reads values

from its activation frame when referring to local variables. Thus, the child can simply

return by updating the parent’s activation frame with its return value. But, how does

the child know which field in the frame to update? This issue does not arise in Cilk

— a spawned child in Cilk is simply handed the memory address of the variable into

which the return value should be stored. We cannot play the same trick in JCilk,

however, because Java provides no explicit way to refer to a memory address.

We solve this problem by passing the current pc of the parent when spawning

a child. This value is referred to as the child’s return entry , which corresponds

to where the parent’s locus of control is when it spawns off the child. The return
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1 public void setInletReturn(int returnEntry, Object returnVal) {

2 switch (returnEntry) {

3 case 1:

4 this.x = ((Integer) returnVal).intValue();

5 break;

6 case 2:

7 this.y = ((Integer) returnVal).intValue();

8 break;

9 }

10 }

Figure 3-7: The setInletReturn method that implements the inlet mechanism for the
Fibonacci method from Figure 3-3

entry of a child is stored in its own frame, in the field called returnEntry defined in

CilkFrame. When the child returns, it hands over the return entry along with the

return value to the current worker of the parent, which then updates the appropriate

field in the parent’s frame with the return value. A lookup table in the parent’s

frame tells which field in the frame a return entry corresponds to and dispatches to

the appropriate inlet to update the field. This lookup table is invoked via the method

setInletReturn defined in CilkFrame. As specified by the semantics, the runtime

system ensures that the inlet code is executed between thread boundaries only.

Figure 3-7 illustrates how the setInletReturn for the fib method (Figure 3-

3) is defined. When spawning off fib(n-1) in the compiled code (line 9 in Fig-

ure 3-5), the current pc is handed to the child as an argument. This value is

stored in the returnEntry field in child’s frame and is used to return when invoking

setInletReturn in the parent frame. In this case, returnEntry of value 1 corre-

sponds to returning to x in the frame, as shown in line 4, Figure 3-7. Even though

the inlet mechanism produces a small overhead compared to an ordinary Java return,

this mechanism is used only in the slow clone when the method is stolen. Hence, the

overhead is borne by the critical-path term, as dictated by the work-first principle.
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Chapter 4

Compiler support for exception

semantics

This chapter describes how the JCilk compiler supports semantics unique to JCilk,

that is, those that are not analogous to linguistics in Cilk. These semantics specifically

include the exception semantics presented in Section 2.2. The JCilk compiler provides

a mechanism for supporting catchlets and finallets, and it enforces the lexical-scope

rule. In addition, the JCilk compiler implements a special mechanism to enforce Java’s

left-to-right order of evaluation. (The lexical-scope rule and the order of evaluation

are not yet fully implemented in the JCilk-1 compiler.)

This chapter is organized as follows. Section 4.1 describes how the compiler sup-

ports the mechanisms for catchlets and finallets by generating “lookup-tables” meth-

ods which provides information of the lexical hierarchy of nested cilk try blocks.

Section 4.2 presents the mechanism for supporting implicit abort, which replies on

a data structure called “try tree” maintained by the runtime system and a lookup-

table method generated by the compiler. Section 4.3 explains the implementation for

enforcing the lexical-scope rule. Section 4.4 examines the evaluation order required

by the Java semantics and the complications entailed for the compiler to enforce the

evaluation order.
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1 private int fib(int n, Worker worker, int returnEntry) {
...

2 try {

3 x = fib(n - 1, worker, 1);

4 }

5 catch(RuntimeException e) {

6 if(worker.popFrameCheckException(e) == worker.STOLEN) {

7 return 0;

8 } else {

9 throw e;

10 }

11 }
...

12 if(worker.popFrameCheckStart() == worker.STOLEN) {

13 worker.popFrameCheckFinish(new Integer(x), true);

14 return 0;

15 }
...

16 }

Figure 4-1: The fast clone of the compiled Fibonacci method, with support for intercepting
exceptions.

4.1 Support for exception handling

This section describes how the compiler supports exception handling in JCilk: the

catchlet and the finallet mechanism. In addition to regular return values, when a

spawned child throws an exception to a stolen parent, more complications are involved

for the parent method to handle the exception correctly. In particular, if the throwing

child is buried in multiple levels of nested cilk try blocks, which catch clause handles

the exception and which finally clause needs to be executed depend on the type of

the exception thrown. The compiler generates “lookup-table” methods to help the

runtime system make these decisions.

Intercepting exceptions

What happens when a child throws an exception and the parent is stolen? Sim-

ilar to the returning situation, since the parent’s frame is no longer in the same
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Java call stack, the child cannot throw the exception normally. Rather, the worker

must intercept the exception and pass the exception to the stolen parent appropri-

ately. Figure 4-1 illustrates how the exception can be intercepted in the compiled

fib method. The JCilk compiler generates a try statement (lines 2–11) to wrap

around a call to a cilk method to catch every exception that the cilk method can

possibly throw. The exceptions to intercept include both the unchecked exceptions

and the checked exceptions declared to be thrown by the called cilk method. In

the case of fib, the try statement contains catch clauses for RuntimeException,

Error, and CilkAbort. (The CilkAbort exception is declared to be thrown by every

cilk method, although it is not shown in Figure 4-1. The programmer can consider

CilkAbort as an unchecked exception.) If the parent is stolen when an exception

occurs, the child returns to the runtime (lines 6–7). Otherwise, the exception is

rethrown, allowing the Java mechanism to handle it naturally (line 9).

Executing catchlets

Intercepting and passing the exception is not the difficult part — simply treat the

exception as a return value and pass it to the parent’s current worker. The difficult

part is figuring out where the exception is caught in order to determine which catchlet

and finallet(s) (if any) to execute. As an example, consider the method in Figure 4-2.

There are three spawns in the method threeWay: method A is not enclosed by any

cilk try statement; method B is enclosed by one cilk try statement; method C is

enclosed by two nested cilk try statements. Depending on what kind of exception

the call to C throws, a different catch clause is executed. For instance, if C throws an

ArithmeticException, the catchlet corresponding to the catch clause in lines 7–9

is executed. On the other hand, if C throws a RuntimeException, then the catchlet

corresponding to the catch clause in lines 12–14 is executed.

In order to pick the appropriate catchlet to execute, three pieces of information

are needed: the throw point (i.e., where the exception occurs) within the parent

method, the type of the exception thrown, and the catch range of each catchlet. We

already have the first two pieces of information. The throw point corresponds to the
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1 cilk void threeWay() throws IOException {

2 spawn A(); // pc = 1

3 cilk try {

4 spawn B(); // pc = 2

5 cilk try {

6 spawn C(); // pc = 3, throws exception.

7 } catch(ArithmeticException e) {

8 cleanupC(); // pc = 4

9 } finally {

10 D(); // pc = 4

11 }

12 } catch(RuntimeException e) {

13 cleanupB(); // pc = 5

14 } finally {

15 E(); // pc = 5

16 }

17 F();

18 sync; // pc = 6

19 }

Figure 4-2: A method containing nested cilk try blocks, each containing a spawn state-
ment with catch and finally clauses. The comments show the pc value for each corre-
sponding statement.

return entry of the throwing child. The type of exception is known because we have

intercepted the exception. The compiler generates the setCatchletReturn method

defined in CilkFrame to provide the catch ranges of the catchlets.

The setCatchletReturn is a lookup-table method which simulates a lookup

table that dispatches to the appropriate catchlet by examining the value of the

throw point and the type of the thrown exception. If the exception is not caught

within the parent method, the setCatchletReturn rethrows the exception to the

runtime system. The runtime system then handles the exception by repeating the

process and propagating the exception upward in the call stack. Figure 4-3 illus-

trates the generated setCatchletReturn method for the threeWay method. The

setCatchletReturn executes a method call to cleanupB if a RuntimeException is

thrown when the pc value is 2, 3, or 4 (which corresponds to the statements in

lines 4–11 in Figure 4-2.) Similarly, the setCatchletReturn executes a method call

to cleanupC if an ArithmeticException is thrown when the pc value is 3 (which
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1 public void setCatchletReturn(int returnEntry, Throwable thrown) throws Throwable {

2 switch(returnEntry) {

3 case 2:

4 case 4:

5 if(thrown instanceof RuntimeException) {

6 cleanupB();

7 }

8 return;

9 case 3:

10 if(thrown instanceof ArithmeticException) {

11 cleanupC();

12 } else {

13 if(thrown instanceof RuntimeException) {

14 cleanupB();

15 }

16 }

17 return;

18 default:

19 throw thrown;

20 }

21 }

Figure 4-3: The lookup-table method for threeWay in Figure 4-2 that dispatches to the
appropriate catchlet.

corresponds to the statement in line 6.)

Executing finallets

The mechanism for executing finallets is similar to the ones for executing catchlets.

A difference between executing finallets and executing catchlets is that, whether a

cilk try block completes normally or abruptly (with exception), its finallet must

be executed, whereas its catchlet executes only upon the occurrence of a caught

exception.

When a cilk try block completes abruptly, the return entry of the thrown child is

used to dispatch to the correct finallet (by invoking the setFinalletReturn method

defined in CilkFrame, such as the one shown in Figure 4-4.) When a cilk try

block completes normally, on the other hand, the pc value corresponding to the last

statement of the cilk try block is used. This pc value is recorded by the primary
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1 public void setFinalletReturn(int pc) throws Throwable {

2 switch(pc) {

3 case 2:

4 case 4:

5 E();

6 return;

7 case 3:

8 D();

9 return;

10 }

11 }

Figure 4-4: The lookup-table method for threeWay in Figure 4-2 that dispatches to the
appropriate finallet.

locus of control when it leaves the cilk try block and realizes that not all children

dynamically enclosed by the cilk try have completed yet.

A complication arises if the primary locus of control is aborted and resumed

outside the cilk try block. The primary locus may potentially jump across multiple

levels of cilk try statements without recording the pc for executing the skipped

finallets. For instance, when C in the threeWay method (line 6, Figure 4-2) throws a

RuntimeException, and the primary locus of control still resides in the outer cilk

try block (lines 3–12), the primary locus is aborted and resumed at the statement

after the cilk try statement (line 16 where pc = 5). The primary locus might have

skipped two finally clauses (in lines 9–11 and lines 14–16 respectively) without

recording the corresponding pc values.

To solve this complication, the compiler provides a method, getFinalletPickup,

which examines the current pc and returns the next pc representing the thread bound-

ary immediately after the innermost cilk try statement enclosing the current pc.

The runtime system queries the getFinalletPickup method iteratively to simulate

the aborted primary locus jumping from the end of a cilk try statement to the end

of the next cilk try statement. By doing so, the runtime system records all pc val-

ues passed along the way, until it reaches the point where the primary locus resumes.

Figure 4-5 shows the getFinalletPickup method for the threeWay method.

The JCilk compiler generates these lookup-table methods (such as setCatchletReturn,
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1 public int getFinalletPickup(int pc) {

2 switch(pc) {

3 case 2:

4 case 4:

5 return 5;

6 case 3:

7 return 4;

8 default:

9 return -1;

10 }

11 }

Figure 4-5: The lookup-table method for threeWay in Figure 4-2 that returns the pc for
the end of the next enclosing cilk try statement.

setFinalletReturn, and getFinalletPickup) by walking the abstract syntax tree

[5, Sec. 2.5] and performing static analysis on the parsed JCilk code during the com-

pilation stage in Polyglot.

4.2 Support for implicit abort

This section describes how the compiler supports the implicit abort mechanism when

an exception occurs. When an exception occurs, JCilk must determine which side

computations to abort. A data structure called a “try tree” and a lookup-table

method called getCatchletAltitude are used to provide information about which

spawned children to abort. When an abort takes place, the primary locus of control

of the catching method must be aborted as well, if it still resides within the cilk try

statement. The compiler also helps the runtime system to decide at which thread

boundary the primary locus should resume in the catching method. Furthermore, if

the programmer catches the CilkAbort exception for cleanup, the runtime system

relies on the compiler to ensure that the CilkAbort exception is rethrown, so that

the call stack can unwind properly back to the top-level method where the exception

is caught.
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The try tree

Due to the potential parallelism in a cilk block, the system must be able to keep

track of possibly more than one concurrent exception occurring among parallel com-

putations within the same cilk block. While selecting only one exception to be

handled, the system also needs to know which side computations to signal to abort.

Determining which side computations to signal to abort can be complex. Consider

the method threeWay in Figure 4-2 again. Depending on what kind of exception

the call to C (line 6) throws, different sets of spawned methods might receive the

abort signal. For example, if C throws a RuntimeException, then B could be aborted

(assuming it was still running), but A would continue normally.

In order to determine which spawned child methods should be aborted, the worker

must keep track of where in the parent method they were originally spawned from.

This information is maintained using the try tree data structure. In the same way

that the ready deque mirrors the Java call stack, the try tree mirrors the dynamic

hierarchy of nested cilk try statements. It is sufficient to maintain one try tree per

worker, in its closure , which is the top frame of the worker’s ready deque. Because

of how work stealing operates, the closure is the only frame within the deque that

runs as a slow clone and might have children running on other workers. Applying the

work-first principle, maintaining the try tree in the closure does not add significant

overhead to the work term.

The try tree keeps track of the top-level method’s children currently executing on

other workers and from which cilk block they were spawned. The try tree contains

three different kinds of nodes: internal nodes, leaves, and a cursor. Each internal node

represents a cilk block, which can be either a cilkmethod or a cilk try block; a leaf

usually represents a spawned child that is currently executing on a different worker.

A node’s parent in the try tree represents the cilk block most directly containing the

node. That means each leaf’s parent node corresponds to the innermost cilk block

from which the child was spawned. The try tree contains only one cursor , which

tracks the cilk block containing the worker’s current locus of control. The cursor
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can be either a leaf or an internal node. When the cursor is a leaf, it represents a

spawned child method which is currently executing on the same worker. When the

cursor is an internal node, it represents the cilk block currently executing on this

worker, which contains child/children executing on different worker(s).

Maintaining the try tree is mainly done in the runtime system, except that the

compiler generates calls before entering and after leaving a cilk try statement to

inform the worker to update the try tree accordingly. How the try tree is maintained

in the runtime system is beyond the scope of this thesis. Interested readers can refer

to John Danaher’s thesis [12] for more information.

Aborting with the try tree and the altitude lookup table

Having the try tree alone is not sufficient enough to tell which side computation

to abort, because the try tree does not give information about which node in the

tree catches the exception. This information is provided by the JCilk compiler, via a

method called getCatchletAltitude defined in CilkFrame. The getCatchletAltitude

method essentially contains a lookup table which examines the throw point and the

thrown exception type and tells how many levels up the try tree the exception is

caught.

The getCatchletAltitude method for the threeWay method is shown in Fig-

ure 4-7. For instance, if the spawned method C, whose return entry is 3, throws a

RuntimeException, it is caught by the outer cilk try in line 3 in Figure 4-2. Thus,

the getCatchletAltitude returns 2. In the dynamic try-tree representation (shown

in Figure 4-6), two levels up from node C, representing the execution of C, is node v

representing the outer cilk try. Given this information, the runtime system decides

that everything below node v should be aborted (which includes method B, method

C, and possibly the primary locus of the method threeWay.) If the thrown exception

is not caught within this top-level method threeWay, getCatchletAltitude returns

−1. In this case, the worker for the threeWay method needs to pass the exception up

to its parent.

79



B

C

u
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c

Figure 4-6: The try tree corresponding to an execution of threeWay in Figure 4-2. Node
u represents the cilk method itself. Node v represents the outer cilk try block. Node
c represents the inner cilk try block, which is also where the cursor is. Nodes A, B, and
C represents the call to method A, B, and C respectively. Each method is executing on a
different worker.

Resuming the primary locus of control after an abort

When an abort takes place, if the primary locus of control of the catching method still

resides in the cilk try statement, the primary locus of control is a side computation

that must be signaled to abort. This case is more complex, because the primary locus

is residing in a cilk try block which is being aborted. That means, the primary

locus must return to the runtime system as soon as possible, skip the rest of the

JCilk threads within the aborted block, and resume at the point immediately after

the catching cilk try statement.

The difficulty is how the worker figures out at which thread boundary the primary

locus should resume. The method getCatchletPickup defined in CilkFrame returns

the correct pc value with which to resume by examining the old pc of the primary

locus and the type of the thrown exception.

Figure 4-8 shows the getCatchletPickup method for the threeWay method. Us-

ing the same example, if the spawned method C throws a RuntimeException while the

primary locus hasn’t left the catching cilk try (lines 3–12 in Figure 4-2, which con-

tains thread boundaries with pc = 3 or pc = 4), the primary locus should resume af-
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1 public int getCatchletAltitude(int returnEntry, Throwable thrown) {

2 switch(returnEntry) {

3 case 2:

4 case 4:

5 if(thrown instanceof RuntimeException) {

6 return 1;

7 } else {

8 return -1;

9 }

10 case 3:

11 if(thrown instanceof ArithmeticException) {

12 return 1;

13 } else {

14 if(thrown instanceof RuntimeException) {

15 return 2;

16 } else {

17 return -1;

18 }

19 }

20 default:

21 return -1;

22 }

23 }

Figure 4-7: A lookup table that tells how many levels up the try tree the exception thrown

is caught.

ter the catching cilk try (line 16) with pc = 5. Similar to getCatchletAltitude, if

the thrown exception is not caught within the top-level method, getCatchletPickup

returns −1.

The JCilk compiler provides the lookup-table methods for the runtime system to

figure out what to abort, where to resume, and which catchlet/finallets to execute.

How the runtime system signals abort and ensures that the abort takes place only

during thread boundaries are beyond the scope of this thesis. Again, interested

readers can refer to John Danaher’s thesis [12] for more information.

Ensuring the rethrow of CilkAbort exception

When an exception occurs, JCilk delivers a CilkAbort exception semisynchronously

to the side computations of the exception, which is accomplished by delivering abort
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1 public int getCatchletPickup(int oldPC, Throwable thrown) {

2 switch(oldPC) {

3 case 2:

4 case 4:

5 if(thrown instanceof RuntimeException) {

6 return 5;

7 } else {

8 return -1;

9 }

10 case 3:

11 if(thrown instanceof ArithmeticException) {

12 return 4;

13 } else {

14 if(thrown instanceof RuntimeException) {

15 return 5;

16 } else {

17 return -1;

18 }

19 }

20 default:

21 return -1;

22 }

23 }

Figure 4-8: A lookup table that tells where the primary locus of control should resume if
it is aborted due to a thrown exception.

signals to the workers working on those side computations. When a worker sees the

abort signal, it might be working on a frame buried deeply within the ready deque.

A CilkAbort exception is thrown by the worker to unwind the call stack (both the

shadow stack and the Java call stack) back to the point where the exception is caught.

The programmer can catch the CilkAbort exception within a method along the

aborting path and perform cleanup code. The caught CilkAbort must be rethrown

properly, however, to ensure the unwinding of the call stack. The compiler generates

code in the GoJava output to perform the rethrow.

There are two cases in which the compiler inserts code to ensure the rethrow of

CilkAbort exception. The first case is when the programmer specifies a catch clause

catching the CilkAbort exception. The second case is when the programmer speci-

fies the cilk try statement to contain a finally clause. The finally clause may
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potentially throw another exception or return a value that overwrites the CilkAbort

exception thrown from the cilk try block. In either case, a try statement with

finally is generated to wrap around the cilk try in the GoJava output. Within

the generated finally block, a call to the worker is made to see if this method is

being aborted. If so, a new CilkAbort exception is thrown. In the case where the pro-

grammer specifies cilk try to contain only the catch clause catching the CilkAbort

exception but no finally clause, the generated finally is attached to the com-

piled cilk try directly. Doing so ensures the rethrow of CilkAbort, no matter what

happens in the programmer-specified catch clause or finally clause.

4.3 Support for the lexical-scope rule

This section describes what the compiler needs to implement in order to support the

lexical-scope rule when a loop containing a cilk try block with a catch clause or a

finally clause refers to a locally declared loop variable.

Enforcing the lexical-scope rule

When the programmer writes code including a cilk try within a loop, and its catch

or finally clause refers to locally declared loop variables (such as the one shown in

Figure 2-6), the lexical-scope rule applies. Remember that JCilk allows the execution

of the catch or finally clause from each iteration to be delayed and executed as a

catchlet or finallet some iterations later. As each secondary locus of control executes

its catchlet or finallet, it refers to the version of the loop local variables associated

with the iteration to which the clause belongs lexically. We refer to the version of the

loop local variables from an iteration as the lexical environment for that iteration.

In a concurrent context, it is indefinite how many iterations later the secondary

loci of control in the loop will be executed, and the lexical environment for each

delayed secondary locus of control must be remembered. That is, the compiler must

generate code to record these lexical environments explicitly. The question is, how

many lexical environments would that be? One naive answer would be, as many loop

83



iterations as the execution has gone through, which could represent a big overhead.

Actually, JCilk provides an efficient implementation of the lexical-scope rule that

avoids creating many extraneous versions of lexical environments. In practice, the

number of lexical environments remembered is only as many as the number of steals

during the duration of the loop execution, no matter how distant the execution of a

secondary locus is. Conforming to the work-first principle, the overhead incurred by

enforcing the lexical-scope rule contributes only to the critical-path term.

Whenever a situation arises where the lexical-scope rule applies, the compiler

generates code to implement the lexical environment with a C-struct-like private

inner class. The class contains only member fields corresponding to the local variables

declared within the loop together with one additional member field stolen, which is

set to true when this particular lexical environment is stolen.

In the fast clone, before entering the loop, a lexical environment is created and

stored within the method frame. By default, the stolen bit in the newly created

lexical environment is initialized to false. This lexical environment is reused repeat-

edly as the primary locus of control proceeds to the next iteration of the loop, until

a steal occurs. When a steal occurs, the method is resumed as a slow clone. At the

beginning of the resumption of the slow clone, the stolen bit in the stolen lexical

environment is set to true. The execution of the method continues where it was left

off, which might be in the middle of the loop. At the beginning of the next loop

iteration, if the stolen bit is set to true, a new lexical environment is created for the

new iteration. Since the old environment is still alive and stored somewhere within

the runtime, it can be read when the secondary loci of control for the older iterations

are executed. The newly created environment is again reused over and over until the

next steal happens.

Within the runtime, the lexical environments for the older iterations are actu-

ally stored within the try tree until the secondary loci execute their corresponding

catchlets and finallets. Within the loop, whenever there is a spawn statement, the

lexical environment for that loop iteration is passed to the spawned child, in the

same way we pass the return entry value. When the child returns, if the parent is
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not stolen, the same lexical environment is reused. If the parent has been stolen,

however, the lexical environment is then passed to the runtime and stored in the try

tree, in the same node created for the catchlet or finallet. When setCatchletReturn

or setFinalletReturn is invoked, the lexical environment is passed to the method

as an additional argument.

4.4 Support for evaluation order

When the assignment operators are used with spawn in JCilk, the operands must be

handled specially in order to conform to Java’s “left-to-right” evaluation order [20,

Sec. 15.7]. This section explains what the compiler needs to implement in order to

handle the assignment statement correctly. In particular, some complications are

involved when the keyword spawn is used with the compound assignment operators

such as “+=.”

Spawned child returning to a reference type

The Java Language Specification [20] guarantees that the operands of operators al-

ways appear to be evaluated in the left-to-right evaluation order. That is, the left-

hand operand appears to be evaluated before the right-hand operand. For instance,

Figure 4-9 demonstrates a Java program whose output depends on the evaluation or-

der. In Java, the only possible output for this program is 12, because the value of the

left-hand operand is fetched and remembered before the right-hand operand of the

addition is evaluated in line 3. In C, a program with the same code has unspecified

behavior, because no evaluation order is strictly enforced.

The enforcement of the evaluation order is especially important when the left-

hand operand has a reference type, and the right-hand operand involves a spawn, as

illustrated in Figure 4-10. In line 3, the primary locus of control spawns off method

A. The value returned by A eventually stores into x.y[i] (i.e., the element indexed

by i in the array field y of x.) Suppose that the primary locus proceeds to the next

statement after the spawn and finishes executing the call to method B in line 5. When
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1 public static void f4-9(String[] args) {

2 int a = 7;

3 a = a + (a = 5);

4 System.out.println(a);

5 }

Figure 4-9: A Java program whose output depends on the evaluation order. The left-hand
operand of the addition, a is evaluated before the right-hand operand, (a = 5).

1 public static void f4-10(String[] args) {

2
...

3 x.y[i] = spawn A();

4 oldX = x;

5 x = B(); // returns a new myObj

6
...

7 }

Figure 4-10: A JCilk program whose result depends on the evaluation order of the assign-
ment operator. The method B returns a brand-new object, which is assigned to x in line 5.
In the serial elision, the result of the method does not depend on the evaluation order. In
JCilk, however, the result depends on the evaluation order due to the semantics of spawn.

the spawned child finishes executing A and returns, x no longer refers to the same

object instance. According to Java’s evaluation order, however, the value returned by

A should be stored in the original object, as evaluated in line 3. Hence, the compiler

must take special care in order to handle this case correctly.

When the left-hand operand of an assignment operator is an array access expres-

sion, Java’s evaluation order is specified as follows [20, Sec. 15.26.1].

1. Evaluate the array reference subexpression in the left-hand operand.

2. Evaluate the index subexpression in the left-hand operand.

3. Evaluate the right-hand operand.

4. Check if the array reference subexpression indeed refers an array. No assignment

occurs and a NullPointerException is thrown if the subexpression evaluates

to null.

5. Check the bound of the index subexpression. No assignment occurs and an

ArrayIndexOutOfBoundsException is thrown if the subexpression evaluates to
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be out of range.

6. Use the index subexpression to select an element in the array and make the

assignment. If the types of the left-hand operand and the right-hand operand

are not compatible, ArrayStoreException is thrown.

The JCilk compiler implements the following in order to follow the exact evalua-

tion order.

1. Store the array reference subexpression

2. Store the index subexpression

3. Evaluate the spawn

4. As the spawned child returns, use the array reference subexpression and the

index subexpression stored before the spawn.

Actions 1–3 in JCilk’s evaluation order correspond to actions 1–3 in Java’s evaluation

order respectively. When action 4 in JCilk’s evaluation order is executed, the order of

checks are performed naturally, following the order of actions 4–6 in Java’s evaluation

order.

The array reference subexpression and the index subexpression cannot be stored

in the parent’s activation frame. Otherwise, we may lose the old values before the

spawn, because the values in the parent’s frame may get updated before the spawned

child returns. Instead, their values are stored in a lexical environment, which is

passed to the child as an argument when the child is spawned. When the child

returns, the lexical environment is then handed to the runtime and is used to invoke

setInletReturn for returning to the stolen parent. This mechanism is similar to how

the JCilk compiler handles the lexical environments to enforce the lexical-scope rule,

as described in Section 4.3.

The same mechanism is used in the case where the left-hand operand of the

assignment operator is a field reference type, such as x.y.z. The prefix before the

last field access (i.e., x.y) is stored in a lexical environment before the spawn.
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1 cilk int f4-11() {

2
...

3 for(int i=0; i<10; i++) {

4 array[i] = spawn A(i);

5 }

6 oldArray = array;

7 array = makeNewArray();

8
...

9 sync;

10 for(int i=0; i<10; i++) {

11 System.out.println(oldArray[i]);

12 }

13 }

Figure 4-11: A program whose output depends on both the lexical-scope rule and the
left-to-right evaluation order.

Spawning in a loop

Things can get somewhat complicated when the result of a program depends on both

the lexical-scope rule and the evaluation order. Figure 4-11 demonstrates such an

example.

Different from Figure 2-5 as presented in Chapter 2, method f4-11 does not con-

tain a race condition. Assuming the left-to-right evaluation order is applied properly,

the read access to i when evaluating array[i] (line 4) for each iteration must be

performed before the write access to i when executing i++ in line 1 for the next it-

eration. That means, accesses to i are properly ordered with respect to one another.

With the thread atomicity guaranteed by JCilk, no data races associated with i can

occur. Similarly, since the read access to array in each loop iteration (line 4) must be

performed before the write access to it after the loop (line 7), no data races associated

with array can occur.

To compile method f4-11 correctly, JCilk must evaluate both array and i before

the spawn, store their values in a lexical environment, and renew the lexical envi-

ronment at the beginning of the loop iteration when steal happens, as described in

Section 4.3.
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1 cilk private int fib(int n) {

2 int res;

3 if( n < 2 ) {

4 return n;

5 }

6 res += spawn fib(n-1);

7 res += spawn fib(n-2);

8 sync;

9 return res;

10 }

Figure 4-12: A simple JCilk program that computes the Fibonacci number by summing
the returned values from spawning fib(n-1) and fib(n-2) into one variable, res with
operator “+=.”

Spawning with a compound assignment operator

JCilk obeys Java’s evaluation order in all cases, except when a compound assignment

operator such as “+=” is used with spawn. The Java Language Specification specifies

that, a compound assignment expression of the form E1 op= E2 is evaluated as E1 =

E1 op E2 [20, Sec. 15.26.2]. In JCilk, when a compound assignment operator is used

with the spawn keyword, however, the serial elision of E1 op= spawn E2; should be

considered as E1 = (spawn E2) op E1; (where E2 is a cilk method call).

When a compound assignment operator is used in JCilk, it is often used in a

fashion illustrated in Figure 4-12. Because of JCilk’s guarantee for thread atomicity,

the fib method executes as what the programmer intends to be: the final result is

being accumulated with the variable res. The order in which the spawned methods

return does not affect the correctness of the fib program, as long as res is being

updated atomically.

If we took the alternative and evaluated E1 += spawn E2 as E1 = E1 + (spawn

E2), we might lose one update to E1. In the case of Figure 4-12, suppose that the

primary locus of control continues to execute fib(n-2) in line 7 after spawning off

fib(n-1) in line 6, resulting fib(n-1) and fib(n-2) being computed in parallel.

When the spawned child that finishes second returns, it would not use the res value

updated by the child that returned first, but instead, it would use the res evaluated
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before the spawn. Consequently, we would lose the update made by the first child.

This behavior is not what we desire. Therefore, we decided to go with the evaluation

order E1 = (spawn E2) + E1.
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Chapter 5

Related work

This chapter discusses related work and attempts to place JCilk and its exception-

handling semantics into the context of parallel programming languages. A key differ-

ence between JCilk and other work on concurrent exception handling is that JCilk

provides a faithful extension of the semantics of a serial exception mechanism, that is,

the serial elision of the JCilk program is a Java program that implements the JCilk

program’s semantics.

Most parallel languages do not provide an exception-handling mechanism. For

example, none of the parallel functional languages VAL [2], SISAL [17], Id [38], parallel

Haskell [4, 39], MultiLisp [22], and NESL [6] and none of the parallel imperative

languages Fortran 90 [3], High Performance Fortran [43] [35], Declarative Ada [48,49],

C* [23], Dataparallel C [24], Split-C [10], and Cilk [46] contain exception-handling

mechanisms. The reason for this omission is simple: these languages were derived

from serial languages that lacked such linguistics.1

Some parallel languages do provide exception support, because they are built upon

languages that support exception handling under serial semantics. These languages

include Mentat [21], which is based on C++; OpenMP [41], which provides a set of

compiler directives and library functions compatible with C++; and Java Fork/Join

Framework [30], which supports divide-and-conquer programming in Java. Although

1In the case of Declarative Ada, the researchers extended a subset of Ada that does not include
Ada’s exception package.
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these languages inherit an exception-handling mechanism, their designs do not address

exception-handling in a concurrent context.

Tazuneki and Yoshida [47] and Issarny [27] have investigated the semantics of con-

current exception-handling, taking different approaches from our work. In particular,

these researchers pursue new linguistic mechanisms for concurrent exceptions, rather

than extending them faithfully from a serial base language as does JCilk. The treat-

ment of multiple exceptions thrown simultaneously is another point of divergence.

Tazuneki and Yoshida’s exception-handling framework is introduced in the con-

text of DOOCE, a distributed object-oriented computing environment. They focus on

handling multiple exceptions which are propagated from concurrently active objects.

DOOCE adapts Java’s syntax for exception handling, extending it syntactically and

semantically to handle multiple exceptions. Unlike JCilk, however, DOOCE allows a

program to handle multiple exceptions by listing several exception classes as param-

eters to a single catch clause with the semantics that the catch clause executes only

when all those exceptions are thrown. DOOCE’s semantics include a new resumption

model as an alternative to the termination model of Java: when exceptions occur

and are handled by a catch clause, the catch clause can indicate that the program

should resume execution at the beginning of the try statement instead of after the

catch block.

The cooperation model proposed by Issarny provides a way to handle exceptions in

a language that supports communication between threads. If a thread terminates due

to an exception, all later threads synchronously throw the same exception when they

later attempt to communicate with the terminated thread. Unlike JCilk’s model,

the cooperation model accepts all of the simultaneous exceptions that occur when

multiple threads involved in communication have terminated. Those exceptions are

passed to a handler which resolves them into a single concerted exception representing

all of the failures.

The recent version of the Java Language, known as Tiger or Java 1.5 during

development and now called Java 5.0 [34], provides call-return semantics for threads

similar on the surface to JCilk. In particular, Java 1.5 provides a protocol that is
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similar to that of JCilk. Although Java 5.0 (like everything else in Java) uses an

object-based semantics for multithreading, rather than JCilk’s choice of a linguistic

semantics, it does move in the direction of providing more linguistic support for

multithreading. In particular, Java 5.0 introduces the Executor interface, which

provides a mechanism to decouple scheduling from execution. It also introduces the

Callable interface, which, like the earlier Runnable interface, encapsulates a method

which can be run at a later time (and potentially on a different thread). Unlike

Runnable, Callable allows its encapsulated method to return a value or throw an

exception. When a Callable is submitted to an Executor, it returns a Future object.

The getmethod of that object waits for the Callable to complete, and then it returns

the value that the Callable’s method returned. If that method throws an exception,

then Future.get throws an ExecutionException containing the original exception

as its cause. (The Future object also provides a nonblocking isDone method to see

if the Callable is already done.)

One notable difference between JCilk and Java 1.5 is that JCilk’s parallel se-

mantics for exceptions faithfully extend Java’s serial semantics. Although Java 1.5’s

exception mechanism is not a seamless and faithful extension of its serial semantics,

as a practical matter, I believe it represents a positive step in the direction of making

parallel computations linguistically callable.
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Chapter 6

Conclusion

This chapter discusses possible improvements and future directions for the JCilk

project. The JCilk project is our first attempt to solve the difficulties of developing

parallel software. Although we have taken the first step, we are still quite a distance

away from our eventual goal. There is still much more work to do. To be specific, I

propose four directions for future research:

1. improve system performance;

2. connect Java and JCilk;

3. provide both static and dynamic threading models in JCilk and allow them to

interact;

4. integrate JCilk with other on-going projects in the group.

To conclude this thesis, this chapter offers brief discussion on the possibilities of each

proposal, and draws concluding remarks.

Improving system performance

To date, the performance of the JCilk system is far from ideal. Despite the simple

programming model and the concrete exception-handling semantics that JCilk offers,

until the efficiency of the system can be improved, the language itself is not useful.

The overhead in the JCilk system comes from two main sources: object allocation

and synchronization.
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Object allocation is the first main source of overhead. A JCilk program potentially

allocates many more objects than its serial elision. For every call to a cilk method,

an additional object is created to represent the activation frame in the shadow stack

for the cilk method. Even though only one extra object is created for each spawn,

the impairment caused by this overhead is especially apparent when the spawned

method does not perform much work. For instance, the only work performed by the

fib method shown in Figure 3-3 is one addition, which is not enough to compensate

for the spawn overhead. When executing fib with n = 40, the method is called

331, 160, 281 times recursively (meaning, 331, 160, 281 extra object creations), and

the overhead for executing on 1 processor versus executing the serial elision (T1 / Ts)

is roughly 25 times. This object creation is necessary, however, because it enables the

thief to steal the method and allows the continuation to take place.

Synchronization is the second main source of overhead. Due to how the Java

memory model works, the efficiency of the THE protocol implemented in Cilk-5 [16]

is diminished in the JCilk-1 runtime system. The THE protocol takes advantage of

a cheap memory barrier to avoid acquiring locks (which cost more overhead) in the

common case. In Java, however, in order for the frame update done by one worker

to be seen by another worker, both workers must synchronize. This synchronization

must be performed even when a worker pushes a frame into its own ready deque.

Otherwise, the update in the frame performed by the victim before the push might not

be seen by the thief when it steals the frame. This synchronization causes significant

overhead, which is borne by the work term.

To save the system from drowning in these overheads, I propose two alternative

implementations. The first alternative is to use a lazy frame-creation technique, called

the “indolent closure creation” [45] to avoid extraneous frames from being created if

no steal happens. The second alternative is to modify the IBM JRE (Java Runtime

Environment — IBM version of Java virtual machine) to support continuation as a

primitive to eliminate the need for creating frames.

The main idea of the indolent closure creation is the following: instead of eagerly

creating and pushing a frame into the ready deque whenever a spawn is encountered,
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only create a frame when a steal attempt happens. That is, no frames are created and

pushed into the ready deque if there is no steal. When the first steal happens, the

steal attempt fails, because there is nothing in the ready deque to steal. The victim,

after detecting the failed steal attempt, unrolls the call stack, creates and pushes the

corresponding frames into its ready deque, and resumes execution of where it left off

when the steal attempt was detected. Hence, after the first failed steal attempt, the

subsequent steals are likely to succeed. Indolent closure creation reduces the overhead

of frame creation from the number of spawn calls to the number of unsuccessful

steals. In addition, all the synchronization needed when pushing the frame can be

eliminated. Since the victim creates and pushes frames into its deque upon the request

of a steal, a frame is modified only by the thief after it is stolen. The fields in the

frame are not updated between the point of creation and the point of steal. Hence,

no synchronization is needed when pushing the frames, saving the overhead in the

work term. The indolent closure creation takes the work-first principle to the extreme.

There is one downside associated with this technique, however. With indolent closure

creation, it is indefinite how long a thief must wait before its steal attempt succeeds.

Even though we are minimizing the overhead in the work term, we are also blowing up

the overhead in the critical-path term indefinitely. Recall that, the work-first principle

replies on the assumption of sufficient parallel slackness, meaning P/P ≫ c∞. If we

blow up c∞ indefinitely, the work-first principle no longer stands. Hence, we must be

cautious about the waiting time of a steal when applying this technique. Nonetheless,

this proposal seems worthy of investigation.

The other proposal is to modify the existing IBM JRE to support continuation as

a primitive and thereby eliminate the need to create frames altogether. The reason

why we are creating a frame for every spawn call is to allow code migration from one

worker to another. The frame is necessary to implement continuation so that a worker

thread can access the state of local variables stored in another worker thread’s call

stack. If we can modify the IBM JRE to support continuation as a primitive, which

allows one worker to read and copy another worker’s call stack cheaply, we no longer

need to create any frames. Of course, this is easier said than done. As discussed in
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Section 3.2, there are several disadvantages to modifying a Java virtual machine to

support JCilk. This approach makes the JCilk compiler highly dependent on the IBM

JRE, less extensible, and harder to keep up-to-date. Nevertheless, modifying the IBM

JRE is more feasible than modifying other open-source Java virtual machines, because

the IBM JRE is portable (implemented in Java) and fairly up-to-date (supporting

Java 1.4). Therefore, this alternative is feasible, although the amount of engineering

effort involved might be daunting.

Connecting Java and JCilk

In the current implementation, a Java method cannot call a cilk method. Sym-

metrically, a cilk method must be spawned and cannot be called. Even though this

constraint is required by the code transformation that JCilk performs at compile time,

it leads to a sharp delineation between cilk methods and ordinary Java methods. We

would like to break this barrier and allow the two languages to be truly connected.

This proposal poses some difficulties, however.

From an implementation perspective, this proposal is problematic, because an

ordinary Java method cannot be stolen due to its lack of support for continuations.

Without support for continuations, the state of local variables of a method exists

only in the ordinary Java call stack. If we had allowed a Java method to call a cilk

method, and a steal happens, the cilk method (the child) would have no means to

return back to the Java method (the parent). Since a Java Thread cannot access the

call stack executing on another Java Thread, the worker executing the cilk method

cannot return a value back to another worker executing the Java method. The state

of local variables of the Java method are simply not accessible.

From the linguistics perspective, this proposal poses some issues as well. Suppose

that we have no implementation difficulties to allow an ordinary Java method to call

a cilk method. Some linguistic problems arise when considering Java’s semantics

for inheritance and method overriding. For example, a programmer may want to

extend the java.util.Vector class in Java API and write a parallel version of the

class, named ParallelVector, overriding the indexOf(Object elem)method (which
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searches for the first occurrence of elem). When executing an ordinary Java method

which takes an instance of Vector as its argument, an instance of ParallelVector

might be passed instead. When the indexOf method is invoked, the following possi-

bilities (among other ones) may result: the serial version Vector.indexOf is invoked;

the parallel version ParallelVector.indexOf is invoked but executed serially; the

parallel version ParallelVector.indexOf is invoked and executed in parallel.

Due to Java’s portability, it is possible to execute two Java programs together

which are compiled separately. Thus, if we allow a Java method to call a cilk

method, and a cilk method to override a Java method, it then becomes possible for

a Java method to invoke a cilkmethod and introduce parallelism into the application

unexpectedly. This proposal induces a new set of complex linguistic problems to be

solved, which can be interesting to consider in the future.

Providing both static and dynamic threading models

For now, JCilk offers only the dynamic threading model but not the static threading

model. The static threading model and the dynamic threading model are each suited

for different types of applications. (Their differences are summarized in Figure 1-1 in

Chapter 1.) We would eventually like to provide both models in JCilk, with semantics

that allow them to interact in a sensible manner.

To integrate these two models, one must consider their different hierarchical struc-

tures and communication patterns. Each thread in the static threading model is an

independent entity. The dynamic model, on the other hand, groups threads with

parent-child relations. Threads in the static threading model communicate via shared

data structures, whereas threads in the dynamic threading model communicate with

call-return semantics. At this point, we are not clear how threads from the two models

can communicate with each other, and what form the communication would take.

It will take some thorough consideration to come up with a sophisticated model

that encompasses both threading models and incorporates them harmoniously. Nev-

ertheless, we are hopeful that investigating this topic will eventually bear fruit.
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Integrating with other projects

There are some other on-going projects in my research group (the Supercomput-

ing Technologies Group in MIT CSAIL) presenting opportunities for integration

with JCilk. These projects include adaptive thread scheduling and Transactional

Java (XJava). These projects, like JCilk, investigate technologies to support high-

performance computing.

Adaptive thread scheduling addresses the problem of scheduling multiple multi-

threaded jobs on a multiprocessor system. Most systems use static allocation, where

each job running on the system is allocated to a fixed number of processors throughout

its lifetime. The static allocation policy inevitably leads to unnecessary slow down or

resource waste at one point or another during the execution when the parallelism of

the jobs changes. This project focuses on designing algorithms that enable each job

to estimate its parallelism efficiently and request processors accordingly.

Even though JCilk allows the programmer to determine the number of workers

at runtime and distribute work near-optimally across these workers, the program op-

erates with a fixed number of workers throughout its execution. This limitation is

acceptable when only one JCilk program is running on the multiprocessor system.

The JCilk program can simply be alloted all the processors. When there are mul-

tiple independent JCilk programs running simultaneously, however, it is better to

adaptively reallocate processors. Integrating the dynamic processor allocator into

the JCilk scheduler should provide a good platform for testing different algorithms.

Another project currently being developed in the group is Transactional Java

(XJava), a transactional language that extends Java. The project focuses on enforc-

ing atomicity between concurrent threads using transactional memory [25], replacing

traditional locking protocols. The basic idea of the transactional memory is that con-

current transactions execute optimistically, assuming they can be executed in parallel

without conflict. When a conflict occurs, one of the two conflicting transactions is

chosen to roll back and automatically retry. If no conflict occurs, the transaction suc-

ceeds and commits its state-altering actions (such as writing to memory) permanently.
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Some actions are irrevocable, however, such as printing to the screen.

The exception-based abort mechanism in JCilk provides one possible solution to

handle such irrevocable actions. One can imagine that, when a transaction fails, a

TransactionAbort exception can be thrown to the transactional block to indicate

the failure. The exception can be caught, giving the programmer a chance to cleanup

and minimize the damage done by the irrevocable actions before the transaction is

retried again.

Concluding remarks

The JCilk language is designed to facilitate the development of parallel software.

JCilk provides a dynamic multithreading model and a provably good scheduler that

handles the task scheduling and communication between threads. By incorporating

simple parallel constructs into a widely used language, such as Java, JCilk aims

to minimize the learning curve associated with adapting to a new language. At

the same time, JCilk strives to retain the rich language features provided by Java.

More importantly, JCilk’s semantics for exception handling intends to encourage the

development of robust and fault-tolerant software.

Even though JCilk-1 is only our initial step, and there is still much more to

do, we are nonetheless advancing towards our eventual goal. We are hopeful that,

in the foreseeable future, developing parallel software can be as straightforward as

developing serial software.
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