Memory Abstractions for Parallel Programming
by
I-Ting Angelina Lee

Submitted to the Department of Electrical Engineering anch@uter Science
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2012

(© Massachusetts Institute of Technology 2012. All right&resd.

AUTNOT . o
Department of Electrical Engineering and Computer Science
March 07, 2012

Certifled DY . ..o e e
Charles E. Leiserson

Professor

Thesis Supervisor

ACCEPIEA DY . .o
Leslie A. Kolodziejski
Chairman, Department Committee on Graduate Students

Memory Abstractions for Parallel Programming

by
I-Ting Angelina Lee

Submitted to the Department of Electrical Engineering and Computer Science
on March 07, 2012, in partial fulfilment of the
requirements for the degree of
Doctor of Philosophy

Abstract

A memory abstractions an abstraction layer between the program execution and the memory that
provides a different “view” of a memory location depending on the exeoutmntext in which

the memory access is made. Properly designed memory abstractions heipeciask of parallel
programming by mitigating the complexity of synchronization or admitting more efticisa of
resources. This dissertation describes five memory abstractions &lepprogramming{i) cactus
stacks that interoperate with linear stadfi$,efficient reducerd(jii) reducer arraygjv) ownership-
aware transactions, arfd) location-based memory fences. To demonstrate the utility of memory
abstractions, my collaborators and | develo@ili-M, a dynamically multithreaded concurrency
platform which embodies the first three memory abstractions.

Many dynamic multithreaded concurrency platforms incorpocatdus stack$o support mul-
tiple stack views for all the active children simultaneously. The use of catiaks, albeit essential,
forces concurrency platforms to trade off between performance, nyecoosumption, and inter-
operability with serial code due to its incompatibility with linear stacks. This dissemtproposes
a new strategy to build a cactus stack usthgead-local memory mappingor TLMM), which
enables Cilk-M to satisfy all three critersmultaneously

A reducer hyperobjecallows different branches of a dynamic multithreaded program to main-
tain coordinated local views of the same nonlocal variable. With reduopescan use nonlocal
variables in a parallel computation without restructuring the code or intinguaces. This disser-
tation introducesnemory-mapped reducersvhich admits a much more efficient access compared
to existing implementations.

When used in large quantity, reducers incur unnecessarily high @erhexecution time and
space consumption. This dissertation describes supporédorcer arrays which offers the same
functionality as an array of reducers with significantly less overhead.

Transactional memorys a high-level synchronization mechanism, designed to be easier to use
and more composable than fine-grain locking. This dissertation pre@sentrship-aware trans-
actions the first transactional memory design that provides provable safetamjeas for “open-
nested” transactions.

On architectures that implement memory models weaker than sequential aorsiptegrams
communicating via shared memory must empiegmory fenceso ensure correct execution. This
dissertation examines the conceptarfation-based memory fencewhich unlike traditional mem-
ory fences, incurs latency only when synchronization is necessary.

Thesis Supervisor: Charles E. Leiserson
Title: Professor

Acknowledgments

First and foremost, | would like to thank my wonderful advisor, Charlekdiserson. There are
many things that | would like to thank Charles for, but as | am sitting herengtat my X window
opened with Vim, trying to write these acknowledgments, somehow words fait. shlothing |
can say will fully express my deep gratitude towards Charles. Charlelsdmamsa truly wonderful
mentor. For me, graduate school has been a journey of self discavetyyithout Charles, this
journey would have been much more difficult. Having Charles as my advismreiguivocally the
best decision | made in graduate school; well, perhaps except forimamy dear husband.

Mentioning who | would like to thank, too. My dear husband Brendan, @é&hD student
himself, understands all the anxiety and emotional ups and downs that citmeevterritory of
being a graduate student. The process of writing this thesis and puttingremgrtogether has been
stressful and grueling. Without his companionship and the sense of #ylidlais process would
have been much more isolating and lonely. Moreover, during this strgssfidd, he took over
many of the household-related responsibilities without complaints, minimizing mgeoaof stress
and distraction as best as one could ask for.

| chose an awesome set of thesis committee members. | would like to thank JamWille
Maessen, Armando Solar-Lezama, and Guy Steele for serving on my toesisittee. | have
been told multiple times by older graduate students that committee members typicallyrcesyhth
the intro chapter, and perhaps the next couple ones if you are luckpelar the whole thesis.
Well, my committee members have proven that | was told wrong. In all seriosishas grateful
for all their insightful comments. One would have found more typos, gramnhaticas, and minor
technical misstatements without their careful reviews and detailed feedback

| would like to thank all the Supertechies, past and present. Thanks todvitt®, for encour-
aging me to work on the cactus-stack problem (Chapter 3) and for prgvaditical feedback on
the work. | often wondered whether there was anything Matteo cansetearafter my numerous
interactions with him. Thanks to Bradley Kuszmaul, my go-to person for astgsyrelated ques-
tions, who has amazing breath and depth in both systems and theory relatelédge. Thanks
to Kunal Agrawal, Jeremy Fineman, and Jim Sukha, my grad school “d®sfaas we entered
graduate school around the same time and experienced many thingstgischaol has to offer to-
gether, ranging from taking TQE classes, to TAing the undergraduaigthlgs class, to attending
conferences. It has been fun working and collaborating with Kurdilan. Without them the work
on the ownership-aware transactions (Chapter 6) would not havepossible. Thanks to Jeremy
for throwing all the dinner parties that distracted us at appropriate timesnkBhto Edya Ladan-
Mozes, a wonderful collaborator and a supportive friend. Althoughavgue plenty, it has been
a lot of fun working and sharing an office with her. Thanks to TB Schdod always providing
insightful comments and always being willing to chat about research ideas,half-baked ones.
Without the critical discussions with him, | would have been stuck on the ez@ucay work (Chap-
ter/5) for much longer. Thanks to Will Hasenplaugh, for giving suppad helpful advice during
my job search. Thanks to Aamir Shafi, who collaborated with me on the rediackr(Chapter 4),
for being a wonderful collaborator and for putting up with my busy schedduring one of his two
terms visiting MIT, | was busy flying around for job interviews. Thanks tm#llers who have been
part of the group throughout the years — Rezaul Chowdhury, Zhiidrg, Eka Natarajan, Yuan
Tang, and Justin Zhang, for providing a supportive and intellectually sttinglanvironment.

Besides Supertechies, | have had the fortune to encounter other arnaltaigprators outside
of the group. A special thanks to Silas Boyd-Wickizer, for doing all thavigdifting during our
initial release of the TLMM Linux-kernel (Section 2.2), which made the wamkthe cactus-stack
problem (Chapter 3) possible. Thanks to Dmitriy V'jukov, who approddBbarles and me with

the idea of implementing asymmetric synchronization inside Cilk’s work-stealimgdsder, out of
which the work on location-based memory fences (Chapter 7) blossomed.

| would like to thank the administrative staff who have been a great help to roaghout
my years in the lab — Alissa Cardone, Marcia Davidson and Mary McDavitanks to Alissa,
who endured reading through my master thesis to help with my writing. Thanksutoidwho is
always organized and efficient in taking care of any administratedwelttings that come up. In
particular, | am grateful for her to help me printing out copies of my thesithimreaders the night
before my defense, despite the fact that she already had plenty otateeapthat time. Thanks to
Mary, who is always willing to hand a helping hand when | needed it.

| would also like to thank the various funding organizations which haveddndy research.
These funding sources include NSF Grants ACI-0324974, CNSZEI0CNS-0615215, CNS-
1017058, Singapore-MIT Alliance and Sun Microsystems Fellowship. duigions, findings, and
conclusions or recommendations expressed in this dissertation are thibgeanithor and do not
necessarily reflect the views of any of these organizations.

| would like to give special thanks to a group of close friends who haveemaglife in Cam-
bridge colorful. 1 would like to thank Xiaolu Hsi, a friend and a wonderfulntoe, who always
provides great insights into the dilemmas we sometimes encounter in life. | woutd likank “the
brunch girls” — Amy Williams, Shiyun Ruan, Michelle Sander, and Karen Zewhe themselves
were once the graduate women at MIT, for listening and griping with me alpawtuate school
life at MIT. | would like to thank my lovely housemates and good friends, Albrang and Stacy
Wong. Not only have they provided a temporary living arrangement tomd&e and me during
the last six months of thesis writing, they have been supportive and exgiogr and provided fun
social activities throughout that helped keep me sane.

| would like to thank Tammy and David, my in-laws, for always being supperdnd under-
standing, giving me the space to work whenever | had the chance to visit the

Lastly, I would like to thank my parents and my dear sister, who have a sp#ai@d in my
heart. They never quite figured out what | was doing in graduate seimolowhat | meant when |
said | am doing “research.” They nonetheless kept up their curiositytathat | was up to, and for
my parents, especially on the topic of theduation date Without their constant inquiry, | might
have stayed in school for even longer.

Contents

\1 Introduction 7
1.1 TLMM-Based Cactus Stacks i i i i i e i 9
1.2 Support for Efficient Reducers and Reducer Aﬁrays T 10
1.3 Ownership-Aware Transactions o v v v v 11
1.4 Location-Based Memory FENCES © o o o e e e 12
\1.5 Contribution\s 13

\Part I: Memory Abstractions in Cilk-M 15

\2 Introduction to Cilk-M \ 16
2.1 Cilk Technology and the Development of Cilk-M . . . 16
2.2 SUPPOMLTOr TLMM . . o\ o o 12
2.3 An Alternative to TLMM’I 23

3 TLMM-Based Cactus Stacks 25
\3.1 The Cactus-Stack Problem SeemsHard 27
3.2 TLMM-Based Cactus Stacks inCilk-M 03
3.3 An Evaluation of TLMM-Based Cactus Stalcks 34
3.4 Conclusio\n 38

4 Memory-Mapped Reducer Hyperobjects 40
4.1 ReducerLinguistics e e 2 4
4.2 Support for Reducersin Cilk Plus 43
4.3 SupportforReducersinCilk-M 47
4.4 An Empirical Evaluation of Memory-Mapped Redu{:ers > V4
A5 CONCIUSION . . . o o oo 57

5 Library Support for Reducer Arrays | 59
5.1 Library Support for Reducer Arrays e . 61
5.2 Analysis of Computations That Employ Reducer AHrays T 15
5.3 An Empirical Evaluation of Reducer Arréys 71
5.4 Concluding Remarks 80

\Part II: Other Memory Abstractions

6 Ownership-Aware Transactional Memorﬁ
6.1 _Ownership-Aware Transactions v o v,
6.2 Ownership Typesfor Xmodules

6.5 Deadlock Freeddm

6.7 Conclusions e

7 Location-Based Memory Fences

7.1 Store Buffers and Memory Accesses Reordéring. e

7.2 Location-Based Memory FENCES . o o o et
7.3 Formal Specification and Correctnesd afifence
7.4 An Empirical Evaluation of Location-Based Memory FENces

8 Conclusion

A The OAT Model and Sequential Consistendy

B Rules for the OAT Type System

6.3 The OAT Model
6.4 Serializability by MOAUIES o o o e

6.6 Related Woﬁk

7.5 ReIatedWoﬁk
7.6 Conclusio\n

Chapter 1

Introduction

Moore’s Law [110] states that the number of transistors is expected tdelevery two years. For
over two decades since 1985, the doubling in transistors translated tblénddn clock frequency,
and application developers simply gained performance by riding the wastead frequency in-
crease. A few years ago, since the processor power density teiehmaximum that the devices
could handle, hardware vendors moved to doubling the number of ceeeg tevo years in order
to continue pursuing performance increase. Nowadays, the vast mabdgmputer systems—
desktops, laptops, game consoles, embedded systems, supercontputeaseebuilt using mul-
ticore processor chips. This shift in hardware trends impacts all afeesngputer science and
changes the way people develop high performance software—one migsparallel programs in
order to unlock the computational power provided by modern hardware.

Writing parallel programs is inherently more challenging than writing seriagqams, how-
ever. Besides coding the desired functionality, the programmer must atsp abwut parallel task
decomposition, scheduling the parallel tasks, and correctly synchrgrepincurrent accesses to
shared data among the tasks. A decade ago, writing parallel progransilvesnsidered as a
domain that requires special expertise. People coded to APIs suchSiX Bdeads [65], Win-
dows API threads [59], or Java threads [52], structuring their cortipatanto interactingpersis-
tent threads or pthread@ When programming directly on top of these threading APIs, the code
tends to be cumbersome and complicated, because the programmer neetishoiler-plate code
to handle the task decomposition and scheduling explicitly. Furthermore, thi@degic for task
scheduling and communication is set up explicitly, entangled within the rest pfdigeam logic, if
the number of available processors changes, the program must betestd in order to effectively
use the resources.

To tackle these challenges and allow parallel programming to be widely adopsedrchers in
industry and academia have been actively developing concurrencgrpiatf Aconcurrency plat-
form provides a software abstraction layer running between the operatitegrsgad user programs
that manages the processors’ resources, schedules the computatigheoavailable processors,
and provides an interface for the programmer to specify parallel compmsatio

Contrary to the pthreading programming model, a concurrency platform lifthratithe bur-
den off the programmer by providingmocessor-oblivious dynamic multithreadin@threading
for short) programming model, where the linguistic extensions for paraltet@oexpose the log-
ical parallelism within an application without mentioning the number of processomwhich the
application will run. With the dthreading programming model, the programmeifsgsetihe logical

INo confusion should arise with the use of the term to mean POSIX threimds, BOSIX threads are a type of
persistent thread.

parallelism of the application, and the underlying runtime system schedulesitifgutation in a
way that respects the logical parallelism specified by the programmer. ®iageoliferation of
multicore architectures, the dthreading programming model has emergedasradt paradigm
for programming a shared-memory multicore computers, since it provideseadaparallelism

abstraction which frees the programmer from worrying about load balancing, @skduling, and
restructuring the code when porting the application to a different machine.

The concept of parallelism abstraction is well-understood and widelytadoplany examples
of modern dthreading concurrency platforms exist, such as Cilk++ (& Plus [69], Fortress [6],
Habenero [9], Hood [21], Java Fork/Join Framework [90], JCilK][8DpenMP 3.0 [120], Paral-
lel Patterns Library (PPL) [105], Task Parallel Library (TPL) [92Zhreading Building Blocks
(TBB) [126], and X10 [26]. These dthreading concurrency platfeitypically employ a “work-
stealing” runtime scheduler, modeled after the scheduler of MIT Cilk [48]clwhas an efficient
implementation and provides provable guarantees on execution time and memsuynption. In
a work-stealing runtime scheduler, the processors are virtualized a&ag#rcalledvorkers and
the scheduler schedules the computation over these workers in a waggpedtts the logical paral-
lelism denoted by the programmer.

Whereas parallelism abstraction is a well-understood concept, reseateve only begun to
study high-order memory abstractions to support common patterns of pgradgamming. A
memory abstractioris an abstraction layer between the program execution and the memory that
provides a different “view” of a memory location depending on the exegwt@text in which the
memory access is made. For instartcansactional memorny64] is a type of memory abstraction
— memory accesses dynamically enclosed by#&smic block appear to occur atomically. While
transactional memory has been an active research area for thevpasties, its adoptation in prac-
tice has been slow at best. Similarly, another class of memory abstrdotjmerobject§48], which
is a linguistic mechanism that allows different branches of a dthreadgdgmnato maintain coordi-
nated localiewsof the same nonlocal object, is only supported in Cilk++ [94] and Cilk Plu]ﬂQ

Just as a concurrency platform lifts the burden of scheduling and &skntposition off the
programmer with an appropriate parallelism abstraction, | contend thatarency platform can
also mitigate other complexities that arise in parallel programming by providingepsodesigned
memory abstractions. This dissertation discusses the following memory diostsac

e cactus stacks that interoperate with linear stagksnew strategy to maintain a cactus stack
memory abstraction usirtread-local memory mappinpr TLMM), referred to a3 LMM-
based cactus stack& TLMM-based cactus stack enables a work-stealing runtime system to
supportrueinteroperability between parallel code and serial code while maintainingphpv
good resource usage;

e reducers with efficient accesa new way of supporting a reducer mechanism using a memory-
mapping approach in a work-stealing runtime system that incurs much le$geader

e reducer arrays a new reducer type that supports arrays and allows different theanaf a
parallel program to maintain coordinated local views of some shared array

e ownership-aware transactionghe first transactional memory design that provides provable
safety guarantees for “open-nested” transactions; and

2Technically, Cilk++ is the precursor of Cilk Plus; both are inspired by Milk Gut they extend C++ instead of C.

SWhile the reduction operation that forms the semantic basis of reducerdhjpcts can be found in other modern
concurrency platforms (e.g., Fortress [6], PPL [105], TBB [12hd OpenMP 3.0 [120]) and parallel programming
languages (e.g., *Lisp [89], High Performance Fortran [79], AiftEL [12]), the hyperobject approach to reduction
markedly differs from these previous approaches; in particulagiojgects operate independently of any parallel control
constructs.

e |ocation-based memory fencea memory fence that forces the executing processor’s instruc-
tion stream to serialize when another processor attempts to read the gonentedy location,
thereby incurring latency only when synchronization is necessary.

In addition, my collaborators and | developed thigk-M System which embodies the first three
memory abstractions and serves as a research platform to evaluate the utiigymory abstrac-

tions. The rest of this chapter provides a high-level overview of thesaaneabstractions and
summarizes the contributions of the dissertation.

1.1 TLMM-Based Cactus Stacks

In a dthreading language such as Cilk, since multiple children of a functionexiay simultane-
ously, the runtime system employs a cactus stack to support multiple stack viealsthe active
children simultaneously. In@ctus stacka function’s accesses to stack variables properly respect
the function’s calling ancestry, even when many of the functions operatarailel. In all known
software implementations of cactus stacks, however, transitioning fraal sede (using a linear
stack) to parallel code (using a cactus stack) is problematic, becaus@éheftgtack impacts the
calling conventions used to allocate activation frames and pass argumergsco@@d recompile
the serial code to use a cactus stack, but this strategy is not feasible ifidbkase includes legacy
or third-party binaries for which the source is not available. We call tbegnty of allowing arbi-
trary calling between parallel and serial code — including especially le@ay/third-party) serial
binaries —serial-parallel reciprocity or SP-reciprocityfor short.

There seems to be an inherent trade-off between supporting SPe@gipend maintaining
good time and space bounds, and existing work-stealing concurrertéyrpia fail to satisfy at
least one of these three critefiawe refer to the problem afimultaneoushachieving all three
criteria as thecactus-stack problem

The incompatibility of cactus stacks and linear stacks impedes the accepfatiteeading
languages for mainstream computing. In particular, SP-reciprocity isiedgamportant if one
wishes to incrementally multicore-enable legacy object-oriented softwaneexample, suppose
that a functionA allocates an object whose type has a member functigso (), which we paral-
lelize. Now, suppose thatis linked with a legacy binary containing a functiBpnandA passesx
to B, which proceeds to invoke->foo (&y), where&y is a reference to a local variable allocated
in B's stack frame. Without SP-reciprocity, this simple callback would not wakkernatively,
one could simply rewrite the entire code base, ensuring that no legacly/srgees call back to
parallel functions; this option, however, is usually not feasible for lampe bases or software that
uses third party binaries.

If one is not willing to give up on SP-reciprocity, another alternative wdado compromise on
the performance bound or space consumption guarantees that thecgyoaform could otherwise
provide; TBB and Cilk Plus make such tradeoffs. Consequently, théseamputations for which
TBB exhibits at most constant speedup®mvorkers, where an ordinary work-stealing scheduler
could achieve nearly perfect linear speedup [131]. Similarly, theré@xisputations for which Cilk
Plus fails to achieve good speed-up due to large stack space consurbptievhich an ordinary
work-stealing scheduler could achieve high speed-up with boundddsgiace usage.

In Chapter 3, we will investigate how a good memory abstraction helps soh@athes-stack
problem and enable a concurrency platform to satisfy all three criteridtaineously. Specifically,

4Java-based concurrency platforms do not suffer from the saofdepn with SP-reciprocity, because they are byte-
code interpreted by a virtual-machine environment.

Chapter 3 describes a new strategy to implement cactus stacks in a wdikgstaatime envi-
ronment by using a novel memory mechanism called thread-local memory rgappiread-local
memory mappingor TLMM designates a region of the process’s virtual-address space as tilmcal”
each thread. The TLMM memory mechanism allows a work-stealing runtimelsigréo maintain

a cactus-stack memory abstraction, referred to asTttM-based cactus stackin which each
worker sees its own view of the linear stack corresponding to its execubiaiext, even though
multiple workers may share the same ancestors in their stack view. By maintaioaujus-stack
memory abstraction, a work-stealing scheduler is able to provide stromgrjeas on execution
time and stack space consumption while obtaining SP-reciprocity.

1.2 Support for Efficient Reducers and Reducer Arrays

Reducer hyperobject®r reducersfor short) [48] provide a memory abstraction for dthreading that
allows different branches of a parallel computation to maintain coordinatetiews of the same
nonlocal variable. By using a reducer in place of a shared nonlodable, one avoiddeterminacy
race[42] (also called ayeneral racg116]) on the variable, where logically parallel branches of the
computation access some shared memory location.

The concept of a reducer is based on an algelonaigoid a triple(T, ®,e), whereT is a setand
® is an associative binary operation oviewith identity e. During parallel execution, concurrent
accesses to a reducer variable cause the runtime to generate and maintaie meltip for a given
reducer variable, thereby allowing each worker to operate on its owhvi@ea The runtime system
manages these local views and when appropriatkijcegshem together using the associative binary
operator in a way that retains the serial semantics and produces deterrfimastctput, even when
the binary operator is not commutative.

During execution, the runtime system employs a hash table, caligdexmap in each worker,
which maps reducer instances to their corresponding views for the gieeker. Accessing a
reducer thus translates intol@kup on the hypermap, which is costly — approximately.8:3
overhead compared to a normal memory access. In Chapter 4, we wilrexpw the TLMM
mechanism may support a new way of implementing reducers, referredrierasry-mapped re-
ducers Memory-mapped reducers allow a more efficient lookup operation cadparthe hyper-
map approach, aboutdx overhead compared to a memory access. As an extension to the existing
implementations of reducer mechanisms, in Chapter 4 we will also discuss runfmersto allow
parallel reduce operation, which is not currently supported by otherwreency platforms.

Another natural extension for reducer hyperobjects is to allow arragstyfExisting imple-
mentations of reducers are designed for scalar reducers. If agonoggr wishes to parallelize a
large application that contains a shared array, she could either writevneredlucer library from
scratch, or declare an array of reducers. While the second ayseams simple enough, it suffers
from three drawbacks which render the mechanism ineffective. Fistadng a reducer variable
requires additional space (compared to the original data type) for metadada to allow the run-
time system to perform the necessary bookkeeping. The amount of rguaieed for bookkeeping
grows linearly with the number of reducer instances times the number ofgs@saused. While the
additional space consumption is expected, as a practical matter, it puts a mibaoy reducers
one can use in an application before its memory consumption becomes a bétti&eeond, by
declaring an array of reducers, access to an individual array etdraeslates into a lookup oper-
ation to find the appropriate local view, which incurs considerable oagrh€&inally, it turns out
that, due to how the reducer mechanism works, a parallel execution usingeducer generates a
nondeterministic amount of additional work (compared to its serial countgtpat grows quadrat-

10

ically with the time it takes to perform a view creation and reductiork iéducers are used, and
the reduce operation for each reducer instance is processed s#hmialadditional overhead from
the reduce operations also grows quadraticallik.owhile the overhead of managing views cannot
be avoided, minimizing the number of reducers used and the time to performcréation and
reduction can effectively decrease the execution time.

In Chapter 5, we will study library support for reducer arrays to asislithese drawbacks.
Specifically, the reducer array library allows the programmer to createwcee variable corre-
sponding to an array of objects, as long as the object type and operatiozech object can be
described by a monoid. By associating an array with a reducer, the ruratireg @n space consump-
tion due to reducer metadata. More importantly, the compiler is now able to pediatimization
on the lookup operations: instead of requiring one lookup per access tedhcer array, only one
lookup is required for all accesses within a singteand, a piece of serial code that contains no
parallel control. Lastly, the library is designed to optimize on the time it takes forperiew cre-
ation and reduction. In particular, the library employs a parallel redueeatipn (which requires
runtime support described in Chapter 4), further minimizing the time it takes forpeits reduce
operation.

Even though the idea of reducer arrays is intriguing, it is neverthelegpamaquestion whether
the reducer array constitutes a useful linguistic mechanism in practice. Wilsilébrary support
exhibits significant performance improvement over its counterpart, ay aifrreducers, it can-
not avoid generating additional work associated with view management duentdhe reducer
mechanism works. This additional work puts a hard limit on how many redue can use in a
computation before the additional work of managing views dominates the wanrkthe original
computation and forms a bottleneck on scalability. In Chdpter 5, we will extemdhtroretical
framework on analyzing programs that use reducers due to Leiserxd@chardl [96], analyze how
much “effective parallelism” one can expect when using the reducay #brary, and discuss the
implications one can derive from the analysis.

1.3 Ownership-Aware Transactions

Transactional memory (TM), another type of memory abstraction, has fregosed as a high-
level synchronization mechanism to aveithmicity raceqg42] which cause nonatomic accesses to
critical regions (also calledata raceq116]). Transactional memory was first proposed by Her-
lihy and Moss [64] as a hardware mechanism to support atomic updatesltgilenindependent
memory locations. Ever since the advent of multicore architectures, therbdem a renewed
interest in transactional memory, and numerous designs have beersgdopo how to support
TM in hardware [7, 35,56, 111, 124] and software [28, 37,58162, 127,128], as well as hybrid
schemes [29, 81,97, 98].

In the TM literature, researchers have argued that transactions mayrbfeaed synchroniza-
tion mechanism over locking for the masses, for the following reasong, Fivssupports the sim-
plicity of coarse grain locking and at the same time potentially provides perfarenelose to that
of fine-grain locking. With TM, the programmer simply encloses critical regiogide aratomic
block, and the underlying TM system ensures that this section of codeteseatomically. A TM
system enforces atomicity by tracking memory locations accessed by tiansgcsingread sets
andwrite set$, finding transactional conflicts, and aborting transactions that confissuming
conflicts are infrequent, multiple transactions can run concurrentlyjgingvthe performance of
fine-grain locking.

5There have been many research studies of TM; for a survey ofélMed literature, please see [57].

11

Second, TM is moreomposablehan locking — one can easily merge two smaller transactions
into a larger one while maintaining the atomicity guarantee. For instance, fuppdsa library
implementing a thread-safe hash table suppitsfull () andinsert () function calls by using
locks. An application using the hash table may wish totallfull () and subsequentiyhsert ()
only if is_full () returnsfalse. To achieve the desired the semantics, the application must en-
sure thatis_full () andinsert () are executed atomically (i.e., no other threads tadlert ()
during the intermediate state). One possible approach is for the hash tahig tibsupport some
form of lock_table() andunlock_table() function calls, which the application can invoke
around theis_full () andinsert () to ensure atomicity. This approach references the underlying
implementation and breaks the hash table abstraction, however. Anotls#sl@@pproach is for
the application to implement its own layer of locking protocol on top of its acsessthe hash
table. This approach imposes additional burden on the applications dexetogreover, now both
the hash table library and the application must manage its own set of locksciessang the hash
table. The same issue does not arise if the library implements the hash tableaisgagtions. The
application can simply enclose the callsito full () andinsert () in a transaction, which forms
nestedtransactions, where artomic block dynamically encloses anothetomic block, and the
underlying TM system guarantees that the calls to these functions appeactate atomically.

It turns out that previous proposals for handling nested transactithres ereate large memory
footprints and unnecessarily limit concurrency, resulting inefficienteten, or fail to guarantee
serializability[121], a correctness condition often used to reason about TM-Ipasgthms, render-
ing the transactions noncomposable and possibly producing anomalauamrbehaviors that are
tricky to reason about. In Chapter 6, we will examine a TM system desigehloysownership-
aware transactiongOAT) which, compared to previous proposals, admits more concurr@mdy
provides provable safety guarantees, referred to as “abstrédizaility.”

With OAT, the programmer does not specify transactions explicitly ustegiic blocks; rather,
she programs with transactional modules, and the OAT system guarabstescaserializability
as long as the program conforms to a set of well-defined constraintswerihgomodules share
data. The abstract serializability provides a means for the programmeistmrabout the program
behavior, and the OAT type system can statically enforce the set of amtstior the most part, and
the rest can be checked during execution. With this transactional modufadastethe programmer
focuses on structuring the code and data into modular components, andThg/€em maintains
the memory abstraction that data belonging to a module is updated atomically amutebests a
consistent view to other modules.

1.4 Location-Based Memory Fences

Sequential consistend§SC) [86] provides an intuitive memory model for the programmer, in which
all processors observe the same sequence of memory accessesthimdhig sequence, the ac-
cesses made by each processor appear in its program order. Nes®tlexisting architectures
typically implement weaker memory models that relax the memaory ordering to adfigiver per-
formance. The reordering affects the correctness of the softwamitian in the case where it is
crucial that the execution follows the program order and the processast observe the relevant
accesses in the same relative order. Therefore, to ensure a @x&eation in such cases, architec-
tures that implement weak memory models provide serializing instructions and mémnoss to
force a specific memory ordering when necessatry.

On modern multicore architectures, since threads (surrogates forspaosgtypically commu-
nicate and synchronize via shared memory, the use of memory fenceseessary evi it is

12

necessary to ensure correct execution for synchronization algorittaigerform simple load-store
operations on shared variables to achieve mutual exclusion among thitesdsvil, because it
incurs high overhead. | ran a simple microbenchmark on AMD Opteron withadl-gore 2 GHz
CPUs, and the results show that a thread running alone and executingkker[protocol [39] with
a memory fence, accessing only a few memory locations in the critical sediiios 4 7 times
slower than when it is executing the same code without a memory fence.

This high overhead may be unnecessary. Traditional memory fencpsogram-based; mean-
ing, a memory fence enforces a serialization point in the program instrusttieam — it ensures
that all memory references before the fence in the program ordertaker effeciglobally (i.e.,
visible to all processors) before the execution continues onto instructftarstiae fence. Such
program-based memory fences always cause the processor to stallyleme the synchronization
is unnecessary during a particular execution.

In Chapter 7, we will turn our attention to the notion ofcgation-based memory fenctat
has the same semantic guarantees as an ordinary memor@fbut&vhich incurs latency only
when synchronization is needed. Unlike a program-based memory tetamsgtion-based memory
fence serializes the instruction stream of the executing thfeamhly when a different thread
attempts to read the memory location which is guarded by the location-based nmfemmey This
notion of location-based memaory fences is a memory abstraction, becawsét¢ha@ssociated with
the fence behaves differently depending on the execution context —hawbs as a memory fence
when synchronization is necessary but otherwise behaves as aargrdiite.

As we will see in Chapter|7, location-based memory fences can be suppgrtelightweight
hardware mechanism, which requires only a small modification to existing arthigs. Further-
more, we will evaluate the feasibility of location-based memory fences withteva@f prototype
to simulate the effect of location-based memory fences. Even though ttveassfprototype in-
curs higher overhead compared to what the hardware mechanism wbaldsynchronization is
needed, the experiments show that applications still perform better usiatpledased memory
fences than using program-based memory fences.

1.5 Contributions

This dissertation consists of two parts. The first part describes the C#kstém and memory ab-
stractions that the Cilk-M system embodies. Chapter 2 offers a briefieveof the Cilk technology
and the implementation of TLMM to provide background for the next threptens. Chapters 3+-5
discuss the three memory abstractions under Cilk-M in details, including theuagions. The
second part includes Chapters 6 and 7, which describe the other two ynabsiractions that are
independent from each other. Chapter 8 offers some concluding kemistore specifically, my
dissertation describes the following contributions:

e The design and implementation of TLMM-Based cactus stacks in Cilk-M
Chapter 3 presents TLMM-based cactus stacks, a strategy to maintaitus-sgck memory
abstraction in a work-stealing runtime system which is critical in solving the satack
problem. To evaluate the TLMM-based cactus stacks, Chapter 3 andhzesrformance
and space usage of the Cilk-M system both theoretically and empirically. ik&IGystem
provides strong guarantees on scheduler performance and staek dpanchmark results
indicate that the performance of the Cilk-M system is comparable to the Cilk 5/dténs

6To be more precise, the proposed implementation for a location-basedméence provides the same semantic
guarantees as an ordinary memory fence if the program satisfiemaantalitions, which we elaborate in Chagtér 7.

13

and Cilk Plus, and the consumption of stack space is modest. This work wasjaotly
with Silas Boyd-Wickizer, Zhiyi Huang, and Charles E. Leiserson ameays in [91].

e The design and implementation of memory-mapped reducers in Cilk-M
Chapter 4 investigates how a reducer mechanism can be supported LMy Which per-
mits a much more efficient lookup operations on reducers, approximatefaster than the
hypermap approach. Chapter 4 also describes how the Cilk-M systqrorssiparallel reduce
operations, which are currently not supported in other concurrelatippms.

e The design and implementation of reducer arrays in Cilk-M

Chapter 5 investigates library support for reducer arrays, whidr sifjnificant performance
improvement over arrays of reducers that provide the same functiorialigddition, Chap-
ter 5 extends the theoretical analysis for analyzing programs that uszersdiue to Leiserson
and Schardl [96] to incorporate the use of reducers that employ faeallece operations, and
offers some insight as to when the additional work generated by rexlbeeomes a bottle-
neck in scalability. This work was done jointly with Aamir Shafi, Tao B. Schanadt] Charles
E. Leiserson.

e The design of ownership-aware transactional memory

Chapter 6 explores a TM system design that supports ownership-&naasactions (OAT),
which is the first transactional memory design that supports “open-rids@dactions that
are composable. The framework of OAT incorporates the notion of modhtiegshe TM
system and uses a commit mechanism that handles a piece of data diffeegrathydthg on
which modules owns the data. Chapter 6 also provides a set of precisteadiots on interac-
tions and sharing of data among modules based on notions of abstractm@AThcommit
mechanism and these restrictions on modules allow us to prove that owravwsni@ TM has
clean memory-level semantics. Compared to previous proposals forrsingptested trans-
actions, the OAT system admits more concurrency and provides proably guarantees.
This work was done jointly with Kunal Agrawal and and Jim Sukha and aspe [4].

e The design of location-based memory fences
Chapter 7 introduces the concept of location-based memory fences) wilike the conven-
tional program-based memory fences, incur latency only when synigatmm is necessary.
Chapter 7 also describes a lightweight hardware mechanism for implemergihacttion-
based memory fences, which requires only a small modification to existingeantcines. This
work was done jointly with Edya Ladan-Mozes and Dmitry Vyukov and appiee[84].

The Cilk-M system came out as the resulting artifact of the evaluation oebgch was a joint
effort with Silas Boyd-Wickizer, Zhiyi Huang, Charles E. Leisersarg &amir Shafi. We modified
the Linux operating system kernel to provide support for TLMM, reimpletee the cactus stack
in the open-source Cilk-5 runtime system, and added support for nelyperobjects. We also
ported the Cilk-M system to be compatible with the Cilk Plus compiler, so that the ruocimée
linked with code compiled using the Cilk Plus compiler. The Cilk-M system is uniqttesitit em-
ploys TLMM to implement these memory abstractions. Moreover, Cilk-M is theQitS++-based
dthreading concurrency platform treimultaneouslgupports SP-reciprocity, scalable performance,
and bounded memory consumption.

14

Part I
Memory Abstractions in Cilk-M

15

Chapter 2

Introduction to Cilk-M

Cilk-M is a dynamically multithreaded concurrency platform that employs arrigthgaically sound
work-stealing scheduler [20] modeled after the scheduler of MIT Cik9.[It embodies a TLMM-
based cactus stack and memory-mapped reducer hyperobjects assla®a/research platform to
evaluate the utility of memory abstractions. Cilk-M inherited its performance nadethe work-
stealing algorithm from its predecessor Cilk-5. Like Cilk-5, Cilk-M suppsdalable performance
and bounded memory consumption. On the other hand, Cilk-M differs frith¥Bn that it supports
seamless transitioning between parallel code and serial code, attributedge dsa TLMM-based
cactus stack. In fact, Cilk-M is the first C/C++-based concurrency@iatthat supports all three
criteria simultaneously.

Implementation wise, what distinguishes Cilk-M from other concurrencyquiais is its utiliza-
tion of thethread-local memory mapping (TLMMjinechanism. Whereas thread-local storage [129]
gives each thread its own local memory at different virtual addresgkeswhared memory, TLMM
allows a portion of the virtual-memory address space to be mapped indeplgriziethe various
threads. The TLMM mechanism requires operating system support, whjctollaborators and
| implemented by modifying the open-source Linux operating system kerneMM provides a
novel mechanism for implementing memory abstractions, for which Cilk-M’s impteatien of
cactus stacks and reducer hyperobjects attest.

This chapter serves to introduce Cilk-M, which embodies the memory abstaciestribed
in Chapters 3| 4, and 5. Sectibn 2.1 gives an overview of the Cilk-M systgstementation,
its linguistic and performance models, and the work-stealing scheduler.MI'idva mechanism
shared by all memory abstractions under Cilk-M. Section 2.2 describesveawnodified the Linux
kernel to provide support for TLMI‘@.Since TLMM requires modification to the operating system,
Section 2.3 considers another possible memory-mapping solution to simulate kel €kect
without requiring operating-system support.

2.1 Cilk Technology and the Development of Cilk-M

A brief history of Cilk technology

Cilk-M is an implementation of Cilk. Before we overview the development and impigtien of

Cilk-M, we shall first overview a brief history of Cilk technology to accofmr where the major
concepts inherited by Cilk-M originate. Cilk technology has developed aolgded over more than
15 years since its origin at MIT. Portions of the history | document heme Wwefore my time at

1Silas Boyd-Wickizer is the main contributor of our first TLMM modification te thinux kernel.

16

MIT. The text under this subheading is partially abstracted from the “Citiyein Encyclopedia
of Distributed Computing93] with the author’s consent. | invite interested readers to go through
the original entry for a more complete review of the history.

Cilk (pronounced “silk”) is a linguistic and runtime technology for algorithmic mutatded
programming originally developed at MIT. The philosophy behind Cilk is thlxbgrammer should
concentrate on structuring her or his program to expose parallelismxahaitdocality, leaving
Cilk’s runtime system with the responsibility of scheduling the computation to fliciezftly on a
given platform. The Cilk runtime system takes care of details like load balar&ynghronization,
and communication protocols. Cilk is algorithmic in that the runtime system guasaeftésent
and predictable performance. Important milestones in Cilk technology inthederiginal Cilk-
1[15,18, 74F Cilk-5 [46,49, 125, 132], and the commercial Cilk++ [27,66, 94].

The firstimplementation of Cilk, Cilk-1, arose from three separate projedd$Tain 1993. The
first project was theoretical work [19,20] on scheduling multithreaggdieations. The second was
StarTech [73,82,83], a parallel chess program built to run on thekiftgrMachines Corporation’s
Connection Machine Model CM-5 Supercomputer [95]. The third projexs PCM/Threaded-
C [54], a C-based package for scheduling continuation-passingtsteleds on the CM-5. In April
1994 the three projects were combined and christened Cilk. Cilk-1 is aalgnepose runtime
system that incorporated a provably efficient work-stealing schedeite it provided a provably
efficient runtime support, it offered little linguistic support.

Cilk-5 introduced Cilk’s linguistic model, which provided simple linguistic extensisumsh as
spawnandsyncfor multithreading to ANSI C. The extensionfathful , which means that parallel
code retains its serial semantics when run on one processor. Furteetimprogram would be
an ordinary C program if the keywords for parallel controls were elidefiérred to as theerial
elision. Cilk-5 was first released in March 1997 [49], which included a privalicient runtime
scheduler like its predecessor, and a source-to-source compileriliogn@plk code to processed C
code with calls to the runtime library.

In September 2006, responding to the multicore trend, MIT spun out the Cilkddogy to Cilk
Arts, Inc., a venture-funded start-up founded by technical leadeasl€s E. Leiserson and Matteo
Frigo, together with Stephen Lewin-Berlin and Duncan C. McCallum. AlthaQigihArts licensed
the historical Cilk codebase from MIT, it developed an entirely new caslelfor a C++ product
aptly named Cilk++ [27,94], which was released in December 2008 for thd&s Visual Studio
and Linux/gcc compilers.

Cilk++ improved upon the MIT Cilk-5 in several ways. The linguistic distincti@tvzeen Cilk
functions and C/C++ functions was lessened, allowing C++ “call-backSilkocode, as long as the
C++ code was compiled with the Cilk++ compi@ﬂ'hespawn andsynckeywords were renamed
cilk _spawnandcilk _syncto avoid naming conflicts. Loops were parallelized by simply replacing
the for keyword with thecilk _for keyword, which allows all iterations of the loop to operate in
parallel. Cilk++ provided full support for C++ exceptions. It also intiodd reducer hyperobjects.
A Cilk++ program, like a Cilk program, retains its serial semantics when runnenprocessor.
Moreover, one may obtain theerialization of a Cilk++ program, which is the same concept as
serial elision, by elidingilk _spawnandcilk _syncand replacingilk _for with for .

Cilk Arts was sold to Intel Corporation in July 2009, which continued devatpthe technol-
ogy. In September 2010, Intel released its ICC compiler with Intel Cilk Pldsg8]. The product
included Cilk support for C and C++, and the runtime system providedgeaaat integration with

2Called “Cilk” in [15, 18, 74], but renamed “Cilk-1" in [49] and other Midocumentation.
3This distinction was later removed altogether by Intel Cilk Plus, though atdhense of sacrificing the performance
and space guarantees provided by a working-stealing schedulerilMggplore this issue in more depth in Chapter 3

17

MIT Cilk-1

¢

MIT Cilk-5

N

Cilk Arts Cilk++ Cilk-M 0.9

¢

Intel Cilk Plus

.

Cilk-M 1.0

Figure 2-1: The lineage of Cilk-M 0.9 and Cilk-M 1.0.

legacy binary executables.

The development of Cilk-M

Cilk-M’s runtime system is based on the open-source Cilk-5 runtime s%tamjified to incorpo-
rate the use of a TLMM-based cactus stack. Due to its use of TLMM, theNC#lgstem currently
only runs on x86 64-bit architectures.

The Cilk-M system started out being only a runtime scheduler (referred @ille-M 0.9) and
had no compiler support. Cilk-5’s source-to-source compiler, whichaupthe basic primitives for
parallel control, does not work with the Cilk-M runtime system due to the diffees in how the two
systems maintain cactus stacks. To evaluate the Cilk-M 0.9 runtime system, my catiteb@nd
I manually hand-compiled benchmarks using gcc's inline assembly featusecethe compiler to
generate the desired assembly code. Manually compiling all benchmarkdscame impractical,
given that we wanted to experiment with larger applications that use neduce

It turns out that Cilk-M'’s special calling convention closely resembles dtiang convention for
parallel functions in Cilk Plus [69]. We ported the Cilk-M runtime to adopt CilksPRpplication
Binary Interface (ABI) [68] so as to interface with the code compiled byQGiik Plus compiler
(referred to as Cilk-M 1.0). Interfacing with the Cilk Plus compiler enabletbusbtain compiler
support for compiling large C and C++ applications with Cilk Plus keywordg#rallel control
with much less engineering effort than what building a full compiler woulcehaquired.

Figure 2-1 shows the lineage of Cilk-M 0.9 and Cilk-M 1.0 and summarizes ldgorebetween
different versions of Cilk that | mentioned. Cilk-M inherited Cilk-5's simple lingfics, although
it supports the C++ syntax like Cilk++ and Cilk Plus (includicitk _for) due to its use of the Cilk
Plus compiler. Cilk-M’s performance model and its work-stealing schedislerbe traced back
to Cilk-1, although the “work-first principle” [49] mentioned later in this sectiwas derived and
exploited since the implementation of Cilk-5. Henceforth, when | describe ilkeMCsystem, |
mean the Cilk-M 1.0 implementation, unless | state Cilk-M 0.9 specifically.

Cilk-M’s linguistic model

Cilk-M supports three main keywords for parallel controitk _spawn, cilk _sync andcilk _for.
Parallelism is created using the keywanitk_spawn When a function invocation is preceded by

4The open-source Cilk-5 system is availabl@®tp: //supertech.csail.mit.edu/cilk/cilk-5.4.6.tar.gz.

18

http://supertech.csail.mit.edu/cilk/cilk-5.4.6.tar.gz

the keywordcilk _spawn, the function isspawnedand the scheduler may continue to execute the
continuation of the caller in parallel with the spawned subroutine without wéliting to return.
The complement ofilk _spawnis the keywordcilk _syng which acts as a local barrier and joins
together the parallelism forked lajlk _spawn The Cilk-M runtime system ensures that statements
after acilk _syncare not executed until all functions spawned beforecilie_sync statement have
completed and returned.

The keywordcilk _for is the parallel counterpart of the looping constriat in C and C++
that permits loop iterations to run in parallel. The Cilk Plus compiler convertgitkefor into
an efficient divide-and-conquer recursive traversal over thatitar space. From the runtime sys-
tem’s perspective, theilk _for construct can be desugared into code contaigitig_spawn and
cilk_sync Certain restrictions apply to the loop initializer, condition, and increment, fachvl
omit the details here and refer interested readers to [69].

In Cilk-5, there is a clear distinction between function types — a function thratains keywords
for parallel control must be declared to b&ak function, and a Cilk function must be spawned
but not called. Similarly, only Cilk functions but not C functions can be spev Since the Cilk-M
system supports SP-reciprocity, or, seamless interoperability betwaahas®l parallel code, this
delineation between serial and parallel code is lifted. The compiler no lovegels to keep track of
function types, and whether there is parallelism or not depends on wteethaction is called or
spawned — any function may be called as well as spawned; if a functioaiasal, it may execute
in parallel with the continuation of its parent; if it is called, while it may execute iralpel with
its children, the continuation of its parent cannot be resumed until it retNegertheless, we shall
keep the same terminology and refer to functions that contain keyworg@arfallel controls as Cilk
functions.

Although Cilk-M supports large C++ applications compiled using the Cilk Plus demphe
current implementation does not handle exceptions that occur duringgpax@cution. In princi-
ple, Cilk-M could support exceptions, and the implementation might be simplerttiaam Cilk
Plus, since on Windows, the structured exception handling mechanisndeaddyy the operating
system expects the frame allocation to follow a linear stack layout (i.e., a chitgdefishould be
allocated at a relatively lower address compared to that of its parenmigsthe stack grows
from high to low addresses). As we shall see in Chdpter 3, the way Cilkrethtisne maintains
a cactus stack does not necessarily satisfy this condition, whereas Gldebdue to its use of a
TLMM-based cactus stack.

Cilk-M’s performance model

Two important parameters dictate the performance of a Cilk computatiomoits which is the
execution time of the computation on one processor, arsbia@, which is the execution time of
the computation on an infinite number of processors.

With these two parameters, one can give two fundamental lower boundevoifast a Cilk
program can run. Let us denote the execution of a given computati®rpoocessors a&. Then,
the work of the computation i$;, and the span i3.. The first lower bound, referred to as the
Work Law, is Tp > T1/P, because at each time step, at m@sinits of work can be executed, and
the total work isT;. The second lower bound, referred to as man Law is Tp > T, because a
finite number of processors cannot execute faster than an infinite narhpercessors. Assuming
an ideal parallel computer, a work-stealing scheduler executes in time

Tp < T1/P + Co Two. (2.1)

5«Span” is sometimes called “critical-path length” [18] and “computationt&fi.3] in the literature.

19

The first term on the right hand side of Equation 2.1 is referred to awtik term, and the
second term as thgpan term One can also define theverage parallelismasP = T; /Te, wWhich
corresponds to the maximum possible speedup that the application can elot@ditheparallel
slacknesgo be the ratid®/P. Assuming sufficient parallel slackness, mearfti@ > c.,, then it
follows thatT; /P >> c. T. Hence, from Inequality 2/1, we obtain thgt ~ T;/P, which means
that we achieve linear speedup when the number of proceBssnmaiuch smaller than the average
parallelismP. Thus, when sufficient parallel slackness exists, the span ovechdzas little effect
on performance.

This performance model gives rise to twerk-first principle [49], which states:

“Minimize the scheduling overhead borne by the work of a computation. ifsgly,
move overheads out of the work and onto the [span].”

As we shall see in the later chapters, the work-first principle pervadesitiiementation of Cilk-M.
In particular, the use of a TLMM-based cactus stack in Cilk-M helps minimize th& sompared
to a heap-based cactus stack, but at the additional cost of a taygerm. Nevertheless, when an
application exhibits ample parallelism, the largerterm has little effect on performance.

Cilk-M’s work-stealing runtime scheduler

Cilk-M’'s work-stealing scheduler load-balances parallel executiomssdhe available worker threads.
Like Cilk-5, Cilk-M follows the “lazy task creation” strategy of Kranz, Halate and Mohr [80],
where the worker suspends the parent when a child is spawned and egk on the child Op-
erationally, when the user code running on a worker encounteitk gspawn, it invokes the child
function and suspends the parent, just as with an ordinary subroutinduwtait also places the
parent frame on the bottom ofdeque(double-ended queue). When the child returns, it pops the
bottom of the deque and resumes the parent frame. Pushing and popires ffrom the bottom

of the deque is the common case, and it mirrors precisely the behavior obo@er Algol-like
languages in their use of a stack.

The worker’s behavior departs from ordinary serial stack execiftibonuns out of work. This
situation can arise if the code executed by the worker encounteitk sync. In this case the
worker becomes thief, and it attempts to steal the topmost (oldest) frame frowctm worker.
Cilk-M’s strategy is to choose the victim randomly, which can be shown [2[0alyield provably
good performance. If the stealssiccessfulthe worker resumes the stolen frame.

Another situation where a worker runs out of work occurs if it retunosnfa spawned child
to discover that its deque is empty. In this case, it first checks whethemtieatgs stalled at a
cilk _syncand if this child is the last child to return. If so, it performgoining stealand resumes
the parent function, passing tlék _sync at which the parent was stalled. Otherwise, the worker
engages in random work-stealing as in the case wledik asyncwas encountered.

What | have described thus far is a general overview of how a wigliag scheduler operates,
which applies to the Cilk-5 scheduler as well. Since the Cilk-M system supf&xieciprocity,
the Cilk-M runtime differs from the Cilk-5 runtime in that it must keep track of hefunction is
invoked to maintain the call versus spawn semantics accordingly. Maintainiicgitext semantics
during execution is mainly a matter of handling the runtime data structure diffieremthis regard,
many of the implementation details of the Cilk-M runtime resemble those of the Cilk+tinren
system, and | refer interested readers to [48]. In particular, an en&ryeéady deque may be either

6An alternative strategy is for the worker to continue working on the paseuthave thieves steal spawned children.
Cilk-1 [18], TBB [126], and TPL [92] employ this strategy, but it camué&e unbounded bookkeeping space even on a
single processor.

20

threadO threadl

Figure 2-2: Example of a x86 64-bit page-table configuration for two dtieon TLMM-Linux. The portion

of the data structure dealing with the TLMM region is shadgtitigrey, and the remainder corresponding
to the shared region is shaded dark grey. In the TLMM regibread0 maps page?2 first and then pageO,
whereas thread1l maps pagel first and then page0. The pageisit&sswith the heap and the data segments
are shared between the two threads.

a single frame, or a sequence of frames, representing a sequeratkedfCilk functions. When a
steal occurs, the entire sequence in an entry is stolen instead of juskefsange. Doing so ensures
that a caller of a Cilk function cannot be stolen and resumed before theuditkibn returns.

2.2 Support for TLMM

A traditional operating system provides each process with its own virtultkad space. No two
processes share the same virtual-address space, and all threadsavgitém process share the
process’s entire virtual-address space. TLMM, however, desigaatgion of the process’s virtual-
address space as “local” to each thread. This sp@diBMM region occupies the same virtual-
address range for each thread, but each thread may map differsitadhpages to the TLMM
region. The rest of the virtual-address space outside of the TLMMmagimains shared among all
threads within the process.

My collaborators and | modified the Linux kernel to implement TLMM, refdrte as the
TLMM-Linux, which provides a low-level virtual-memory interface orgaguzaround allocating
and mapping physical pages. The design attempts to impose as low oveshgzssinle while al-
lowing the Cilk-M runtime system to implement its work-stealing protocol efficiedtiyaddition,
the design tries to be as general as possible so that the API can be ustbétyser-level utilities,
applications, and runtime systems besides Cilk-M. This section describes tremiemation of
TLMM-Linux and the TLMM interface.

TLMM implementation

We implemented TLMM for Linux 2.6.32 running on x86 64-bit CPU’s, suchAdD Opterons
and Intel Xeons. We added about 600 lines of C code to manage TLMMalAmemory mappings
and modified several lines of the context-switch and memory-managementcte compatible
with TLMM.

Figure[2-2 illustrates the design. TLMM-Linux assigns a unique root phgetory to each
thread in a process. The x86 64-bit page tables have four levels, enmage directories at each
level contain 512 entries. One entry of the root-page directory is reddor the TLMM region,
which corresponds to 512-GByte of virtual address space, andghefrihe entries correspond to
the shared region. Threads in TLMM-Linux share page directoriesctira¢spond to the shared

21

addr_t sys_reserve(size_t n):

Reserven bytes for the TLMM region, and return the start address.
pd_t sys_palloc(void):

Allocate a physical page, and return its descriptor.
sys_pfree(pd_t p):

Free the page descriptpr

sys_pmap(unsigned int n, pd_t p[], addr_t a):
Map then pages represented by the descriptors @tarting at virtual address

Figure 2-3: System-call API for TLMM.

region. Therefore, the TLMM-Linux virtual-memory manager needs talssonize the entries in
each thread'’s root page directory and populate the shared lowéphaye directories only once.

TLMM interface

Figure 2-3 summarizes the TLMM system call interfaggs_reserve marksn bytes of the calling
thread’s process address space as the TLMM region and returnsittiegsaddress of the region.
sys_palloc allocates a physical page and returns its page descriptor. A pag@ptasisranalo-
gous to a file descriptor and can be accessed by any thread in theprocepfree frees a page
descriptor and its associated physical page.

To control the physical-page mappings in a thread’s TLMM region, thethecallssys_pmap,
specifying an array of page descriptors to map, as well as a basesaddrthe TLMM region
at which to begin mapping the descriptoesis_pmap steps through the array of page descriptors,
mapping physical pages for each descriptor to subsequent pageehligiual addresses, to produce
a continuous virtual-address mapping that starts at the base addressci@dl page-descriptor value
PD_NULL indicates that a virtual-address mapping should be removed. Thus, a thigkiM that
finishes executing a series of functions that used a deep stack can maies stolen stack prefix
with a single system call.

This low-level design for the TLMM-Linux interface affords a scalabéeriel implementation.
One downside, however, is that the kernel and the runtime system mushbatige page descrip-
tors. The kernel tracks at which virtual addresses the page dessrg® mapped. The runtime
tracks the mapping between page descriptors and pages mapped in the fEghkiso as to allow
sharing among workers — two workers share pages by mapping the sasiegbipages in their
respective TLMM regions. As we shall see in Chapter 3, this scenaré@thdomes up in the main-
tenance of TLMM-based cactus stacks. We have considered an #lteringerface design where
the TLMM-Linux provides another level of abstraction so that the runtimesdwt need to keep
track of the page mappings, but this interface would force the runtime systémar additional
overhead between steals, so we opted for this low-level interface indted@trevisit this point in
more detail later in Section 3.2.

The most unfortunate aspect of the TLMM scheme for solving the catack-problem is
that it requires a change to the operating system. Section 2.3 sketchesaatistie‘'workers-as-
processes” scheme, which, although it does not require operatitgrs\support, has other defi-
ciencies.

22

2.3 An Alternative to TLMM

Some may view TLMM as too radical an approach to implement memory abstradiieceuse it
involves modifying the operating system. This section considers anoth&bfgosiemory-mapping
solution that simulates the effect of TLMM which does not require operaysgem support. The
idea of theworkers-as-processesheme is to implement workers as processes, rather than threads,
thereby allowing each worker to map its address range independentlysamdamory mapping to
support the part of the address range that is meant to be shared ettiim sketches a design for
this alternative scheme and discusses its ramifications.

During the start-up of the workers-as-processes scheme, eacknm®s memory-mapping
to share the heap and data segments across the workers’ addresssspac/okingnmap with a
designated file descriptor on the virtual-address range of where tpeaheadata segments reside.
Since processes by default do not share memory, this strategy privedidasion of a fully shared
address space for these segments. Since workers may need to shaféhgdr stacks to maintain
a cactus stack memory abstraction, the runtime system must also memory-mapvedirkiees’
stacks to the file, recording the file offsets for all pages mapped in thesssacthat they can be
manipulated. In addition, other resources — such as the file system, filepdes; signal-handler
tables, and so on — must be shared, although at least in Linux, this staringe accomplished
straightforwardly using thelone system call.

Although this workers-as-processes approach appears well wedstigating, there are a few
complications that one needs to deal with if this approach is taken. Herersmaany of challenges.

First, the runtime system would incur some start-up overhead to set up thexl shamory
among workers. A particular complication would occur if the runtime system islin@in the
middle of a callback from C to Cilk for the first time. In this case, the runtime systerst first
unmap the existing heap segment used by the C computation, remap the haaptsegdh new
pages so that the mapping is backed by a file (so as to allow sharing), pyp@wer the existing
data from the old mapping to the new mapping.

Second, the overhead for stealing would increase. In order to maintaictasestack memory
abstraction, a thief must remap its stack after a successful steal, so diedbtree stolen frame
(and its ancestors) that it shares with the victinmlis the number of pages mapped in the victim’s
stack that the thief must map to share, the thief might need to inme&g m times, once for each
address range, rather than making a single call as with our TLMM implementatoause it is
unlikely that these consecutive pages in the victim’s stack reside contiguiouie designated
file. Thesem calls would result in gh kernel crossings, and thus increase the steal overhead. One
might imagine ammap interface that would support mapping of multiple physical pages residing in
a noncontiguous range in the designated file, but such an enhancemedtimvolve a change to
the operating system, exactly what the workers-as-processes sciesrne avoid.

Finally, and perhaps most importantly, workers-as-processes makasjificated to support
system calls that change the address space, sugiegasaindbrk. When one worker invokasmap
to map a file into shared memory, for example, the other workers must do the §dms, one
must implement a protocol to synchronize all the workers to perform the imappfore allowing
the worker that performed themap to resume. Otherwise, a race might occur, especially if the
application code communicates between workers through memory. This gratoald likely be
slow because of the communication it entails. Furthermore, in some existing impédine rof
system call libraries such adibc, callingmalloc with size larger than 128 KBytes results in
invoking mmap to allocate a big chunk of memory. Therefore, with this scheme, one wouttl nee
to rewrite theglibc library to intercept themmap call and perform the synchronization protocol
among workers for the newly allocated memory as well.

23

Despite these challenges, the workers-as-processes “solutiordragpebe an interesting re-
search direction. It may be that hybrid schemes exist which modify theatipgrsystem in a less
intrusive manner than what TLMM does, for example, by allowing noncaotig address ranges
in mmap, by supportingnmap calls across processes, etc. We adopted TLMM'’s strategy of sharing
portions of the page table, because we could explore a memory-mappitigrséu implementing
memory abstractions with relatively little engineering effort. Our work fosumere on such solu-
tion’s implication on the runtime system, however, and not as much on how the yenapping
should be supported. Most of the work described in the first part ofifegertation, including the
design of the runtime system and the theoretical bounds, applies to thersvagkprocesses ap-
proach as well. The Cilk-M system seems to perform well, which may motivatexjpleration of
other, possibly more complex strategies that have different systems rdioifica

24

Chapter 3

TLMM-Based Cactus Stacks

Work stealing [8, 18, 20, 21, 24, 41, 43, 45, 49, 55, 75, 80, 82,138 is fast becoming a standard
way to load-balance dynamic multithreaded computations on multicore hardWamecurrency
platforms that support work stealing include Cilk-1 [18], Cilk-5 [49], Cik}94], Cilk Plus [69],
Fortress [6], Hood [21], Java Fork/Join Framework [90], TaskaRarLibrary (TPL) [92], Thread-
ing Building Blocks (TBB) [126], and X10 [26]. Work stealing admits an@éint implementation
that guarantees bounds on both time and stack space [20, 49], butgxisplementations that
meet these bounds — including Cilk-1, Cilk-5, and Cilk++ — suffer from iop&rability prob-
lems with legacy (and third-party) serial binary executables that havedmeepiled to use a linear
stacIE This chapter illustrates a strategy for maintaining a cactus-stack memoryctiosiraalled

a TLMM-based cactus stackwith which one can build algorithmically sound work-stealing con-
currency platforms that interoperate seamlessly with legacy serial binaries

An execution of a serial Algol-like language, such as C [77] or C++ [188n be viewed as
a “walk” of an invocation tree which dynamically unfolds during execution and relates function
instances by the “calls” relation: if a function instan&ecalls a function instancB, thenA is a
parentof thechild B in the invocation tree. Such serial languages admit a simple array-baskd sta
for allocating function activation frames. When a function is called, the gtagkter is advanced,
and when the function returns, the original stack pointer is restored sfyésof execution is space
efficient, because all the children of a given function can use ané thasame region of the stack.
The compact linear-stack representation is possible only because ialdesgjuage, a function has
at most one extant child function at any time.

In a dynamically multithreaded language, such as Cilk-5 [49] or Cilk Plus g@®@phrent func-
tion can alsespawna child — invoke the child without suspending the parent — thereby creating
parallelism. The notion of an invocation tree can be extended to include spawmvell as calls,
but unlike the serial walk of an invocation tree, a parallel execution usftiié invocation tree
more haphazardly and in parallel. Since multiple children of a function maysrisitaneously, a
linear-stack data structure no longer suffices for storing activationefsa Instead, the tree of extant
activation frames forms eactus stack60], as shown in Figure 3-1. The implementation of cactus
stacks is a well-understood problem for which low-overhead implementagiasis[49, 51].

In all known software implementations, however, transitioning from seadédqusing a linear
stack) to parallel code (using a cactus stack) is problematic, becaus@éheftgtack impacts the
calling conventions used to allocate activation frames and pass argumieatstoperty of allowing

1The interoperability problem is not inherent to languages that are Jmsedtand byte-code interpreted by a virtual-
machine environment such as Fortress, Java Fork/Join FramelRitkand X10, because in such languages, no address
to a stack frame can be captured. Some of these languages, in theirtdorms, do suffer from a similar problem due
to implementation choices, however.

25

o8}
(@)
| o]

B Cc D
B Cc
D

£
A
C
E

(@) (b)

Figure 3-1: A cactus stack(a) The invocation tree, where functidrinvokesB andcC, andcC invokesD andE.

(b) The view of the stack by each of the five functions. In a sesatation, only one view is active at any
given time, because only one function executes at a time. parallel execution, however, if some of the
invocations are spawns, then multiple views may be activellsaneously.

arbitrary calls between parallel and serial code — including especiallgydgad third-party) serial
binaries — is referred to aserial-parallel reciprocity or SP-reciprocityfor short.

SP-reciprocity is especially important if one wishes to multicore-enable laggegt-oriented
environments by parallelizing an object’s member functions. For examplppsaphat a function
A allocates a new objeat whose type has a member functitoo (), which we parallelize. Now,
suppose that is linked with a legacy binary containing a functiBpnandA passex to B, which
proceeds to invoke->foo (&y), where&y is a reference to a local variable allocatedis stack
frame. Without SP-reciprocity, this simple callback does not work.

Existing work-stealing concurrency platforms that support SP-reciigréail to provide prov-
able bounds on either scheduling time or consumption of stack space. ddwes#s typically follow
those of Blumofe and Leiserson [20]. LBtbe thework of a deterministic computation — its serial
running time — and lefl., be thespanof the computation — its theoretical running time on an
infinite number of processors. Then, a work-stealing scheduler aoutxthe computation dn
processors in time

Tp < T1/P+ CoToo (3.1)

wherec,, > 0 is a constant representing tipan overhead As we have discussed in Section|2.1
(Cilk-M’s performance model), this formula guarantees linear speedep®k« T; /T, that is, the
numberP of processors is much less than the computatipaigllelismT; /T.. Moreover, ifS; is
the stack space of a serial execution, then the (cactus) stackSpamesumed during B-processor
execution satisfies

S <PS. (3.2)

Generally, we shall measure stack space in hardware pages, whiyaweehe page size unspeci-
fied. Many systems set an upper boundpof 256 4-KByte pages.

We shall refer to the problem of simultaneously achieving the three criteB& ekciprocity, a
good time bound, and a good space bound, asaletus-stack problemThis chapter shows how
the Cilk-M system utilizes operating-system support for thread-local mgemapping (TLMM) to
support full SP-reciprocity, so that a cactus stack interoperates sedynéth the linear stack of
legacy binaries, while simultaneously providing bounds on scheduling timstaokl space.

The Cilk-M worker threads, which comprise the distributed scheduler, ahewser code to
operate using traditional linear stacks, while the runtime system implements a statl behind
the scenes using TLMM support. Since TLMM allows the various workerkstéo be aligned,
pointers to ancestor locations in the cactus stack are dereferencectlyano matter which worker

26

executes the user code.

Our prototype TLMM-Linux operating system and the Cilk-M runtime systelvesthe cactus-
stack problem. In Cilk-M, we shall defineGilk function to be a function that spawns, and bk
depthof an application to be the maximum number of Cilk functions nested on the staicigdu
serial execution. Suppose that an application has vigrgpanT,,, consumes stack spagon one
processor, and has a Cilk dedih Then, analogously to Inequalities (3.1) and (3.2), the Cilk-M
scheduler executes the computationPoprocessors in time

Tp < Tl/P 4 Co Io (3.3)
wherec, = O(S + D), and it consumes stack space

$ <P(S+D). (3.4)

Inequality (3.3) guarantees linear speedup Whet T1/ (S, + D) Tw.

This chapter includes performance evaluation of Cilk-M on a variety oftvearks, comparing
it to two other concurrency platforms: the original Cilk 5.4.6, whose code tize Cilk-M runtime
system is based on, and Cilk Plus, a commercial-grade implementation. Thaiss gtdicate that
the time overhead for managing the cactus stack with TLMM is generally as gobeltter than
Cilk-5 and comparable to Cilk Plus. In terms of space consumption, experimesitdts indicate
that the per-worker consumption of stack space in Cilk-M is no more ti¥dntiZnes the serial space
requirement across benchmarks. The evaluation also includes a stadgraii space cconsumption
(both stack and heap) comparison between Cilk-3hd Cilk 5.4.6 to better understand the trade-
offs made between the Cilk-M runtime implementing a TLMM-based cactus statkarCilk-5
runtime employing a heap-based cactus stack. Experiemental results stidettoverall space
consumption of Cilk-M is comparable to or better than that of Cilk-5.

The remainder of this chapter is organized as follows. Section 3.1 prdvadiground on time
and space bounds guaranteed by a work-stealing schedulers usirgasitkk model and describes a
range of conventional approaches that fail to solve the cactus-stalolem. Section 3.2 describes
how Cilk-M leverages TLMM support to solve the cactus-stack problensti@e3.3 analyzes the
performance and space usage of the Cilk-M system both theoreticallyngpidaally. Section 3.4
provides some concluding remarks.

3.1 The Cactus-Stack Problem Seems Hard

This section overviews challenges in supporting SP-reciprocity while maimggiounds on space
and time, illustrating the difficulties that various traditional strategies encouBifore we dive

into how various strategies fail to solve the cactus-stack problem, we sistibbfiefly review the

theoretical bounds on space and time guaranteed by a work-stealimtykehasing Cilk-5 [49] as

an example.

Recall how a work-stealing scheduler operates from Section 2.1. Fondsepart, a worker
pushes and pops frames from the bottom of its own deque, which mirrecsely the behavior of
C or other Algol-like languages in their use of a stack. Only when a workes out of work, its
behavior diverges; the worker turns into a thief, randomly choosestiayiand attempts to steal
the topmost (oldest) frame from the victim worker.

2Here, | am referring to Cilk-M 0.9 specifically, because the way a spatement is compiled in Cilk-M 1.0 using
the Cilk Plus compiler diverges greatly from that in Cilk-5.

27

Strategy SP-Reciprocity Time Bound Space Bound

[1. Recompile everything no very strong very strong
|2l One stack per worker yes very strong no

[3. Depth-restricted stealing yes no very strong
[4. Limited-depth stacks yes no very strong
[5. New stack when needed yes very strong weak
[6. Recycle ancestor stacks yes strong weak
[7. TLMM cactus stacks yes strong strong

Figure 3-2: Attributes of different strategies for implementing cacstacks.

The analysis of the Cilk-5 scheduler’s performance is complicated (€ [ut at a basic
level, the reason it achieves the bound in Inequality| (3.1) is that everyewi either working, in
which case it is chipping away at tig/P term in the bound, or work-stealing, in which case it
has a good probability of making progress on Taeterm. If the scheduler were to wait, engage
in bookkeeping, or perform any action that cannot be amortized agamesof these two terms,
the performance bound would cease to hold, and in the worst cask,ineswch less than linear
speedup on a program that has ample parallelism.

The analysis of the Cilk-5 scheduler's space usage is more straightébrwiehe scheduler
maintains the so-calledusy-leaves propertj20], which says that at every moment during the
execution, evergxtant— allocated but not yet deallocated — leaf of the spawn tree has a worker
executing it. The bound on stack space given in Inequality (3.2) follovestyrfrom this property.
Observe that any path in the spawn tree from a leaf to the root correspmadoath in the cactus
stack, and the path in the cactus stack contains no moréttsgpace. Since there dPavorkersPS
is an upper bound on stack space (although it may overcount). Tightedbmn stack space have
been derived for specific applications [16] using the Cilk-5 scheduléfar other schedulers [14].

Most strategies for implementing a cactus stack fail to satisfy all three critetleeacactus-
stack problem. Figure 3}2 categorizes attributes of the strategies of whithaware. This list
of strategies is not exhaustive but is meant to illustrate the challenges iarsng@SP-reciprocity
while maintaining bounds on space and time, and to motivate why naive solutithesdactus-stack
problem do not work. We will now overview these strategies.

The main constraint on any strategy is that once a frame has been alldgtsdtazhtion in virtual
memory cannot be changed, because generally, there may be a pointeriabde in the frame
elsewhere in the system. Moreover, the strategies must respect theataeidlgacy binary can act
as an adversary, allocating storage on the stack at whatever positicgadk@sinter happens to lie.
Thus, when a legacy function is invoked, the runtime system has only oiwd*ko dial — namely,
choosing the location in virtual memory where the stack pointer points — ane ltael better be
enough empty storage beneath that location for all the stack allocationsetah#ry may choose
to do. (Many systems assume that a stack can be as large as 1 MByte.) gystta¢s have the
flexibility to choose how it allocates memory in parallel code, that is, code plaatrss, since that is
not legacy code, and it can change the stack pointer. It must enswveyér, that when it invokes
legacy serial code, there is sufficient unallocated storage on the stacké#tever the legacy serial
code’s needs might be.

28

Strategy 1. Recompile everything

This approach allocates frames off the heap and “eats the whole eleplgartompiling all legacy
serial functions to use a calling convention that directly supports a caeicis svery strong time
and space bounds can be obtained by Strategy 1, and it allows sewalacodll back to parallel
code, as long as the serial code is recompiled to use the same calling camibatisupports a
cactus stack. This strategy does not provide true SP-reciprocityMeovgnce serial functions in
legacy (and third-party) binary executables, which were compiled asguariinear stack, cannot
call back to parallel code. Cilk++ [66] employs this strategy.

An interesting alternative is to use binary-rewriting technology [88, 109] 10 rewrite the
legacy binaries so that they use a heap-allocated cactus stack. Thos@ppnay not be feasible
due to the difficulty of extracting stack references in optimized code. Mereit may have trouble
obtaining good performance because transformations must err on tlué safety, and dynamically
linked libraries might need to be rewritten on the fly, which would precludensite analysis.

Strategy 2: One stack per worker

This strategy gives each worker an ordinary linear stack. Wheneverkeer steals work, it uses its
stack to execute the work. For example, imagine that a watketns parallel functiorf oo, which
spawngsi. While W, executed,, another workeY\, stealsfoo and resumes the continuationfafo

by setting its base pointer to the topfafo, which resides ol\y’s stack, and setting its stack pointer
to the next available space in its own stack, so that the frames of any fucetied or spawned by
foo nextis allocated ol\,’s stack.

With Strategy 2, the busy-leaves property no longer holds, and the stackgow much larger
than$S;. In particular,Wp must steal work iffoo is not yet ready to sync whei; returns froma.
Sincefoo is not ready to be resumed and cannot be popped off the &gckan only push the
next stolen frame belovoo. If foo is already deep in the stack avd happens to steal a frame
shallow in the stack, thew,’s stack could grow almost as large &S 2That is not so bad if it only
happens once, but unfortunately, this scenario could occur reelysyielding impractically large
stack space consumption.

Strategy 3: Depth-restricted stealing

This approach is another modification of Strategy 2, where a workertiicted from stealing any
frame shallower than the bottommost frame on its stack. Thus, stacks caonwadgeper thais;.
The problem with Strategy 3 is that a worker may be unable to steal evenhthiogige is work to
be done, sacrificing the time bound. Indeed, Sukha [131] has showth#ra exist computations
for which depth-restricted work-stealing exhibits at most constant sype@aP workers, where or-
dinary work-stealing achieves nearly perfect linear speedup. TB8][@mploys a heuristic similar
to depth-restricted work-stealing to limit stack space.

Strategy 4: Limited-depth stacks

This approach is similar to Strategy 2, except that a limit is put on the depthlacstagrow. If
a worker reaches its maximum depth, it waits until frames are freed befmakng. The problem
with Strategy 4 is that the cycles spent waiting cannot be amortized agaimstedtk or span, and
thus the time bound is sacrificed, precluding linear speedup on codes wita pangllelism.

29

Strategy 5: New stack when needed

This strategy, which is similar to Strategy 2, allocates a new stack on evely Istéhe scenario
described in Stratedgyl 2, whei; goes off to steal work, Strategy 5 switches to a new stack to
execute the stolen work. Thus, nothing is allocated below; which avoids the unbounded space
blowup incurred by Strategy 2.

Since Strategy|5 maintains the busy-leaves property, the total physical snassat for extant
frames at any given moment is boundedRfj. The extant frames are distributed across stacks,
however, where each stack may contain as little as a single extant frames &icle stack may
individually grow as large a$; over time and the stacks cannot be recycled until they contain no
extant frames, the virtual-address space consumed by stacks maymto®RS, whereD is the
Cilk depth (defined at the beginning of the chapter), a weak bound. dMergStrategy 5 may incur
correspondingly high swap-space usage. Swap space could hredeoly directing the operating
system to unmap unused stack frames when they are popped so thatetimeylanger backed up
in the swap space on disk, but this scheme seems to laden with overheady Berpassible to
implement the reclamation of stack space lazily, however.

Cilk Plus [69] employs a heuristic that is a combination of Strategy 4 and Strategythe
runtime system manages a large pool of linear stacks and uses Strategy fhete are still stacks
available in the pool; only when the pool exhausts, the runtime system switchéguristic similar
to Strategy 4.

Strategy 6: Reuse ancestor stacks

This scheme is like Strategy 5, but before allocating a new stack after stealiage, it checks
whether an ancestor of the frame is suspendedcdkasync and that the ancestor is the bottom-
most frame on the stack. If so, it uses the ancestor’s stack rather tlam@ne. Strategy!6 is safe,
because the ancestor cannot use the stack until all its descendant®imgleted, which includes
the stolen frame. Although Strategy 6 may cut down dramatically on space oesnwih Strat-
egyl 5, it has been shown [47] to still require at l€@§P>S;) stack space for some computations. As
with Strategy 7, the time bound obtained with this strategy exhibits some additioabbgézhead
compared to Inequality (3.2), which results from the traversal of ans$tames when searching
for a reusable stack.

Strategy 7: TLMM-based cactus stacks

The strategy employed by Cilk-M and explored in this chapter. In partictier strategy obtains
the strong bounds given by Inequalities (3.3) and|(3.4).

3.2 TLMM-Based Cactus Stacks in Cilk-M

Cilk-M leverages TLMM to solve the cactus-stack problem by modifying the-€itkntime system
in two key ways. First, whereas Cilk-5 uses a heap-allocated cactus GilcK uses a linear stack
in each worker, fusing them into a cactus stack using TLMM. SecondiealeCilk-5 uses a special
calling convention for parallel functions and forbids transitions froniaseode to parallel code,
Cilk-M uses the standard C subroutine linkage for serial code and a tinedankage for parallel
code. This section describes how the Cilk-M runtime system implements these tlificatmns.

30

0x7f000 — W1 W2 W3

Al |A] |A
0x7€000— B
cl |c
o
0x7d000 —
E

Figure 3-3: The view of stacks mapped in the TLMM region of each workere $tack layout corresponds
to the execution of the invocation tree shown in Figure 3-tie Tiorizontal lines indicate page boundaries,
and the hexadecimal values on the left correspond to thealinhemory addresses.

The Cilk-M cactus stack

Recall that any strategy for solving the cactus-stack problem must obeptistraint that once allo-
cated, a stack frame’s location in virtual memory cannot be moved. Cilk-pes this constraint
by causing each worker thread to execute user code on a stack fdasrigsits own TLMM re-
gion. Whenever a successful steal occurs, the thief memory-maps lire fséone and the ancestor
frames in the invocation tree — ttatolen stack prefix— so that these frames are shared between
the thief and victim. The sharing is achieved by mapping the physical pagesponding to the
stolen stack prefix into the thief’'s stack, with the frames occupying the satuaivaddresses at
which they were initially allocated. Since the physical pages corresponaliting stack prefix are
mapped to the same virtual addresses, a pointer to a local variable in arstaekreferences the
same physical location no matter whether the thief or the victim derefererepsititer.

Consider the invocation tree shown in Figlre|3-1(a) as an example. |Imtyie workers
working on the three extant leavdsD, andE. Figurel 3-3 illustrates the corresponding TLMM
region for each worker. Upon a successful steal, Cilk-M must ptevettiple extant child frames
from colliding with each other. For instance, worl#&k starts executing, which spawns$ and
workerW, stealsA from W;, maps the stack prefix (i.e., the page whgnesides) into its stack,
resumes\, and subsequently spawas In this caseW, cannot use the portion of the page below
frameA, becausd®V, is using it forB. Thus, the thief\\, in this example, advances its stack pointer
to the next page boundary upon a successful steal.

Continuing with the exampl&\, executex, which spawn®. WorkerWs may stealh from W,
but, failing to make much progress ardue to acilk _sync, be forced to steal again. In this case,
W5 happens to steal froMs again, this time stealing. Thus,Ws maps into its stack the pages
whereA andc reside, aligns its stack pointer to the next page boundary to avoid confleitin®,
resumes, and spawng& 2 In this exampleW; andW, each map 2 pages in their respective TLMM
regions, and\s maps 3. The workers use a total of 4 physical pages: 1 page for éach,@andE,
and an additional page f@r FunctionD is able to share a page with

Upon a successful steal, the thief always advances its stack pointerriexhpage boundary
before resuming the stolen parent frame to avoid conflicting with the parhlldlexecuting on the
victim. Advancing the stack pointer causes the thief’s stack to be fragn@mdi.—M mitigates

3Actually, this depiction omits some details, which will be elaborated more fully iathis section.
4An alternative strategy to prevent collision is to have workers to alwages@t a page boundary. This strategy,
however, would cause more fragmentation of the stack space andiglbyarse more physical memory.

31

fragmentation by employing space-reclaiming policyn which the stack pointer is reset to the
bottom of the frame upon a joining steal or a successful sync. This-spalzming policy is safe,
because all other parallel subcomputations previously spawned byathe frave returned, and so
the executing worker is not sharing this portion of the stack with any othekero

Since a worker's TLMM region is not addressable by other workeng, @eficiency of the
TLMM strategy for implementing cactus stacks is that it does not supportyeggrial binaries
where the stack must be visible externally to other threads. For instane@péoation that uses
MCS locks [108] might allocate nodes for the lock queues on the local,stattlier than out of the
heap. This code would generally not work properly under Cilk-M, bseadhe needed nodes might
not be visible to other threads. This issue seems to be more theoretical Huicglr however,
because | am unaware of any legacy applications that use MCS locks faghien or otherwise
need to see another worker’s stack. Nevertheless, the limitation is wortlgnotin

Alternative TLMM interface

Section 2.2 mentioned that we have considered an alternative interfage é@®sTLMM so that
the runtime system does not need to keep track of the page mapping. In thistale design,
the TLMM interface directly provides a cactus-stack abstraction, so adaie$witch to a victim’s
stack with a system call that takes a stack identifier and a TLMM addresgusents. The kernel
maps the pages of the victim’s stack into the calling thread’s TLMM region. Ttamative design
frees the Cilk-M runtime from tracking individual page descriptors.

There are a couple downsides to this design. First, the interface is déspeeifically for
building a TLMM cactus stack. Since TLMM is useful for other purposes,preferred a more
general interface over this one. One could design a more generahogesuch as changing the
system call to take a thread identifier and a TLMM address range insteathebsecond issue is
more difficult to circumvent. That is, if the runtime does not explicitly track paggcriptors, both
the kernel and the Cilk-M runtime need to hold locks during the map system calCikk-M, this
synchronization is necessary to prevent a race where, after a thaef attlame, the victim steals a
different frame and remaps its own stack before the thief can map the dsgdaca of the victim.
Itis likely that the kernel would also use a lock to ensure consistency wiyilgicg page mappings
from the victim’s stack to the thief’s stack.

The low-level interface in TLMM-Linux avoids this problem, because a ttéef copy the page
descriptors of its victim’s stack pages at user-level before it invekespmap. During sys_pmap,
since the kernel reads from and writes to only the page mappings in the daiteed’s TLMM
region, it does not need to acquire any locks when mapping and unmapggeg.pln contrast,
in the alternative design, the thief must hold the lock on the victim's deque nptt@ndentify
the pages to steal, but also while the pages are being mapped by the opgyaterg. Thus, the
alternative scheme locks out other thieves from stealing from the victiml@rger time.

Cilk-M’s calling convention

TLMM allows Cilk-M to support a cactus stack in which a frame can pass pwittdocal variables
to its descendants, but additional care must be taken to ensure that trenbgiwveen serial and
parallel code are seamless. Specifically, the parallel code must use caltingntions compatible
with those used by serial code.

Before we discuss Cilk-M’s calling convention, we shall digress for a nmrte outline the
calling convention used by ordinary C functions. The calling conventisoritzed here is based on
the x86 64-bit architecture [103], the platform on which the Cilk-M systeim@emented.

32

A’s return address
A’s parent’s base pointer

L A's
A’s local variables frame
A’s linkage region]
B’s return address
base A’s base pointer
pointer — ™ — B's
B’s local variables rame
stack B’s linkage region
pointer o

Figure 3-4: The layout of a linear stack with two frames. The figure shovemapshot of a linear stack
during execution, wherg has called the currently executing funct®nThe figure labels the stack frame for
each function on the right and marks the current base ankl gtaters on the left.

Figurel 3-4 illustrates the stack-frame layout for a linear stack, assuminghthatack grows
downward, where a functiobcalls a functiorB. The execution begins witkis frame on the stack,
where the frame contains (from top to bottoai return addressA’s caller’s base pointer, and
some space for storingjs local variables and passing arguments. Typically, arguments arecpass
via registers. If the argument size is too large, or when there are marmangs than the available
registers, some arguments are passed via memory. We shall refer to rip@se@ts asnemory
argumentsand the region of frame where memory arguments are passed lag#ue region

Modern compilers generate code in the function prologue to reservaylerspace in a frame
for its function’s local variables, as well as a linkage region large eméagass memory arguments
to any potential child function that the function may invoke, which takes am&dmpiler pass to
compute. Thus, in this example, whertallsB, the execution simply moves valuesAs linkage
region. Even though this linkage region is reservedsyprologue and is considered to be part of
A’s frame, it is accessed and shared by hot#ndA’s callee (e.g.B). FunctionA may access the
area via either a positive offset froi's stack pointer or, if the exact frame size is known at compile
time, a negative offset from its base pointer. On the other h&sd;allee typically accesses this
area to retrieve values for its parameters via a positive offset from iesgazster, but it could also
access this area via its stack pointer if the frame size is known at compile time.

This calling convention assumes a linear stack where a parent’'s frame ketlydabove its
child’s frame and the shared linkage region is sandwiched between theamed. All children
of a given function access the same linkage region to retrieve memory antgjrsi@ce the calling
convention assumes that during an ordinary serial execution, at mesthild function exists at
a time. While these assumptions are convenient for serial code, it is pralddorgoarallel code
employing work stealing, because multiple extant children cannot shareutie Isnkage region.
Furthermore, a gap may exist between the parent frame and the child frahe ThMM-based
cactus stack if the child frame is allocated immediately after a successful steal.

To circumvent these issues while still obeying the calling convention, a work&lk-M, upon
a successful steal, allocates a fresh linkage region by advancing ikspsibter a little further
beyond the next page boundry?his strategy allocates the linkage region immediately above the
child frame and allows additional linkage region to be created only whetiglagecution occurs.
Since multiple linkage regions may exist for multiple extant children, some carebrauaken so

SFor simplicity, Cilk-M 0.9 reserves a fixed amount, 128 bytes, for eadtatie region. Had we built a Cilk-M
compiler, it would calculate the space required for each linkage regidpass that information to the runtime.

33

that the parent passes the memory arguments via the appropriate linkage welgich we will
examine next.

Compiler invariants for Cilk functions in Cilk-M

To ensure execution correctness and to obey the Cilk-M calling convemtidine compiled Cilk
functions must maintain the following invariants:

1. Allmemory arguments are passed via the stack pointer with positive offsets

2. All'local variables are referenced via the base pointer with negdfisets.

3. Before eacltilk _spawnstatement, all live registers are flushed onto the stack.

4. If acilk_syncfails, all live registers are flushed onto the stack.

5. When resuming a stolen function aftercidk _spawn or cilk _sync statement, restore live
register values from the stack.

6. When a call or spawn returns, flush the return value from the registerthe stack.

7. The frame size is fixed before aoik _spawnstatement.

Invariants 1 and 2 ensure correct execution in the event where axigp lgetween the frames
of the caller and the callee. Using the stack pointer to pass arguments to thigarhiddensures that
the arguments are stored right above the child frame. Similarly, the localsmbedeferenced by
the base pointer with negative offsets, since the stack pointer may hawgetha

Invariants 3~6 ensure that a thief resuming the stolen function accesseso#it up-to-date
values for local variables, including return values from subroutindss ethod is analogous to
Cilk-5's strategy of saving execution states in heap-allocated framesJ4R}M adapts the strategy
to store live values directly on the stack, which is more efficient.

Finally, although Invariant 7 is not strictly necessary, it is a conveniemlgication, because it
ensures that a frame is allocated in a contiguous virtual-address sjiamea$rame may be stolen
many times throughout the computation, if a thief were allowed to allocate moresgiack upon
a successful steal, the frame allocation would end up fragmented andi@llaoanoncontiguous
virtual-address spaces.

3.3 An Evaluation of TLMM-Based Cactus Stacks

This section evaluates the TLMM-based cactus stacks in Cilk-M. First, westuitly theoretical
bounds on stack space and running time, which although not as strormpasoftCilk-5, neverthe-
less provide reasonable guarantees. Next, we will compare Cilk-M’s e@igderformance to that
of the original Cilk-5 system and the Cilk Plus system. The results indicate tthaMCperforms
similarly to both and that the overhead for remapping stacks is modest. Cilkdvsumption of
stack space appears to be well within the range of practicality, and itsllosgaae consumption
(including stack and heap space) is comparable to that of Cilk-5.

Theoretical bounds

We shall first analyze the consumption of stack space for an applicationnder Cilk-M. LetS;

be the number of pages in a serial execution of the progranglée the number of pages that
Cilk-M consumes when run daworkers, and leD be the Cilk depth of the application. The bound
S < P(S;+ D) given in Inequality((3.4) holds, because the worst-case stack deptivofl@r is

S + D pages. This worst case occurs when every Cilk function on a stackehiates the Cilk
depthD is stolen. The stack pointer is advanced to a page boundary for eachsefttstolen

34

Application Input Description

cholesky 4000/40000 Cholesky factorization

cilksort 10° Parallel merge sort

fft 226 Fast Fourier transform

fib 42 Recursive Fibonacci

fibx 280 Synthetic benchmark with deep stack
heat 2048x 500 Jacobi heat diffusion
knapsack 29 Recursive knapsack

lu 4096 LU-decomposition

matmul 2048 Matrix multiply

nqueens 14 Count ways to placH queens
gsort 108 Parallel quick sort

rectmul 4096 Rectangular matrix multiply
strassen 4096 Strassen matrix multiply

Figure 3-5: The 13 benchmark applications.

frames, contributing an extia to the normal numbeg; of pages in the stack. Since there &e
workers, the bound follows.

As we shall see from the benchmark studies, this upper bound is loosmmdéactual number
of pages. First, since different stack prefixes are shared amokgmothe shared pages are double-
counted. Second, we should not expect, which the benchmark studiesuiethat every frame on
a stack is stolen. Moreover, the space-reclaiming policy also savesisgaraetice. Nevertheless,
the theoretical bound provides confidence that space utilization caarsagtically awry.

Cilk-M achieves the time boun@ < T;/P + ¢ T given in Inequality[(3.8), wher@&; is the
work of the programT., is its span, and., = O(S; + D). In essense, the bound reflects the increased
cost of a steal compared to the constant-time cost in Cilk-5. In the worst easry steal might
need to map a nearly worst-case stack of déjthh D, which costsO(S; + D) time. This thesis
does not cover the full theoreticl arguments required to prove this hawah be proved using the
techniques of [8] and [20], adapted to consider the extra cost of gaalilk-M.

As with the space bound, the time bound is loose, because the worst-tasgbeised in the
proof is unlikely. One would not normally expect to map an entire nearly twsarse stack on every
steal. Nevertheless, the bound provides confidence, because appéicath sufficient parallelism
are guaranteed to achieve near-perfect linear speedup on an adali¢lpcomputer, as is assumed
by prior theoretical studies.

Empirical studies

Theoretical bounds alone, especially those based on asymptotic andtysist suffice to predict
whether a technology works in practice, where the actual values ofasdasnatter. In particular,
my collaborators and | had two main concerns when we started this workfir§heoncern was
whether the cost of entering and exiting the kernel would be too oneraillstoa memory-mapping
solution to the cactus-stack problem. The second concern was whetHeadheentation of the
stack would consume too much space, rendering the solution impractical.

To address the first concern, we compared the performance of CilkM3ik-5 and Cilk Plus
empirically on 13 applications. The benchmark results indicate that Cilk-Mvpag similarly with
the two systems, with Cilk-M sometimes outperforming Cilk-5 despite the additiorshead for
remapping the stacks.

35

To address the second concern, we profiled the stack space of tl@apps running on Cilk-
M with 16 cores. The data from this experiment indicate that the per-wedasumption of stack
space on these benchmarks was at most a factor76f idore than the serial space requirement,
which is modest. Due to the fragmentation of the stack, Cilk-M indeed has haghek space
overhead than Cilk-5; as a trade-off, however, Cilk-5 tends to consuone heap space than Cilk-M
due to the use of a heap-allocated cactus stack. To better understardéeffs made between the
two runtime systems, we profiled the stack and heap space consumptioin gfystem running the
applications with 16 cores. The benchmark results indicate that the addiiecklspace overhead
in Cilk-M is inexpensive when one considers the overall space consumplie did not compare
the overall space consumption between Cilk-M and Cilk Plus, because CdkdbBas not provide
guarantees on space consumption. Moreover, at the time when we petftrenevaluation, the
source for the Cilk Plus runtime system was not available, making it difficuletéopm such an
evaluation.

General setup. We compared Cilk-5 with Cilk-M 0.9 and compared Cilk Plus with Cilk-M 1.0
(the differences between the versions are described in Section 2.1)cogared Cilk-5 with
Cilk-M 0.9 instead of with Cilk-M 1.0, because the way that a spawn statememnipited in
Cilk-M 1.0 markedly differs from that in Cilk-5 — besides the fact that Cilk€es a heap-based
cactus stack, the Cilk Plus compiler generates an additional function wrapmend each spawn
statement [68]. Whereas applications for Cilk-M 0.9 were hand-compiledrte the compiler to
generate the desired assembly code, following the invariants describedtinrs3.2, applications
for Cilk-5 were compiled with the source-to-source translator included ilCtlke5 distribution to
produce C postsource. The postsources for both systems were comipiiegtc 4.3.2 using02
optimization. On the other hand, applications for Cilk-M 1.0 and Cilk Plus wemgpded using the
Cilk Plus compiler version 1R.0 using-02 optimization; the runtime system constitutes the only
difference.

The system was evaluated with 13 benchmark applications, all of which eltel@d in the
Cilk-5 distribution exceptibx, which is a synthetic benchmark devised to generate large stacks.
Figure 3-5 provides a brief description of each application. In additieynwdified thé&knapsack
benchmark to allow for more deterministic timing. Thkeapsack from the distribution uses prun-
ing, which causes high variance among parallel execution times, becdgskewa branch gets
pruned or not depends on what is the best value found so far, waicditfer from run to run due
to scheduling. Thus, we removed the pruning inkthepsack benchmark for the evaluation.

All experiments were conducted on an AMD Opteron system with 4 quaelZ@Hz CPU’s
having a total of 8 GBytes of memory. Each core on a chip has a 64-KByiati@i1-data-cache
and a 512-KByte private L2-cache, but all cores on a chip shar®Bye L3-cache.

Relative performance. Figure 3-6 (a) compares the performance of the applications run on Cilk-
M 0.9 and Cilk-5. For each application we measured the mean of 10 runschroé€&ilk-M 0.9

and Cilk-5, and the mean on each has standard deviation less than 3%. dhdam€ilk-M 0.9

is normalized by the mean for Cilk-5. Cilk-M 0.9 performs similarly to Cilk-5 for mokthe
applications and is sometimes faster. The performance difference caodenéed partially by the
differences in the compiled code, which accounts for the fact that Cilke’s a heap-based cactus
stack, and Cilk-M simply flushes variables to linear stacks. For instanam axecuted on a single
processorfib, fibx, andnqueen execute faster on Cilk-M 0.9 than on Cilk-5, whitkolesky

and knapsack execute slower on Cilk-M 0.9. Figure 3-6 (b) compares the performahdeeo
same set of applications run on Cilk-M 1.0 and Cilk Plus. Again, Cilk-M 1.0quer$ similarly to

36

L2 L2

«© — [] o H _ — —
< 1 R e | R w2 it Nwm W w P
III) _ M o] —

X L R] L= L

5 0.8 5 0.8

> 0.6 9 0.6

S 04f s o4

! X~

~ =

3 0.2~ -5 0.2

7

- — 0 . :

ChoSinlle b 16y N0 L g 20, 950!00 St ChoSip i b
O/@ £d U Qp U (/@ 0/7 S/ 0/@

Spor R K7 s, SH

o 010 el Q5ofe
7 UnIUE 07t
,OSQCX’ OZ//@@OS, /)7[//8\9@/)

(a) (b)

Figure 3-6: (a) The relative execution time of Cilk-M 0.9 compared to Cilkes 13 Cilk applications on
16 cores.(b) The relative execution time of Cilk-M 1.0 compared to Cillu®lfor 13 Cilk applications on
16 cores. Each value is calculated by normalizing the ei@ttime of the application on Cilk-M with the
execution time of the application on Cilk-5 and Cilk Pluspestively.

Cilk Plus. These results indicate that the additional overhead in Cilk-M foapping the stacks is
modest and does not impact application performance in general. Moréoweyood performance
on fib, which involves mostly spawning and function calls and little computatemse indicates
that the Cilk-M linear-stack-based calling convention is generally supkeritie Cilk-5 heap-based
one.

Space utilization. Figure 3-7 shows the stack space consumption of the benchmark appkcation
running on Cilk-M 0.9 and Cilk-M 1.0 with 16 cores. Since the consumption ekgtages depends

on scheduling, it varies from run to run. Each application was run 10 time:$tee data shows the
maximum number of pages used. Overall, the applications used less spagedtiEted by the
theoretical bound, and sometimes much less, confirming the observatioretiigiger bound given

in Inequality (3.4) is loose. Indeed, none of the applications used more2tiAartimes the stack
space per worker of the serial stack space.

Figure 3-8 shows the stack and heap space consumptions of the bekelppiazations running
on Cilk-M 0.9 and on Cilk-5 with 16 workers. Both runtime systems employ an iatenemory
allocator that maintains local memory pools for workers to minimize contention aimgje global
pool to rebalance the memory distribution between local pools. The heaproption is measured
by the total number of physical pages requested by the memory allocatotifeooperating system
at the end of the executiohAgain, we ran each application 10 times and recorded the maximum
number of pages used.

Across all applications, Cilk-M 0.9 uses about 2—4 times, and in one caseoet) 5 times
more pages on the stack, than that of Cilk-5 due to fragmentation resultimgsinocessful steals.
The additional space overhead caused by fragmentation is nevesrmederby the runtime or the
user code, however, and thus the additional stack space usagecti@asise memory latency. On
the other hand, Cilk-5 tends to use comparable or slightly more heap spacesid by Cilk-M
0.9 (less than 3 times more), except for one applicatidr, Sincefft contains some machine
generated code for the base cases, the Cilk functiof€tncontain large number of temporary
local variables that are used within the functions but not aailssspawnstatements. Theilk2c

6This measurement does not include space for the runtime data steuatlreated at the system startup, which is
relatively small, comparable between the two systems, and stays congtargspect to the number of workers.

37

Space Usage for Cilk-M 0.9 Space Usage for Cilk-M 1.0
Sie/16 ratio S +D S S/l6 ratio S +D

2

2 3.25 1.63 14 3.56 1.19 15

2 3.06 1.51 20 3.63 1.21 21

4 3.81 0.95 26 4.81 0.80 28
fib 43 2 3.44 1.72 45 4.50 1.13 a7
fibx 281 8 8.44 1.05 289 1881 0.86 303
heat 10 2 2.44 1.22 12 2.88 1.44 12

2

2

2

2

2

2

2

Application D

cholesky 12
cilksort 18
fft 22

knapsack 30 288 1.44 32 413 1.03 34
lu 10 3.06 1.53 12 331 1.66 12
matmul 22 3.38 1.69 24 3.88 1.29 25
nqueens 16 3.31 1.66 18 3.50 1.17 19
gsort 58 5.50 2.75 60 5.93 0.99 64
rectmul 27 400 2.00 29 469 1.17 31
strassen 8 3.00 1.50 10 356 1.78 10

Npmwwmhmwbmww

Figure 3-7: Consumption of stack space per worker for 13 Cilk applicetiounning on Cilk-M 0.9 and
Cilk-M 1.0, as measured in 4-KByte pages. The vdlués the Cilk depth of the application. The serial
spaceS; was obtained by running the application on one processae.valueS;s was measured by taking
the maximum of 10 runs on 16 cores. Shown is the average spaogqokerS;s/16. The valueratio is

the ratio between average space per worker when running pnot@ssors and the serial space usage when
running on one processor, i.€S6/16)/S;. Finally, theS; + D column shows the theoretical upper bound
for consumption of stack space per worker from Inequalitg)(3

compiler used by Cilk-5 faithfully generates space for these variablesedmeidip-allocated cactus
stack, resulting in large heap space usage. With the same program, Cilkelge3.the same amount

of stack space for these temporary local variables as however muck ap@ compiler would
allocate for them. Finally, when comparing the overall space consumptionM3J}® tends to use
less space than Cilk-5, except tbib, fibx, andgsort. The Cilk functions in these applications
have very few local variables, and therefore their heap-allocateddscatack in Cilk-5 consumes
relatively little space. Furthermorejbx is a synthetic benchmark that we devised to generate large
stacks (i.e., with large Cilk depth), so Cilk-M 0.9 ends up having a deep stack bx.

3.4 Conclusion

From an engineering perspective, this chapter laid out some choicémg@menters of work-
stealing environments. There seem to be four options for solving the esteitls problem: sacri-
ficing interoperability with binaries that assume a linear-stack calling conversaxrificing a time
bound, sacrificing a space bound, and coping with a memory-mapping scirtidar to those laid
out in this paper.

Sacrificing interoperability limits the ability of the work-stealing environment toriage past
investments in software. An engineering team may be willing to sacrifice intexoitigy if it is
developing a brand-new product, but it may be more cautious if it is tryingotpade a large
codebase to use multicore technology.

Sacrificing the time or space bound may be fine for a product where gaddrmance and
resource utilization are merely desirable. It may be unreasonable, Bowev a product hop-
ing to meet a hard or soft real-time constraint. Moreover, even for dagrgoftware where fast
performance is essential for good response times, time and space hwonie a measure of
predictability.

38

Cilk-M Cilk-5 Cilk-M Cilk-5 Cilk-M Cilk-5

Application S6 Sie Hig Hig Sum Sum
cholesky 52 16 193 345 245 361
cilksort 49 16 201 265 250 281
fft 61 48 169 1017 230 1065
fib 55 16 169 185 224 201
fibx 135 64 217 217 352 281
heat 39 16 185 273 224 289
knapsack 46 16 161 368 207 384
lu 49 16 177 265 226 281
matmul 54 16 169 265 223 281
nqueens 53 16 161 249 214 265
gsort 88 16 193 192 281 208
rectmul 76 32 169 240 245 272
strassen 48 16 161 417 209 433

Figure 3-8: Comparison of the overall stack and heap consumptions ket@#dk-M 0.9 and Cilk-5 for 13
Cilk applications running with 16 workers. The values werasured by taking the maximum of 10 runs on
16 cores, and measured in 4-KByte pages. The last two colshows the sum of the stack and heap space
consumptions for the two systems.

Coping with memory mapping by modifying the operating system may not be pogsilthese
working on closed operating systems which they cannot change, but ibentiiye for applications
running on an open-source platform. Moreover, as multicore platforows grimportance, future
operating systems may indeed provide TLMM-like facilities to meet the challergdke shorter
term, if it is not possible to modify the operating system, it may still be possible to impleane
workers-as-processes scheme as described in Section 2.3 in order.

The particular engineering context will shape which option is the most raaggrand in de-
veloping the case for a memory-mapped solution to the cactus-stack probéehgwe placed an
important new option on the table.

39

Chapter 4

Memory-Mapped Reducer Hyperobjects

Reducer hyperobjectér reducersfor short) [48] have been shown to be a useful linguistic mech-
anism to avoid “determinacy races” [42] (also referred as “genaras” [116]) in dynamic multi-
threaded programs. Reducers allow different logical branchesaxfadigl computation to maintain
coordinated local views of the same nonlocal variable. Whenever aeeduupdated — typically
using an associative operator — the worker thread on which the updatesamaps the reducer
access to its local view and performs the update on that local view. As thputation proceeds,
the various views are judiciousheduced(combined) by the runtime system using an associative
reduceoperator to produce a final value.

Although existing reducer mechanisms are generally faster than other sslfitioupdating
nonlocal variables, such as locking and atomic-update, they are stilvedyasiow. Concurrency
platforms that support reducers, specifically Intel's Cilk Plus [69] ailkh@ [94], implement the
reducer mechanism usindhgpermap approactin which each worker employs a thread-local hash
table to map reducers to their local views. Since every access to a reggoges a hash-table
lookup, operations on reducers are relatively costly — about @2erhead compared to an ordi-
nary L1-cache memory access. Perhaps not surprisingly, besidétMid-based cactus stacks,
the TLMM mechanism can be used to build other types of memory abstractimisas reducer hy-
perobjects. This chapter investigatesiamory-mapping approacfor supporting reducers, which
employs the thread-local memory mapping (TLMM) mechanism as describedciin® 2.2 to
improve the performance of reducers. The memory-mapping reduceanischleverages the effi-
cient virtual-address translation, mapping reducers to local views.

A memory-mapping reducer mechanism must address four key questions:

1. What operating-system support is required to allow the virtual-memagwiaae to map
reducers to their local views?

2. How can a variety of reducers with different types, sizes, and ld@spe handled?

3. How should a worker’s local views be organized in a compact fagbialow both constant-
time lookups and efficient sequencing during reductions?

4. Can a worker efficiently gain access to another worker’s local vieik®ut extra memory
mapping?

The memory-mapping approach answers each of these questions usitgantefficient strate-
gies.

1. The operating-system support employs TLMM, which enables the lirteanory hardware
to map the same virtual address to different views in the different workeads, allowing
reducer lookups to occur without the overhead of hashing.

40

S

Figure 4-1: The relative overhead for ordinary L1-cache
memory accesses, memory-mapped reducers, hypermap re-
ducers, and locking. Each value is calculated by the nor-
malizing the average execution time of the microbenchmark
for the given category by the average execution time of the
microbenchmark that performs L1-cache memory accesses.

Normalized overhead
el
© o N

2. Thethread-local region of the virtual-memory address space onlg polidters to local views
and not the local views themselves. Tthisead-local indirectionstrategy allows a variety of
reducers with different types, sizes, and life spans to be handled.

3. A sparse accumulator (SPAjata structure [50] is used to organize the worker-local views.
The SPA data structure has a compact representation that allows botantdimae random
access to elements and sequencing through elements stored in the dateestfticiently.

4. By combining the thread-local indirection and the use of the SPA datdigteya worker can
efficiently transfer a view to another worker. This support for efficieew transferalallows
workers to perform reductions without extra memory mapping.

I implemented the memory-mapping reducer mechanism in the Cilk-M runtime systeain wh
supports a much more efficient reducer lookup than the existing hypermppapaeh. Figure 4:1
graphs the overheads of ordinary accesses, memory-mapped rrézhlags, and hypermap re-
ducer lookups on a simple microbenchmark that performs additions on fouorgéocations in a
tight for loop, executed on a single processor. The memory locations are deddredolatile
to avoid the compiler from optimizing the memory accesses into register accdd$aes the mi-
crobenchmark measures the overhead of L1-cache memory acdessdse memory-mapped and
hypermap reducers, one reducer per memory location is used. Thedigorincludes the overhead
of locking for comparison purpose — opehread_spin_lock per memory location is employed,
where the microbenchmark performs lock and unlock around the memoryespadia the corre-
sponding Iockg. The microbenchmark was run on a AMD Opteron processor 8354 with d-qua
core 2 GHz CPU’s with a total of 8 GBytes of memory and installed with Linux 2.6A32he figure
shows, a memory-mapped reducer lookup is rougklysBwer than an ordinary L1-cache memory
access and almostx4faster than the hypermap approach (and as we shall see in Section 7.4, the
differences between the two increases with the number of reducers)oviethead of locking is
similar but slightly worse than the overhead of a hypermap reducer lookup.

A memory-mapped reducer admits a lookup operation that essentially tratslat@smemory
accesses and a predictable branch, which is more efficient than thdtypleamap reducer. An
unexpected byproduct of the memory-mapping approach is that it psogigater locality than the
hypermap approach, which leads to more scalable performance.

As an orthogonal issue, the reducer mechanisms in Cilk++ and Cilk Plustdsupport par-
allelism within a reduce operation. In Cilk-M, this limitation has been lifted. Thigptdraalso
explores runtime support necessary to enable parallelism within a regecation. Since there is
no fundamental reason why the hypermap approach cannot suggeoelkel reduce operation, one
should be able to apply the same runtime support to allow for parallel recheratmns for the
hypermap approach.

1The use of locks does not exactly solve the same problem as the usguoérs, i.e., determinacy races, because
locking does not guarantee a deterministic ordering in updates to a stzaigole. Nevertheless, locking is a commonly
used synchronization mechanism. Thus, | include the overhead fantphere for comparison purposes.

41

std::1list<Node *> 1;
bool has_property(Node *n);
//
void traverse(Node *n) {
if (n) {
if (has_property(n)) {
1.push_back(n);

OCO~NOOUOTA~WNPF

}
traverse(n->left);
10 traverse(n->right);
11 }
12 3}

Figure 4-2: C++ code to traverse a binary tree and create a list of all sttt satisfy a given property in
pre-ordering.

The rest of the chapter is organized as follows. Section 4.1 provide®tessary background
on reducer semantics, which includes the reducer interface and geesarSection 4.2 reviews
runtime support for the hypermap approach, as implemented in Cilk Plus anet-Ciflection 4.3
describe the design and implementation of the memory-mapped reducersssadgreach of the
four questions raised above in detail. Section 4.4 presents the empiritstéva of the memory-
mapped reducers by comparing it to the hypermap reducers. Finally, I5dcligrovides some
concluding remark.

4.1 Reducer Linguistics

The use omonlocal variables variables bound outside of the scope of the function, method, or
class in which they are used, is prevalent in serial programming. While éhefumnlocal variable
is considered bad practice in general [137], programmers often find ¢bavenient; for instance,
using nonlocal variables avoids parameter proliferation — allowing a ledif@to access a nonlo-
cal variable eliminates the need of passing the variable as parametersthtbiugiction calls that
lead to the leaf routine.

In parallel programming, the use of nonlocal variables may prohibit oikerimdependent
“strands” from executing in parallel, because they constitute a souree®$. Henceforth, we shall
usestrandto refer to a piece of serial code that contains no keywords for pacalitgtol. When
one naively parallelizes a serial program that uses nonlocal varjdabéegse of nonlocal variables
tends to introducdeterminacy racef42] (also calledyeneral raceg116]), where logically parallel
strands access some shared memory location.

As an example, let’s consider parallelizing the code shown in Figure 4-Zévarses a binary
tree and creates a list of all nodes that satisfy some given properfyréx@derfashion. The code
checks and appends the current node onto the output list if the nodeesdtie given property and
subsequently traverses the node’s left and right children. Ideakywauld like to parallelize this
program by simply traversing the left and right children in parallel; caret ineigaken, however,
to resolve the determinacy race on the lisbecause now the left- and right-subtree traversals may
potentially append to the list in parallel.

One may wish to avoid the race by protecting the accesses to thaibi#g a mutual-exclusion
lock. This solution does not work correctly, however, since the codemger maintains the pre-
ordering among nodes inserted into the list. Furthermore, even if one dbeare about the order-
ing of nodes in the list, the contention on the lock limits parallelism and may creatéoarpance
bottleneck if there are many nodes in the tree that satisfy the given property

42

1 Dbool has_property(Node #*n);

2 1list_append_reducer<Node *> 1;
3

4 void traverse(Node *n) {

5 if (n) {

6 if (has_property(n))

7 1->push_back(n);

8 cilk _spawn traverse(n->left);
9 traverse(n->right);

10 cilk _sync;

11 }

12}

Figure 4-3: A correct parallelization of the C++ code shown in Figure dsihg a reducer hyperobject with
the original reducer interface.

A possible fix is to duplicate the list — one can restructure the code such thatiherse
function creates a new list at every recursion level, so that everyesubgs its own local copy of
the list for insertion. Theraverse function can then insert itself and appends the lists returned
by its left and right children to create the final list to return, with nodes ip@rarder. While this
strategy works correctly, it requires restructuring the code, andilegdests and moving nodes from
one list to another at every recursion level, which can become exgeagher quickly.

Reducer hyperobjects (or reducers for short) proposed by Ftigb p48] provide a linguis-
tic mechanism to avoid such determinacy races in a dynamically multithreaded tediopu By
declaring the nonlocal variable to be a reducer, the underlying runtinensyordinates parallel
updates on the reducer variable, thereby avoiding determinacy raipse/B-3 shows a correct
parallelization of thecraverse function that employs a reducer to avoid determinacy race — the
code simply declares to be a reducer that performs list append (line 2). By declaring the tist
be a reducer, parallel accessed tre coordinated, and the code produces deterministic output that
is identical to the result from a serial execution.

Intuitively, the reducer mechanism works almost like the strategy that dtggitiae output list,
except more efficiently and that the programmer is not required to resteuitte code. That is,
copies of the list are created lazily only when necessary, and the umgeniytime system handles
the list combining implicitly.

Not every type of object can be declared as a reducer and pro@teerdnistic output. Con-
ceptually, a reducer is defined in terms of an algebm@noid a triple (T, ®,e), whereT is a set,
and® is an binary associative operation oWiewith identity e. Example monoids include summing
over integers with identity O, logicalND with identity true, and list append with identity empty
list such as in the example. Nevertheless, concurrent accesses tocarrace coordinated, and
the output is guaranteed to retain serial semantics as long as the redugeéatsduusing only its
corresponding associative binary operator.

4.2 Support for Reducers in Cilk Plus

This section overviews the implementation of the Cilk++ [94] and Cilk Plus [68licer mecha-
nism, which is based on hypermaps. Support for reducers was fingoged in [48] and imple-
mented in Cilk++, and the implementation in Cilk Plus closely follows that in Cilk++. Téesisn
summarizes the runtime support relevant for comparing the hypermapaappt@ the memory-
mapping approach. | refer interested readers to the original articlédig]ll details on the hyper-
map approach.

43

The reducer library and runtime API

Support for reducers in Cilk Plus is implemented purely as a C++ template liidrgut compiler
involvement. The user invokes functions in the runtime system, and the runtstersgalls back
to user-defined functions according to an agreed-upon API [7@.tyfbe of a reducer is dictated by
the monoid it implements and the type of data set that the monoid operates oredUicerrlibrary
implements the monoid interface and provides two important operations thatrtfimeunvokes:
IDENTITY, which creates an identity view for a given reducer, ambBCE, which implements the
binary associative operator that reduces two views. A user canidedhese operations to define
her own reducer types.

Maintenance of views

During parallel execution, concurrent accesses to a reducer tteugetime to generate and main-
tain multiple views for a given reducer hyperobject, thereby allowing eamtikev to operate on
its own local view. A reducer is distinctly different from the notiontbfead-local storaggor
TLS) [129], however. Unlike TLS, a worker may create and operate on mulopk views for a
given reducer throughout execution. New identity views for a givelncer may be created when-
ever there is parallelism, because the runtime must ensure that updatespdrbn a single view
retain serial semantics. In that sense, a local view is associated with auf@régecution con-
text but not with a particular worker. Consequently, a hypermap thaaomnlocal views is not
permanently affixed to a particular worker, but rather to the executiotexon

To see how local views are created and maintained, let’s consider hows ai@vmaintained
with respect to the the main keywords for parallel contoilk _spawn and ciIk_syndﬂ Upon a
cilk _spawn the spawned child owns the vidwowned by its parent before tlodk _spawn On the
other hand, the continuation of the parent owns a new l/igwitialized to identity usingbENTITY.
When a spawned child returns, the parent owns the child’s ijiewich is reduced with the parent’s
previous view’ sometime beforeilk _sync wherel is assigned with®1” andl” is destroyed. Once
cilk _syncexecutes successfully, the parent owns the same view it owned béfihrealk _spawn
statements, and any newly created view has been reduced into it.

The Cilk Plus runtime, like Cilk-5, follows the lazy task creation strategy [80] hemever a
worker encounters ailk _spawn, it invokes the child and suspends the parent, pushing the parent
frame onto its deque, so as to allow the parent frame to be stdféhe parent is never stolen, once
the spawned child return, the continuation of the parent resumes with chigehd. In this case,
the new viewl’ from the parent’s continuation is essentially an identity, in which case, neeed
operation is necessary. Thus, the runtime is able to perform a key optimizhibim a serial
execution, no new views are ever created. Since a worker’s behairiars the serial execution
between each successful steal, no new views are created whenex vgakecuting within &race,
i.e., a sequence of consecutive strands that a worker executes hateaks.

The following concrete example illustrates when views are created. Imagie&ezution of
the traverse code in Figure 4-3 on an input binary tree with 15 nodesytextby three workers,
Wi (gray), Wo (white), andWs (black). Figure 4-4 illustrates how the execution unfolds under
one possible scheduling, where the nodes’ coloring indicates whichewinkoked thetraverse
function on a given node. This particular execution divides the computatiofour traces, and four
views exist at the end of the execution: the leftmost vieand three additional views created via

2Thecilk _for construct is effectively desugared into code contaimitig_spawnandcilk _sync so we don't need to
considercilk _for here.
3See Sectioh 211 for a more thorough review of how a work-stealingisd#reoperates.

44

O Worker 1

O Worker 2
o

Worker 3

Figure 4-4: The graphical representation of an execution of the codesho Figure 4-3. The input binary
tree has 15 nodes. The coloring of the nodes indicate whickexanitiate the traversal at a given node.

IDENTITY for traces that traverse nodes 6+8,(nodes 9-12I¢), and nodes 1315, respectively.
The serial semantics is preserved on the final output as long as the veeasnabined in the order
of | ® I, ®13® 4, disregarding which pair gets reduced first. Note that, even thdVigtgray)
traversed nodes 1-5 and nodes 13-15, it acquired a new view forttdettaversal, because the
semantic guarantee of a reducer dictates that updates must be accumutageatiter that respects
the serial semantics.

Maintenance of hypermaps

A worker’s behavior precisely mimics the serial execution between ssittesteals. Logical par-
allelism morphs into true parallelism when a thief steals and resumes a funceocofttinuation
of the parent created by a spawn). Whenever a Cilk function is stolemaitsefispromotedinto
a full frame, which contains additional bookkeeping data to handle the true parallelsated,
including hypermaps that contain local views. Specifically, each full framag contain up to 3 hy-
permaps — theiser hypermapleft-child hypermap andright-sibling hypermap— each of which
respectively contains local views generated from computations assbuwidtethe given frame, its
leftmost child, and its right sibling.

During parallel execution, a worker performs reducer-related ¢ipesaon the user hypermap
stored in the full frame sitting on top of its deque (since everything below th&dme mirrors the
serial execution). The hypermap maps reducers to their correspdodalg/iews that the worker
operates on. Specifically, the address of a reducer is used as a lashtthe local view. Whenever
a full frame is stolen, its original user hypermap is left with its child executinghenvictim, and
an empty user hypermap is created, which corresponds to the fact thatemtity views must
be created for the stolen frame. When the worker encounters a redledaration which creates
a reducer hyperobject, the executing worker inserts a key-value paiiténhypermap, with the
key being the address of the reducer and the value being the initial viatedralong with the
initialization of the reducer, referred as thedtmost view When a reducer goes out of scope, at
which point only its leftmost view should remain reflecting all updates, the eromoves the
key-value pair from its hypermap. Finally, whenever the worker entewaman access to a reducer
in the user code, the worker performs a lookup in its hypermap and reher®rresponding local
view. If nothing is found in the hypermap (the user hypermap starts out ewipp the frame is
first promoted), the worker creates and inserts an identity view into therimgpeand returns the
identity.

The other two hypermaps are placeholders. They store the accumulated gathe frame’s
terminated right siblings and terminated children, respectively. Whendvama is promoted, an
additional set of local views may be created to accumulate updates fromrtimitation associated
with the frame. These views must be reduced either with views from its left gibfiparent at some

45

point, in the order that retain serial semantics. When a fignexecuting oW is terminating (i.e.,
returning), however, its sibling or pareRt may still be running, executed by another workéx.

To avoid interfering with\, executingrF, Wy simply deposits its set of local views storedRis
user hypermap int&;’s left-child or right-sibling hypermap placeholder, depending on the relatio
betweenF; andF,. The process of one worker depositing its local views into a frame ruronng
another worker is referred to as thiew transfera] which more generally, refers to the process of
transferring ownership of local views from one worker to another. SitygjlaeforeW; can perform
view transferal fromF; to F, it may find a second set of local views storedri's left-child or
right-sibling hypermap placeholders. If 8 must reduce the two sets of views together — iterate
through each view from one hypermap, lookup the corresponding vi@amather hypermap, and
reduce the two into one. This process is referred agypermergeprocess.

To facilitate hypermerges, a full frante also contains pointers to its left sibling (or parent if
F is the leftmost child), right sibling and first child. These pointers form adkgild right-sibling
representation of the spawn tree, referred astbal tree since hypermerges always occur between
an executing full frame and its parent or its siblings.

There are three possible scenarios when hypermerges can oceufirstiscenario is, as de-
scribed above, when a full frankereturns from ailk _spawn The executing worker must perform
hypermerges until it has only one set of local views left to deposit, whiatives mergind='s user
hypermap withF’s right-sibling hypermap (if not empty), and/or mergiR¢ user hypermap with
another hypermap already stored in its left-sibling or parent’s placehaltiere the view transferal
must occur. The second scenario is when a full frdmexecutes ailk _sync successfully.F’s
executing worker must hypermergés left-child hypermap with~’s user hypermap and store the
resulting views intd='s user hypermap, so as to alldwto continue execution afteilk _syncusing
views stored in the user hypermap. The last scenario is after a sudgesshg steal, where the
last spawned child returning resumes the execution of its parent funpassing thesilk _syncat
which the parent was stalled. A successful joining steal is semantically the aa executing a
cilk _syncsuccessfully. Thus, the hypermerges that occur here are the samnechgpéinmerges that
occur when a child returns and executeslia_syncsuccessfully.

In all cases, an executing worker performs a hypermerge in ways tltainghe serial seman-
tics. During a hypermerge between a full fraf's user hypermap an@’s right-sibling hypermap,
local views inF’s right-sibling hypermap are always reduced as the right of the binssgcia-
tive operators, because these views come logically after the ones staheduser hypermap. On
the other hand, during a hypermerge between a full fr&isdeft-child hypermap andF’s user
hypermap, local views iir’s left-child hypermap are reduced as the left of the binary associative
operators, because these views come logically before the views storedisethhypermap. Finally,
hypermerges occur during view transferal follow the same logical. Amyap being deposited in
a full frameF’s left-child or right-sibling hypermap placeholder comes logically after aypyen
map already stored in the placeholder, and thus its local views are redsitieel right to the binary
associative operators.

Preventing races during frame elimination

Workers eliminatingF.Ip and F.r might race with the elimination of. To resolve these races,
Frigo et al. [48] describe how to acquire abstract locks betweand these neighbors, where an
abstract lock is a pair of locks that correspond to an edge in the steabiree Frigo et al. assumes
that REDUCE is a constant operation, their locking protocol holds locks during therhypeges
that must be performed before elimination. Leiserson and Schard| §g}ithe a modified locking
protocol to allow hypermerges to take place without holding the locks whilepting races.

46

4.3 Support for Reducers in Cilk-M

This section describes the memory-mapping reducer mechanism implemented-M. Citte im-
plementation of the memory-mapping reducer mechanism partially follows whesitsided in Sec-
tion|4.2, such as the reducer library and runtime API, how views are maintaitledespect to the
keywords for parallel control, and how the runtime maintains the orderindpichithe sets of views
are reduced. Nevertheless, to enable a memory-mapped reducer, thé Qitkime system must
address the four questions raised at the beginning of the chapter. ettisnsdescribe in detail
Cilk-M’s strategy for addressing each of these questions. Finally, éhagmnal issue, this section
also presents how the Cilk-M runtime supports a paralleb&cE operation.

A reducer region using thread-local memory mapping

The first question is what operating-system support is required to allewittual-memory hard-
ware to map reducers to their local views. The premise of the memory-magoingar mechanism
is to utilize the virtual-address hardware to perform the address translatapping a reducer to
different local views for different worker. That means, differamrkers must be able to map dif-
ferent physical pages within the same virtual address range, so thegtamaévirtual address can
map to different views for different workers. On the other hand, pbtihe address space must be
shared to allow workers to communicate with each other and enable paraltehes of the user
program to share data on the heap. In other words, this memory-mappirgpeppequires part
of the virtual address space to pgvate in which workers can map independently with different
physical pages, while the rest beisigared in which different workers can share data allocated on
the heap as usual. This mixed sharing mode is precisely what the threddnlemery mapping
mechanism (TLMM) provides. Cilk-M, which already employs TLMM to build actus stack,
provides an ideal platform for experimenting with the memory-mapping redueehanism.

| added the memory-mapping reducer mechanism to Cilk-M, which now utilize$ tMM
region for both the cactus stack and memory-mapped reducers. Sinck aaarally grows down-
ward, and the use of space for reducers is akin to the use of heag, sphexystem start-up, the
TLMM region is divided into two parts — the cactus stack is allocated at the kigheMM ad-
dress possible, growing downwards, and the space reservedtmens starts at the lowest TLMM
address possible, growing upwards. The two parts can grow as muaeledsd, since as a practical
matter in a 64-bit address space, the two ends will never meet.

Thread-local indirection

The second question is how the memory-mapping reducer mechanism harvdlesty of reduc-
ers with different types, sizes, and life spans. We shall first examimemiagly straightforward
approach for leveraging TLMM to implement reducers and see whalgmabcan arise. In this
scheme, whenever a reducer is declared, the runtime system allocateduberrat a virtual ad-
dress in the TLMM region that is globally agreed upon among all workemsstructs each worker
to map the physical page containing its own local view at that virtual addfésss, accesses to the
reducer by a worker operate directly on the worker’s local view.

Although this approach seems straightforward, it fails to address twtigabissues: the over-
head of mapping can be great due to fragmentation arising from allocatwhdesllocations of
reducers in the TLMM region, and performing a hypermerge of views ikVLregions is compli-
cated and may incur heavy mapping overhead. We discuss each of theseiisturn.

47

If views are allocated within a TLMM region, the runtime system needs to mategstor-
age in the region separately from its normal heap allocator. Since redonegr be allocated and
deallocated throughout program execution, the TLMM region may becoagenknted with live
reducer hyperobjects scattered across the region. Consequergly,amaorker maps in physical
pages associated with a different worker's TLMM region, as mustrdoca hypermerge, multiple
physical pages may need to be mapped in, each requiring two kernsingegfrom user mode
to kernel mode and back). Even though the remapping overhead candrézad against steals,
and the Cilk-M runtime already performssgs_pmap call upon a successful steal to maintain the
cactus stack, if the number e s_pmap calls is too great, the kernel crossing overhead can become
a scalability bottleneck, which might outweigh the benefit of replacing the-tedsb lookups of the
hypermap approach with virtual address translations.

The second issue involves the problem of performing hypermergesideora hypermerge of
the local views in two workergh andW,, and suppose that, is performing the hypermerge. To
perform a monoid operation on a given pair of views, both views must beewmto the same
address space. Consequently, at least one of the views cannot pecdhajits appropriate location
in the TLMM region, and the code to reduce them with the monoid operation mkesthat into
account. For example, W,’s view contains a pointek; would need to determine whether the
pointer was to another &4’'s views or to shared memory. If the former, it would need to perform
an additional address translation. This “pointer swizzling” could be ddrenwy; mapsW.’s views
into its address space, but it requires compiler support to determine whitiolos are pointers, as
well as adding a level of complexity to the hypermerge process.

Since “any problem in computing can be solved by adding another Ievetituéinion,@, the
Cilk-M runtime employsthread-local indirection The idea is to use the TLMM region to store
pointers to local views which themselves are kept in shared memory visible torddérg. When a
reducer is allocated, a memory location is reserved in the TLMM region to hmdihéer to its local
view. If no view has yet been created, the pointer is null. Accessingucesdimply requires the
worker to check whether the pointer is null, and if not, dereference it,iwisidone by the virtual-
address translation provided by the hardware. In essence, the mamapping reducer mechanism
replaces the use of hypermaps with the use of the TLMM region.

The two problems that plague the naive scheme are solved by threadrldicattion. The
TLMM region contains a small, compact set of pointers, all of uniform gizecluding internal
fragmentation and making storage management of reducers simple, avoddirgrswizzling.
The TLMM region requires only a simple scalablmemory allocator for single-word objects (the
pointers). Since local views are stored in shared memory, the job of hgridém is conveniently
delegated to the ordinary heap allocator. Thread-local indirection algessthe problem of one
worker gaining access to the views of another worker in order to perfopermerge. Since the
local views are allocated in shared memory, a worker performing the imgvge can readily access
the local views of a different worker. The only residual problems are bow to manage the storage
for the pointers in the TLMM region, and two, how to determine which local sismunerge, which
will be addressed in turn next.

Organization of worker-local views

The third question is how a worker’s local views can be organized coigpd&ecall that after a
steal, the thief resuming the stolen frame starts with an empty set of views, amévér the thief

4Quotation attributed to David Wheeler in [87].
5To be scalable, the memory allocator allocates a local pool per workkoerasionally rebalances the fixed-size
slots among local pools when necessary in the manner of Hoard [10].

48

[] view array

N

& I valid view
X [#of views

o

o [#oflogs

S

D

(2]

[] log array {1,2,8,11,25,32}

\
120 x 1 byte

Figure 4-5: An example of a SPA map in which locations 1, 2, 8, 11, 25, andn3e view array are
occupied.

accesses a reducer for the first time, a new identity view is created lazitg ®local view has been
created, subsequent accesses to the reducer return the local eaovdr, during a hypermerge,
a worker sequences through two sets of local views to perform thésitegmonoid operations.
Specifically, a worker’s local views must be organized to allow the follovaipgrations:

e given (the address of) a reducer hyperobject, perform a constamteokup of the local view
of the reducer; and

e sequencehrough all of a worker's local views during a hypermerge in linear timerasdt
the set of local views to the empty set.

To support these activities efficiently, the Cilk-M runtime system employsarSgpaccumulator
(spa)” data structure [50] to organize a worker’s local views. A trad#i@parse accumulator
(SPA) consists of two arra)@:an array of values, and an array containing an unordered “log” of
the indices of the nonzero elements. The data structure is initialized to arodmesos at start-up
time. When an element is set to a nonzero value, its index is recorded in thedogmenting the
count of elements in the SPA (which also determines the location of the endlog)h&equencing
is accomplished in linear time by walking through the log and accessing eachn¢lienhgrn.

Cilk-M implements the SPA idea by arranging the pointers to local viewsSRA mapwithin
a worker's TLMM region. A SPA map is allocated on a per-page basisguki®6-byte pages on
x86 64-bit architectures. Each SPA map contains the following fields:

e aview arrayof 248 elements, where each element is a pair of 8-byte pointers to a logsal vie
and its monoid,

e alog array of 120 bytes containing 1-byte indices of the valid elements in the view array,

e the 4-byte number of valid elements in the view array, and

e the 4-byte number of logs in the log array.

Figure 4-5 illustrates an example of a SPA map.

Cilk-M maintains the invariant that empty elements in the view array are refesseith a pair
of null pointers. Whenever a new reducer is allocated, a 16-byte slot ivi¢hv array is allocated,
storing pointers to the executing worker’s local view and to the monoid. Whesducer goes
out of scope and is destroyed, the 16-byte slot is recycled. The simple maifaxation for the

8For some applications, a third array is used to indicate which array elementslid, but for some applications,
invalidity can be indicated by a special value in the value array.

49

TLMM region described earlier keeps track of whether a slot is assignadt. Since a SPA map
is allocated in a worker’s TLMM region, the virtual address of an assiditebyte slot represents
the same reducer for every worker throughout the life span of theeedund is stored as a member
field t1mm_addr in the reducer object.

A reducer lookup can be performed in constant time, requiring only two meaemesses and
a predictable branch. A lookup entails accessihgm_addr in the reducer (first memory access),
dereferencing1mm_addr to get the pointer to a worker’s local view (second memory access), and
checking whether the pointer is valid (predictable branch). The commeristsat thet 1mm_addr
contains a valid local view, since a lookup on an empty view occurs only peceeducer per steal.
As we shall see when discussing view transferal, however, a wogkets its SPA map by filling it
with zeros between successful steals. If the worker does not hal&laiew for the corresponding
reducer, thelmm_addr simply contains zeros.

Sequencing through the views can be performed in linear time. Since ankoriws exactly
where a log array within a page starts and how many logs are in the log arcay, efficiently
sequence through valid elements in the view array according to the indiced sidhe log array.
The Cilk-M runtime stores pointers to a local view and the reducer monoid sidgdb in the
view array, thereby allowing easy access to the monoid interface durifypieemerge process. In
designing the SPA map for Cilk-M, a 2 : 1 size ratio between the view arraytrentbg array is
explicitly chosen. Once the number of logs exceed the length of the log #meagilk-M runtime
stops keeping track of logs. The rationale is that if the number of logs in ansAexceeds the
length of its log array, the cost of sequencing through the entire view, aather than just the valid
entries, can be amortized against the cost of inserting views into the SPA map.

View transferal

The fourth question is how a worker can efficiently gain access to anathker’s local views
and perform view transferal efficiently. The Cilk-M runtime system, whintpys thread-local
indirection and SPA maps, also includes an efficient view-transfer&bqobthat does not require
extra memory mapping.

In the hypermap approach, view transferal simply involves switching gpfEnters. Suppose
that worken, is executing a full framé; that is returning. It simply deposits its local views into
another framd-, executing on workews that is eithei;’s left sibling or parent, at the appropriate
hypermap placeholder. In the memory-mapping approach, more stepvalkeih In particular,
even though all local views are allocated in the shared region, theirssidrare only known 4,
the worker who allocated them. Thu&j; mustpublish pointers to its local views, making them
available in a shared region.

There are two straightforward strategiesWar to publish its local views. The first is theap-
ping strategy W, leaves a set of page descriptors corresponding to the SPA maps in its TLMM
region inF,, whichW, later must map in its TLMM region to perform the hypermerge. The sec-
ond strategy is theopying strategyW; simply copies those pointers from its TLMM region into
a shared region. Cilk-M employs the copying strategy because genemlhuthber of reducers
used in a program is small, and thus the overhead of memory mapping grettlighs the cost
of copying a few pointers.

ForW; to publish its local views, which are stored in {prévate SPA map# its TLMM regions,

W, simply allocates the same numbermpuiblic SPA mapsn the shared region, arichnsfersviews
from the private SPA maps to the public ones.\Wssequences through valid indices in a view array
to copy from a private SPA map to a public one, it simultaneously zeros csg thadid indices in the
private SPA map. All transfers are complete, the public SPA maps contair aéifierences td's

50

local views, and the private SPA maps are all empty (the view array coralinsros). Zeroing
outW's private SPA maps is important, sindé must engage in work-stealing next, and the empty
private SPA maps ensure that the stolen frame is resumed with an empty sl ofidovs.

Since a worker must maintain space for public SPA maps throughout its execGlik-M
explicitly configures SPA maps to be compact and allocated on the per-page Bach SPA map
holds up to 248 views, making it unlikely that many SPA maps are ever negdedientioned
earlier, the Cilk-M runtime system maintains the invariant that an entry in a viesy aontains
either a pair of valid pointers or a pair of null pointers indicating that the datgmpty. Thus, a
newly allocated (recycled) SPA map is erﬁﬁﬂ]he fact that a SPA map is allocated on the per-page
basis allows the Cilk-M runtime to easily recycle empty SPA maps by maintaining meraoly|p
of empty pages solely for allocating SPA maps.

In the memory-mapping approach, a frame contains placeholders to SPAimstgesd of to
hypermaps, so thath in our scenario can deposit the populated public SPA mapsintathout
interruptingWs. Similarly, a hypermerge involves two sets of SPA maps instead of hypermaps.
WhenW, is ready to perform the hypermerge, it always sequences through {héhiaiacontains
fewer views and reduces them with the monoid operation into the map that contane views.
After the hypermerge, one set of SPA maps contain the reduced vieweseagthe other set (as-
suming they are public) are all empty and can be recycled. Similar to the trap&fieation, when
W, performs the hypermerge, as it sequences through the set with fewst, itieeros out the valid
views, thereby maintaining the invariant that only empty SPA maps are recycled

View transferal in the memory-mapping approach incurs higher overtieadthat in the hy-
permap approach, but this overhead can be amortized against stezds/isim transferals are nec-
essary only if a steal occurs. As Section 4.4 shows, even with the adefh@m view transferal,
the memory-mapping approach performs better than the hypermap apprwdancurs less total
overhead during parallel execution.

Support for parallelREDUCE operations

The reducer mechanism in Cilk-M supports parallelism BDRCE operations. That means, the
Cilk-M runtime must set up the invocation to & RUCE in a way which allows the RbUCEto be
stolen. Furthermore, once all necessary hypermerges complete, theiegevorker must resume
the user code at the appropriate execution point.

To allow a REDUCE operation to be stolen, the executing worker must perform hypermenges o
its TLMM stack. In Cilk-M, every worker juggles between two stacks, its TMMtack allocated
in the TLMM region for executing user code, and its runtime stack for exgguuntime code. The
runtime stack is necessary — recall from Section 3.2, a worker alwayasp®its TLMM stack upon
a successful steal, and the worker must use an alternative stack theingmapping. In two out
of three scenarios where hypermerges may occur, i.e., returning fodlko_spawn or performing
a successful joining steal, the executing worker is operating on its runtirle $tesuch scenarios,
the worker must switch from its runtime stack and execute the hypermerge DioMiis! stack so
as to allow a RDUCE operation to be stolen.

To ensure that a worker completing a hypermerge resumes the user tctideagppropriate
execution point is more complicated. Since atRCE operation may contain parallelism, the
worker who finishes the hypermerge may differ from the worker who indidke hypermerge.

"To be precise, only the number of logs and the view array must contais.ze

8The pools for allocating SPA maps are structured like the rest of pooledanternal memory allocator managed by
the runtime. Every worker has its own local pool, and a global pool id tsseebalance the memory distribution between
local pools in the manner of Hoard [10].

51

Thus, when a worker initiates a hypermerge, it must set up its TLMM stadkramtime data
structure for bookkeeping (i.e., its deque) to correctly correspondd ether and to allow the
hypermerge, once complete, to naturally resume the right execution poirt irsén code.

Let’'s examine the three scenarios when hypermerges may occur one byloafirst scenario
is when a full frameF; returns from ecilk _spawn In this case, the executing worker performs
hypermerges and a view transferal as paffs return protocol. IfF; happens to be the last child
returning, the worker also performs a joining steal as part of the retwtognl. If the joining
steal is successful (which may trigger more hypermerges), the exeeuditkgr should resume the
parent, say, passing theilk _syncat whichF, was stalled. Thus in this scenario, the worker who
initiated the hypermerges must ensure that once all hypermerges are mpiehever worker
finishes the last hypermerge must execute the return protocol agairCilkhi runtime achieves
this by setting up the worker's TLMM stack and deque as if the parent figimspawnedthe
functionM that performs the hypermerges after the cRildeturns. Note that a possible alternative
is to set up the worker's TLMM stack and deque aB;ittalled the functionM. This strategy may
work but seems to be messier, because Rpowould need to return twice (the second time afer
finishes), and the second return must somehow trigger the return prdfocthermore, unlike the
current strategy which provides a natural resumption point in the uskerfoo the worker afteM
completes (i.e., aftagilk _syncin the parent function if the joining steal is successful), this strategy
does not. The second scenario is when a full frdimexecutes a&ilk _sync successfully. In this
case, the executing worker is already on its TLMM stack. Thus, it seetnsah#o simply allow
the cilk _syncfunction to perform the hypermerge, which may contain parallelism if theURE
operations triggered by the hypermerge contain parallelism. The fact tlkaMGupports SP-
reciprocity makes this strategy feasible. Finally, the last scenario is dursug@essful joining
steal, which is the combination of the first two scenarios. Assuming the firsst@narios are
handled correctly, this scenario should just work.

In all scenarios, the runtime must set up the hypermerge process soothairker-specific
data is captured on the TLMM stack acradlk _spawn and cilk _syng, because a worker who
resumes the hypermerge after a call teoR ce may differ from the worker who initiated the call.
That means, a worker must also perform a view transferal on its owof $etal views before a
hypermerge, and perform the hypermerge between the two public SPAstoaed in the heap.

Finally, since a worker executing hypermerges should not be holdindpaky that belong to
part of the runtime system bookkeeping, Cilk-M employs a locking protaodlas to the modified
locking protocol due to Leiserson and Schardl [96] as discussedciinmget.2.

This implementation of the reducer mechanism treatEaURE operation like a piece of user
code that may spawn. Therefore, a paralleDRCcE operation can employ yet another reducer, and
the reducer will work as expected. As we shall see in Chapter 5, theaedtray library employs
a parallel REDUCE operation that uses another reducer.

4.4 An Empirical Evaluation of Memory-Mapped Reducers

This section compares the memory-mapping approach used by Cilk-M to implesdeicers to the
hypermap approach used by Cilk Plus. The evaluation quantifies theeawklof the two systems
incurred during serial and parallel executions on three simple synthetiolmicchmarks and one
application benchmark. Experimental results show that memory-mappecersdwt only admit
more efficient lookups than hypermap reducers, they also incur ledseadeoverall during parallel
executions, despite the additional costs of view transferal.

Recall from Sectioh 4!3, in order to allow parallelism in atRICE operation, the Cilk-M run-

52

Name Description

add-n Summing 1 taxinto n add-reducers in parallel

min-n Processing random values in parallel to find the min
and accumulate the resultsirmin-reducers

max-n Processing random values in parallel to find the max
and accumulate the resultsnrmax-reducers

Figure 4-6: The three microbenchmarks for evaluating lookup operatidfor each microbenchmark, the
value x is chosen according to the value wfso that roughly the same number of lookup operations are
performed.

time system must perform additional work as part of the hypermerge ggpsech as setting up a
worker's TLMM stack and deque before invoking & RJCE operation. This section as well evalu-
ates the overhead for supporting paralleltRiCE operations, but will not evaluate the performance
of a reducer with a parallel BoucE operation. Since the reducer array library employs a parallel
REDUCE operation, we shall delay the evaluation of a reducer with a paraieluce operation
until next chapter. While none of the benchmarks shown in this section empplajlel REDUCE
operations, the currentimplementation always performs steps necessapport parallel RDuce
operations. One could design a reducer interface to provide the runtstesynformation on its
REDUCE operation, thereby allowing the runtime to skip these steps if all reducerlvéavin a
hypermerge employ serialB®UCE. Nonetheless, experimental results show that these steps incur
negligible overhead; the execution times of the same program that usdsRsmiace with and
without these steps are comparable.

General setup. The evaluation compares the two approaches using a few microbenchrsangs
reducers included in the Cilk Plus reducer library and one applicatiorhbesnk. Figure 4-6 shows
the list of microbenchmarks and their descriptions. All microbenchmarksyarhetic, designed
to perform lookup operations repeatedly with simpled® CER operations that perform addition,
finding the minimum, and finding the maximum. The vatug the name of the microbenchmark
dictates the number of reducers used, determined at compile-time. Thexvalmrinput parameter
chosen so that a given microbenchmark with differergerforms roughly the same number of
lookup operations. The application benchmark is a parallel breathdmstls program [96] called
PBFS.

The application benchmark used is the parallel breadth-first searchitlafgqreferred to as
PBFS) due to Leiserson and Schardl [96]. | obtained the code baB&fes from the authors and
made a few small modifications to fix minor bugs and improve the performancecifigplly, |
modified the application to use the scalable memory allocator library released @ PBB [126]
instead of the default memory allocator. In addition, | manually performiedlup optimization
— lifting reducers’ lookup operations out of serfat loops — so that a given loop body accesses a
reducer’s underlying view directly instead of accessing the redutéchveauses a lookup operation
to be performed. Since all lookup operations within a single strand (in thes easosgor loop
iterations) return the same view, one lookup operation before enterinfgrtieop to obtain the
view suffices.

All benchmarks were compiled using the Cilk Plus compiler versiaf.02vith -02 optimiza-
tion. The experiments were run on an AMD Opteron system with 4 quad2a8idz CPU'’s having
a total of 8 GBytes of memory. Each core on a chip has a 64-KByte privkigata-cache, a 512-
KByte private L2-cache, and a 2-MByte shared L3-cache.

53

235 i)
c c 2
8 30 8
& 25 215
£ 20 £
c 15 s
8 i)
3 or 305
g s i
o =
ot S s r Yoy 25 205 2 0 P 2 s Pt e 22
R R KKK
6 %% “8-%0o 6 % 0. 6 % 8%
bl 0wy 5%,
(@)

Figure 4-7: Execution times for microbenchmarks with varying numbeénseducers using Cilk-M and Cilk
Plus, running orfa) a single processor ar{t) on 16 processors, respectively.

LB -vrere e

i) R RERRT TTIIPLORS SN SETITTEPREES

14p el

12 ceeeeeeeee -
""""""""" 3 BN BN B B B EEslelsV

————————— MM B B B Cilk Plus

Execution time (seconds)
[y
o

Figure 4-8: Reducer lookup overhead of Cilk-M and Cilk Plus running thierobenchmark using add
reducers on a single processor. A single cluster inxtagis shows the overheads for both systems for a given
n, and they-axis shows the overheads in execution time in seconds.

Performance overview using microbenchmarks

Figure[4-7 shows the microbenchmark execution times for a set of tests wjtingyaaumber of
reducers running on the two systems. Figure 4-7(a) shows the exetiot@srunning on a single
processor, whereas Figure 4-7(b) shows them for 16 procedsach data point is the average of
10 runs with standard deviation less than 5%. Across all microbenchntheksgemory-mapped
reducers in Cilk-M consistently outperform the hypermap reducers in Quig, Rxecuting about
4-9 times faster for serial executions, and 3-9 times faster for paraleligans.

Lookup overhead. Figure 4-8 presents the lookup overheads of Cilk-M 1.0 and Cilk Plus on
add-n with varyingn. The overhead data was obtained as follows. First, | raradlden with x
iterations on a single processor. Then, | ran a similar program cafléebase-n, which replaces
the accesses to reducers with accesses to a simple array, also rxitenagions. Since hyperme-
rges and reduce operations do not take place when executing on amiogéssoradd-base-n
essentially performs the same operationads-n minus the lookup operations. Figure 4-8 shows
the difference in the execution times aid-n andadd-base-n with varyingn. Each data point
takes the average of 10 runs with standard deviation less than 2% for GilkeNess than 12% for
Cilk Plus.

While the lookup overhead in Cilk-M stays fairly constantrasaries, the lookup overhead
in Cilk Plus varies quit a bit. This makes sense, since a lookup operation inVCitenslates

54

QB0 -

QOO - -rrrrmmr -

B0 -

300 - e B B

250 - - O Cilk-M
010 T - -- 8- - B Cilk Plus
150 - 2 B B B B B
100w

Execution time (microseconds)

Figure 4-9: Comparison of the reduce overheads of Cilk-M and Cilk Plusnig add-n on 16 processors.
A single cluster in thex-axis shows the overheads for both system for a giveand they-axis shows the
reduce overheads in milliseconds.

80

70r I view creation
[J view insertion

60 O hypermerge
[J view transferal

50 M parallel reduce

40
30
20

Execution time (milliseconds)

10

0

Figure 4-10: The breakdown of the reduce overhead in Cilk-M ddd-n on 16 processors with varying

into two memory accesses and a branch disregarding wlgtwhereas a lookup operation in
Cilk Plus translates into a hash-table lookup whose time depends on how manytitehmsshed
bucket happens to contain, as well as whether it triggers a hash-tgg@astan. Even though the
implementation of Cilk Plus rehashes the hash table from time to time to keep the itemscikea bu
roughly constant, the lookup overhead still visibly varies.

Reduce overhead during parallel execution

Besides the lookup overhead, this section also studies the other oveiheaded by the use of
reducers during parallel executions. We refer to the overheadsréaconly during parallel ex-
ecutions as theeduce overheadwhich includes overheads in performing hypermerges, creating
views, and inserting views into a hypermap in Cilk Plus or a SPA map in Cilk-M#&rM, this
overhead also includes view transferal. For both systems, additionalge@ke performed during
a hypermerge, and they are considered as part of the overheadl.as we

Figure 4-9 compares the reduce overhead of the two systems. The datalleated by running

55

add-rdcers-n with varyingn on 16 processors for both systems and instrumenting the various
sources of reduce overhead directly inside the runtime system codeldnto instrument the Cilk
Plus runtime, | obtained the open-source version of the Cilk Plus runtimehwias released with
ports of the Cilk Plus language extensions to the C and C++ front-ends-@f.g¢1]. | downloaded
only the source code for the runtime system (revision 181962), insed&dnmentation code, and
made it a plug-in replacement for the Cilk Plus runtime released with the offidial Cilk Plus
compiler version 12.0. This open-source runtime system is a complete runtime source to support
the Linux operating system [1], and its performance seems comparablertmtirae released with

the compiler. Given the high variation in the reduce overhead when memongyapéays a role,

the data represents the average of 100 runs. Since the reduceanvisrberrelated with the number

of (successful) steals, | also verified that in these runs, the avertagbans of steals for the two
systems are comparable.

As can be seen in Figure 4-9, the reducer overhead in Cilk Plus is muckrtiggn that in
Cilk-M, and the discrepancy increasesrascreases. It makes sense that the overhead increases
asn increases, because a higlmemeans more views are created, inserted, and must be reduced
during hypermerges. Nevertheless, the overhead in Cilk Plus grows iasten than that in Cilk-

M. It turns out that the Cilk Plus runtime spends much more time on view insertiossriing
newly created identity views into a hypermap), which dominates the reduckeads especially
asn increases, resulting a much higher reduce overhead, even thouglikii @intime has the
additional overhead of view transferal. In contrast, Cilk-M spends nreggtime on view insertions
than Cilk Plus, which makes sense. A view insertion in Cilk-M involves writing te oremory
location in a worker’s TLMM region, whereas in Cilk Plus, it involves insagtinto a hash table.
Moreover, a SPA map in Cilk-M store views much more compactly than doesexrgp, which
helps in terms of locality during a hypermerge.

For Cilk-M, | was interested in studying the breakdown of the reduceheaat, as shown in
Figure[4-10, which attributes the overhead to five activities: view creatiew insertion, view
transferal, hypermerge, which includes the time to execute the monoid operatid setup nec-
essary for parallel RbuCE operations. As can be seen from the breakdown, overhead from view
transferal grows rather slowly asincreases, demonstrating that the SPA map allows efficient se-
guencing. Furthermore, the dominating overhead turns out to be viewiorr®awhich inspires
confidence in the various design choices made in the memory-mapping elppidee overhead in
supporting parallel RDUCE operations is an orthogonal issue, although the overhead is negligible
compared to all other overheads. This result is consistent with the faéhtathexperiments | ran
with microbenchmarks, the executions times with support for paraltel IR E operations enabled
are comparable to that when the support is disabled.

Performance evaluation using PBFS

Lastly, this section presents the evaluation using a real-world applicationathéeb breath-first
search (PBFS) due to Leiserson and Schardl [96]. In PBFS, gimenput graphG(V,E) and a
starting nodey/, € V, the algorithm finds the shortest distance betwagand every other node in
V. The algorithm explores the graph “layer-by-layer”, wheredtit layer is defined to contain the
set of nodes iV that ared-distance away fromyg. While the algorithm explores tha:th layer, it
discovers nodes in thet+ 1-th layer. The set of nodes in a layer is kept in a data structure réferre
as abag, which is a container of an unordered set that allows efficient inserganand split. The
algorithm alternates between two bags to insert throughout execution —exqdates nodes stored

in one bag that belongs to the same layer, it inserts newly discovered thadé®longs to the next
layer into another bag. Since the algorithm explores all nodes within a Giyenin parallel, the

56

O on a single processor # of
B on 16 processors Name V| |E| D lookups

L2 oo
E Kkkt_power | 2.05M 12.76M 31 1027
e 1F freescalel | 3.43M 17.IM 128 1748
o 038 cageld 1.51M 27.1M 43 766
S 06- wikipedia | 2.4M 41.9M 460 1631
= o4l grid3d200 8M 55.8M 598 4323
=" rmat23 23M 779M 8 71269
= 0.2 cagel5 515M 99.2M 50 2547
0 1pkkt160 | 8.35M 225.4M 163 4174

% 0, Wit iy 7, o, nip : '

\"% e f’ S2g Pe 3096’939@15 26,
() (b)

Figure 4-11: (a) The relative execution time of Cilk-M to that of Cilk Plus ming PBFS on a single
processor and on 16 processors. Each value is calculateatimalizing the execution time of the application
on Cilk-M with the execution time on Cilk Plugb) The characteristics of the input graphs for parallel breath
first search. The vertex and edge counts listed correspahé toumber of vertices and edges.

bags are declared to be reducers to allow parallel insertion.

Figure 4-11(a) shows the relative execution time between Cilk-M and CilkdPlassingle pro-
cessor and on 16 processors. Since the work and span of a PBF8tatiotpdepend on the input
graph, we evaluated the relative performance with 8 input graphs withasacteristics are shown
in Figure 4-11(b). These input graphs are the same ones used in [@@It@te the algorithm. For
each data point, | measured the mean of 10 runs, which has a standetibdesf less than 1%.
Figure 4-11 shows the mean for Cilk-M normalized by the mean for Cilk Plus.

For single-processor executions, the two systems perform companéhlZilk-M being slightly
slower. Since the number of lookups in PBFS is extremely small relative to the &ige, the
lookups constitute a tiny fraction of the overall work (measured by the ditleecinput graph).
Thus, it's not surprising that the two systems perform comparably faalsexecutions. On the
other hand, Cilk-M performs noticeably better during parallel executiwhgh is consistent with
the results from the microbenchmarks. Since the reduce overhead in Gdkyich smaller than
that in Cilk Plus, PBFS scales better.

45 Conclusion

This chapter lays out a different way of implementing reducer hypertshj@eamely, using the
memory mapping approach. As we have seen in Section 4.4, experimeniitd skwow that the
memory-mapping approach admits a more efficient implementation, demonstratirtijtyref the
TLMM mechanism for building memory abstractions.

There is one particular downside about the memory-mapping approagby&i which is that
a view transferal incurs overhead proportional to the number of actthecers in the computation.
This particular overhead is inherent to the memory-mapping reducer nischamthat a worker’s
local views (at least pointers to them) are stored within a region private todHeer and therefore
is difficult to avoid.

Nevertheless, in most applications, the number of active reducers tebdsstaall given that
each reducer represents a nonlocal variable shared among woketsermore, whether the re-
ducer mechanism constitutes a useful memory abstraction when a large rmofmibducers are

57

used is still an open question. Recall that during parallel execution, thefusducers generates a
nondeterministic amount of additional work. If a large number of redumersised, this additional
work may become a scalability bottleneck. We explore this topic further in thiechepter.

58

Chapter 5

Library Support for Reducer Arrays

A natural extension for reducers is to allow array types. Thus far, ave focused our attention
on scalar reducers, where a reducer represents a scalar typeasyjebe RRDUCE operation for
combining two views takes constant time. If one wishes to parallelize an appfichtibemploys

a nonlocal variable that is an array type, there are two possible ap@®ace may take in order
to allow sharing without introducing determinacy races. The first appr@ato declare amarray

of reducers which allows one to employ existing reducer library support for scatlduiger types.
The second approach is to write library support fomaray reducer that supports a reducer whose
underlying view is an array. Either approach has its pros and cons.chiajser explores a third
approach, referred to ag@ducer array which attempts to combine the advantages of the first two
approaches. Since the use of reducers generates a nondeterministit afrexdditional overhead
for creating, managing, and combining views during parallel executiongiREDUCE operation
takes nonconstant time or a large number of reducers are used, thisrzalditernead may have
an impact on performance. This chapter also studies the theoretical foskew analyzing com-
putations that employ reducers due to Leiserson and Schardl [96kéerttls the analysis to better
understand the overhead of using reducer arrays.

We shall first examine the difference between these approacheg bedative into the imple-
mentation of a library for reducer arrays. The first two approachresrray of reducers versus an
array reducer, have some fundamental differences in terms of theinSespavhereas the third ap-
proach, a reducer array, is somewhat of a hybrid between the firsHigrare 5-1 summarizes their
differences. The first approach, array of reducers, assoeatésarray element with its own reducer
whose REDUCE operation combines two elements together, thereby allowing each array etemen
have its own view. We shall refer to this view representation aglmment view With the element
view representation, views are created only for elements accessed garallel execution, and a
hypermerge process operates only on elements accessed. The appaovath, an array reducer,
associates the entire array with one reducer and employs an ordinayyaarits underlying view,
which we shall refer as therray viewrepresentation. With the array view representation, whenever
a new view is created during parallel execution, the view created reysetbe entire array, and
its REDUCE operation must reduce two array views. As a result, a hypermergesgsrassking
this REDUCE operation simply operates on every element in the array. Finally, the thirdagip
investigated in this chapter, a reducer array, combines features frofindgh&vo approaches. A
reducer array, like the array reducer approach, associates the améy with a single reducer, but
it employs the SPA data structure [50] (described in Section 4.3) as itslyindeview, which we
shall refer as th&PA view With the SPA view representation, a single view still represents the
entire array, but a hypermerge process combining two SPA views neegdsrtate only on elements

59

Approach View representation REDUCE operation ~ Hypermerge process

1. Array of reducers element view reduce two elements opemraelements accessed
2. Array reducer array view reduce two arrays operate oryealement
3. Reducer array SPA view reduce two arrays operate on etesraecessed

Figure 5-1: Summary of semantic differences between the three appgeach

accessed since the views were created.

Each of the first two approaches has its respective pros and cotexria of the view repre-
sentation, the array view in the array reducer approach has a cowgdearftages over the element
view in the array of reducers approach. First, the array view likely léadsbetter utilization of
space. The array view employs a single reducer for the entire arrarea the element view
employs an array of reducers. Even though the element view représertauses only views for
accessed elements to be created, whereas the array view requirely aneetted view to allocate
space for the entire array, the array of reducers required by the mietees takes up much more
space during parallel execution, for the following reasons. A redypésally is larger in size and
has a longer life span than its corresponding views. As the implementatientdyrstands, a re-
ducer contains 96 bytes of bookkeeping data in addition to its leftmost viewedwer, a reducer
requires space for both the private SPA maps in the TLMM reducer regidthe public SPA maps
allocated during hypermerges. Every reducer hyperobject alivkgecessed) takes up 16 bytes of
space in a worker's TLMM reducer region and another 16 bytes irnygualic SPA map created
for a hypermerge throughout its lifetime. Assuming the original nonlocalarontains elements of
some primitive type or pointers to objects, the array view will consume lesg ¢pan the element
view throughout execution.

Perhaps more importantly, the array view has a second advantage oeégritent view in that
its natural array structure allows an important optimization which cannot be dih the element
view. Since the array view representation allocates elements for an aagtiguous memory lo-
cations, only one reducer lookup operation suffices for all the qooreting array reducer accesses
within a single strand. Henceforth, we shall refer to this optimization afothi@ip optimization
By contrast, since view allocation occurs when an element is first acteéhseslement view repre-
sentation tends to allocate views for elements in a given array in nonconsigo@mory locations.
Consequently, every access to a given element must translate into ar&mhiwp operation, even
when multiple elements are accessed within a single strand. Moreover, #yevaw’s natural
array structure may also lead to better locality during a hypermerge.

Nevertheless, the array of reducers approach has an advantgaearray reducer approach,
which is that it operates only on elements accessed during a hypermeathenérray of reducers,
an element view is initialized only upon access. Consequently, only viewsspamding to ele-
ments accessed need to be reduced during a hypermerge. By compoadhefirst access, an array
reducer creates and initializes the entire array view, and a hypermerggsanvoking its RDUCE
operation touches every element in the array. This advantage is espectaiyunced when the
nonlocal array is sparsely accessed.

The third approach, the library implementation of reducer arrays dedadnbtis chapter, at-
tempts to combine the most advantageous features of the first two apmodtiparticular, a re-
ducer array employs the SPA view, which associates the entire array veittedacer and allocates
elements for a given array in contiguous memory locations, thereby allonenigditup optimiza-
tion and obtaining better locality during hypermerges. The SPA view costs spae compared
to the array view; additional space is needed for bookkeeping saleg the SPA view, however,

60

a reducer array is able to initialize an element with the identity value only uponstsficess and
therefore operates only on elements that have been accessed duypeymérge. To mitigate the
additional space overhead inherent in the SPA view, the library also emplyworker memory
pools to recycle views. Experimental results show that a computation theawsducer array con-
sumes less space and performsfaster or more than that with an array of reducers during parallel
execution (the exact performance difference depends on the &eagral the access density of the
array).

Although reducer arrays are faster than arrays of reducers, teeeimtoverhead incurred by the
use of reducers is significant for large arrays. Depending on the#fispsmputation and the size of
the reducer array used in the computation, this overhead can becomnielaliégdottieneck. This
brings us to the question, what kind of applications may benefit from ezducays, or more point-
edly, do reducer arrays constitute a useful memory abstraction? We aiillieg these questions by
studying the overhead in using reducer arrays, extending the thebfeditework for analyzing
computations that employ reducers due to Leiserson and Schardl [@8arfalysis gives an upper
bound on the execution time and provides us with some insights as to what ksedlability we
may expect out of a computation that uses a reducer array. As a cdggtstuparallel breadth-first
search due to Leiserson and Schardl [96] is augmented with parenutatiops, which uses a re-
ducer array of siza, wherenis the number of vertices in the input graph. This chapter also analyzes
the theoretical bound of this application and evaluates its scalability empiricéléyamalysis tells
us that we should not expect the application to scale, and indeed we seeéitdbikty empirically
— the speedup plateaus around 12 processors, achieving &edup depending on the input
graph. An application can benefit from a reducer array if the applicabomamns enough work
besides accessing the reducer array such that the work dominateglifh@natioverhead incurred
by the use of reducers. Currently, | don’t know of an application tikatbés such characteris-
tics, however, and whether a reducer array constitutes a useful mefgtraction remains an open
guestion.

The rest of this chapter is organized as follows. Sectioh 5.1 describdibriwey support for
reducer arrays. Section 5.2 studies the theoretical overhead of a coimptitat employs a re-
ducer array. Section 5.3 evaluates the empirical performance of reduregs, comparing them
to arrays of reducers and examining one case study using paralldtinferat search with parent
computations. Finally, Section 5.4 gives concluding remarks.

5.1 Library Support for Reducer Arrays

This section describes an implementation of library support for reducaysar Unlike an array
of reducers, a reducer array uses one reducer to representtiteeagray. Thus, during parallel
execution, whenever a local view is created, the view represents the amay in its full lengtm,
wheren being the length of the original nonlocal array. Unlike an array redinsvever, a reducer
array initializes elements to its identity value lazily and minimizes the overhead dyfiegrherges,
reducing only elements that have been accessed. This section prowedegptémentation details
of the reducer array library.

The reducer pointer library

Before | present the implementation of the reducer array library, | ddgoesa moment to describe a
new reducer interface, referred to as thducer pointerinterface. Chapter 4 presents the memory-
mapped reducers assuming the reducer interface as originally docurmef#8pand implemented

61

1 Dbool has_property(Node #*n);

2 std::list<Node *> 1;

3 reducer_ptr<reducer_list_append<Node *>::Monoid> 1lptr (&1);
4 //

5 void traverse(Node *n) {

6 if (n) {

7 if (has_property(n)) A{

8 lptr->push_back(n);

9 }

10 cilk_spawn traverse(n->left);
11 traverse(n->right);

12 cilk _sync;

13 }

14 3}

Figure 5-2: The same code as shown in Figure]4-3 which uses the new regioger interface.

in Cilk++ [94]. The implementation in Cilk Plus closely resembles that in Cilk++, algfotne
linguistic interface has since evolved — Pablo Halpern, one of the origesidjders of reducers and
a Cilk Plus developer, investigated in a new interface, referred to agdueer pointerinterface.
Even though the reducer pointer interface is not officially released bgitkdlus compiIeE this
chapter studies and evaluates the reducer array assuming the recinter ipterface, because the
reducer pointer interface makes more sense in the context of a redregras | explain shortly.

Recall the tree traversal example studied in Section 4.1, where the codesésa binary tree
and creates a list of all nodes that satisfy some given propertpie-arderfashion. We have seen
a correct parallelization of the code in Figure]4-3 using the reduceraarfigure 5-2 shows the
same code parallelized the say way but uses the new reducer pointexdaterf

Using the new reducer pointer interface, one turns the listo a reducer by declaring a reducer
pointer to manage the ligtsuch as shown in line 3. We say that the liss hyperized referring to
the fact that now the list is managed by a reducer pointer. Then, insteguiafingl directly, the
code updates via the reducer pointer interface in line 8, since thellistay be updated in parallel.

Hyperizing a nonlocal variable using the reducer pointer interfacagevthe same guarantees
as employing a reducer in place of the nonlocal variable. Just like theeeduerface, a reducer
pointer implements the monoid interface and provides the two important opertairise runtime
invokes: DENTITY and REDUCE

The main distinction between the two interfaces is that, whether the underlyingsvéxposed.
The reducer pointer interface is designed so that the underlying viewp@ses, and the reducer
pointer simply serves as a wrapper for coordinating parallel updates tedeer. Note that us-
ing the reducer pointer interface, the user explicitly declares the leftmaostforethe reducer and
creates a reducer pointer to wrap around the leftmost view. Exposingtlezlying view can be
beneficial for performance reasons. For instance, if the user coal@skthat a view is updated
repeatedly within a single strand, it can obtain the underlying view once éoernthire strand and
update the view directly instead of going through the reducer interfadhdéanpdates, which can
be slower. This “optimization” must be exercised with extreme caution, hawswee if the pro-
grammer is not careful, she may write code that races with the runtime systéme anderlying
view.

Using the reducer interface, on the other hand, the library implementer noamgeho never
expose the underlying view. Doing so results in a cleaner semantics, wiredsowith a cost — a
reducer object must define update functions to allow the user code toditiglpperform updates on

1Thanks to Pablo who graciously provided me the implementation of reghoieters so that | could experiment with
the new interface before it is officially released.

62

int sum[100];

for (int i=0; i < 100; i++) {
sum[i] = 0;

}

reducer_array<reducer_opadd<int>::Monoid> rArray(lOO, sum) ;

O wWNPEF

Figure 5-3: A declaration of reducer array that hyperizes a nonlocayawith length 50. The type of the
reducer array is initialized by a monoid that performs additvith identity O.

the underlying views, which results a more cumbersome syntax and a skesverer update than
what the reducer pointer interface would allow.

The reducer array library

Just like the other reducer libraries provided by Cilk Plus [69], the redarray library is imple-
mented as a C++ library without the compiler involvement. The interface of thees array library
follows that of the reducer pointer library — to employ a reducer arrayee program hyperizes
a nonlocal array by initializing a reducer array with the array length andddeess of the nonlocal
array.

In the case of a reducer array, the reducer pointer interface makesserwe than the original
reducer interface for the following reason. Once the leftmost view besatable, i.e., being the
only view remains reflecting all updates, the user code likely wishes togsdlce final data in some
fashion. If the user code is only reading the array, it makes sensedtthearray in parallel without
generating additional views of the array. This is not possible with the exdoterface where the
underlying view is not exposed. Thus, the reducer array library is impleedeusing the reducer
pointer interface.

The type of the reducer array is dictated by its type parameter, which gsatié monoid type
for managing an element in the array. The monoid only specifiesttBeiTY and the REDUCE
operations for an element in the array, and the library applies the monoisisagle@ments in the
array when appropriate. To clarify the terminology, henceforth whemee refer to thedENTITY
and the REDUCE operations for a reducer array, we mean that the operations thatgiedap the
entire reducer array.

Figure 5-3 illustrates an example of hyperizing a nonlocal arrayef] type. Each element in
the nonlocal array can be used to accumulate sums (for example, to comsttegsam), which is
indicated by the type parameter that initializes the reducer array type, in gasgaa monoid that
performs addition with identity O.

In general, one should not directly access the hyperized variable witfodng through the
reducer pointer interface, unless the leftmost view is stable. This is partjctiae in the case
of a reducer array, because the hyperized nonlocal array doesmstitute the leftmost view, but
only a part of the leftmost view. Instead, the user code should eithetaifumarray either via the
reducer array interface (which overloads the oper&iofor accessing array elements), or obtain
the underlying view returned by the reducer array and update thé\Wwwill come back to this
point later when we explore the internals of the library implementation.

2Note that the point here is not the syntax used, but rather whether they liitaws the underlying view to be
exposed.

3Note that this does not preclude the optimization | mentioned earlier, in whiotoitie accesses the view directly; it
simply means that one should access the underlying view instead of taezggarray.

63

Use of the SPA data structure

The underlying view of a reducer array is a SPA data structure [50¢alRftEom Section 4.3 that
a SPA data structure allows both random accesses to elements in an arsssgaencing through
the occupied array positions in constant time per element. In the reduagidiarary, a SPA view
consists of an uninitializegalue arrayof lengthn, wheren is the length of the hyperized array,
alog array of lengthn/2 which stores indices of elements accessed, and an array of lefigith
occupied flagsvhich indicate the occupied position of the value array.

The use of a SPA view minimizes the overhead of ttEDRCE operation for a reducer array.
The reducer array library overloads the array subscript opefatso that whenever an element is
accessed, its corresponding occupied flag is seRtee and its index is logged. Thus, when two
SPA views are reduced, only accessed elements are reduced. LilsethEthe SPA in the Cilk-M
runtime, once the number of accessed elements exceeds the length of thrayothe library stops
logging the accessed indices and simply marks the occupied flags. At thgthmmwever, enough
work has been performed on the given view to justify sequencing thritnggéntire array according
to the occupied flags. Unlike the use of the SPA in the Cilk-M runtime system veoytbe reducer
array library must include an array of occupied flags to indicate which elenh@ve been accessed.
Since the type of the elements depends on the base type of the hyperagdhtaare is no general
default value that can distinguish whether an element has been acoéasedEach SPA view also
keeps a counter to record the number of accessed elements for thevigmerWhen two views
are reduced together, the library always reduces the view with feveessed elements into the
one with more, thereby reducing the number of elements that must be resluceded. The only
exception is when one of the two views is the leftmost view, because the naggam captures the
reference to the underlying value array for the leftmost view.

Since the library depends on the SPA view to log every element accessatemo correctly
perform the bENTITY and the RDUCE operations, it is critical that an element is accessed via the
reducer library interface or the SPA view interface (the SPA view is a ptyghie exported by the
reducer array library and accessible to the user code). If the usgrgmn accesses an element by
accessing the value array dire&lmcorrect executions may result.

Recycling SPA views

Besides minimizing the Rbuce overhead, we would also like to minimize view creation overhead.
To allow a SPA view to be created as efficiently as possible, the reduegrldmrary implements a
list of memory pools indexed by worker IDs to store SPA views. The memools@e specific to
a given instance of a reducer array. When a worker needs to cr&fa siew for a given reducer
array, it first checks in the local memory pool indexed by its ID. If thel imempty, it allocates new
memory for a new SPA view. Otherwise, a SPA view is retrieved from the pben two views are
reduced together, one of the views is recycled and returned to the mepuisy ffo avoid memory
drifting [10], each SPA view is marked with the worker ID which correggmoto the worker who
created the view, so that a recycled view always gets returned to themwho created the view
initially.

The reducer array library maintains the invariant that a SPA view in a menaol i not
initialized except that all its occupied flags are sefFtasSe. This invariant allows a worker to
determine whether an element in the value array for a given view has beessad and therefore
initialize elements in the value array lazily. Whenever a new view is retrieved fne pool, the

4Although the value array is a private field of the SPA object, there are imayhich a user program can capture a
reference to the value array.

64

executing worker does not initialize elements in the value array to identity. Ratiig upon first
access of a given element does the executing worker initialize the elemeantityid

Parallel REDUCE operations

When the array size is large, it is beneficial to allow treDRCE operation for a reducer array to
contain parallelism, enabling elements in two value arrays to be reduced llepaihen combin-
ing two SPA views together in parallel, some care must be taken in order to cethieitog arrays
correctly. Let’s walk through the BoucCE operation for a reducer array to make the explanation
more concrete. Without loss of generality, let’'s assume that #®URE operation is reducing the
right SPA view into the left SPA view, because the right SPA view has a smade(i.e., fewer
elements have been accessed). We will also assume that logs from boshhaesynot exceeded
their respective length and that the resulting view must still keep track of gz I[Gonceptually,
the REDUCE operation walks the log array from the right SPA view, and for everyrfdand in
the log, the corresponding element in the right view’s value array is esbwith or moved into the
corresponding element in the left view’s value array, depending othehghat particular element
has been accessed in the left view. If the particular element has nobeessed, the index for
this element must be inserted into the left view’s log, and its correspondiypied flag must be
marked asTRUE. Since the RDUCE operation walks the right view’s log array in parallel so as to
reduce elements in parallel, we now have a determinacy race on the lefs \ogpdrray.

To avoid the determinacy race on the log array, the reducer array libsasyyet another reducer
for the log array in the RDUCE operation for a reducer array. As mentioned in Section 4.3, Cilk-
M’s implementation of reducer mechanism treatseDBCE operation as a piece of user code that
may spawn, and so a paralleERUCE operation can employ yet another reducer. In this case,
hyperizing the log array avoids the determinacy race. Since we areifipgethe log array and
walking the log array in parallel, ideally the log array should support efficplit and merge, in
addition to insert. The split operation allows the library to traverse the logsrallglin a divide
and conquer fashion. The merge operation allows the library to combine tiwddgether quickly.

A vanilla implementation of an array does not support merge efficiently, \aw&hus, instead of
using a vanilla array, now the log is kept in a bag data structure (as dedanif96] and summarized
in Section 7.4) that supports efficient insert, split, and merge, which isfidealir purpose.

Since keeping a log as a bag instead of a vanilla array and walking the logsalepincur
additional overhead, performing theeRUCE operation in parallel is beneficial only if the array
size is large enough. Thus, there are two implementations for the redwegtiarary. Henceforth,
we will refer to the one without parallel ®ucEk as theordinary reducer array library and the
one with parallel RbuUcCE as theparallel reducer array library As we will see in later sections,
the parallel reducer array outperforms the ordinary reducer amgyrieally.

5.2 Analysis of Computations That Employ Reducer Arrays

As emphasized earlier, the use of reducers generates a nondetermmaatictaf additional work.

In the case of a reducer array, if the array size is large, the additiawél way constitute a scal-
ability bottleneck. How much additional work is generated? When does inbe@obottleneck?
The theoretical analysis presented in this section provides some insighsssethion studies the
theoretical framework due to Leiserson and Schardl [96] for anajyaicomputation that uses a re-
ducer with a nonconstant-timegRUCE operation and extends the framework to analyze a compu-
tation that uses a parallel reducer array with a paralib RCE operation. Leiserson and Schardl’'s

65

continuation sync
strand

spawn
strand

Figure 5-4: A dag representation of a multithreaded execution. Thdcesrtrepresent strands, and edges
represent dependencies between strands.

framework follows the framework of Blumofe and Leiserson [20] forlgriag a dynamically mul-
tithreaded computation using a work-stealing scheduler, which models a Giliutation as a dag,
and extends the analysis to handle the nondeterminism due to the use otearrethis section
first reviews the dag model due to Blumofe and Leiserson [20], summdragd_eiserson and
Schardl [96] extend the analysis to handle reducers, and finally exteadnodel to analyze com-
putations with parallel reducer arrays. Analysis presented in this sectjomisvork with Tao
B. Schardl and Charles E. Leiserson. A portion of the text present#iiidrsection is adapted
from [96] with permission from the authors.

The dag model

The dag model for multithreading introduced by Blumofe and LeisersonVi20]s the execution
of a multithreaded progrﬁms adag (directed acyclic graphlp, where the vertex set consists of
strands— sequences of serially executed instructions containing no parallebtentand the edge
set represents parallel-control dependencies between strands.

Figure 5-4 illustrates such a dag, which represents a program exeautioat it involves ex-
ecuted instructions, as opposed to source instructions. In particulardielsnan execution that
contains spawns and syncs. As illustrated in Figure 5-4, a strand thatihdegree 2 is apawn
strand, and a strand that resumes the caller after a spawn is catledtimuation strand A strand
that has in-degree at least 2 isync strand A strand can be as small as a single instruction, or it
can represent a longer computation. Generally, we shall slice a chagmiafysexecuted instruc-
tions into strands in a manner convenient for the computation we are modelinghalNessume
that strands respect function boundaries, meaning that calling or sgpevfunction terminates a
strand, as does returning from a function. Thus, each strand bdlmegactly one function instan-
tiation. For simplicity, we shall assume that programs execute @hesh parallel computerwhere
each instruction takes unit time to execute, there is ample memory bandwidthatkere cache
effects, etc. A strand’engthis defined as the time a processor takes to execute all instructions in
the strand.

5When we refer to the execution of a program, we shall generally astwahee mean “on a given input.”

66

Work and span

The dag model admits two natural measures of performance which caed&oysovide important
bounds [19, 23,40, 53] on performance and speedupwbhnk of a dag? is the sum of the lengths
of all the strands in the dag. Tlspanof D is the length of the longest path in the dag. Assuming
for simplicity that it takes unit time to execute a strand, the span for the example fégure 5-4

is 10, realized by the pat{i,2,3,6,7,8,10,11,18 19), and the work is 19.

Recall that Section 2.1 defines the work toTaethe execution time of a given computation on
one processor, and the span tolhethe execution time of the computation on an infinite number of
processors. Section 2.1 also provides an execution-time bouRdoncessors in terms df and
Te. For a program that ideterministicon a given input, where every memory location is updated
with the same sequence of values in every execution, one cam uewed work orT, and span
interchangeably, since a deterministic program always behaves the sdmesalts in the same
execution dag on a given input, no matter how the program is schedulatlisTthe execution dag
on a given input (and hence its work and span) for a deterministic progr&cuting on a single
processor is the same as the dag executing on multiple processorsidratederministicprogram,
however, where a memory location may be updated with a different segjoémalues from run to
run, different executions may result in different dags depending erst¢heduling. Thus, we can
no longer directly relate the work and span for a parallel execution to fitaecserial execution.
Rather, we must relate the work and span of a parallel execution to themgslag of the execution.
Therefore, henceforth, we shall use the notation \Wdrkand SpafD) to denote the work and span
of a dag?D.

To generalize the bounds we have from earlier chapters for both deistiménd nondetermin-
istic programs, we shall define the Work Law and the Span Law based meraaxecution dag.
Suppose that a program produces a @aip time Tp when run orP processors of an ideal parallel
computer. We have the following two lower bounds on the executionTgne

> Work(D)/P, (5.1)
Tp > SparD). (5.2)

Similarly, theparallelism of the dag® is defined to be Worl®) /Spar{D). Based on the dag, a
work-stealing scheduler achieves the expected running time

Tp < Work(D)/P+ O(Spar{?D)) , (5.3)

where we omit the notation for expectation for simplicity. This bound, whichasgxt in [20], as-
sumes an ideal computer, but it includes scheduling overhead. As S2ctierplains, the compu-
tation exhibits linear speedup when the number of procegsismnuch smaller than the parallelism,
since the first term dominates.

Copying with the nondeterminism of reducers

The bound shown in Inequality (5.3) applies to both deterministic and nomdietstic computa-
tions. Obtaining bounds on performance and speedup for a nondetéitrpnagyram can be more
challenging, however. Unlike a deterministic program, we cannot readéjeréhe execution dag
for a nondeterministic program resulting from a parallel execution to thasefial execution.

A computation that uses a reducer generates a nondeterministic amounkalusiog a parallel
execution. The question is, how much additional work, and how doeseittafie work and span
of the resulting dag. Leiserson and Schardl [96] provide a theordtamalework for analyzing an

67

execution dag for a program that contains nondeterminism due to the asedicer, which allows
us to obtain an upper bound on the additional work generated due to tloé aseducer and how
the additional work impact the span of the computation, thereby obtainingds@mperformance
and speedup. We will overview their framework and extend it to analyzemgpuatation that uses a
parallel reducer array.

The use of a reducer generates a nondeterministic amount of additiokab&oause accessing
a reducer during parallel execution may implicitly cause the runtime system dtecaeditional
views for the reducer, which must be reduced later. The number of Wereted depends on the
scheduling and cannot be determined solely by the execution dag fromaleesecution, which is
the only observable part from a user’s perspective. To captureotideterminism due to a reducer,
Leiserson and Schardl define two types of dags. First, they defins#nelag?, for a computation
D in the same manner that we define an ordinary dag for a deterministic progitsenuser dag
consists of onlyuser strandswhich are observable during serial executions. Next, they define the
performance dag?y, which is obtained by augmenting the user dagwith additional sets of
runtime strandsthat the runtime system implicitly generates for managing a reducer. Thates, gi
a parallel execution of a program with a user dag= (W, Ey), one can obtain the performance
dagDr = (Vi, En), where

® VTI:VUU\/I UVp
® ET[:EUUEIUEpl

whereV, andE, represent the addedit strands corresponding to view creations triggered by ac-
cessing or updating a reducer, avidandE, represent the addedduce strandsorresponding to
instructions needed to reduce those views.

The vertex set¥, andV, are based on the given parallel execution. The edgeEsetsdE,, on
the other hand, are constructed a posteriori. For each init strail we include(u, v) and(v,w) in
E,, whereu,w €V, are the two strands comprising the instructions whose execution causedta vie
be created (by invokingdENTITY) corresponding te. The construction o, is more complicated.
To insert reduce strands, the edge&gnare created in groups corresponding to the seted BRCE
functions that must execute before a given sync. Suppose th&t, is a sync strand, that user
strandsug, U, ..., Uk € D, join atv, and thak’ < k reduce strandsy, ra,. .., r¢ € D, execute before
the sync. One can define an ordering amongkthiel views seen by thk strands based on when
the views are created. Leiserson and Schardl describe a constrigetionorporating the reduce
strands by repeatedly joining together two strands that have the “minimal”adjdcent” views.
The construction results in @duce treethat incorporates all reduce strands betweenktliser
strands and the sync nogdewhere the user strands are at the leaves, the reduce strands constitute
intermediate nodes, and the sync node serves as the root. | omit the detiadscohstruction here
and refer interested readers to [96].

With this construction, the resulting graghy is indeed a dag. More importantly, one can apply
the “delay-sequence” argum@mtue to Blumofe and Leiserson [20] to analyze the construgted
and show that every “critical” instruction is either sitting on top of some wdsldgque or is being
executed, including the reduce strand¥/yn The crucial observation is that, if an instruction in a
reduce strand is critical, then its sync node (at the root of the redugehtasebeen reached, and
thus a worker must be executing the critical instruction, since reducgee@med eagerly when
nothing impedes their execution. Thus, whenever a worker steals, it/Rash&nce of executing a
critical instruction. With constant probabilitl, steals suffice to reduce the span of the performance
dag?Dr by 1. Consequently, one can bound the expected running time of a compuiatiat uses

6This includes augmenting the performance dagwith additional “deque edges”.

68

areducer as
Te(D) < Work(Dy)/P+ O(SpariDy)) . (5.4)

and the expected number of steal©if - Spart Dr)).

Handling parallel REDUCE operations

In their analysis [96], Leiserson and Schardl assume that that the tatiopuuses one reducer
that has a nonconstant-time seria@ U CE operation. For our purpose, however, we shall assume
that the computation uses a reducer that has a honconstant-time paetlet Roperation, since

our goal is to analyze a computation that uses a reducer array, wieEmsedR operation contains
parallelism. Previously, with a serialB®uUCE operation, when we construct the performance dag
Dy for an execution, eachEbUCEoperation executed translates into either a single reduce strand or
a chain of reduce strands between a user strand and a sync ribgleNiow with a parallel RbUCE
operation, an executedgRUCE operation translates into a subdag between a user strand and a sync
node inDy. This difference does not affect the delay-sequence argumeninagdality (5.4) still
holds. The main difference in the analysis for a serisbRCE operation and a parallelEDUCE
operation is how we relate the work and span of a performance dag to itdagewvhich we shall
discuss next.

Analyzing the work and span of a performance dag

Now we examine how one can relate the work and span of a performagde ttee user dag. The
analysis we will discuss here closely follows the analysis described bgiseis and Schardl [96]
modified to handle a reducer with a parall&@BucE operation. In particular, Leiserson and Schardl
in their analysis assunteto be the worst-case cost of angRuceor IDENTITY for the particular
execution. In the case of a seriak BUCE, thist parameter represents both the work and span of the
worst-case cost of a bUCE operation. In our analysis, we shall assume two distinct parameters
Tw and s to represent the work and span of the worst-case cost ofURE operation. For
simplicity, we shall first assume that the parall@dRCE operation we consider does not use yet
another reducer. We shall come back to this point later. In addition, thoaighe analysis, we
shall assume that the computation uses a single reducer. Neverthelessaitgistforward to use
the same framework to analyze a computation that uses multiple reducers — sasynhye,y and
Ts are the work and span of the worst-case cost of a hypermerge proces

First let's analyze and bound the additional work involved in joining strandgsther, which
includes the RDUCE operations necessary before a sync node. Operationally, joininglsttan
gether corresponds to frames returning. Recall from Chapter 4, mirgjiframe must perform a
locking protocol to prevent racing with its sibling frames who may also benmgtgr Once locks are
acquired successfully, the frame returning obtains the necessary Si¥ton@erform hypermerges
until there is only one set of views left to deposit. Once the view transie@dne, a frame may
eliminate itself from the steal tree. The next lemma bounds the work involved imgostrands
together by considering the work involved in each elimination attempt and thematabers of
elimination attempts.

Lemma 5.1 Consider the execution of a computatinon a parallel computer with P processors
using a work-stealing scheduler. The total work involved in joining stras@XtwP - SpariDy)),
wheretyy is the work of the worst-case cost of @RgDUCE or IDENTITY for the given input.

PROOF First, we shall bound the work involved in lock acquisition during an eliminattempt.
Since we use the same locking protocol for acquiring SPA maps from sitagdescribed in [96],

69

a lock is held only for a constant amount of time. Furthermore, as showgjtf@ time for thath
abstract lock acquisition by some workeiis independent of the time far's jth lock acquisition
for all j > i. Thus, by the analysis in [48], the total time a worker spends in lock acquisit®
proportional to the number of elimination attempts.

Next, we shall bound the total number of elimination attempts. Since each sfidcgeal
creates a frame in the steal tree that must be eliminated, the number of eliminatioptatis at
least as large as the numbérof successful steals. Each elimination of a frame may force two other
frames to repeat this protocol. Therefore, each elimination increasesuthieen of elimination
attempts by at most 2. Thus, the total number of elimination attempts is no morelthan 3

Finally, let's consider the amount of work involved per elimination attempt. Théttota spent
acquiring abstract locks and performing the necessary operations tvileck is held iSO(M).
Each failed elimination attempt triggers at most two hypermerge processtshigzermerge com-
bines two SPA maps into one) and at most view transferal. The work invoheebypermerge and a
view transferal is proportional to the number of reducers used. Asguiméncomputation employs
a single reducer whoseE®UCE operation involvesy amount of work in the worst-case, the total
amount of work involved per elimination attempt@gtyy).

Putting everything together, we can bound the total expected work speingjstrands, which
is O(twM). Following the analysis on the number of steals from [20], which boundsuh®er of
steals for a given da@ to beO(P- Spar{?)), we have that the total work spent on joining strands
is O(twP- Spar{Dr)). a

Next, we shall bound the work and span of the performance dag in terths span of the user
dag. We will consider the span (Lemma 5.2) first and the work (Lemma 5.8)atepy.

Lemma 5.2 Consider a computatiorD with user dag?, and performance da@,, and letts
be the span of the worst-case cost of @BEATE-IDENTITY or REDUCE operation for the given
input. Then, we havBpan{?Dy) = O(ts- SpanDy)).

PrROOF Each successful steal in the executionZoimay force one view to be created via an
invocation of DENTITY, which must be reduced later viaERUCE. Thus, each successful steal
may lead to at most on®ENTITY and one RDUCE operation. Since each spawn4® provides
an opportunity for a steal to occur, in the worst case, every spadly imay increase the length of
the path that contains the spawn k.2

Consider a critical path D, and letp, be the corresponding path if),. Suppose thak
steals occur along the paty. The length of that corresponding pathfk is at most Rts—+ |py| <
2ts-SpaniDy) + | pu| < 3ts- SpaniDy,). Therefore, we have Spafy,) = O(ts- Span?y)). O

Lemma 5.3 Consider a computatioD with user dag?,. Letty andts be the work and span,
respectively, of the worst-case cost of dmENTITY or REDUCE operation for the given input.
Then, we hav@Vork(Dy) = Work(Dy) + O(twTsP - Spari Dy)).

PrROOF The work inDy is the work inD, plus the work represented in the runtime strands, i.e.,
init strands and reduce strands. The total work in reduce strandiseheaotal work to join stolen
strands, which i©(twP- Spar{D)) by Lemma 5.1. Similarly, each steal may create one init strand,
and by the analysis of steals from [20], the total work in init stran@(isyP- Spar{?)). Thus, we
have WorK Dy) = Work(D,) + O(twP - SpariDr)). Applying Lemma 5.2 yields the lemma. O

Theorem 5.4 bounds the runtime of a computation whose nondeterminism esisagtiucers.

70

Theorem 5.4 Consider the execution of a computati®on a parallel computer with P processors
using a work-stealing scheduler. L&Y, be the user dag of>. The total running time oD is
Tr(D) < Work(Dy)/P+ O(twts: SpariDy)).

PROOF By Inequality|(5.4) and Lemmas 5.2 and 5.3, we have WK /P+O(twts-SpaniDy)) +
O(ts-SpaniDy,)). We can omit the third terr®(ts- Spar{?y)), since it is dominated by the second
termO(twTs- SpartDy)). O

In the case of a parallel reducer array, since it=DBCE operation uses a bag reducer, the
REDUCE operation generates a nondeterministic amount of work during paralleligoe. Thus,
we must recursively apply the analysis to the work and span for #heURE operation for the
parallel reducer array in order to obtain the appropriate bounds\f@ndts. That is, consider the
subdag?’ that corresponds to the worst-case cost ofemBCE operation for the parallel reducer
array. We are looking for the work and span®f, which correspond to the termg andts from
Theorem 5.4. Let{, andtg be the work and span @, respectively, and let}, andtg be the work
and span of the worst-case cost of thedR CE operation from the bag reducer used in treDR CE
operations of the parallel reducer array. By applying Lemma 5.2 and Len8na/& have

s = O(tsTy),

Tw = T+ O(t5- T, T2P) . (5.5)

With this bound, we define theffective parallelismas Work D,)/(twts- SpaniD,)). Just as
with the parallelism defined for deterministic computations, if the effectivellptisan exceeds the
numberP of processors by a sufficient margin, tReprocessor execution can obtain near-linear
speedup over the serial execution. The second term in the time boursdagivepper bound on
the overhead incurred by all theeERUCE operations in the computation, which stays the same no
matter how many processors are used to exefytgnce the maximum number of views created is
proportional to the number of processors used for execution. As fibetieé parallelism implies,
this bound gives us an intuition as to whether one can expect a computataidavhen a reducer
array is used. Specifically, it depends on the total workDinand how much work is involved in
REDUCE operations (which corresponds to the size of the reducer array. u&ag overall work
of the computation is comparable to the work and span involved in HoURE operations for the
reducer used in the computation, one should not expect to see lineauppeben running the
computation on multiple processors. On the other hand, when the work idvisiibe REDUCE
operations is large, parallelism inERUCE indeed helps. As we shall see in our case study in
Section 5.3, experimental results bear out these observations.

5.3 An Empirical Evaluation of Reducer Arrays

This section empirically evaluates the library implementations of reducer asyagsmparing the
space utilization and performance of reducer arrays to that of arfagslacers. Recall from Sec-
tion/5.1 that there are two library implementations — an ordinary reducer amah keeps the
logs in a vanilla array and employs a seri@BRCE operation, and a parallel reducer array which
keeps the logs in a bag reducer and employs a paratiblUR E operation. In terms of space usage,
experimental results show that both implementations of reducer arrayssssspkece than an array
of reducers. In terms of execution time, both implementations of reduceisgreaform about 2
better than an array of reducers when one enables the lookup optimizatiitimout the lookup
optimization, the performance difference is negligible when the array simeal lsut becomes no-

71

ticeable as array size increases, especially during parallel execUfiarisermore, the use of a bag
reducer in a parallel reducer array has negligible overhead compatieel use of a vanilla array in

a reducer array, and its paralleERuCE operation indeed helps in the event when the array size is
large.

General setup. The library implementations of reducer arrays are evaluated using onebeiario-
mark and one application benchmark. The microbenchmark is syntheticndddig perform ran-
dom array accesses repeatedly. The evaluation uses the microbekt¢hncampare space uti-
lization and performance of reducer arrays and arrays of reduthis evaluation also includes a
case study using a real-world application, parallel breadth-firstiséardBFS) [96], modified to
include “parent computations” that employ a reducer array.

Both the microbenchmark and the PBFS application benchmark were compihectiis Cilk
Plus compiler version 10.0 using-02 optimization. All experiments were performed on an AMD
Opteron system with 4 quad-core 2 GHz CPU'’s having a total of 8 GBytesenfiory. Each core
on a chip has a 64-KByte private L1-data-cache and a 512-KBytatpriv2-cache, but all cores on
a chip share a 2-MByte L3-cache. With 4 quad-cores, the system he aftB-MByte L3-cache.

All experiments were conducted with the Cilk-M runtime system (specifically,-Milk.0).
This evaluation does not include performance comparison with Cilk Plusg@Bpugh the libaray
implementations of reducer arrays work with Cilk Plus, the reducer mechani§ik Plus does
not support parallel RbucEe operations. Please refer to Section 4.4 for performance comparisons
for the reducer mechanisms between Cilk-M and Cilk Plus.

Reducer pointer interface. Both the microbenchmark and the PBFS application are coded using
the reducer pointer interface (see Section 5.1 for a description of theaegointer interface).
There isn’t fundamental performance difference bwteen the reduteeface and the reducer pointer
interface. When a program uses the reducer pointer interface, bowewmay suffer fromfalse
sharing, where different workers compete for a cache line when they write terdift memory
locations that happen to be allocated on the same cache line. In the caseya tesducer pointer,
the false sharing occurs when the leftmost view is small enough to shache lbae with other
(possibly read-only) variables. Thus, when multiple workers inevitabfjatethe leftmost view
during parallel execution, variables which happen to lie on the same caelgelibounced between
private L1-caches of different cores, and incur significantly morerlesad compared to single-
processor executions. The false sharing does not occur if onghesesducer interface, because
the leftmost view is allocated as part of the reducer object, which is largegbni occupy its
own cache line. Nevertheless, this false-sharing problem can be egsdyith padding once the
programmer realizes what is causing the slowdown during parallel exaswim where the false
sharing occurs.

In the absense of false sharing, performance between the two inteisam@mparable when the
nubmer of reducers used is moderate. When the number of reducedrgsuagge, however, the
reducer pointer interface has a slight advantage in that it requirespass.sFor instance, an add
reducer (which includes its leftmost view) takes up 192 bytes, whereaduger pointer (which
excludes its leftmost view) takes up 96 bytes. Even accounting space upkey the leftmost
view, a reducer pointer still uses less space. This advantage is evilenttihe microbenchmark
is evaluated with a large array of reducers, since the microbenchmasknkesanemory-bandwidth
bound in this case. Thus, all experimental results shown in this section ethplogducer pointer
interface and include the fix to false sharing.

72

Evaluation using the microbenchmark

The microbenchmark works as follows — it generates an array of ranmadices and updates the
array of reducers or the reducer array repeatedly using the raimdiicies. The parallelism comes
from recursivly subdividing the iteration space and traversing the iterajp@ce in parallel, so
different workers are updating the array of reducers or the reducay in parallel, writing to the

same array indices according to the random index array.

There are two input parameters to the microbenchmark that can be adjlisésiitst is the size
of the random index array, which dictates how densely the array otesdwr the reducer array
is accessed. The microbenchmark is evaluated with density values rarmim§.1—09 (sparse to
dense) with a @ increment. The second parameter is the size of the array of redu¢kesreducer
array. The micobenchmark is evaluated with three different array siz&192 (small), 32768
(medium), and 262144 (large). The number of iterations in the benchmarkhesen according to
the array size and access density in such a way that the benchmark runs

Space usage. For either reducer arrays or arrays of reducers, the spaceeackihcludes the
folliwng:

1. space allocation for private SPA maps in workers’ TLMM reduceioregthroughout reduc-
ers’ lifespan,

space allocation for public SPA maps during hypermerges,

space allocations for their corresponding reducer pointers,

space allocations for the leftmost views, and

5. space allocations for newly allocated local views due to parallel executio

PN

In the case of serial executions, the runtime uses zero space foeadar® and 5. Thus, it is easy to
see that an array of reducers consums more space than a redagdfa@reither implementation),
because an array of reducers incurs high cost in overheads| 1simply due to the high nubmer
of reducer pointers that it employs.

During parallel executions, it is no longer a clear cut which variant osa® memory. Even
though an array of reducers incurs high costs in overheads 1, 3, &ridcurs relatively lower cost
in overhead 5 than a reducer array, because an array of redudgrsreates views for elements
accessed whereas a reducer array creats a SPA view for the ergyre ar

| measured the space usage for array of reducers, ordinaryeredrurays (with and without
the lookup optimization), and parallel reducer arrays (with and without thleulo optimization)
during parallel executions, using the microbenchmark with three differeay sizes and across
access densities. Experimental results show that both implementations cérediays consume
less space than an array of reducers. In particular, when the daxeisdarge, a parallel reducer
array uses the least amount of memory of the three.

Figure 5-5 summarizes the experimental results in three graphs, onecfoaeay size tested.
Within each graph, three different variants are shown, grouped intesstec. an array of reducers,
an ordinary reducer array, and a parallel reducer array. Foritopilementations of reducer arrays,
the space usages with and without the lookup optimization are pretty comparabke Figure 5-5
shows only data obtained with the lookup optimization. Within each variant, FigiBreelectively
shows the space usages on executions with access densitiés @800.6, and 09 to simplify the
presentation. For each access density, the bar presents a breakihenspace utilization into
three different categories. The first category is overhead foai@i8PA maps, which corresponds
to overhead 1, calculated by the number of physical pages mapped iergofk- MM reducer
regions. The second category is overhead for allocating public SPA, méuosh corresponds to

73

Space usage comparison using a small array

m
(4]
{@2]
S 4,000
E 3,500
2 3,000
o L B TLMM reducer map regions
© 2,500 @ public SPA maps p 9
2,000~ O views + reducer pointers
& 1,500+ |]
8
21,0001
8 500
IS
& 0—5p 00 0000
2EELo CAESo AESERe
array ordinary parallel
of reducers reducer array reducer array
@ Space usage comparison using a medium arrgy Space usage comparison using a large array
g 14,000~ S 90,000
S 12,000+ g 80,000
B ‘@ 70,000~
> | > ! e
£ 10,000 S 60,000 —
‘S 8,000~ S 50,000+
& &
o 6,000+ o 40,000~
g 4.000- || S 30,000+ B
3 3 20,000+
2,000- |
é § 10,000
n 0 n 0
2RERs pELs CLERs P8R0 OPFRs CPLELo
array ordinary parallel array ordinary parallel
of reducers reducer array reducer array of reducers reducer array reducer array

Figure 5-5: The breakdown of space usage of the microbenchmark usinglaamay, a medium array, and
alarge array. In each graph, the space usage for threeatfiffesiriants are shown, one per cluster: an array of
reducers, an ordinary reducer array with the lookup optitidn, and a parallel reducer array with the lookup
optimization. Within each cluster, the x-axis labels theems density. For all graphs, the y-axis labels the
space usage in the number of physical pages.

74

overhead 2, calculated by the total number of physical pages the runtstesrsyequested from the
operation system for public SPA maps in a given execution. Since pagpsaliic SPA maps are
recycled in the runtime system, this number shows the maxinum number of peegesdfor public
SPA maps during the execution. The third category is overhead for allgoagws and reducer
pointers, which corresponds to overheads|3-5, inclusively. Foribgilementations of reducer
arrays, the SPA views are recycled on the per-worker basis, so thbemsshows the maxinum
number of pages needed for SPA views during the execlti@ince the space usage for these
categories differ from run to run due to scheduling, for each data gbiatnicrobenchmark was
run 10 times and recorded the maximum number of pages used.

As Figure 5-5 shows, even though an array of reducers tends togssggace in creating views
than both implementations of reducer arrays, its space usage is dominatésthtireg SPA maps
during hypermerges. Once the space for (public and private) SPA imagsounted for, reducer
arrays end up using less space. In particular, the parallel reduegramsumes about 60%—70%
of the space consumed by the array of reducers in the test cases.

Somewhat surprisingly, an ordinary reducer does not necessardyosaspace compared to a
parallel reducer, even though a parallel reducer uses a bag redutseREDUCE operation, which
generates more views during parallel execution. The reason is thadleepsaeducer array uses the
bag data structure to store logs, and the bag allocates space lazily, svasi@ainary reducer array
uses a vanilla array to store logs, which is allocated when a view is creatatm&ans the bag has
a much more compact representation than an array when the number of $ogallignd the array
size is large.

Performance comparison. The same microbenchmark was used to evaluate the performance of
the three variants. For reducer arrays, | was interested in seeing holwthreilookup optimization
helps, where one lookup is performed within a single strand instead of multqg#eps (i.e., one
lookup per array element accessed), so the evaluation also includes tirseremants of reducer
arrays with and without the lookup optimization.

It turns out that, with arrays of the sizes tested for the microbenchmarkgtti@mance of an
ordinary reducer array and a parallel reducer array are quite gablpaand so figures include only
the execution times of benchmarks using arrays of reducers and pezdileler arra)@.We shall
defer the discussion on the difference between reducer arraysaaaitepreducer arrays until the
case study.

Figure 5-6 column (a) shows the performance comparison betweenrbaricexecutions that
use an array of reducers, a parallel reducer array without the fpooftimization, and a parallel
reducer array with the lookup optimization running on a single processgurdf5-6 column (b)
shows the same performance comparison when running on 16 pracedsoee different array
sizes are shown in each column.

Let’s first examine Figure 5-6 column (a) for the single-processonsiwets. The performance
difference between reducer arrays with and without the lookup optimizatays constant across
different array sizes, where the reducer array with the optimization abosat 18x faster. This
makes sense, since these two variants use about the same amount of raechting, performance
difference results purely from the optimization.

7Although the SPA views are recycled, a parallel reducer array usag @Hucer in its RDUCE operation, and views
for the bag reducer are not recycled.

8The ordinary reducer array performs slightly better than the paratieles array when the microbenchmark uses a
small or medium array, whereas the parallel reducer array pesfslightly better than the ordinary reducer array when
the microbenchmark uses a large array. In all cases, the perfoendéfference is small enough that including the timing
on both does not add much information to Figure 5-6.

75

Performance comparison using a small array

Performance comparison using a small array

25 T T T T T T 1.6 T T T T T T
Array of reducers —— Array of reducers ——
Reducer array 14 F Reducer array]
— 20+ Reducer array (optimized) ---*-- | Reducer array (optimized) ---*--
4 i
=
=}
8 4
Z 157 k
Q
£ - 1
g oy : |
=
L;j 5t */* J
--" * " .)
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Access density Access density
Performance comparison using a medium array Performance comparison using a medium array
30 T T T T T T 2 T T T T T T
Array of reducers —— Array of reducers ———
Reducer array 1.8 Reducer array
= 25 Reducer array (optimized) ---*-- 1 16t Reducer array (optimized) ---*-- 1
Z .
= 4
o
E
o
£ RS
= o
.2 1
3
3]
>
3} i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Access density Access density
Performance comparison using a large array Performance comparison using a large array
60 T T T T T T 3 T T T T T T
Array of reducers —— Array of reducers ———
Reducer array Reducer array
. 50 Reducer array (optimized) ---x-- 1 25+t Reducer array (optimized) ---*-- 1
3
5]
o
£ 1 1s5f 1
=
g -
5] X
| o
{1 os e :
_- Lo -
0 - 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Access density

(a) single-processor executions

Access density

(H)6-processor executions

Figure 5-6: The execution times of the microbenchmark using a smalyaaranedium array, and a large

array executing offa) a single processor and @)

16 processors. The y-axis labels the execution times in

seconds, and the x-axis labels the varying access densitiging from 01-09. There are three variants
of the benchmark — one using an array of reducers, one usiagadigl reducer arrays without the lookup
optimization, and one using a parallel reducer array wighidokup optimization.

76

On the other hand, there is no performance difference between groéreslucers and a reducer
array without the optimization when the array size is small or medium. For the snthihadium
arrays, since only one view per array element is ever created duriglg girocessor executions,
the amount of memory used by either variant (which includes the left mostamelithe reducer
pointers created) fits comfortably in the L3-cache (total of 8 MBytes).nElieugh the array of
reducers ends up using more memory and incurs more L1- and L2-cackesimike additional
cache misses does not impact the performance in a significant way. Fargearray, however, the
amount of memory used by either variant no longer fits in the L3-cacheharamount of memory
used by the two variants differ enough to make a performance impact, ditimoa¢oo significant.

For 16-processor executions, again, the performance differetaeeen reducer arrays with and
without the lookup optimization stays about constant across array sipethe@ther hand, perfor-
mance difference between an array of reducers and a reducematinaut the optimization starts
to show in the medium-sized array test case, and the gap widens whenatysiaerincreases. An
array of reducers consumes more space, and the large-sized eeagat fit in the main memory,
so the space consumption probably impacts the performance. Another intfiactanis the reduce
overhead incurred during parallel executions. An array of reduoceurs much higher overhead in
performing view transferal than a reducer array, simply due to its use of melucer pointers.
Furthermore, a reducer array likely has an advantage in locality duringyibermerge process
when the access density is abovb.0Even though the microbenchmark accesses the array using
random indices, for a reducer array, a hypermerge process igveingly combining two SPA
views. When the access density is above the SPA view no longer keeps the access logs, and
its REDUCE operation walks the underlying value arrays in order. For an arragdafaers, on the
other hand, a hypermerge process involves reducing multiple pairs of weether (one pair per
element accessed), and there is not much locality among the pairs of viavedly,Fn the large
array test case, a parallel reduce array has an advantage in thabitscRoperation contains par-
allelism — it does perform slightly better compared to its counterpart, an oydieducer array. All
these reasons contribute to the lower reduce overhead in a redumgthan an array of reducers
during parallel executions. Indeed, instrumentation in the runtime systenaiadithat an array of
reducers spends much more time performing view transferals and hygesrban a reducer array
when the array size is large.

A case study using PBFS with parent computations

The case study used to evaluate the performance of reducer arrayalislppreadth-first search [96],
or PBFS. The base algorithm is summarized in Section 4.4. For the purpeseloating reducer
arrays, | modified the algorithm to perform parent computations, whichinesjeither an array of
reducers or a reducer array in order to compute parents in a determiasgdtior.

PBFS with parent computations works as follows. As the algorithm discolershortest path
from the starting nodg, to some node,, it recordsvy’s parent, the ancestor node that leadsvio
in the shortest path. The algorithm records the parents of all nodes inlecabarray of sizéV|,
i.e., the size of vertex set of the input graph. As workers discoverrdiftepaths that lead to the
same node, two worker may potentially update the same element in the arraglislassuming
the two paths have the same distance from starting mgiden such a case, the algorithm breaks
the tie between the two parents having the same distance according to theirlRsitevhere the
parent with a smaller ID gets recorded. To do so, the algorithm employsray @irreducers or
reducer array whoseH#®UCE operation is a min operation.

The application is evaluated using both implementations of reducer arrayatiorexthe impact
of the parallel RbucEoperations on the overall performance. Experiements using the mictobenc

77

mark have established that a reducer array works equally well or bedteatharray of reducers. In
particular, the lookup optimization indeed helps. Thus, this case studygf®onsevaluating the dif-
ference between an ordinary reducer array (with a semalURE operation) and a parallel reduce
array (with a parallel RDUCE operation), where the difference is only evident empirically when
the application requires large reducer arrays, which is the case fd8 RBF parent computations.

Theoretical bound. We shall first examine how the execution time bounds compare when the
application uses an ordinary reducer array versus a parallel redireg. Recall from Sectian 5.2
Theorem 5.4 that a computatiai that uses a reducer array executingPoprocessors has a time
boundTp(D) < Work(Dy)/P+ O(twts- Spari?Dy,)). The work and span for PBFS with parent
computations is asymptotically the same as the work and span for PBFS, sinpaa¢hé compu-
tations simply add additional constant overhead per vertex procesbed, diven an input graph
G = (V,E) with diameteD, the work of PBFS with parent computation€d§V + E), and the span
isO(DIg(V/D) +DlgA), whereA is the maximum out-degree of any vertexvrj96]

Consider a PBFS computatiah that uses an ordinary reducer array for parent computations.
With a serial REDUCE operation, in the worst-case, both the work and span @R Eoperatio
can be as much a4, sinceV is the size of the parent array. Thus, a PBFS computafidihat uses
an ordinary reducer array has the following time bound:

Te(D) <O(V +E)/P+0O(V2-(DIg(V/D) +Dlgh)). (5.6)

Recall from Sectioh 5/2 that the second term constitutes the worst-cabeagdor performing
all REDUCE operations. While this overhead is an upper bound, the fact that thedséeon
dominates the first term tells us that one should not expect PBFS with gamputations using a
reducer array to scale well.

If the computation uses a parallel reducer array that supports a pdRaltelCe operation,
the work and span for the worst-caseiRCE operation without considering the overhead from
using the bag reducer, axeand Igv respectively (which corresponds to the termjsandtg in
Equation((5.5)). The bag reducer used in the arraf®BCE operation has the worst case work
and span oD(lgV) for its own REDUCE operation (which corresponds to the terifisandtd in
Equation|(5.5)), because a bag may contain as mar@(d$ nodes. Then, the worst-case work
and span for a RbuCE operation, including the overhead of using a bag reducetyare O(V +
Plg®V) andts = O(Ig?V), respectively. Thus, a PBFS computatidrthat uses a parallel reducer
array has the following time bound:

To(D) < O(V+E)/P+0O((VIg?V +PVIg®V) - (DIg(V/D) +DlgA))
— O(V+E)/P+0O(PVIg®V - (Dlg(V/D) +DlgA)). (5.7)

Even though the reduce overhead in Inequality|(5.7) grows slower dstioghly than the re-
duce overhead in Inequality (5.6), | cannot sensibly compare the twodspbecause | don’'t know
the constant factor involved in the various terms, and the bound is onlypsr bpund on execution
time. Moreover, with the input sizes used to evaluate PBFS, the slower asiongptowth of the
Ig®V term than the/ term does not kick in unti¥/ becomes fairly large. The only thing one can

9The notation for set cardinality is omitted within the time bound for clarity.

10Even though the analysis in Section|5.2 considers the work and span wbtkecase of RCUCE or IDENTITY
operations, we simply drop th®ENTITY in the discussion here for simplicity. This does not affect the correstoks
the analysis for PBFS with parent computations, since for this particufdicapon, the work and span of aERUCE
operation is the same as that of @ENTITY operation.

78

kkt_power freescalel cagel4

1.2 - 1 - 1
serial reduce serial reduce

serial reduce

1t parallel reduce - 83 P\ parallel reduce -~~~ 83 parallel reduce -
0.8} _ 0.7 — - — 0.7} x

g

=

S

2

o 106 . 1061 —

£ o6} s 0.5) 105F ~ B —

= _ N 0.4 104}

g 04 03 103}

5 o2t 0.2 1021

& 0.1 10.1f

0o 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of processors Number of processors Number of processors
wikipedia grid3d200 rmat23
3 5

g serial reduce 351 % serial reduce 1ast \ serial reduce

g 2.5¢ parallel reduce ———<—- : \ parallel reduce ———=—-) 4 parallel reduce -

A 3 — . 3st ¢

Py . 2.5 - 7 1731

E 15¢ — 2 i {25} —

=] —] > . —

g 1t 1> 15}

2 ! 11t

] 0.5¢ 0.5 105}

=0 0

o 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of processors Number of processors Number of processors
cagel5 nlpkkt260

~ 4 —— T T 45 T T T —— T T

2 35l serial reduce 4l 1 serial reduce —— |

g : \ parallel reduce -~ 35 \ parallel reduce -~~~]

é 2 i I \ .3 \\

] N L

g1 — 15 -]

EI |

2 05t 0.5

» ..

=

0
0O 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Number of processors Number of processors

Figure 5-7: The execution times of PBFS with parent computations rupin 1, 2, 4, 8, 12, and 16
processors using 8 different input graphs. For each cordfigur, two variants of reducer arrays are used
— the reducer array with a serialERUCE operation and the parallel reducer array with a paralleb&ce
operation. The lookup optimization is employed for bothamais. Each figure shows the execution times for
a given input graphs. The y-axis labels the execution timestonds, and the x-axis labels the number of
processors used.

conclude from this bound is that, the second (reduce overhead) terdostilhates the first (work)
term, and so one should not expect PBFS with parent computations usinglelreducer array to
scale, either.

Empirical results. Now we examine the empirical results of PBFS using an ordinary reduesr ar
and a parallel reducer array. | evaluated PBFS using 8 different grpphs, each with the number
of vertices on the order of millions (the sizes of vertex- and edge-setsecfound in Figure 4-11).
That means that each execution uses a reducer array of size in tnefordiions. | also evaluated
PBFS with parent computation using an array of reducers in Cilk-M, butehgts are not shown
here — when using an array of reducers, PBFS gets linear slowdowrit sometimes runs out of
memory when executed on 12 or 16 processors.

Figure/ 5-7 shows the execution times for each input graph executingml8, 12, and 16
processors using either a reducer array or a parallel reducgr &azh data point represents the

79

average of 10 runs with standard deviation equal or less than 3%,tdrcepe 16-processor exe-
cutions, which have standard deviation ranging fraB8806—1121% depending on the input graph.
The computation using a parallel reducer array consistently performs bettethe computation
using an ordinary reducer array, especially when the number ofgsorincreases. As the bounds
predict, however, neither computation scales — the best speedup orengeaty graph is at most
3x. Furthermore, the execution time curve tends to plateau around 12 progessmetimes with

a 16-processor execution taking longer time.

The fact that PBFS with parent computations does not scale well, evem wgieg a parallel
reducer array, poses a question of whether it is a good idea to usenlamgger of reducers or a
reducer array with large size. This is not to say that an application usimgearkeducer array cannot
possibly scale. For instance, if an application has quadratic amount kfwithr logarithmic span
in the user computation and uses a reducer array with size less than linesgespiéitt to the input
size, the computation could scale. | have yet to find such a computationd@e®a reducer array
with such work and span profiles, however.

5.4 Concluding Remarks

Reducer hyperobjects seem to be a useful memory abstraction. As told pyaittitioners in the
field — researchers and engineers who have worked on parallelizgedaplications using Cilk++
and Cilk Plus — it would have been difficult to parallelize some of the large agiits which they
encountered without the use of reducer hyperobjects. The useunfeneldyperobjects, like any syn-
chronization mechanism | know of, has its own shortcomings, in particukaintierent overhead
associated with managing views. While this shortcoming is small when the computaésronly
a constant number of reducers or the overa@bRCE operations take constant time, in the case of a
reducer array, this overhead may constitute a scalability bottleneck. Aaweesken both theoreti-
cally and empirically in Sections 5.2 and 5.3, this is indeed the case if the wollkéuim REDUCE
operations dominates or even is simply comparable to the work involved in thearsputation.
The particularly troubling bit is that the number of views created, and héreceeducer overhead
involved, grows proportionally to the number of workers executing the coation.

Whether a reducer array constitutes a useful memory abstraction renmaoysea question.
Even though reducer arrays seem to be a natural extension to régpeeobjects, | have yet to find
an application that requires a reducer array to compute deterministicallgaled svell at the same
time. The PBFS example used in our case study neither scales well nor cimpsri¢ a reducer array
to compute deterministically. Given that the type of reduce operation usedapittieation is both
associative and commutative, one could simply allocate a nonlocal arrgarfent computations
and use compare-and-swap (CAS) to update an element in the arraysasvedls different shortest
paths to a given vertex. The final result ought to be deterministic still, asgutihéalgorithm
simply uses vertex IDs to break tie — the parent with a smaller ID wins out in ttie Bmis CAS
implementation would conceivably scale better than using a reducer arrapu€e, this strategy
only works because the operation on the parent array is both asse@ativcommutative. Until
we find an application that absolutely requires a reducer array, wetaamn that a reducer array
constitutes a useful memory abstraction. Even if we do find such an appticétioay be fruitful
to consider other alternatives for avoiding determinacy races that isyasaj@s reducer arrays but
incurs less overhead, which in turn may lead us to a more efficient retdikeenechanism.

80

Part Il
Other Memory Abstractions

81

Chapter 6

Ownership-Aware Transactional
Memory

Transactional memory (TM) [64], another type of memory abstraction, isihteaimplify concur-
rency control in parallel programming by providing a transactional interfar accessing memory;
the programmer simply encloses the critical region insidetmic block, and the TM system
ensures that this section of code executes atomically. When using TMfdhe igsues that the
programmer must deal with is the semantics of “nested” transactions. Psgwioposals for han-
dling nested transactions either create a large memory footprint and gsagbelimit concurrency,
or fail to guarantee “serializability” [121], a correctness condition ofiead to reason with TM-
based programs, and possibly produce anomalous program belthgicase tricky to reason about.
This chapter explores a new design of a TM system which employs “ohipeasvare transactions”
(OAT) that admit more concurrency and provide provable safety gteea, referred to as “abstract
serializability.”

Without considering the semantics of nested transactions, the basic tafidegnsactional
memory is fairly straightforward. A TM system enforces atomicity by trackirggrttemory loca-
tions that transactions access (usiegd setsandwrite set3, finding transaction “conflicts,” and
aborting and retrying transactions that conflict. Two executing transacticnsaid taonflict if
they access the same memory location, with (at least) one of the accesgga beite. If a trans-
action completes without generating a conflict, the transaction is said ¢torbenitted at which
point its updates are reflected in the global memory. If a transaction geseraonflict, the TM
system may choose &bortthe transaction in order to resolve the conflict. Any update to memory
from an aborted transaction is not “visible” to other transactions, anddhedction is rolled back
to the beginning, possibly being retried later. By aborting and retryingdrdiosis that conflict, the
TM system guarantees that all committed transactionsarializable[121]; that is, transactions
affect global memory as if they were executed one at a time in some or@arifen reality, several
executed concurrently.

Transactions may beested where a transactio¥f is dynamically enclosed by another trans-
actionX. If Y is closed neste(l12] insideX, then for the purpose of detecting conflicts, the TM
system considers any memory locations accessed &y conceptually also being accessed by its
parentX. Thus, wher¥ commits, the TM system merg&ss read and write sets into the read and
write sets ofX. TM with closed-nested transactions guarantees that transactionsialiealele at

1y can also bdlat-nestedinside ofX. Flat-nesting has similar semantics to close-nesting in the sense that memory
locations accessed b are conceptually also being accessedXhyout instead of merginy’s read and write sets into
X’'s whenY commits, the transactiovi is simply eliminated and executed as parXofWhile this is a subtle difference,

82

TransactionX; TransactionX,

1 //compute ki 9 //compute k2

3 atomic { //Transaction Y; 11 atomic { //Transaction Y

4 if (tree.contains(kl)==false) 12 if (tree.contains(k2)==false)
5 tree.insert (k1) ; 13 tree.insert (k2);

6 14 3

7 //other long computation 15 //other long computation

8 ... 16 .-

Figure 6-1: Two transaction¥; andX; from a user program that may execute concurrently. Eackddion
performs some computation to calculate the key to insestarghared balanced binary search tree. The user
program first checks that the key is not already present beéfiserting it into the tree. To avoid duplicate
keys, the invocations teontains andinsert ought to be executed in an atomic fashion. The user program
express this intent by surrounding the calls withaamic block, which generates inner transactidsand

Y, of X1 andXy respectively.

the level of memory. Researchers have observed, however, thatlaglesting might unnecessarily
restrict concurrency in programs because it does not allow two “higk“leansactions to ignore
conflicts due to “low-level” memory accessed by nested transactions.

A simple scenario illustrates why closed nested transactions may unnégassatict concur-
rency in programs. Consider a user program that processes als¢hgperforms some computation
to generate keys, inserts the generated keys into a balanced binaty sear and performs some
other computation. The code that processes data is enclosedahypmic block, which generates
transactions<; andX, shown in Figure 6-1. The balanced binary search tree instance is pdovid
by a library, which supports functions suchiasgsert, contain, andremove. At the end of each
insert or remove operation, the tree performs rotations to rebalance ksaif. the user program’s
perspective, it does not care about the order in which the keys argdds as long as no dupli-
cates exist. This intention is expressed by ano#hwemic block in lines 3 and 11, ensuring that
the invocations t@ontains andinsert execute atomically. Thetomic block generates inner
transactions inside of; andXy, referred to a¥; andY. respectively.

Since the user program does not care about the order in which theakeysserted, it does
not care whethey; occurs before or afteY,, as long as each of them appears to execute as an
atomic unit. That is, assuming no other conflicts occur in the prefixes afidesudf X; andXy, the
following schedule would be an acceptable outcome from the user'sqmisa lines 1-2, lines
9410, lines 3-6, lines 11-14, lines 7-8, and lings 15-16. Using classtihg, however, if subtrees
accessed by; andY, happen to overlap, this schedule will not allowed. Without loss of generality
let's assume that; causes rotations in the subtree it accessed but commits béfobegyins. IfY,
happens to traverse through nodes modified during rotations perfornigdidwill generate a con-
flict with X1, becauser; merges its read and write sets with thad@f its parent, when it commits,
and the underlying TM system must abort oneXgfor Y, to resolve the conflict. A user may find
this need to abort undesirable because it unnecessarily limits conoyresea though the schedule
given above is not serializable at the level of memory, it is “abstractly l&zzide” from the level
of program semantics. Ondg commits,X; operates at the level of the user program and no longer
cares about the low level changes made to the tree nodes, provid&g ¢oatpleted execution as a
atomic unit. Using closed nesting, transactidisand X, cannot execute concurrently, unless they
access separate parts of the binary tree.

flat-nesting would not work as expected if one allows parallelism inside adcion. For the purpose of describing the
problem addressed by ownership-aware transactions, we will simgl four attention on closed-nesting.

83

bool contains(Key k) {
bool empty = false;
open_atomic{
empty = (this.size == 0);
}
if (empty) return false;
//otherwise search the tree

O©CO~NOOUTA~WNPF

]

Figure 6-2: An erroneous implementation of thentains method of the binary search tree library, where
the read of thesize field is enclosed in a open-nested transaction.

To allow more concurrency of transactions in such examples, resesrcaee proposed the
open-nested commit mechanisft06, 113, 114]. When an open-nested transactigenclosed
within another transactiod) commits,Y’s changes are committed to memory and become visible
to other transactions immediately, independent of whexhiater commits or aborts. Ondécom-
mits, its read and write sets are discarded without mergingXrgoead and write sePs.Thus, the
TM system no longer detects conflicts withdue to memory accessed iy In other words, the
open-nested commit mechanism provides a loophole in the strict guararitaesaction serializ-
ability by allowing the outer transaction to ignore memory operations performéd bpen-nested
subtransactions. Going back to our example scenarig, ddY, are open-nested insidg and
Xo instead, the TM system will no longer detect conflicts betwéegandY, (assumingr; commits
beforeY, begins), since the TM system no longer keeps track sfread and write sets as part of
X1 onceY; commits.

Once the TM system supports open-nested commits, however, it can pemmsirializable
schedules, some of which may be considered desirable by the prograwimierpthers may lead
to incorrect executions. For instance, imagine that the library implementee dfafanced binary
search tree decides to add a fieldze to keep track of the number of items in the tree, and subse-
guently uses it in theontains method as shown in Figure 6-2. Thentains method first checks
whether the tree is empty, and only searches the tree if it is not empty. Giaethédsize field
can be highly contended, the library implementer mistakenly decides that it wallgmod “opti-
mization” to enclose this read of theize field in an open-nested transaction, call it transacBon
(lines 3+5), which would exclude conflict on this readsate field if Z is enclosed within another
transaction. An unintended consequence of this “optimization” is that aaictios from the user
program calling botltontains andinsert can still commit even though the transaction no longer
appears to execute atomically — assuming the tree is empty Wheegins, another transaction
may come in and insert the same keyYasand commit between lines 4 and 5, avidcan still
commit successfully, inserting a duplicate key.

As Moss [113] suggests, the use of an open-nested commit mechanisnesdtje programmer
to reason about the program at multiple levels of abstraction, and thataloé aigen-nested commit
mechanism ought to be incorporated with @men-nesting methodologyn which if Y is open-
nested inside oX, X should not care about the memory operations performedwien checking
for conflicts. That is, the programmer consid¥&'s internal memory operations to be at a “lower
level” thanX. Thus, instead of detecting conflicts at the memory leXedhould acquire aabstract
lock based on the high-level operation tivatepresents, so as to allow the TM system to perform

2The open-nested mechanism proposed in [106] suggests thduz§ previously accessed any location later written
byY, X receives the updated value whéicommits. Alternative treatments to the parent transaction’s read and etste s
for handling this scenario have been suggested in [114] and [113te $ioss [113] also suggests adopting the same
scheme as in [106], we will go by the scheme as in [106].

84

concurrency control at an abstract level. AlsoXifaborts, it may need to executempensating

actionsto undo the effect of its committed open-nested subtransa¢tidoss [113] illustrates the
use of open nesting with an application that employs a B-tree. Ni et al. ddsfribe a software
TM system that supports the open-nesting methodology.

Unfortunately, a gap exists between between the proposed high-l@gbhprming methodol-
ogy of open nesting [113, 117] and the memory-level open-nested comriitamism [106, 114].
Given that the TM system has no knowledge of discerning differentd@fe@bstraction, the burden
falls on the programmer to carefully reason through the memory-level semaftite program to
figure out exactly which nonserializable schedules are allowed in ordgyply the methodology
correctly. Nevertheless, as shown by Agrawal et al. [5], an uric@ingd use of the open-nested
commit mechanism can lead to anomalous program behaviors that are trigkastmrabout.

One potential reason for the apparent complexity of open nesting is thatebleanism and
the methodology make different assumptions about memory. Consider adiiany open nested
inside transactioiX. The open-nesting methodology requires tkagnore the “lower-level” mem-
ory conflicts generated by, while the open-nested commit mechanism will ignallehe memory
operations insid¥. SayY accesses two memory locatiofisand/,, and X does not care about
changes made t», but does care abodi. The TM system cannot distinguish between these two
accesses, and will commit both in an open-nested manner, leading to ansielavior.

Researchersavedemonstrated specific examples [25,117] that safely use an opewtnesie
mit mechanism. These examples work, however, because the inner {@eactions never write
to any data that is accessed by the outer transactions. Moreover, sseesttamples require only
two levels of nesting, it is not obvious how one can correctly use opstedi€ommits in a program
with more than two levels of abstraction. The literature on TM offers relatiitly in the way of
formal programming guidelines which one can follow to havevableguarantees of safety when
using open-nested commits.

This chapter describes tlwsvnership-aware TM systejror the OAT systentor short, which
bridges the gap between memory-level mechanisms for open nesting anghHevel view by ex-
plicitly integrating the notions of “transactional modules” and “ownership” theeTM system. The
OAT system allows the programmer to apply the methodology of open nesting ineastnoctured
fashion, expressing the levels of abstraction explicitly to allow the underlgintime to behave
in a way that more closely reflects the programmer’s intent. Specifically, thgraggnmer uses
transactional modulesor Xmodulesfor short, to specify levels of abstraction, and expresses own-
ership of data for Xmodules using parametric ownership types [22]. iespstem employs an
ownership-aware commit mechanisthat is a hybrid between an open-nested and a closed-nested
commit. When a transactiod commits, access to a memory locatiois committed globally if/
belongs to the same Xmodule As otherwise, the access {ds propagated tX’s parent transac-
tion. Unlike an ordinary open-nested commit, the ownership-aware comnig inesnory locations
differently depending on which Xmodule owns the location. The ownerahigre commit is still
a mechanism, however, and programmers must still use it in combination witlaethsttks and
compensating actions to implement the full open-nesting methodology.

Besides the ownership-aware commits, another distinct feature of the @Ag@ns is that it
imposes a structure on the program using the ownership types, therelinglithe compiler and
runtime to enforce properties needed to provide provable guarantessdfetly” to the programmer.
Using the OAT system, the programmer is provided with a concrete set ofligaisiéor sharing
of data and interactions between Xmodules. This chapter explains thesdingsddescribes how
the Xmodules and ownership can be specified in a Java-like languageaubes a type system
that enforces most of the above-mentioned guidelines in the programs vusitanthis language
extension. Furthermore, this chapter presents an operational modeé fownership-aware trans-

85

actions, referred to as tl@AT mode| with which the chapter shows the following theorems. First,
if a program follows the proposed guidelines for Xmodules, then the OATeingulranteese-
rializability by modules which is a generalization of “serializability by levels” used in database
transactions [136]. Second, under certain restricted conditions, autatigm executing under the
OAT model cannot enter a semantic deadlock. Finally, the ownershipeazeanmit is the same
as open-nested commit if no Xmodule ever accesses data belonging to atbdubés. Thus, one
corollary of our theorem is that open-nested transactions are serialiwhlen Xmodules do not
share data. This observation explains why researchers [25, 1&g fdand it natural to use open-
nested transactions in the absence of sharing, in spite of the apparamitsepitfalls.

Throughout this chapter, we shall distinguish between the variationsstéchéransactions as
follows. When | refer to a nested transactiérin the OAT system which employs the ownership-
aware commit mechanism, | say théis safe nestedWhen | refer to a nested transactixrin an
ordinary TM that employs the open-nested commit mechanism, | sa)tisbpen nested One
should not confuse the term open-nested commit with the term open-nestthgdolegy. The
open-nesting methodology includes the use of abstract locks and caatipgresctions, which can
and should be incorporated with both safe-nested and open-nested coesthanisms.

The rest of this chapter is organized as follows. Section 6.1 present®arnew of ownership-
aware transactions and highlight key features using an example applic&gotion 6.2 describes
language constructs for specifying Xmodules and ownership. Sectiateéc3ibes the OAT model
in detail, and Section 6.4 gives a formal definition of serializability by modulessandss that the
OAT model guarantees this definition. Section 6.5 provides conditions widehn the OAT model
does not exhibit semantic deadlocks. Section 6.6 discusses related worlpmving the use of
open-nesting. Finally, Section 6.7 provides concluding remarks.

6.1 Ownership-Aware Transactions

This section gives an overview of the ownership-aware transactianmofivate the need for the
concept of ownership in TM, this section presents an example applicatimh wiay benefit from
the open-nesting methodology. Illustrating using the application example, thisrsmtroduces the
notion of an Xmodule and informally explains the programming guidelines whieg Xsnodules.
This section as well highlights some of the key differences between owpeware TM and a
TM with open-nested commit mechanism. This section serves to provide theptariownership-
aware TM in a intuitive but informal way; we defer the formal definitions uatiér sections.

The book application

We shall use an example application, referred to as the book applicationsteatkithe concept of
ownership-aware transactions. This book application is similar to the orahds by Moss [113],
but it includes data sharing between nested transactions and their pare@htontains more than
two levels of nesting.

Since the open-nesting methodology is designed for programs that havelenleligls of ab-
straction, the book application is a modular application. The book applicatiogsigried to con-
currently access a database of many individuals’ book collections. dtadase stores records in
a binary search tree, keyed by name. Each node in the binary seaadwotresponds to a person,
and stores a list of books in his or her collection. The database supperisgby name, as well as
updates that add a new person or a new book to a person’s collectierdatdbase also maintains
a private hashmap, keyed by book title, to support a reverse quesn gibook title, it returns a

86

list of people who own the book. Finally, the book application wants the ds¢atmelog changes
on disk for recoverability. Whenever the database is updated, it insetaslate into the buffer of a
logger to record the change that just took place. Periodically, the bamicaton is able to request
a checkpoint operation which flushes the buffer to disk.

The book application can be naturally decomposed into five natural modulde-user ap-
plication UserApp), the databasedB), the binary search tre®%T), the hashmapigshmap), and
the logger Logger). TheUserApp module calls methods from tiEB module when it wants to
insert into the database, or query the database. The database in turnmaaitéanal metadata and
calls theBST module and thélashtable module to answer queries and insert data. Both the user
application and the database may call methods fronl.élgger module.

Using open-nested transactions, the modules can produce non-intuitdeerees. Consider the
example where a transactional methottom theUserApp module tries to insert a bodkinto the
database, and the insert is an open-nested transaction. The mMetltbith generates transaction
X, calls an insert method in ttB8 module and passes tBeok objectb to be inserted. This insert
method generates an vanilla open-nested transacti@uppose’ writes to some field of the book
b, which corresponds to memory locatifn and also writes some internal database metadata, which
corresponds to memory locatidp. After a vanilla open-nested commit ¥f the modifications to
both/¢; and/, become visible globally. Assuming tiieerApp does not care about the internal state
of the database, committing the internal state ofiig.e., />, is a desirable effect of open nesting;
this commit increases concurrency, because other transactions catighgtenodify the database
in parallel withX without generating a conflict. THéserApp does, however, care about changes
to the bookb; thus, the commit of; breaks the atomicity of transactioft A transactionZ in
parallel with transactioiX can access this locatidh afterY commits, before the outer transaction
X commits3 To increase concurrency, it is desirable ¥orgenerated by the method frob®, to
commit changes to its own internal data; it is not desirable, howeveY, forcommit the data that
UserApp cares about.

The notion ofownership of datacan help enforcing this kind of restriction: if the TM system
is aware of the fact that the book object “belongs” to UserApp, it can decide not to commit
DB’s change to the book object globally. For this purpose, the OAT systeongacates the notion
of data ownership and transactional modules, or Xmodules. When aapnowgr explicitly defines
Xmodules and specifies the ownership of data, the OAT system can maketbet Judgment about
which data to commit globally.

Xmodules and the ownership-aware commit mechanism

The OAT system requires that programs be organized into Xmodules. yetyitan XmoduleM

is a stand-alone entity that contains data and transactional methods; an [Erachs data that

it privately manages, and uses its methods to provide public services toXatimtules. During
program execution, a call to a method from an Xmodulgenerates a transaction instance,$aif

this method in turn calls another method from an XmodWl®& generates an additional transaction
Y, safe nested insid¢, but only if M £ N. Therefore, defining an Xmodule automatically specifies
safe-nested transactions.

In the OAT system, every memory location is owned by exactly one Xmodule.mé&mory
location/ is in a transactiorX’s read or write set, the ownership-aware commit of a transa&tion
commits this access globally onlyXf is generated by the same Xmodule that ons this case,
we say thaiX is responsiblefor that access té. Otherwise, the read or write tois propagated up

SAbstract locks [113] alone do not address this problem. Abstracslaskmeant to disallow other transactions from
noticing that the book was inserted into & but they do not protect the individual fields of the book object itself.

87

to the read or write set of’s parent transaction; that is, the TM system behaves as thdwggs a
closed-nested transaction with respect to location

In order to guarantee that ownership-aware transactions behaedy;hihe OAT system must
restrict interactions between Xmodules. For example, in the TM system, samsadteén must be
responsible for committing every memaory access. Similarly, the TM system spoatdntee some
form of serializability. If Xmodules could arbitrarily call methods from or @ss memory owned
by other Xmodules, then these properties might not be satisfied.

One way of restricting Xmodules is to allow a transaction to access only objedtbdlongs
to its own Xmodule. This condition might severely restrict the expressigeakthe program,
however, since it does not allow an Xmodule to pass an object that it ogsvasparameter to a
method that belongs a different Xmodule. The OAT system is able to imposealkevweestriction
on the interactions between Xmodules and at the same time guarantee thedadalpsiperties.

Rules for Xmodules

The OAT system employs Xmodules to control both the structure of nesteshttions, and the
sharing of data between Xmodules (i.e., to limit which memory locations a transattiance can
access). In the OAT system, Xmodules are arrangedrasdule tree denoted a®D. In D, an
XmoduleN is a child ofM if N is “encapsulated byfM. The root ofD is a special Xmodule called
world. Each Xmodule is assigned afd by visiting the nodes ofD in a pre-order traversal, and
assigningzids in increasing order, starting withid(world) = 0. Thus,world has the minimum
xid, and “lower-level” Xmodules have larget.d numbers.

Definition 6.1 The OAT system imposes two rules on Xmodules based on the module tree:

1. Rule 1. A method of an Xmodule M can access a memory locdtrectly only if/ is owned
by either M or an ancestor of M in the module tree. This rule states that aestmcXmodule
N of M may pass data down to a method belonging to M, but a transaction fiahlenM
cannot directly access any “lower-level” memory.

2. Rule 22 A method from M can call a method from N only if N is the child of some ancektor
M, and thatxid(N) > xid(M) (i.e., if N is “to the right” of M in the module tree). This rule
states that an Xmodule can call methods of some, but not all, lowerXevetiules.

The intuition behind these rules is as follows. Xmodules have methods to presitgiEes
to other higher-level Xmodules, and Xmodules maintain their own data in ordaotade these
services. Therefore, a higher-level Xmodule can pass its data to a-llevetrXmodule and ask
for services. A higher-level Xmodule should not directly access thenatafata belonging to a
lower-level Xmodule.

If Xmodules satisfy Rules|1 and 2, the ownership-aware transactiongedirdefined — some
transaction is always responsible for every memory access (provediio®1.3). In addition, these
rules and the ownership-aware commit mechanism guarantee that transaetiisfy the property
of serializability by modules (proved in Section 6.4).

One potential limitation of ownership-aware TM is that cyclic dependenciwmgdes Xmodules
are prohibited. The ability to define one module as being at a lower level thathex is funda-
mental to the open-nesting methodology. Thus, our formalism requires thatiXles be partially
ordered; if an Xmodulé can call XmoduleN, then conceptually is at a higher level thai

4An Xmodule can, in fact, call methods within its own Xmodule or from its ature¥modules, but these calls are
modeled differently. We shall come back to visit these cases at the ¢his skction.

88

world | 4 i4:0
|

UserApp | ,i4.1

xid:2| DB Logger | iq:5

BST Hashmap

xid:3 xid:4

Figure 6-3: A module treeD for the program described in Section 6.1. Hiel's are assigned according to
a pre-order traversal, numbering Xmodules in increasidgmistarting withkid(world) = 0.

(i.e.,xid(M) < xid(N)), and thusN cannot callM. If two components of the program call each
other, then, conceptually, neither of these components is at a highethevethe other, and the
OAT system requires that these two components be combined into one Xmodule.

Xmodules in the book application

Consider a Java implementation of the book application described earlierbotikeapplication
may contain the following classe&serApp as the top-level application that manages the book
collections,Person andBook as the abstractions representing book owners and bdoaKsr the
databaseST andHashmap for the binary search tree and hashmap maintained by the database, and
Logger for logging the metadata to disk. In addition, there are some other auxiliaiseslatree
nodeBSTNode for theBST, Bucket in theHashmap, andBuffer used by thé.ogger.

Using ownership-aware transactions, not all of a program’s claseeaeant to be Xmodules;
some classes only wrap data. In the book example, one can identify five @sodserApp, DB,

BST, Hashmap, andLogger; these classes are stand-alone entities which have encapsulated data and
methods. Classes suchBsok andPerson, on the other hand, are data types used@yrApp.
Similarly, classes lik®STNode andBucket are data types used BT andHashmap to maintain

their internal state.

Then, one can organize the Xmodules of the book application into the modelshosvn in
Figure 6-3.UserApp is encapsulated byorld, DB andLogger are encapsulated undéserApp;

BST andHashmap are encapsulated undes. By dividing Xmodules this way, the ownership of data
falls out naturally, i.e., an Xmodule owns certain pieces of data if the dataapsulated under the
Xmodule. For example, the instancesRefrson or Book are owned byUserApp because they
should only be accessed by eitliaerApp or its descendants.

Let us consider the implications of Definition 6.1 for the example. By Rule 1,falBpBST,
Hashmap, andLogger can directly access data owned tyerApp, but UserApp cannot directly
access data owned by any of the other Xmodules. This rule correspomstisnttard software-
engineering rules for abstraction; the “high-level” XmodukesrApp should be able to pass its
data down, allowing lower-level Xmodules to access that data directlydattApp itself should
not be able to directly access data owned by lower-level Xmodules. By/RuleerApp may
invoke methods frordB, DB may invoke methods froBST andHashmap, and every other Xmodule
may invoke methods frormogger. That is, Rule 2 allows all the operations required by the book
application. As expectediserApp can call theinsert andsearch methods fronDB and can even
pass its data tdbB for insertion. More importantly, notice the relationship betwBgn andLogger
— BST can call methods frorhogger, butBST cannot pass data it owns directly intogger. BST

89

can, however, pass data owned bytlserApp to Logger, as required by the book application.

Advantage of ownership-aware transactions

One of the major problems with ordinary open-nested commit is that some tliansacan see
inconsistent data. For instance, consider a transa¥tiopen-nested inside transacti®n Let vp
be the initial value of locatiod, and suppos¥ writes valuev; to locationZ and commits. Now a
transactiorZ in parallel withX can read this locatioA write valuev, to ¢, and commit, all before
X commits. ThereforeX can now read this locatiohand see the value,, which is neither the
initial value vy (the value off whenX started), nowy (as written byX's inner transactioty). The
programmer may see this behavior as counterintuitive.

Now consider the same scenario for ownership-aware transactionsouMitiss of generality,
assume thaX is generated by a method of XmoddlkandyY is generated by a method of Xmodule
N. There are two cases to consider:

e Case 1:N owns/. By Rule 2 in Definition 6.1, we know thatid(M) < xid(N). Since by
Rule/ 1 in Definition 6.1, no transaction from a higher-level module can aatzs owned by
a lower-level moduleX cannot acces& Thus, the problem does not arise.

e Case 2:N does not owr?. In this case, the ownership-aware commitvodvill not commit
the changes t@ globally, and/ will be propagated to<’s write set. Hence, iZ tries to
accesd beforeX commits, the OAT system will detect a conflict. Therefofesannot see an
inconsistent value fof 3

To make the scenario more concrete, think of the book application when adrieghtserApp
A calls the insert method fromB to insert bookb. The methodA generates a transactioh which
calls the insert method, which generates a transadtiafe nested insid€. WhenY commits,
it commits the data owned B, thereby increasing the concurrency; other transactions may now
access data belonging i@ without generating conflicts wit. Y does not commit the changes
made to the book (if any), however. Thus, no other parallel transac@oocan modifyb beforeX
commits, causing to see inconsistent state.

Callbacks

At first glance, it appears that the OAT system prohibits callbacks, evaerXmoduleM is not
allowed to call another transactional method in the same Xmaddugg provided byM'’s proper
ancestor, which seems restrictive. On the contrary, the OAT systematloessome forms of
callbacks, which are simply modeled differently.

More precisely, if a methoX from XmoduleM calls another method provided by an ances-
tor XmoduleN, this call does not generate a new safe-nested transaction instasteadif is
subsumed irX using closed nesting. Recall that Rule 1 in Definition 6.1 allows a method from a
Xmodule to directly access data belonging to the same Xmodule or to any of theu¥etsoahces-
tors. Thus, we can treat any data access by the closed-nestedticanfacn Y as being directly
accessed by, provided thaty and any calls made by access only memory belonging kb or
N’s ancestors. Henceforth, we refer to such metkcaks aproper callbackmethod of Xmodule
N, whereY'’s nested calls are themselves proper callback methods belonging to Xmuodhités
are ancestors dfl. The formal model for ownership-aware transactions described itioB&&.3

SFor simplicity, | have described the case wh¥rés directly nested insidX. The case wher¥ is more deeply
open-nested insid¥ behaves in a similar fashion.

90

assume that the computation contains only proper callbacks and models thedhbacks as di-
rect memory accesses, allowing us to ignore callbacks in the formal defmitibhe OAT type
system does not enforce that the computation practice proper-calllzagilide. Nevertheless, the
proper-callback discipline can be enforced dynamically.

Closed-nested transactions

Using the OAT system, every method call that crosses an Xmodule boundamatically gener-
ates a safe-nested transaction. The OAT system can effectively prdasked-nested transactions,
however, with appropriate specifications of ownership. If an Xmodilewns no memory, but
only operates on memory belonging to its proper ancestors, then transaaftidrwill effectively

be closed-nested. In the extreme case, if the programmer specifies thatradiry is owned by the
world Xmodule, then all changes in any transaction’s read and write sets qragated upwards;
thus all ownership-aware commits behave exactly as closed-nested commits.

6.2 Ownership Types for Xmodules

When using ownership-aware transactions, the Xmodules and datastimar a program must
be specified, for two reasons. First, the ownership-aware commit mieohaepends on these
concepts. Second, we can guarantee some notion of serializability onlyageap has Xmodules
which conform to the rules in Definition 6.1. This section describes the layggoanstructs for
specifying Xmodules and ownership in a Java-like language and its porrésg type system,
referred to as th®AT type systermwhich statically enforces some of the restrictions described in
Definition 6.1. The OAT type system extends the type system for checkiragngdric ownership
types due to Boyapati, Liskov, and Shrira [22], henceforth refaex theBLS type systemThis
section first reviews the BLS type system, then describes how the OATgsextends the BLS
type system in order to enforce most of the rules described in DefinitionL&dtly, this section
discusses the restrictions required by Definition 6.1 which the OAT typemydtes not enforce
statically and how these restrictions may be enforced dynamically.

The BLS type system

The BLS type system [22] provides a mechanism for specifying owipddlobjects and enforces
certain properties, as stated in the following lemma.

Lemma 6.2 The BLS type system enforces the following properties:

1. Every object has a unique owner.

2. The owner can be either another objectwoltr1d.

3. The ownership relation forms anwnership tregof objects) rooted atorld.

4. The owner of an object does not change over time.

5. An object a can access another object b directly only if b’'s owner igre#hor one of a’s
proper ancestors in the ownership tree.

The BLS type system requires ownership annotations to class definitidriig@declarations
to guarantee properties stated in Lemma 6.2. Every classTiypas a set of associated ownership
tags, denoted; (fy, fo,... fy). The first formalf; denotes the owner of the current instance of the
object (i.e.,this object). The remaining formal, f3,... f, are additional tags which can be used

91

to instantiate and declare other objects within the class definition. The formasgigned with
actual owner®,,0y,...0, when an objech of type T; is instantiated. By parameterizing class and
method declarations with ownership tags, the BLS type system permits owyisrgrphism. Thus,
one can define a class type once, but instantiate multiple instances of tsatittadifferent owners
in different parts of the program.

The BLS type system enforces the properties stated in Lemma 6.2 with the falohvtks:

1. Within the class definition of typg, only the tagq f1, f2,... fo} U{this,world} are visible.
Thethis ownership tag represents the object itself.

2. Avariablev; with typeTx(fo,...) can be assigned to a varialewith type T, (fy,...) if and
only if T, is a subtype off; and f; = f».

3. If an objectv's tags are instantiated to log, 02, ... 0, whenv is created, then in the ownership
tree,0; must be a descendant@f Vi € 2..n, (denoted by; < o; henceforth).

Boyapati et al. [22] show that these type checks guarantee the pesparLemma 6.2.
In some cases, to enable the type system to perform check 3 locally, traiproer may need
to specify awhere clause in a class declaration. For example, suppose the class declafation o
type T has formal tags f1, fo, f3), and insideT 1’s definition, some typd, object is instantiated
with ownership taggf,, f3). The type system cannot determine whether orfaet f3. To resolve
this ambiguity, the programmer must specifyere (f, <= f3) at the class declaration of type
T1. When an instance of type object is instantiated, the type system then checks thaitibee
clause is satisfied.

The OAT type system

The ownership tree described by Boyapati et al. [22] exhibits some dfaime properties as the
module tree described in Section 6.1. Nevertheless, the BLS type systemaioenforce two
major requirements needed by the OAT system:

e Inthe BLS type system, any object can own other objects. The OAT systeveyBr, requires
that only Xmodules own other objects.

e In the BLS type system, an object can call any of its ancestors’ siblingke[Rin Defini-
tion/6.1, however, dictate that an Xmodule can only call its ancestor’s sikifintte right.

Thus, the OAT type system extends the BLS type system to handle theserzald#iguirements.

Handling the first requirement is straightforward. The OAT type systeticitty distinguishes
objects and Xmodules by requiring that an Xmodule extend from a sparidahle class. The OAT
type system only allows classes that directly extienedule to usethis as an ownership tag. This
restriction creates a ownership tree where all the internal nodes are Xenadhjects and all leaves
are non-Xmodule objects. If we ignore the ordering requirement on tldreh of an Xmodule, the
module tree described in Section 6.1 is essentially the ownership tree with aimodule objects
removed.

The second requirement involves more complexity to enforce. First, thetg&Tsystem ex-
tends each owner instano¢o have two fieldsname represented asname andindex, represented
aso.index The name field is conceptually the same as an ownership instance in the BLSyb/p
tem. The index field is added to allow the compiler to infer ordering between ehilfrthe same
Xmodule in the module tree. The OAT type system allows the programmer totpas$il as
the ownership tag (i.e., with an indéxinstead of justthis. Similarly, one can useorld[i] as
an ownership tag. Indices enable the OAT type system to infer an ordeeimgeen two sibling

92

Xmodules, where the Xmodule initiated with owrtaris [i] is treated as appearing to the left of
the Xmodule initiated with ownethis [i+1] in the module tree.

Finally, for technical reasons, the OAT type system prohibits all Xmodutes fteclaring fields
that are primitive types. If the OAT type system had allowed an Xmotul® have fields with
primitive types, these fields would be owned lldys parent. Since this property seems counter-
intuitive, the OAT type system opted to disallow fields with primitive-types for Xoies.

In summary, the OAT type system performs these checks:

1. Within the class definition of typB, only the tagq f1, f2,... fn} U{this,world} are visible.

2. Avariablev, with typeTo(fy,...) can be assigned to a variamewith type Ty (f4,...) if and
only if T, = Ty, and all the formals are initialized to the same owners with the same indices,
if indices are specified.

3. AtypeT(os,0y,...0n) must have, for all € {2,...n}, eithero;.name< 0;.nameor 0;.name=
oj.nameando;.index< oj.index if both indices are knovJFl.

4. The ownership taghis can only be used within the definition of a class that directly extends
Xmodule.

5. Xmodule objects cannot have fields with primitive types.

The first three checks are analogous to the checks in the BLS type sydtertast two checks
are added to enforce the additional requirements of Xmodules.

The OAT type system supportdiere clauses of the formehere (fj < fj). Whenf; and f;
are instantiated witlo; and oj, the OAT type system ensures that eitoename~< oj.name or
oi.name= oj.nameando;.index< o;.index The detailed type rules for the OAT type system are
described in Appendix B.

The book application using the OAT type system

Figure 6-4 illustrates how one can specify Xmodules and ownership fdsdabk application de-
scribed in Sectioh 6.1 using the OAT system. The programmer specifies anularimdcreating
a class which extends from a spediabdule class. ThedB class has three formal owner tags —
dbOwner which is the owner of th®B Xmodule instancedb), 1og0 which is the owner of the
Logger Xmodule instance used by tb8 Xmodule (Logger, anddata0 which is the owner of the
user data being stored in the database. When an instanzeofpp initializes Xmodules that it
employs in lines 67, it declares itself as the owner ofithgger Xmodule instanceliogger), DB
Xmodule instancedb), and the user data being passed o The indices orthis indicate the
ordering of Xmodules in the module tree, i.e., the user data is lower leveLtpyer, andLogger

is lower level tharDB. lines| 16-18 illustrate how theB class can initialize the Xmodules that it
employs and propagate its formal owner tags, suclpgs anddata0, down the module tree .

In order for this code to type check, thd class must declareog0 < data0 using thewhere
clause in line 15, otherwise the type check would fail at/line 16, due to ambigiiheir ordering
in the module tree. Thehere clause in line 15 is checked whenever an instand&Ba$ created,
i.e. atline 7.

The OAT type system’s guarantees

The following lemma about the OAT type system can be proved in a reasosizdightforward
manner using Lemma 6.2.

6In the ownership tree, for any Xmodubd, the OAT type system implicitly assigns non-Xmodule childrerivbf
higher indices than the Xmodule childrenMf unless the user specifies otherwise.

93

public class UserApp<app0O> extends ZXmodule<appO> {
private Logger<this[1], this[2]> logger;
private DB<this[0], this[1], this[2]> db;

public UserApp() {
logger = new Logger<this[1], this[2]1>();
db = new DB<this[0], this[1], this[2]>(logger);

OCO~NOOUOTA~WNPF

}
10 // rest of the class definition
11 .
12 3
13

14 public class DB<db0, logO, dataO>
15 extends ZXmodule<db0> where (log0 < data0l) {

16 private Logger<logO, data0> logger;

17 private BST<this[0], log0, dataO> bst;
18 private Hashmap<this[1], logO, data0> hashmap;
19

20 public DB(Logger<logO, data0> logger) {
21 this.logger = logger;

22 // rest of the constructor

23 ..

24 }

25

26 // rest of the class definition

28 }

Figure 6-4: Specifying Xmodules and ownership for the book applicatiescribed in Sectidn 6.1.

Lemma 6.3 The OAT type system guarantees the following properties.

1. An Xmodule M can access a (non-Xmodule) object b with ownershipptagly if M <
Op.name.

2. An Xmodule M can call a method in another Xmodule N with owReordy if one of the
following is true:

(@) M =oy.name (i.e. M owns N);
(b) The least common ancestor of M and N in the module treg.isame; or
(c) N> M (i.e. N is an ancestor of M).

Lemma 6.3 does not, however, guarantee all the properties that the O®msgexuires from
Xmodules described in Definition 6.1. In particular, Lemma 6.3 does not camaity ordering of
sibling Xmodules. The OAT type system can, however, provide stronggmagtees for a program
that satisfies the following properties:

e unique owner indicesFor all XmoduledM, all children ofM in the module tree are instanti-
ated with ownership tags with unique indices that can be statically determined.

e localized use of thevor1d ownership tag thewor1ld ownership tag is only used to instantiate
owners inside the functiomain, or some top-level function that serves as an entry point to
the user program that is executed only once.

These properties allow the OAT type system to statically determine, with locekictgeonly, the
ordering among children of a given Xmodule for all Xmodules, includibgld, thereby assigning

the appropriaterid to every Xmodule in the modules tree, as described in Section 6.1. Then, the
following result holds:

94

Theorem 6.4 In the execution of a program with unique owner indices and localized fuserad d
ownership tag, consider two Xmodules M and N. Let L be the least cormanuastor Xmodule of
M and N, and let be the ownership tag that N is instantiated with. K-loy.name, then M can
call a method in N only ikid(M) < xid(N).

PROOF We prove (by contradiction) thatlif = oy.name andxid(M) > xid(N), thenM cannot
have a formal tag with valuey. That means, it cannot declare a type with ownerdg@nd thus
cannot accesN.

SincelL = oy.name we know thatL is N's parent in the module tree. Givdnis the least
common ancestor d¥l andN, we know thatQ exists that isN's sibling. Letog be what theQ's
ownership tag is instantiated with. Sinbeand Q have the same parent (i.&.) in the module
tree, we haveoy.name= og.name= L. Sincexid(M) > xid(N), M is to the right ofN in the
ownership tree. Therefor&), which is an ancestor d¥1, is to the right ofN in the ownership
tree. Therefore, assuming the program satisfies the property of unieguership indices, we have
0g.index> on.index

Assume for the purpose of contradiction tatloes havey as one of its tags. Using Lemma 6.2,
one can show that the only way fidt to receive tagy is if Q also has a formal tag with valugy.
Thus,Q's first formal owner tag has valu®, and another one of its formals has vabie

Consider the chain of Xmodule instantiatioRs ..., Py, wherePR instantiates? ; ending at
Po = Q, and the class type of eadh has formal ownership tags c{ff‘, f§,> P, must have
instantiated?y = Q with values ff = 0g, and some other formal, without loss of generality say,
the second formaf = oy. (We must havef? = oq, sinceog is the owner ofQ; without loss of
generality, we can assigif = 0y, Since the OAT type system does not care about the ordering of
formal tags after the first one.)

Sinceoy.name= og.name= L, assumingd. # wor1ld, this chain of instantiations must lead back
to L, since that is the only Xmodule that can create ownership tags with vauesdog in its class
definition using the keywordhis. On the other hand, If = wor1d, assuming the program satisfies
the property of localized use of therld ownership tag, botloy andog must be created within
themain function (or an entry-point function with a single execution) usingitbeld keyword.
Without loss of generality, we can assume that function execution is pdt oThen, for each
instantiation?, for 1 <i < k, the following must be true.

e P must have some formalﬁg and f!, with valuesog andoy, respectively, an® must pass
these formals into the instantiation igf .

e The class definition oP must specify the constrairff, < ft‘) on its formal tags explicitly
through awhere clause declaring thaf, < fl')ﬁ

The first condition must hold to allow both andog to be passed down & = Q. The second
condition is true for the Xmodules in the chain of instantiations by induction. Ih#se case?;
must know thatf} < fl; otherwise, the type system will throw an error when it tries to instantiate
Po = Q with owner f1. Then, inductivelyP, must knowf; < ft‘, to be able to instantiatg_;.

Finally, B_1 is instantiated by XmodulB = L (or if L = wor1d, instantiated within the function
that contains the localized use of therld tag). In the instantiation dd_1 in P, B« must instantiate
Pc_1's formal fX~1 with value og by usingthis[x] (or world[x]). Similarly, Bc must instantiate
Pc_1’s formal fﬁjfl with value oy by usingthis|y] (or world[y]). Assuming the instantiation in
P type checks, we must have< y, which contradicts our original assumption tlogfindex >

"Even though the constrairﬂ;',1 < fki) could be implicitly specified by? having fji as the first ownership tag, the
program would no longer satisfy the unique owner indices property ifiteae the case.

95

on.indexhowever, since ibg.index> oy.index the program should not type check. Therefore, we
must haveng.index< oy.index |

Theorem 6.4 only modifies the Condition|2b of Lemma 6.3. Therefore, Lemmddh§ with
Theorem 6.4 imposes restrictions on every Xmoddlevhich are only slightly weaker than the
restrictions required by Definition 6.1. Conditioh 1 in Lemima 6.3 correspongsite 1 of Defi-
nition[6.1. Conditions 2a and 2b are the cases permitted by Rule 2. Conditibo\geyer, corre-
sponds to the special case of callbacks or calling a method from the sameubnatiich is not
permitted by Definition 6.1. This case is modeled differently, as we explaineedticd® 6.1.

The OAT type system is a best-effort type system to check for the restisatemuired by Defi-
nition/6.1. The OAT type system cannot fully guarantee, however, thaeadiiecked program does
not violate Definition 6.11. Specifically, the OAT type system does not detedottowing violations
statically. First, if the program does not have unique owner indices,ltieay instantiate botM
andN with the same index. Then, by Lemma 6M,andN, can call each other's methods, and
we can get cyclic dependencies between Xmocﬁ:lﬁecond, the program may perform improper
callbacks. Say a method fro calls back to metho®& from L. An improper callbaclB can call a
method ofN, even thougtM is to the right ofN. Finally, if the program does not satisfy the property
of localized use of th&orld tags,M can obtain access to another XmodNevhich belongs to
theworld and to the left oM. In these cases, the OAT type system allows a program with cyclic
dependency between Xmodules to pass the type checks, which is notcabgvizefinition 6.1.

While the OAT type system may strictly enforce the unique indices and localEedfworld
properties, it may be overly restrictive. Instead, it may be better to emplogrdic checks and have
the runtime system report an error when an execution violates the rulersbeéesin Definition 6.1.
The runtime system can use the ownership tags to build a module tree durimgeluand use
this module tree to perform dynamic checks to verify that there are no cyagierdlencies among
Xmodules and that the execution contains only proper callbacks.

6.3 The OAT Model

The OAT model models the behavior of the OAT system as it executes aapnogith ownership-
aware transactions. To model a program execution with ownershipdveaisactions, this section
extends the transactional computation framework due to Agrawal, Leiseaad Sukha [5] to in-
corporate the concepts of Xmodules and ownership of data, and forngihed the structure of
transactional programs with Xmodules. This section then restates the nu¥®séalules from Def-
inition[6.1 formally in the extended framework, which guarantees certaineptiep used by the
OAT model. Finally, this section describes the main component of the OAT madeperational
semantics for the OAT runtime system, which dynamically constructs and tesvefsomputation
tree” as it executes instructions generated by the program. The opata#mnantics described in
this section is not intended to describe an actual implementation, although thesatiss can be
used to guide an implementation.

Transactional computations

In the framework of Agrawal et at. [5], the execution of a program is ehediusing a “computation
tree” C that summarizes the information about both the control structure of a pnogna the

8Since all non-Xmodule objects are implicitly assigned higher indices than Xmivdule siblings, these non-
Xmodule objects cannot introduce cyclic dependencies between Xnsodule

96

() P-Node

I:I Transaction
o~ m ~
S|

O Memory Op.

(a) (b)

Figure 6-5: A sample(a) computation tre€ and(b) its corresponding daG(C).

nesting structure of transactions, and an “observer functiowhich characterizes the behavior of
memory operations. A program execution is assumed to geneti@esd C, P).

A computation tre” is defined as an ordered tree with two types of nodesmory-operation
nodesnemOps(() as leaves andontrol nodesspNodes(() as internal nodes. A memory operation
v either reads from or writes to a memory location. Control nodes are &t{saries) orP (par-
allel) nodes, where the children of &nodemust be executed serially, from left to right, and the
children of P node can be executed in parallel. SorSaodes are labeled as transactions; define
xactions((C) as the set of these nodes.

Instead of specifying the value that an operation reads or writes to a mdouatjon ¢, the
framework abstracts away the values by usingbserver functiond®. For a memory operation
that accesses a memory locatigthe noded(v) is defined to be the operation that wrote the value
of / thatv sees.

The framework defines several structural notations on the computateg .tieenote theoot

of C asroot((). For any tree nod¥, letances(X) denote the set of all’s ancestors (includin
itself) in C, and letpAnces(X) denote the set gfroperancestors oK (excludingX) by pAnces(X).
For any tree nod¥, define theransactional parentof X, denoted byparent(X), asparent(X)
if parent(X) € xactions(C), or xparent(parent(X)) if parent(X) ¢ xactions(C). Define
the transactional ancestor®f X asxAnces(X) = ances(X) Nxactions(C). Denote thdeast
common ancestoof two nodesX;, X, € C by LCA(X, X2). DefinexLCA (X1, Xp) asZ = LCA(Xy, X2)
if Z € xactions(C), and axparent(Z) otherwise.

A computation can also be represented asmputation dag(directed acyclic graph). Given
atreeC, the dagG(C) = (V(C),E(C)) corresponding to the tree is constructed recursively. Every
internal nodeX in the tree appears as two vertices in the dag. Between these two vertices, the
children ofX are connected in seriesAfis anSnode, and are connected in paralleXifs aP node.
Figure 6-5 show a computation tree and its corresponding computation dag.

Classical theories on serializability refer to a particular execution ordex fsogram as his-
tory [121]. In this framework, a history corresponds to a topological $at the computation dag
G(C), and the framework defines the transactional memory models using theseRewrdering a
history to produce a serial history is equivalent to choosing a difféaopaiogical sorts’ of G(C)
which has all transactions appearing contiguously, but which is still ‘istarg” with the observer
function associated witls.

97

Xmodules and computation tree

Now we shall see how to extend the framework to model ownership-avearsatrtions. Formally,

a trace generated by a program is organized into a\setf Xmodules. Each Xmodul&! € A

has some number of methods and a set of memory locations associated withsittfhset of all
memory locationg is partitioned into sets of memory owned by Xmodules. d@itMemory(M) C

L denote the set of memory locations ownedbyFor a locatiorY € modMemory (M), owner (¢) =

M. When a method of Xmodulk! is called by a method from a different Xmodule, a safe-nested
transactionX is generate@. We shall use the notationifod(X) = M to associate the instanée
with the XmoduleM and define the instances associated Wths

modXactions(M) = {X € xactions((C) : xMod(X) =M}.

As mentioned in Section 6.1, Xmodules of a program are arranged as a niredyléenoted by
. Each Xmodule is assigned amd according to a left-to-right depth-first tree walk, with the root
of D beingworld with xid = 0. Denote the parent of XmoduM in 9 asmodParent(M), the
ancestors oM asmodAnces(M), and the descendants i asmodDesc(M). The root of the com-
putation tree is a transaction associated withitbweld Xmodule, i.e.xMod(root(()) = world.

The module treeD is used to restrict the sharing of data between Xmodules and to limit the
visibility of Xmodule methods according to the rules given in Definition 6.5.

Definition 6.5 (Formal Restatement of Definition 6.1)A program with a module treé should
generate only trace&C, ®) which satisfy the following rules:

1. Rule 1. For any memory operation v which accesses a memory locétienX = xparent (V).
Thenowner(¢) € modAnces(xMod(X)).

2. Rule 20 Let X,Y € xactions(() be transaction instances such th&tod(X) = M and
xMod(Y) = N. Then X=xparent(Y) only ifmodParent(N) € modAnces(M), andxid(M) <
xid(N).

As we will see later in this section, these rules guarantee certain propdrtresamputation
tree which are essential to the ownership-aware commit mechanism.

The OAT model overview

An execution using the OAT system is modeled as a nondeterministic state madhimeacom-
ponents: grogramand aruntime systemThe runtime system dynamically constructs and traverses
a computation tre€ as it executes instructions generated by the program. Conceptually, the OA
model maintains a set eéadynodes, denoted byeady(C) C nodes((C), and at everfime step

the OAT model nondeterministically chooses one of these ready nodeseady((C) to issue the
next instruction. The program then issues one of the following instructishege precondition is
satisfied) onX’s behalf: fork, join, xbegin, xend, xabort, read, or write. Equivalently for
shorthand, one can thAtissues an instruction.

The OAT model describes a sequential semantics — at every time stepyarprisgues a single
instruction. The parallelism in this model arises from the fact that at a pkatitone, several nodes
can be ready, and the runtime nondeterministically chooses which nodeda@issustruction. The
rest of this section presents a detailed description of the OAT model, stich simte information it
maintains, how it constructs and traverses the computation tree as instrarassued, and how
it handles memory operations, conflict detections, transaction commits, asddten aborts.

9As explained in Sectidn 6.1, callbacks are handled differently.

98

State information and notation

As the OAT model executes instructions, it dynamically constructs the computatieC. For
each of the sets corresponding to a computation tree defined earlier irctimm sthe OAT model
defines corresponding time-dependent versions of these sets bynigdieem with an additional
time argument. For instance, let the setiesV) () denote the set of nodes in the computation tree
aftert time steps have passed. These generalized time-dependent sets araivalhotocreasing;
that is, once an element is added to the set, it is never removed at a latér #me shorthand, |
may omit the time argument when it is clear that we are discussing a particulhtifixet.

At any timet, each internal nod& ¢ spNodes)(C) has astatusfield status[X]. These
status fields change with time. Xf € xactions((), i.e., X is a transaction, thestatus[X] can
be one ofCOMMITTED, ABORTED, PENDING, or PENDING_ABORT (in the process of being aborted).
Otherwise X € splodesV) () — xactionsV () is either a P-node or a nontransactional S-node,
which can either b@ORKING or SYNCHED. Several abstract sets for the tree are defined based on this
status field, which partition thepNodest) (), the set of internal nodes of the computation tree:

pending®(C) = {X e xactionsV(() : status[X] :PENDING}
pendingAbort¥(C) = {X exactionsV(C) : status[X] = PENDING_ABORT}

committed®(C X € xactionsV(() : status[X] = COMMITTED}

X € xactionsV((C) : status[X] = ABDRTED}

t

)

abortedV(C) =
) X € spNodesV (C) —xactionsV(C) : status[X] = WORKING}
)

)
()

working() (C
()

synchedV (C

e Nanten Nt N aatn Nantn)

X € spNodesV(() —xactionsV(C) : status[X] = SYNCHED}

A transaction is said to bactiveif it has statu®ENDING or PENDING_ABORT. That is, the set of
active transactions is defined @stiveXactions(C) = pending® (C) UpendingAbort®(C).
Similarly, the set of active nodes is defined @ iveNodes(() = activeXactions®(C)U
working®(()

The OAT model maintains a set oéady S-nodes, denoted asady®(C). We will see later
in this section how the nodes are inserted and removed fremy® (C) when we discuss how
the OAT model construct the computation tree. For now, simply noterthaty V) (C), and the sets
defined above which are subsetaiotiveNodesV) () (i.e.,pending(C), pendingAbort® (),
andworking)(()) are not monotonic, because completing nodes remove elements frometese s

For the purposes of detecting conflicts, at any timfor any active transactiokX, i.e., X €
activeXactions()((), the OAT model maintains eead setr)(X) and awrite setw® (X) for
X. The read serV(X) is a set of pairgu, /), whereu € mem0Ops¥)(C) is amemory operation
that reads from memory locatigne £. The write set!)(X) is defined similarly. We say that the
nodeu satisfies theead predicater(u, /) if u reads from locatiod. Similarly, u satisfies thevrite
predicatew(u,¢) if u writes to locatiord. The model represents the main memory as the read and
write sets ofroot(C).

The OAT model assumes that at time 0, R(?) (root(C)) andw® (root(C)) initially contain
a pair(_L,?) for all locationst € L.

In addition to the basic read and write sets, the OAT model also defioesile read seand

99

module write sefor all transaction¥ € activeXactions) (). Module read set is defined as
modR(t,X) = {(u,ﬂ) eRY(X) : owner(() = XMOd(X)} .

In other wordsmodR(t, X) is the subset ok(!)(X) that accesses memory owned ¥ Xmodule
xMod(X). Similarly, themodule write sets defined as

modW(t,X) = {(u,f) e WY (X) : owner(f) = XMOd(X)} .

The OAT model maintains two invariants @&f)(X) andw® (X). First,w®(X) C rRY(X) for
every transactiorX € xactions¥((), i.e., a write also counts as a read. Seca@itl(X) and
w®(X) each contain at most one péir, ¢) for any locatior?. Thus, a shorthangie RY (X) is used to
mean that there exists a nadsuch thatu, ¢) € R (X), and similarly fow®) (X). For simplicity, the
presentation also overloads the union operator: at somet tiameoperatio®(X) = R(X)U{(v,¢)}
means to construct the stV (X) by

RED0) = {(w 0} U (RVX) - {(u0) eRYX) }).
In other words, addv, ¢) to R(X), replacing anyu, ¢) € RV (X) that existed previously.

Constructing the computation tree

In the OAT model, the runtime constructs the computation tree in a straightforfasinibn as
instructions are issued. For completeness, however, a detailed descdptius construction is
included.

Initially, at timet = 0, the OAT model begins with only the root node in the tree,nedes© (C)=
xactions?(C) = {root(C)}, with this root node marked as ready, isady© (C) = {root(C)}.
Throughout the computation, the status of the root node of the tree iSSIEBPING.

A new internal node is created if the OAT model picks ready nddend X issues afork or
xbegin instruction. IfX issues afork, then the runtime creates a P-nddas a child ofX, and
two S-nodesS; andS; as children ofP, all with statuswORKING. The fork also removeX from
ready((C) and addsS; and S, to ready(C). If X issues arxbegin, then the runtime creates a
new transactiory € xactions(() as a child ofX, with status[Y]| = PENDING, removesX from
ready(C), and add¥ to ready(C).

In the OAT model, a nontransactional S-nafle readyV(C) — xactionsV () (which must
have statu®0RKING) completes by issuing $oin instruction. Thejoin instruction first changes
status[Z] to SYNCHED. In the tree, sinceparent(Z) is always a P-nodeZ has exactly one
sibling. If Z is the first child ofparent(Z) to be SYNCHED, the OAT model remove& from
ready((C). Otherwise/Z is the last child obarent(Z) to beSYNCHED, and the runtime removes
andparent(Z) fromready(C), changes the status of baftandparent(Z) to SYNCHED, and adds
parent(parent(Z)) to ready(C).

A transactiorX € ready® () can complete by issuing either aand or xabort instruction. If
status[X]| = PENDING, thenX can issue agend to changestatus[X] to COMMITTED. Otherwise,
status[X| = PENDING_ABORT, andX can issue amabort to change its status ttBORTED. For
both xend andxabort, the runtime removeX from ready(C) and addsparent(X) back into
ready(C). Thexend instruction also performs an ownership-aware commit and changesetsad s
and write sets, which is described later when we discuss the ownershie-aammits in the OAT

100

model.

Finally, a ready nod& can issue aead or awrite instruction. If the instruction does not
generate a conflict, the runtime adds a memory operation VItIIdﬁemUps(t)(C), with v as a child
of Z. If the instruction would create a conflict, the runtime may change the statuse®ENDING
transactionX to PENDING_ABORT to make progress in resolving the conflict. For shorthand, the
status change of a transacti¥rfrom PENDING to PENDING_ABORT is referred to as aigabort of
X.

This construction of the tree guarantees a few properties. First, therssgof instructions
generated by the OAT model is a valid topological sort of the computatiorsday. Second, the
OAT model generates a tree of a canonical form, where the root ndtie tee is a transaction, all
transactions are S-nodes and every P-node has exactly two nooti@mabS-node children. This
canonical form is imposed for convenience of description; it is not impbftarany theoretical
results. Finally, the OAT model maintains the invariant the active nodes fareeawith the ready
nodes at the leaves. This property is important for the correctness Ghenodel.

Memory operations and conflict detection

The OAT model performs eager conflict detection; before performing @ang operation that
would create a new € memOps((), the OAT model first checks whether creating/ould cause a
conflict, according to Definition 6.6.

Definition 6.6 Suppose attimet, the OAT model issuegad or wri te instruction that potentially
creates a memory operation node v. The memory operation v is saidecagemmemory conflict
if there exists a locatiod € £ and an active transaction X activeXactions¥ () such that

1. X & xAnces(v), and
2. either Rv,£) A ((u,£) € WY (Xy)), or W(v,€) A ((u,£) € RV(X,)).

If a potential memory operationwould generate a conflict, then the memory operatiooes
not occur; instead, aigabort of some transaction may occur. The mechanism for aborts is de-
scribed later in this section. Otherwise, a memory operatitimat does not generate a conflict
observes the valué from R(X), whereX is the closest ancestor ofwith ¢ in its read set (i.e.,
(u,£) € R(X) and that eithed(v) = u if uis awrite or ®(v) = ®(u) if uis aread). In addition,
v updates the read and/or write sets of its enclosing transacticassparent (V). If vis aread,
(v,¢) is added tar(Y). If vis awrite, (v,/) is added to botR(Y) andw(Y).

Ownership-aware transaction commit

The ownership-aware commit mechanisemployed by the OAT model contains elements of both
closed-nested and open-nested commitsPEADING transactionY issues arxend instruction to
commitY into X = xparent(Y). Thisxend commits locations from its read and write sets which
are owned byMod(Y) in an open-nested fashion to the root of the tree, while it commits locations
owned by other Xmodules in a closed-nested fashion, merging those rehdsites intoX'’s read
and write sets.

Or more formally, the OAT model's commit mechanism can be described in termsdiileno
read sets and write sets. Suppose at tifec xactions () with status[Y] = PENDING issues

101

anxend. Thisxend changes read sets and write sets as follows:

R(root(()) R(root((C))UmodR(Y)
R(xparent(Y)) = R(xparent(Y))U (R(Y)—modR(Y))

W(root(C)) = W(root(C))UmodW(Y)
W(xparent(Y)) = W(xparent(Y))U W(Y)—modW(Y))

Unique committer property

Definition 6.5 guarantees certain properties of the computation tree whichsasntial to the
ownership-aware commit mechanism. Theorem 6.8 proves that every mepengtion has one
and only one transaction that is responsible for committing the memory oper&ktiemproof of the

theorem requires the following lemma.

Lemma 6.7 Given a computation tre€, for any T € xactions(C),
let St = {xMod(T’) : T’ € xAnces(T)}. ThenmodAnces(xMod(T)) C

PROOF Lemma 6.7 can be proven by induction on the nesting depth of transadtionshe
computation tree. In the base case, the top-level transaEtierroot (), andxMod(root(()) =
world. Thus, the lemma holds trivially.

For the inductive step, assume th@idAnces(xMod(T)) C Sy holds for any transactiof at
depthd. One can show that the fact holds for ahy € xactions(() at depthd + 1. For any
suchT*, we know thatT = xparent(T*) is at depthd. By Rule/2 of Definition 6.5, we have
modParent (xMod(T*)) € modAnces(xMod(T)). ThusmodAnces(xMod(T*)) C modAnces(xMod(T))U
{xMod(T*)}. By construction of the sefr, we haveSr- = Sy U {xMod(T*)}. Therefore, using the
inductive hypothesisgodAnces(xMod(T*)) C Sr-. |

Theorem 6.8 If a memory operation v accesses a memory locafiotihen there exists a unique
transaction T € xAnces(Vv), such that

1. owner(¢) = xMod(T*), and
2. For all transactions X pAnces(T*) Nxactions(C), X can not directly access

This transaction T is thecommitterof memory operation v, denotedmmitter (V).

PrRoOOF This result follows from the properties of the module tree and computatierstaged in
Definition6.5.

LetT = xparent(V). First, by Definition 6.5, Rule/1, we know thetner (¢) € modAnces(xMod(T)).
By Lemmal 6.7, we know thatodAnces(xMod(T)) C Sr. Thus, there exists some transaction
T* € xAnces(T) such thabwner(¢) = xMod(T*). We can use Rule 2 to show that fheis unique.
Let X be the chain of ancestor transactionslofi.e., letXo = T, and letX; = xparent(X_1), up
until Xx = root(C). By Rulel2, we know thakid(xMod(X;)) < xid(xMod(X—1)), meaning, the
xids strictly decrease walking up the tree frdmThus, there can only be one ancestor transaction
T* of T with xid(xMod(T")) = xid(owner(¥)).

To check the second condition, consider af¥ pAnces(T*) Nxactions(C). By Rule 1,
X can access directly only if owner(¢) € modAnces(xMod(X)) implying thatxid(owner(¢)) <
xid(xMod(X)). But we know thabwner(¢) = xMod(T*) and
xid(xMod(T*)) > xid(xMod(X)), SOX can never accegddirectly. |

102

Intuitively, T* = committer(Vv) is the transaction which “belongs” to the same Xmodule as the
location? whichv accesses, and is “responsible” for committiniy memory and making it visible
to the world. The second condition of Theorem| 6.8 states that no ancestsacttion ofl * in the
call stack can ever directly accesghus, it is “safe” forT* to commit?.

Transaction aborts

When the OAT model detects a conflict, it aborts one of the conflicting tréineadoy changing
its status fronPENDING to PENDING_ABORT. In the OAT model, a transactioX might not abort
immediately; instead, it might continue to issue more instructions after its statushliaged to
PENDING_ABORT. Later, it will be useful to refer to the set of operations a transacti@sues while
its status iPENDING_ABORT.

Definition 6.9 The set of operations issued by X or descendants of X sfterus[X] changes to
PENDING_ABORT are called X’sabort actions denoted bybortactions(X).

The PENDING_ABORT status allowsX to compensate for the safe-nested transactions that may
have committed; if transactior is nested inside&, then the abort actions of contain the com-
pensating action of. Eventually 2PENDING_ABORT transaction issues atend instruction, which
changes its status froRENDING_ABORT to ABORTED.

If a potential memory operationgenerates a conflict with, andX,’s status iSPENDING, then
the OAT model can nondeterministically choose to abort eiffparent(v), or X,. In the latter
casey waits for X, to finish aborting (i.e., change its statusARDRTED) before continuing. 1¥X,’s
status iISPENDING_ABORT, thenv just waits forX, to finish aborting before trying to issuead or
write again.

This operational model uses the same conflict detection algorithm as TM wlitheoy closed-
nested transactions does; the only subtleties are tteat generate a conflict wittPENDING _ABORT
transactiork,, and that transactions no longer abort instantaneously because tieegghiwat actions.
Some restrictions on the abort actions of a transaction may be necessagidadeadlock, as
described later in Section 6.5.

6.4 Serializability by Modules

This section shows that the OAT model guaransaggalizability by modulesa definition inspired
by the database notion of multilevel serializability (e.g., as described in [13@pawal et al. [5]
provide a definition of serializability in their transaction computation framewatiich is what
the OAT model is based on. Their definition of serializability is too restrictivedienership-
aware transactions, however, since ownership-aware transadiiging, a hybrid between closed
and open nesting, allow certain kinds of program interleaving that would@allowed under
the definition of serializability. Thus instead, this section considers a lesBg&tige correctness
condition, serializability by modules, which incorporates the notions of Xmadarhel ownership-
aware commits, and proves that the OAT model guarantees serializability hylesod astly, this
section discusses the relationship between the definition of serializabiity bhylesaghd the notion
of abstract serializability for the open-nesting methodology.

Transactional computations and serializability

In the framework due to Agrawal et. al [5], serializability for a transactiocomputation with
computation tree” was defined in terms of topological sofgof the computation da®(C). In-

103

formally, a trace(C, @) is serializable if there exists a topological sort ordenf G(C) such that

S is “sequentially consistent with respectd®d, and all transactions appear contiguous in the order
S. This section provides a more precise and formal definition of this corrcepgeneralizes it to
formally define serializability by modules.

Some notation is needed to formally describe serializability (and serializability luuies).
Since the OAT model extends the framework due to Agrawal et al. [5], simfigitions overlap and
some are modified to fit the OAT model. Furthermore, same as the framewoidgraiAl et al. all
definitions in this section ara posteriori i.e., they are defined on the computation tree after the
program has finished executing.

All memory operations enclosed inside a transacligincluding those belonging to its nested
transactions), i.ememOps(T), can be partitioned into three static “content” setSontent(T),
oContent(T) andaContent(T). For anyu € memOps(T), the content sets are defined based on the
final status of transactions ifi that one visits when walking up the tree franto T.

Definition 6.10 For any transaction T and memory operation u, define static content sets
cContent(T), oContent(T), andaContent(T) according theContentType(u, T) procedure:

ContentType(u,T) # For any ue memOps(T)

1 X = xparent(Uu)

2 while(X#T)

3 if (X is ABORTED) return u € aContent(T)
4 if (X =committer(u)) return u € oContent(T)
5 X = xparent(X)

6 returnue cContent(T)

Recall that in the OAT model, the safe-nested commi ofommits some memory opera-
tions in an open-nested fashion, #oot (), and some operations in a closed-nested fashion, to
xparent(T). Informally, oContent(T) is the set of memory operations that are committed in an
“open” manner byT’s subtransactions. SimilarlgContent(T) is the set of operations that are
discarded due to the abort of some subtransactidrsisubtree. FinallycContent(T) is the set of
operations that are neither committed in an “open” manner, nor aborted.

For computations with transactions, one can modify the classic notion ofrsi#g|w®nsistency
to account for transactions which abort. Transactional semantics dictdtenéimory operations
belonging to an aborted transactidnshould not be observed by (i.e., drigldenfrom) memory
operations outside df.

Definition 6.11 For u € memOps(C),v € V(C), let X = xLCA(u,v). Then, u ishidden from v if
u € aContent(X), denoted as uHv.

The definition of serializability by modules requires that computations satisfye swtion of
sequential consistency, generalized for the setting of TM.

Definition 6.12 Consider a tracg C,®) and a topological sorfs of G(C). For all v € memOps(C)
such that Rv,¢) VW(v,), thetransactional last writerof v according ta$, denotedX;(v), is the
unique ue memOps(C) U {_L} that satisfies four conditions:

1. W(u,?),

2. U<gV,

3. =(uHv), and

4. YWW(W,) A (U<sW<5V)) = WHV.

104

Definition 6.13 A trace (C,®) is sequentially consistenif there exists a topological sorf such
that® = X;. We say thag is sequentially consistent with respect t@.

In other words, the transactional last writer of a memory operatiwhich accesses locatiah
is the last writeu to location? in the orderS, except that it skips over writes which are hidden
from (i.e., aborted with respect t@) Intuitively, Definition 6.13 requires that there exists an order
S explaining all the memory operations of the computation.

Finally, using this frameworkserializabilityis defined as follows:

Definition 6.14 A trace(C,®) is serializableif there exists a topological soff that satisfies two
conditions:

1. ® = X, (S is sequentially consistent with respectd, and
2. VT € xactions(C) andvv e V(C), xbegin(T) <s;Vv<sxend(T) = veV(T)).

Ordinary serializability can be thought of as a strengthening of sequentiaistency which also
requires that the ordefboth explains all memory operations, and also has all transactions afpearin
contiguous.

Defining serializability by modules

While this definition of serializability is the “correct definition” for flat or clakeested transac-
tions, it is too strong, however, for ownership-aware transactionsMAsyistem that enforces this
definition of serializability cannot ignore lower-level memory accesseswle&cting conflicts for
higher-level transactions.

Instead, we consider a definition of serializability by modules which cheaksdrrectness
of one Xmodule at a time. For serializability by modules, given a t(@cep), for each Xmod-
ule M, transform the tre€ into a new treenTree((C,M), referred to as therojection of C for
XmoduleM. The projected treeTree((C,M) is constructed in such a way as to ignore memory
operations of Xmodules which are lower-level tHdnand also to ignore all operations which are
hidden from transactions ®fl. For each Xmodule M, check that the transactionslah the trace
(mTree(C,M),®) is serializable. If the check holds for all Xmodules, then tréCe®) is said to
be serializable by modules. Definition 6.15 formalizes the constructiafde(C,M):

Definition 6.15 For any computation tre€’, define therojection of C for M, denoted aaTree(C,M)
be the result of modifying as follows:

1. For all memory operations & memOps(C) with v accessind, if owner(¢) = N for some
xid(N) > xid(M), convert v into a nop.
2. For all transactions Te modXactions(M), convert all ve aContent(T) into nops.

The intuition behind Step 1 of Definition 6.15 is as follows. To obtain the projectedTree(C,M),
Step 1 of the construction throws away memory operations belonging to alevetiXmoduleN,
since by Theorem 6.8, transactions\fcan never directly access the same memory as those op-
erations anyway. Step 2 of the construction ignores the content of amiedkiransactions nested
inside transactions dfl; those transactions might access the same memory locations as operations
which were not turned into nops, but those operations are aborted sjibaito transactions ™.

Lemma 6.16 argues that if a tra¢€, ®) is sequentially consistent, thémTree(C,M),®) is
a valid trace; an operation that remains in the trace never attempts to observe a value from a
®(v) which was turned into a nop due to Definition 6.15. In addition, the transfotraed is also
sequentially consistent.

105

Lemma 6.16 Let (C,®) be any trace and be any topological sort such thdt = X (i.e., (C,P)
is sequentially consistent). Then for any Xmodule M, the following conditiensadisfied:

1. If vE memOps(mTree(C,M)), then®(v) € memOps(mTree(C,M)).
2. Sis avalid sort of(mTree(C,M), ®), with ® = Xj.

In other words(mTree(C,M),®) is a valid trace.

PROOF Let's check Condition |1 first. In the projected tre®ree(C,M), pick any nodev €
memOps(mTree(C,M)) which remains. Assume for contradiction that ®(v) was turned into a
nop in one of Steps 1 and 2.

If uwas turned into a nop in Step 1 of Definition 6.15 during the construction, thewist
be thatu accessed a memory locatiénvherexid(owner(¢)) > xid(M). Sincev must access the
same locatior, v must also be converted into a nop.

If uwas turned into a nop in Step 2 of Definition 6.15, ther aContent(T) for some
xMod(T) = M. Then one can show that eithev, or v should have also been turned into a nop.
Let X = xLCA(u,Vv). SinceT andX are both ancestors of eitherT is a proper ancestor of or X
iS an ancestor of .

1. First, supposé is a proper ancestor of. Consider the path of transactioWs Y1, ... Yk,
whereYy = xparent(u), xparent(Y;) = Yi;1, andxparent(Yy) = T. Sinceu € aContent(T),
for someY; for 0 < j < k must havestatus|[Y;j| = ABORTED. SinceT is a proper ancestor of
X, X =Yy for somex satisfying 0< x < k.

(a) If status|Yj] = ABORTED for any j satisfying 0< j < x, then we knows € aContent(X),
and thusuHv. Since(C,®) is sequentially consistent ae{v) = u, by Definition 6.12,
we know—-uHy, leading to a contradiction.

(b) IfY; is ABORTED for any j satisfyingx < j <k, thenstatus[Yj] = ABORTED implies
thatv € aContent(X), and thusy should have been turned into a nop, contradicting the
original setup of the statement.

2. Next, consider the case whefds an ancestor of . Sinceu € aContent(T), it must be that
u € aContent(X). Therefore, this case is analogous to Case 1a above.

To check Conditioh 2, ifp is the transactional last writer accordingtdor (C, ®), itis still the
transactional last writer foimTree(C,M), ®) because the memory operations which are not turned
into nops remain in the same relative order. Thus, Condition 2 is also satisfied. O

Note that Lemma 6.1@epends orthe restrictions on Xmodules described in Definition 6.5.
Without this structure of modules and ownership, the construction of Defirftitb is not guaran-
teed to generate a valid trace.

Finally, serializability by modules is defined as follows.

Definition 6.17 A trace(C,®) is serializable by modules

1. There exists a topological saftsuch that® = X, and
2. for all Xmodules M inD, there exists a topological sos of Gy = mTree(C,M) such that:

(@) Swm is a topological sort oGy such that® = X, and
(b) VT € modXactions(M) and Vv e V(Qu), if xbegin(T) <y, vV <g, xend(T), then
veV(T).

106

Informally, a trace(C, @) is serializable by modules if it is sequentially consistent, and if for every
Xmodule M, there exists a sequentially consistent orggrfor the trace(mTree(C,M),®) such
that all transactions ol are contiguous inSy. Even thoughSy may not be the same & a
computation that satisfies serializability by module has a sensible semantiassd&odhsy, and

S are sequentially consistent with respectto

The OAT model guarantees serializability by modules

The OAT model described in Section 6.3 generates tra€e®) that are serializable by modules,
i.e., that satisfy Definition 6.17. The proof of this fact consists of two palte first part shows
that the OAT model guarantees that a program execution is prefixneeelthe second part shows
that any trace which is prefix-race free is also serializable by modules.

Before we dive into the proofs, we shall first examine how the model eefanefix-race free-
dom. The following definitions are taken from the framework of Agraweadle{5], but adapted
for the OAT model with an ownership-aware commit mechanism. Notably, the @édel uses
slightly different notions of hidden (Definition 6.11) and how the contetg sétransactions are
defined (Definition 6.10).

Definition 6.18 For any execution ordes, for any transaction Te xactions((), consider any
v ¢ memOps(T) such thatxbegin(T) <5 vV < xend(T). There exists prefix racebetween T and
v if

1. 3w € cContent(T) such that w< v,

2. =(vHw), and

3. (RW.O) AW(Y,0) V (W(W,0) AR(V£)) V (W(W,E) AW(Y0)).

Definition 6.19 A trace(C,®) is prefix-race freeiff exists a topological sor§ of G(() satisfying
two conditions:

1. ® = X (S is sequentially consistent with respecid, and
2. YW e V(C) andVT € xactions(() there is no prefix race betweenvand T.

S is called aprefix-race-free sorof the trace.

The OAT model preserves certain invariants, and these invariantseateéaigrove that the OAT
model generates only traces, ®) which are prefix-race free. Theorem 6.20 and Lemmal 6.21 state
the invariants.

The sequence of instructions that the OAT model issues naturally gemartdpological sort
S of the computation da®((C): the fork andxbegin instructions correspond to the begin nodes
of a parallel or series blocks in the dag, thein, xend, andxabort instructions correspond to
end nodes of parallel or series blocks, and#thed or write instructions correspond to memory
operation nodeg € memOps ().

Theorem 6.20 Suppose the OAT model generates a trag€eP) and an execution ordes. Then,
® = X, i.e., S is sequentially consistent with respecido

PROOF This result is reasonably intuitive, but the proof is tedious and somevdmaplicated.
The details of this proof is deferred to Appendix A. O

The next lemma, Lemmia 6.21, describes an invariant on read sets and t@iteagghe OAT
model maintains. Informally, Lemma 6.21 states that, if a memory operatibat reads (writes)

107

location / is in the cContent(T) for some transactioif, then /¢ belongs to the read set (write
set) of some active transaction undés subtree between the time when the memory operation is
performed and the time whénends.

Lemma 6.21 Suppose the OAT model generates a trfacgp) with an execution ordes. For any
transaction T, consider amemory operatioa dContent (T) which accesses memory locatibat
stepb. Lett; be step wherend(T) or xabort(T) happens. Atany timet such thattt < t; there
exists some e xDesc(T)NactiveXactions®(C) (i.e., T is an active transactional descendant
of T) such that

1. If R(u,?), thent € RO(T").
2. IfW(u,), thent € wO(T").

PROOF LetXj,Xp,... X be the chain of transactions frogparent(u) up to, but not including
T, i.e., Xy = xparent(U), X; = xparent(Xj_1), andxparent(Xc) = T. Since we assume that
u € cContent(T) and sincel completes at time;, for every j such that 1< j < k, there exists
a unique timet; (satisfyingto <t; < tf) when anxend changesstatus[X;] from PENDING to
COMMITTED; otherwise, we would have € aContent(T).

Also, by Theorem 6.8 and Definition 6.10, we knewmmitter(u) € xAnces(T), i.e., none of
the Xj’s will commit location in an open-nested fashion to the world; otherwise, we would have
U € oContent(T).

First, suppos&(u, /). At time t;, when the memory operatiamcompletes(u, /) is added to
R(X1). In general, at time;, the ownership-aware commit mechanism, as described in Section 6.3,
will propagate? from R(Xj) to R(Xj;1). Therefore, for any timein the intervalt;_1,t;), we know
¢ € RY(X;), i.e., for Lemma 6.21T' = X;. Similarly, for any timet in the intervallty,t), we have
¢ e rRO(T), i.e., we choos@’ =T.

The case wher®V/(u, /) is completely analogous to the caseRil, /), except we have both
¢ e RO(T") and? e wH(T"). 0

Using Theorem 6.20 and Lemma 6.21, Theorem 6.22 shows that the OAT gedetates
traces which are prefix-race free.

Theorem 6.22 Suppose the OAT model generates a trag€gb) with an execution ordes. Then
S is a prefix-race-free sort afC, ®).

PROOFR For the first condition of Definition 6.19, we know by Theorem 6.20 thaQA& model
generates an ordgrwhich is sequentially consistent with respectfio

To check the second condition, assume for contradiction that we havwel@nSogenerated by
the OAT model, but there exists a prefix race between a transattiamd a memory operation
v ¢ memOps(T). Letw be the memory operation from Definition 6.18, i.e.c cContent(T),

W <sV <s xend(T), ~(VvHwW), w andv access the same locatiénwith one of the accesses being

a write. Lett,, andt, be the time steps in which operatiowsandv occurred, respectively, and let
tengt be the time at which eithetend(T) or xabort(T) occurs (i.e., eithef commits or aborts).

We argue that at timg, the memory operation should not have succeeded because it generated a
conflict.

There are three cases foandw. First suppos&V(v,¢) andR(w, /). Sincet, < t, < tendT, by
Lemma 6.21, at timé,, ¢ is in the read set of some active transacfidre xDesc(T). Sincev ¢
memOps(T), we knowT ¢ xAnces(V). Thus, sincd”’ is a descendant df, we haveT’ ¢ xAnces(V).
SinceT’ ¢ xAnces(V), by Definition/ 6.6, at time,, v generates a conflict with’. The other two
cases, wherB(v,) AW(w,¢) orW(v,¢) A\W(w, /), are analogous. |

108

The next theorem shows that a tra@@ ®) which is prefix-race free is also serializable by
modules.

Theorem 6.23 Any trace(C, @) which is prefix-race free is also serializable by modules.

PROOFR First, by Definition 6.15 and Lemma 6.16, it is easy to see that a prefixfragesorts
of a trace(C, @) is also a prefix-race-free sort of the trg@gree(C,M),P) for any XmoduleM.
Now we shall argue that for any Xmodulé, we can transforng into Sy such that all transactions
in xactions(M) appear contiguous iy .

Consider a prefix-race-free sgftof (mTree(C,M),®) which hask nodesv which violate the
second condition of Definition 6.17. One can construct a new qftieshich is still a prefix-race-
free sort of(mTree(C,M), ®@), but which has onlk — 1 violations.

The following procedure reduces the number of violations:

1. Of all transaction3 € modXactions(M) such that there exists an operatwthat causes a
violation, i.e.,xbegin(T) < v <sxend(T) andv ¢ V(T), choose thd = T* which has the
latestxend(T) in the orders.

2. InT*, pick the firstv ¢ V(T*) which causes a violation.

3. Create a new sof’ by movingv to be immediately beforgbegin(T*).

In order to argue thaf’ is still a prefix-race-free sort dinTree(C,M),®), one needs to show
that movingv does not generate any new prefix races, and does not createsagbith is no longer
sequentially consistent with respectdo(i.e., that® is still the transactional last writer according
to §’). There are three casescan be a memory operation, abegin(T’), or anxend(T’).

1. Suppose is a memory operation which accesses locatiofor all operationsv such that
xbegin(T) <5 W < Vv, one can argue that can not access the same locatipminless both
w andv read from/, with the following reasoning. Since the procedure chasehich is
the first memory operation that causes the violation, xleegin(T) <5 vV <5 xend(T) and
v¢V(T), we know thatw € V(T). Otherwisey wouldn't be the first memory operation that
causes the violation. We know by constructionm@tee(C,M), thatw € cContent(T) —
if w € oContent(T) orw € aContent(T), then Step 1 or 2, respectively, in Definition 6.15
would have turnedv into a nop. Therefore, by Definition 6.18, unlegsndv both read from
¢, v has a prefix race witfi, contradicting the fact that is a prefix-race-free sort of the trace.
Thatis, eitherv does not acceds or bothw andv read from¢, and thus moving to be before
xbegin(T) can not generate any new prefix races. Furthermore, mawiagnot change the
transactional last writer for any memory operatignand.$’ is still a prefix-race-free sort of
the trace.

2. Next, suppos& = xbegin(T’). Moving xbegin(T’) can not generate any new prefix races
with T, because the only memory operationshich satisfyxbegin(T) <5 u<s xbegin(T’)
satisfyu ¢ cContent(T’). Also, movingxbegin(T’) does not change the transactional last
writer for any noder because the move preserves the relative order of all memory operations.
Therefore,s’ is still a prefix-race-free sort.

3. Finally, suppos& = xend(T’). By movingxend(T’) to be beforexbegin(T), we can only
lose prefix races witfi’ that already existed i§ because we are moving nodes out of the in-
terval[xbegin(T’),xend(T’)]. Also, as withxbegin(T’), movingzend(T’) does not change
any transaction last writers. Therefoi®,is still a prefix-race-free sort of the trace.

Since we can eliminate violations of the second condition of Definition 6.17 oadimte, we
can construct a sogy which satisfies serializability by modules by eliminating all violations]

109

Finally, we can show the OAT model guarantees serializability by modules by gtitienpre-
vious results together.

Theorem 6.24 Any trace(C, @) generated by the OAT model is serializable by modules.

PROOF By Theorem 6.22, the OAT model generates only t(@ap) which are prefix-race free.
By Theorem 6.23, any trade”, ®) which is prefix-race free is serializable by modules. O

Abstract serializability

By Theorem 6.24, the OAT model guarantees serializability by modules. Asianed earlier
in the chapter introduction, the ownership-aware commit mechanism is afpanmnethodology
which includes abstract locks and compensating actions. The last phis gfection argues that
OAT model provides enough flexibility to accommodate abstract locks andesating actions.
In addition, if a program is “properly locked and compensated,” theialssbility by modules
guarantees “abstract serializability” used in multilevel database systemis [13

The definition of abstract serializability in [136] assumes that the prograiviged into levels,
and that a transaction at levietan only call a transaction at leviel- 110n addition, transactions
at a particular level have predefined commutativity rules, i.e., some transaofithe same Xmod-
ule can commute with each other and some can not. The transactions at theléwektsayk)
are naturally serializable; call this scheddlg Given a serializable schedulg.; of leveld + 1
transactions, the schedule is said to be serializable atiléfsall transactions inZ; can be re-
ordered, obeying all commutativity rules, to obtain a serializable ofléor level4 transactions.
The original schedule is said to be abstractly serializable if it is serializabtlfilevels.

These commutativity rules might be specified using abstract locks [117].oifttansactions
can not commute, then they grab the same abstract lock in a conflicting mantiex.application
described in Section 6.1, for instance, transactions callirgert andremove on theBST using
the same key do not commute and should grab the same write lock. Althougtcalustka are not
explicitly modeled in the OAT model, transactions acquiring the same abstraatdodke modeled
as transactions writing to a common memory locatioti Locks associated with an Xmodullé
are owned bynodParent(M). A moduleM is said to beproperly lockedif the following is true
for all transactions;, X, with xMod(X;) = xMod(Xz2) = M: if X3 andX, do not commute, then they
access soméc modMemory(modParent(M)) in a conflicting manner.

If all transactions are properly locked, then serializability by modules impbesact serializ-
ability as defined above in the special case when the module tree is a chagafitenon-leaf mod-
ule has exactly one child). L&} be the sorts in Definition/6.17 for XmoduleM with xid(M) = i.
This §; corresponds ta; in the definition of abstract serializability.

In the general case for ownership-aware TM, however, by RuleZéihition/6.1, a transaction
at leveli might call transactions from multiple levets> i, not justx =i+ 1. Thus, the definition
of abstract serializability must be changed slightly; instead of reorderstgju; while serializing
transactions at level-we have to potentially reordées for all x where transactions at levietan call
transactions at leved Even in this case, if every module is properly locked (by the same definition
as above), one can show serializability by modules guarantees abstiatitability.

The methodology of open nesting often requires the notion of compensatingsor inverse
actions. For instance, ine8sT, the inverse ofnsert is remove with the same key. When a transac-
tion T aborts, all the changes made by its subtransactions must be inverted, #trgnogh the OAT

10The discussion here assumes that the level number increases adrgoing higher level to a lower-level to be
consistent with the numbering @fid. In the literature (e.g. [136]), levels typically go in the opposite direction.
1IMore complicated locks can be modeled by generalizing the definition dlicton

110

model does not explicitly model compensating actions, it allows an abortinggitdon with status
PENDING_ABORT to perform an arbitrary but finite number of operations before chanbmgtatus
to ABORTED. Therefore, an aborting transaction can compensate for all its abaotté@issactions.

6.5 Deadlock Freedom

This section argues that the OAT model described in Section 6.3 can megerne'semantic dead-
lock” if suitable restrictions are imposed on the memory accessed by a ttian&abort actions.
In particular, an abort action generated by transactidrom xMod(T) should read (write) from a
memory locatior? belonging tomodAnces(xMod(T)) only if ¢ is already inR(T) (W(T)). Under
these conditions, this section shows that the OAT model can always “firégisbnable computa-
tions.

An ordinary TM without open nesting and with eager conflict detectionmenters a semantic
deadlock because it is always possible to finish aborting a transactwithout generating addi-
tional conflicts; a scheduler in the TM runtime can abort all transactiortstrean complete the
computation by running the remaining transactions serially. Using the OAT niualegver, a TM
system can enter a semantic deadlock because it can enter a state in whirtipddsible to finish
aborting two parallel transactionsandY which have statuBENDING_ABORT. If X’s abort action
generates a memory operatiarwhich conflicts withY, u will wait for Y to finish aborting (i.e.,
when the status of becomesABORTED). Similarly, Y’s abort action can generate an operaton
which conflicts withX and waits forX to finish aborting. ThusX andY can both wait on each
other, and neither transaction will ever finish aborting.

Defining semantic deadlock

Intuitively, we want to say that a TM system exhibits a semantic deadlock if it theigter a state
from which it is impossible to “finish” a computation because of transactioflicts This section
defines semantic deadlock precisely and distinguishes it from these@dlsenss for noncompletion,
such as livelock or infinite loop.

Recall that our abstract model has two entities: the program, and a geper&tional model
R representing the runtime system. At any titngiven a ready nod¥ € ready(C), the program
chooses an instruction and hdgssue the instruction. If the program issues an infinite number of
instructions, therg cannot complete the program no matter what it does. To eliminate programs
which have infinite loops, we only consideounded programs

Definition 6.25 A program isboundedfor an operational modeR_ if any computation tree thak
generates for that program is of a finite depth, and there exists a finite eukhkuch that at any
time t, every node Z nodes" () has at most K children with statURENDING or COMMITTED.

Even if the program is bounded, it might still run forever ifiielocks One can use the notion
of ascheduleto distinguish livelocks from semantic deadlocks.

Definition 6.26 A schedulel" on some time intervalto,t;] is the sequence of nondeterministic
choices made by an operational model in the interval.

An operational modelR, makes two types of nondeterministic choices. First, at any tin®
nondeterministically chooses which ready nade ready(C) executes an instruction. This choice
models nondeterminism in the program due to interleaving of the paralleltexesuSecond, while

111

performing a memory operatiarwhich generates a conflict with transactibn® nondeterministi-
cally chooses to abort eitheparent(u) or T. This nondeterministic choice models the contention
manager of the TM runtime. A program may livelock®f repeatedly makes “bad” scheduling
choices.

Intuitively, an operational model deadlocks if it allow®aunded computatioto reach a state
whereno schedulean complete the computation after this point.

Definition 6.27 Consider an an operational mod& executing a bounded computation. We say
that R does not exhibit aemantic deadlock for all finite sequences of instructions that® can
issue that generates some intermediate computatiorcye@ere exists a finite scheduleon [to, t1]
such thatg_ brings the computation tree to a rest stalg i.e.,ready((1) = {root((1)}.

This definition is sufficient, since once the computation tree is at the restatatenly the root
node is readyR can execute each transaction serially and complete the computation.

Restrictions to avoid semantic deadlock

The general OAT model described in Section 1.3 exhibits semantic deacdoakite it may enter
a state where two parallel aborting transactidhandY keep each other from completing their
aborts. For a restricted set of programs, wheREBDING_ABORT transactionT never accesses
new memory belonging to Xmodules=tod(T)’s level or higher, however, one can show the OAT
model is free of semantic deadlock. More formally, for all transactibnBefinition/6.28 restricts
the memory footprint oébortactions(T).

Definition 6.28 An execution (represented by a computation {ig¢éasabort actions with limited
footprint if the following condition is true for all transactions & aborted((). Attime t, if a mem-
ory operation ve abortactions(T) accesses locatioh and owner(¢) € modAnces(xMod(T)),
then

1. ifvis aread, thef € R(T), and
2. if vis a write ther? ¢ wW(T).

Definition[6.28 requires that once a transacflonstatus becomeRENDING_ABORT, any mem-
ory operationv which T or a nested transaction insideperforms to finish aborting cannot read
from (write to) any locatior? which is owned by any Xmodules which are ancestorgMafd(T)
(includingxMod(T) itself), unles¥ is already in the read (or write set) of

The properties of Xmodules from Theorem|6.8 in combination with the owigeestiare com-
mit mechanism imply that transaction read sets and write sets exhibit nice fespér particular,
Corollary[6.29 states that a locatidncan appear in the read set of a transacfioonly if T's
Xmodule is a descendant efimer(#) in the module treeD. Lemma 6.30, using Corollaty 6.29,
shows that a computation whose abort actions have limited footprint, a memengtiopv from a
transactionT's abort action can only conflict with another transacfidmenerated by a lower-level
Xmodule thanxMod(T). Using these properties, Theorem 6.31 shows that the OAT model is free
from semantic deadlock assuming that aborted actions have limited footprint.

Corollary 6.29 For any transaction T if € R(T), thenxMod(T) € modDesc(owner(¥)).

PrRoOOFR This corollary follows from Definition 6.1, Theorem 6.8, and induction owla location
¢ can propagate into read sets and write sets using the ownership-awarétenechanism. O

If all abort actions have a limited footprint, we can show that operations abart action of an
XmoduleM can only generate conflicts with a “lower-level” Xmodule.

112

Lemma 6.30 Suppose the OAT model generates an execution where abort actieeditmited
footprint. For any transaction T, consider a potential memory operatierebortactions(T). If
v conflicts with transaction Tthenxid(xMod(T’)) > xid(xMod(T)).

PROOF Supposev € abortactions(T) accesses a memory locatiérwith owner(¢) = M.
Sinceabortactions(T) C memOps(T), by the properties of Xmodules given in Definition 6.5, we
know that eitheM € modAnces(xMod(T)), orxid(M) > xid(xMod(T)). If M € modAnces(xMod(T)),
then by Definition 6.28T already had’ in its read or write set. Therefore,can not generate
a conflict with T’ because theil would already have had a conflict witif beforev occurred,
contradicting the eager conflict detection of the OAT model.

Thus, it must be thatid(M) > xid(xMod(T)). If v conflicts with some other transactidn,
thenT’ has/ in its read or write set. Therefore, from Corollary 6.28pd(T’) is a descendant of
M. Thus, we haveid(xMod(T’)) > xid(M) > xid(xMod(T)). O

Theorem 6.31 In the case where aborted actions have limited footprint, the OAT model isdrae
semantic deadlock.

PROOFE Let (j be the computation tree after any finite sequendg ofstructions. We describe
a scheduld” which finishes aborting all transactions in the computation by executing attiohs
and transactions serially.

Without loss of generality, assume that at titgeall active transaction¥ havestatus[T| =
PENDING_ABORT. Otherwise, the first phase of the schedulis to make this status change for all
active transactions.

For a module treeD with k = |D| Xmodules (including therorld), we construct a schedule
I with k phasesk— 1,k—2,...1,0. The invariant we maintain is that immediately before phase
i, we bring the computation tree into a staté which has no active transaction instandewith
xid(xMod(T)) > i, i.e., no instance3 from Xmodules withxid larger thani. During phasd,
we finish aborting all active transaction instan@ewith xid(xMod(T)) =i. By Lemma 6.30, any
abort action for & , wherexid(xMod(T)) =i, can only conflict with a transaction instariEefrom
a lower-level Xmodule, whereid(xMod(T’)) > i. Since the scheduleexecutes serially, and since
by the inductive hypothesis we have already finished all active transactsitances from lower
levels, phasé can finish without generating any conflicts. O

Restrictions on compensating actions

If transactions1, Y»,...Y; are nested inside transactigrandX aborts, typically abort actions of
simply consist of compensating actions ¥arYz, ...Y;. Thus, restrictions on abort actions translate
in a straightforward manner to restrictions on compensating actions: a ceatpgnaction for a
transactiorl; (which is part of the abort action of), should not read (write) any memory owned
by xMod(X) or its ancestor Xmodules unless the memory location is alreadisiread (write) set.
Assuming locks are modeled as accesses to memory locations, the same nesjpjglis, meaning

a compensating action cannot acquire new locks that were not alrequiiyeatby the transaction it
is compensating for.

6.6 Related Work

This section describes other work in the literature on open-nested tti@mmsacln particular, this
section focuses on two related approaches for improving open-neaste@dtions, and distinguish

113

them from our work.

Ni et al. [117] propose using aspen_atomic class to specify open-nested transactions in a
Java-like language with transactions. Since the private fields of an obijgcan open_atomic
class type can not be directly accessed outside of that class, one damwfthive open_atomic
class as defining an Xmodule. This mapping is not exact, however, leenaiiber the language
nor TM system restrict exactly what memory can be passed into a methodpéanatomic class,
and the TM system performs a vanilla open-nested commit for a nesteddtiansaot a safe-nested
commit. Thus, itis unclear what exact guarantees are provided withatdspserializability and/or
deadlock freedom.

Herlihy and Koskinen [62] describe a technique of transactional bapstiich allows transac-
tions to call methods from a nontransactional moddleRoughly, as long a¥ is linearizable and
its methods have well-defined inverses, the authors show that the exeappiears to be “abstractly
serializable.” Boosting does not, however, address the cases whiewtrdevel moduléVl writes
to memory owned by the enclosing higher-level module, or when prograwesrhare than two
levels of modules.

6.7 Conclusions

This chapter describes the OAT system, which provides a disciplined metlggdoloopen nesting
and bridges the gap between memory-level mechanisms for open nestitihg digh-level method-
ology. Using OAT, the programmer is provided with a concrete set of guiekefis to how Xmodules
share data and interact with each other. As long as the program corifotinesguidelines, the OAT
system guarantees abstract serializability, which results in a sensiblaiprbghavior.

One distinct feature about the OAT system is that, unlike any other transalati@mory system
proposed, the programmer does not specify transactions explicitly astmg c blocks. Rather, she
programs with transactional modules, specifying levels of abstractionsgapnogram components,
and transactions are generated implicitly. With this transactional module irgetfecprogrammer
focuses on structuring the code and data into modular components, an&Thsy€em maintains
the memory abstraction that data belonging to a module is updated atomically antdkests a
consistent view to other modules.

Even though this transactional module interface seems promising, the lingoistios OAT
system is an under-investigated topic. As the design stands, the linguistfadetes rather clumsy,
since the OAT system employs ownership types for the programmer to sf@efy of abstractions
and data sharing, and the syntax can get cumbersome quickly as thereaftosas larger. Another
topic of investigation is the expressive power of the linguistics. There laisteresting future
directions to pursue.

114

Chapter 7

Location-Based Memory Fences

This chapter explores the notion ofl@cation-based memory fenoehich, when used correctly,
provides the same guarantees as an ordinary memory fence and inetlisaa only when syn-
chronization is necessary. Unlike other memory abstractions studies ilmyseshapters, which
are supported by an underlying runtime system, the location-based memagsfean be more
efficiently supported by hardware. This chapter proposes a haedwachanism for location-based
memory fences, proves its correctness, and evaluates its potentiahpenfe benefit.

On many modern multicore architectures, thrgaylpically communicate and synchronize via
shared memory. Classic synchronization algorithms such as DekkeJB@§ira [38], Lamport
(Bakery) [85], and Peterson [122] use simple load-store operatioshiared variables to achieve
mutual exclusion among threads. All these algorithms employ an idiom, refeereesitheDekker
duality [34], in which every thread writes to a shared variable to indicate its intenhtier ¢he
critical section and then reads the other’s variable to coordinate accdiesditical section.

Crucially, the correctness of such an idiom requires that the memory mxitibitesequential
consistency(SC) [86], where all processors observe the same sequence of ynacoasses, and
within this sequence, the accesses made by each processor appearagrasnporder. While the
SC memory model is the most intuitive to the programmer, existing architecturesltyicple-
ment weaker memory models that relax the memory ordering to achieve higf@mpence. The
reordering affects the correctness of the software execution in s@ae sach as the Dekker dual-
ity, in which it is crucial that the execution follow the program order, andotloeessors observe the
relevant accesses in the same relative order.

Consider the following code segment shown in Figure 7-1, which is a simpiréesion of

IThroughout this chapter, | assume that threads are surrogatescespors and use the terms threads and processors
interchangeably. In particular, | use threads in the context of desgriinalgorithm and processors in the context of
describing hardware features.

Initially x =y = 0;

Thread 1 Thread 2
T11 x = 1; T21 y = 1;
T1.2 if(y == 0) { T2.2 if(x == 0) {
T1.3 /* critical section */ T2.3 /* critical section */
T14 % T2.4 %
T15 x = 0; T25 y = 0;

Figure 7-1: A simplified version of the Dekker protocol (omitting the rhaoiism to allow the threads to take
turns), assuming sequential consistency.

115

the Dekker protocol [3@‘] using the idiom to synchronize access to the critical section among
two threads. With “Total-Store-Order” and “Processor-Ordering” mgnmoodels, which are the
memory models considered in this chapter, the read in line T1.2 may get redigh the write in
line[T1.1 (and similarly for Thread 2), such that Thread 2 “observesrahd of Thread 1 (line T1.2)
before it observes the write of Thread 1 (line T1.1). Thus, ThreadiITAnead 2 observe different
ordering of the reads and writes, resulting in an incorrect executiomaumsing the two threads to
enter the critical section concurrently.

To ensure a correct execution in such cases, architectures that impleesnmemory models
provideserializing instructionsandmemory fencesvhich allow one to enforce a specific memory
ordering when necessary. Thus, a correct implementation of the Dpkid®rcol for such systems
would require a pair of memory fences between the write and the read ¢@eliwes T1.1 and T1/2,
and lines T2.l and T2.2 in Figure 7-1), ensuring that the write becomesliglofisble to all
processors before the read is executed.

Traditional memory fences are program-based — they are part of tree tbedprocessor is
executing, and they cannot be avoided even when the program istedesarially, or when the
synchronization is unnecessary because no other threads arggrssdupdated memory location.
Furthermore, when a memory fence is executed, the processor stallsliuatitstanding writes
before the fence in the instruction stream become globally visible. Thus, péemaes are costly,
taking many more cycles to complete than regular reads and writes. | ran a siiopddenchmark
on AMD Opteron with 4 quad-core 2 GHz CPUs, and the result shows tteiead running alone
and executing the Dekker protocol with a memory fence, accessing oely enemory locations
in the critical section, runs 4 7 times slower than when it is executing the same code without a
memory fence.

This work proposes #cation-based memory fencavhich causes the executing threBgdto
“serialize” only when another threald attempts to access the memory location associated with
the memory fence. Location-based memory fences aim to reduce the latgarogiam execution
incurred by memory fences. Unlike a program-based memory fence, @olodmsed memory
fence isconditionalandremotely enforcedby T, onto T;; whetherT; serializes or not depends on
whether there exists B that attempts to access the memory location associated with the memory
fence. In essence, location-based memory fences djdw avoid the latency of memory fences
and instead hav&, borne the overhead of communication to trigderto serialize. Performance
benefit is obtained if the latency avoided Dyis greater than the communication overhead borne
by To.

The concept of location-based memory fences is particularly well suitedpfolications that
employ the Dekker duality. It turns out that this idiom is commonly used to optimipkcagions
that exhibitasymmetric synchronization patternsvhere one thread, th@imary thread enters a
particular critical section much more frequently than other threads runnithg isame process, re-
ferred to as theecondary threadsSuch applications typically employ an augmented version of the
Dekker protocol: the secondary threads first compete for the righttchsgnize with the primary
thread (by grabbing a lock); once obtaining the right, the winning secgntleead synchronizes
with the primary thread using the Dekker protocol. The augmented Dekkéngal intends to
speed up the execution path of the primary thread, even at the expetise sifcondary threads.
In such applications, it is also desirable to optimize away the overhead cédem the primary

2This simplified version is vulnerable to livelock, where both threads simedtasly try to enter the critical section
— each thread sets its own flag, reads the other thread’s flag, retredtsetees. Without some way of breaking the
tie, the two threads can repeatedly conflict with each other and retrytpatye The full version is augmented with a
mechanism to allow the threads to take turns and thus guarantees prégnesge sake of clarity, the simplified version
is presented here.

116

thread’s execution path when the application executes serially or whenishao contention.

Many examples of such applications exist. For example, Java Monitors aleniapted with
biased locking [36, 76,119], which uses an augmented version of tkikeDprotocol to coordinate
between the bias-holding thread (primary) and a revoker thread @@ggnThe Java Virtual Ma-
chine (JVM) employs the Dekker duality to coordinate between mutator th{padsry) executing
outside of the JVM (via the Java Native Interface) and the garbage wlisecondary) [36]. In a
runtime scheduler that employs a work-stealing algorithm [8,17,20, 295480], the “victim” (pri-
mary) and a given “thief” (secondary) coordinate a steal using amanted Dekker-like protocol.
Finally, in network packet processing applications, each processiegdi{primary) maintains its
own data structures for its group of source addresses, but ocalgi@thread (secondary) might
need to update data structures maintained by a different thread [134].

Such applications motivate the study of location-based memory fences. hapsec proposes
a hardware mechanism to implement location-based memory fences, which deBgbtweight
and requires only modest modifications to existing hardware: two additiegiters per processor
and a new load instruction, which implements a functionality that many moderitestcines al-
ready support. With this hardware design for location-based memorgdeadchread running alone
and executing the Dekker protocol will observe only negligible overldseh using location-based
memory fences compared to executing the same code without fences at all.

To evaluate the feasibility of location-based memory fences, | have implemargeftware
prototype to simulate its effect and applied it in two applications that exhibit asymensgnchro-
nization patterns. While the software implementation incurs much higher communiosgchead
than the proposed hardware mechanism would, experimental resultstett@pplications still ben-
efit from the software implementation and would scale better if the communicatevhead were
smaller. These results inspires confidence that the proposed hardesiga for location-based
memory fences is a viable and appealing alternative to traditional prograett p@emory fences.

The rest of the chapter is organized as follows. Section 7.1 gives aewadied background on
why reordering occurs in architectures that support a weaker memorgln®elction 7.2 presents
the proposed hardware mechanism for location-based memory fermmimnSy.3 formally defines
the specification of location-based memory fences and proves that thespobhardware mecha-
nism implements the specification. Section 7.4 evaluates the feasibility of locats@u-memory
fences using a software prototype implementation with two applications. Seclia@ivés a brief
overview on related work. Finally, Section 7.6 draws concluding remarks.

7.1 Store Buffers and Memory Accesses Reordering

This section summarizes features of modern architecture design whicle@ssary for the pro-
posed hardware mechanism for location-based memory fences. Irugartibroughout the rest of
the chapter, we shall assume that the target architecture implements eitfietah8tore Order
(TSO) model (implemented by SPARC-V9 [135]) or tirocess Ordering (POmodel (imple-
mented by Intel 64, 1A-32 [71], and AMDG64 architectures [3]), and &she controllers employ the
MESI cache coherence protocol [71] (or other similar variants sudiEHg61] and MOESI [3]).
This section also describes the use of store buffers andrhemory reorderingcan occur, i.e.,
how the observable order in which memory locations are accessed canfadiffi program order.
Memory reordering can be introduced either by the compiler or the undethgdrdware. Compiler
fences that prevent the compiler from reordering have relatively smathead, whereas the mem-
ory fences that prevent reordering at the hardware level are muchcuostly. This section focuses
on reordering at the hardware level.

117

- » Store |,
CPUO Buffer Cache |_Interconnect
Memory
Store |,
CpPU1 Buffer Cache

Figure 7-2: A simplified illustration of the relationship between the @ the store buffers, and the
memory hierarchy. Each CPU is connected with its own prigatde. In addition, a store buffer is placed
between the CPU and the cache, so that a write issued by the<Cfi?kt stored in the store buffer and
flushed out to the cache at later time. A read may be servedeseithe, or by the store buffer if the store
buffer contains a write to the same target address as the read

Definition 7.1 (TSO and PO ordering principles) Architectures implementing TSO and PO en-
force the following ordering principlesfor regular reads and writes issued by a given (single)
processor:

1. Reads are not reordered with other reads;

2. Writes are not reordered with older reads;

3. Writes are not reordered with other writes; and

4. Reads may be reordered with older writes if they have different téwgations (but they
are not reordered if they have the same target location).

Furthermore, in a multiprocessor system, when one considers the mterteof memory accesses
issued by multiple processors, the TSO and PO models enforce the follavvioiples:

5. Writes by a given processor are seen in the same order by all gocesand
6. Any two stores from two different processors, sagitl B, are seen in a consistent order
by processors other than Rnd B.

Modern architectures typically support out-of-order execution, batimit” executed instructions
in order, thereby enforcing Principles 1-3. We shall come back to visipthiister later and pre-
cisely define what it means for a memory access instruction to be committed wérshall focus
our attention on Principle|4, which violates the Dekker duality — it allows the imedide T1.2 of
Figurel 7-1 to appear to Thread 2 as if it has occurred before lineé Tieh, though it appears as
executed in order for Thread 1.

The reason behind Princigle 4 is to allow a typical optimization that modern acttimigés im-
plement — writes performed by an executing processor are queued ypivate first-in-first-out
(FIFO) queue, referred to as thtore buffer, instead of being written out to the memory hierarchy.
Figure 7-2 provides a simplified illustration of the relationship between theepsacs (CPUs), the
store buffers, and the memory hierarchy. Though not explicitly showngaré 7-2, the memory
hierarchy in modern architectures typically consists of several levels\ate and shared caches
and the main memory. The further away the memory hierarchy is from thegzwcehe higher the
latency it incurs. The use of a store buffer improves performanceuseowriting to a store buffer
avoids the latency incurred by writing out to the cache. A write in the stoffetisfonly visible to
the executing processor but not to other processors, howeves, ffbon other processors’ perspec-
tive, it may appear as if a read has taken place before an older writd) diffiers from the ordering
perceived by the executing processor (i.e., its program order).

Most systems employ a cache coherency protocol between the pneces$ich governs ac-
cesses to memory locations and enforces a consistent view of the data alnthiegcaches. The

SThis is not a complete list but rather a relevant subset for the purpdses discussion. | refer interested readers
to [3, 71, 135] for full details.

118

cache coherency guarantees that a write becayiuslly visibleonce it leaves the store buffer
and is written to the cache. The proposed hardware mechanism for lctaised memory fences
requires that the target architecture employ MieSI cache coherence protocdlrl] (and can e
adapted to other variants such as MSI [61] and MOESI [3]ra&he controllermanages a cache
using the MESI protocol ensuring that each cache line is labeled with ottee dbllowing four
states:

1. Modified: the cache line has been modified and no other caches have this cache line;

2. Exclusive this cache has exclusive access to this cache line and its content mattthies th
main memory;

3. Shared the cache line may be shared by other caches; or

4. Invalid: the cache line is invalid, which is equivalent to saying that this cache dudsame
this particular cache line.

A cache is said thiold a particular cache line if the cache has the cache line in Modified or Exelusiv
state. When the oldest write is flushed out of the store buffer, the cactielier must first obtain
the corresponding cache line in Exclusive state (if it does not hold tHeedawe in Exclusive or
Modified state already) in order to complete the write. On the other hand,he ¢hat holds a
line may receive a request tlowngradethe cache line into Shared or Invalid state, depending on
whether the requesting cache wishes to read or write to the line. A cachret¢kates a downgrade
request must first write the line back to the main memory (if it's modified) befalevingrades the
line.

Now we shall define more precisely what it means for a memory accessciisirio be com-
mitted. A read instruction is considered to mmmittedonce the data is available (in a state other
than Invalid) in the processor’s private cache. A read may be spa@hljatixecuted out of order,
but it must be committed in order. That is, the processor may perform alggige read and fetch
the cache line early, but if the cache line gets invalidated between the dpectéad and when the
read should commit in program order, the processor must reissue tharrddetch the cache line
again. Once aread is committed successfully, the read value can be usbdéqsent instructions.

A write instruction involves two phases: “committed” and “completed.” A write issidered
to becommittedonce it is written to the store buffer, although its effect is not yet visible teroth
processors. A write is considered to bempletedwhen it is flushed from the store buffer and
written to the processor’s cache, which entails obtaining the cache lineddlughed location in
Exclusive state and updating the cache line with the written value. Once a wnitpletes, its
effect becomes globally visible, since the cache coherence protcamemthat all processors have
a consistent view.

Since reads and writes are committed in the order that they arrive in the timtrgtream,
and the store buffer flushes out entries in FIFO order, it is easy to @eePhinciples 1-3 and
Principle/ 5 of Definition 7.1 are enforced. The only reordering that cauiobetween a pair of
memory accesses is a write followed by a read with a different target sgldg&nce the read can
be committed (i.e., obtaining the cache line in Shared state) while the older write is 8igl gtore
buffer, the resulting behavior “observable” by other processoraishie read appears to have taken
place before the older write.

The executing processor does not “observe” this reordering, V@w&n executing processor
always sees its own write because the hardware emptoys-buffer forwarding by which a read
with a target address that appears in the store buffer is serviced bipthdéuaffer instead of by the
cache. Incidentally, the store-buffer forwarding also enforces tterimg principle that a read is
not reordered with an older write if they have the same target addrefigi(ida 7.1,Principle 4).

119

Furthermore, due to store-buffer forwarding, when two writes to the $aragion from two proces-
sors, say; andP;, interleave, the write ordering observed®ymay differ from the write ordering
observed by, because each processor always sees its own write as soon as it cdyatmits, the
write performed by the other processor until that write is completed antiesdbe cache. On the
other hand, all other processors besiBesindP, observe a consistent ordering of the two writes
(i.e., in the order that the writes complete), as stated in Definition 7.1, Principle 6.

A traditional memory fencenfence, is used tcserializea processor instruction stream, ensur-
ing that the memory accesses beforerilience arrive at the cache before memory accesses after
themfence. That is, memory accesses become globally visible in the same relative orither to
mfence as they appear in the executing processor’s instruction stream. Opealigtiovhen the
executing processor encountersrdRnce, themfence simply forces the processor to stall until its
store buffer is drained, flushing all entries out to the cache in FIFOrorde

Even though amfence ensures that instructions of the executing processor arrive at the tac
the same order as in the executing processor’s instruction stream, oneateufiat using a single
mfence by itself does not necessarily prevent another proceBsérom observing the memory
accesses in a different order than proce$orin particular,P, can only observe an ordering of
Pi's memory accessed; and A, by performing memory access8s and B, which access the
same memory locations # andA; respectively, thereby inferring an ordering from the results
of performingB; andB; (in that order). IfB; is a write andBy is a read, the, can reach the
cache beford®;, which cause$ to infer thatA, occurred beforé\;, based on its assumption that
B; occurred beford3,. Thus, correct use of a memory fence typically involves a paitifehce
instructions, ensuring that the two processors involved agree on tkergydf relevant memory
accesses performed by both.

Besidesnfence, other events in the system may trigger a processor to flush its store, Buftfar
as a context switch, an interrupt, or other serializing instructions. The bttffer also naturally
flushes the oldest entry to memory whenever the system bus is availabl@wv@hant is that, the
entries are always flushed in FIFO order.

7.2 Location-Based Memory Fences

This section describes location-based memory fenc@sutience in details, including its informal
specification, usage, and a proposed hardware implementation, dedsrtee E/ST mechanism
The formal specification, as well as a correctness proof, is pres@nt8dction 7.3. The pro-
posed hardware mechanism that implementslthefence assumes an underlying architecture as
described in Sectidn 7.1.

Informal specification and usage

An 1-mfence takes in two inputs: a locatiox referred as thguarded locationand a valuer to
store inx (see Figure 7-3(a)). Informally, an-mfence executes a memory fence “on demand”
— the 1-mfence serializes the instruction stream of the executing proceBsmly when another
processor attempts to read the guarded location.

Programming using abh-mfence is very similar to programming with anfence— threads
synchronizing vial-mfence need to coordinate with each other and be careful as to where to place
the 1-mfence and which memory location to guard / read after. Justtikence, correct usages
of 1-mfence consist of a pair of memory fences. When used correctly, the serializati®'s
instruction stream enforces a relative order between the Stassociated with the execution of the

120

Primary Thread Secondary Thread

K1 1-mfence(&x,1); J1 y = 1;
K2 J2 mfence();
K3 if(y == 0) { J3 if(x == 0) {
K4 /* critical section */ Ja /* critical section */
K5 3 J5 }
K6 x = 0; J6 y = 0;
()
Instruction translation for I-mfence(&x,1) (line K1 in Témd J)
K1.1 mov LEBit <- 1 //set LEBit
K1.2 mov LEAddr <- &x //LEAddr gets addr of x
K1.3 1le &x //load x in E state
K14 st [&x] <- 1 //store x = 1
K1.5 bnq LEbit, 0, done //jump to done if LEBit != 0
K1.6 mfence //else execute mfence
K1.7 done:
K1.8 //the rest of the program (line [K3)
(b)

Figure 7-3: (a) The asymmetric Dekker protocol using location-based mgrfemces. The code for the
primary thread is shown in linés K1-K6, and the code the sgagnthread is shown in lineslJ1-J6) The
instructions generated for themfence shown in line K1 in(a).

1-mfence and the other memory accesses performe®,bgnd this order is observed consistently
across all processors. That isPifexecuteds before (after) an accegs no other processor would
infer thatS“happened” after (beforé).

The effects of an-mfence are very similar to the effects of a reguteffence: First, when either
anmfence or anl-mfence is used in a program, an implicit compiler fence should be inserted in
that place to prevent reordering of memory accesses by the compilemn&ewither amfence
nor anl-mfence themselves prevent other processors from observing a reorddring memory
accesses of the executing processor, and must be used in pairs. , Seadlization enforced by
anmfence or anl-mfence does not enforce any relative order between two accesses that both
happened before (or after) instruction. This serialization ensuresiih@bcessors (including)
consistently observe that two accessgsand A, happened before (or afteg) but the processors
may not have a consistent view of the relative order betwgeandA,. The relative order between
these accesses is still defined by the TSO / PO memory model.

Figurel 7-3(a) presents the usage oflanfence in the Dekker protocol. To guarantee mutual
exclusion it is crucial thaboth processors insert memory fences between the write and the read,
to prevent the other processor from observing reordering.1FRefence, the pairing can be with
either anothelL-mfence or an ordinarymfence.

The correct usage df-mfence has one distinct requirement that is not needed by the use of
mfence, however. The use df-mfence guarantees that the program execution is serialized cor-
rectly only if the program execution does not contain concurrent writdgtguarded location while
thel-mfence is “in effect.” That is, if a processd? executes ad-mfence with guarded location
X, all other processors running concurrently may read from the gddodationx, but they are pro-
hibited from writing tox or executing an-mfence where the guarded locationxs An 1-mfence
no longer guarantees a correct serializatioR’sfinstruction stream and may be downgraded to an
ordinary store (writingv to locationx) if a concurrent write is detected while themfence is in
effect. The reason for this requirement is explained later in this section.

It is important to note that this requirement does not forbid a program dsingence from

121

having two different threads writing to the location guarded bylanfence. The requirement

is simply that the writes should not be concurrent. In addition, two diffeiteetads may execute
1-mfence with the same guarded locatiorthroughout a program execution, as long as the two
1-mfence instructions are not in effect concurrently. Even though this requirersent necessary
for an ordinarymfence, concurrent writes in a program without proper synchronization tylgica
constitutes a bug, since it results in a nondeterministic execution. Hencefbhever we discuss
the condition ofno concurrent writesin the context ofL.-mfence’s semantic guarantee, it specif-
ically means that no other processors should be writintpéoguarded locatiorof an 1-mfence
while thel-mfence is in effect

A proposed hardware implementation — the LE/ST mechanism

The proposed implementation @fFmfence employs a new hardware mechanism, callead-
exclusive / storeor LE/ST. The name of the LE/ST mechanism is reminiscent of the hardware
mechanism of load-linked / store-conditional, or LL/SC, originally propdsg Jensen, Hagensen,
and Broughton [72]. As we shall see, however, while the concept oinlin& load to a store is
similar, the LE/ST mechanism operates differently, and its purpose is to pravidnce between
memory accesses, not an atomic operation.

Conceptually, the LE/ST mechanism allows the processor to set up a “linikéep kack of the
status of the store associated with theafence (i.e., whether the store to the guarded location is
committed or completed as defined in Section 7.1). The link is set as long as thésstommitted
but not yet complete. While the link is set, the processor coordinates witlatie controller (for
its private cache) to monitor attempts to access the guarded location.

When the link is set, another processor’s attempt to read the guarded fhocatises the proces-
sor to clear the link and triggers actions necessary to serialize the instratigam. On the other
hand, if the LE/ST mechanism detects a concurrent write while the link is iateflewngrading
the 1-mfence to an ordinary store is necessary to ensure that the overall system foakesd
progress. Whenever the store completes naturally (before anotloespar attempts to access the
guarded location), the processor clears the link and thus stops guénditaration. We shall first
describe how the LE/ST mechanism operates, and then explain why it issaegdor the LE/ST
mechanism to downgrade themfence if a concurrent write is detected.

LE/ST requires one new instruction and two additional hardware regigtkesnew instruction,
le, takes one operand, the location of the variable to load, and obtains Eeckiate on that
location. Therefore, oncee is committed the processor has the location in its cache in at least
Exclusive state, and no other processors have a valid copy of the lodatioeir cache. Sincee
is very similar to a regular load, except the requirement for having at leadtsive state on the
location, it can be easily implemented by modern architectures using the ME&ierwy protocol.
The two additional hardware registers afBit andLEAddr, both readable and writable by the
processor, and readable by the cache controller.

Figure 7-3(b) presents an assembly-like translation of e ence performed by the executing
processor, where the value 1 is being stored in Iocadﬂ)mitially, LEBit andLEAddr are cleared.
As part of thelmfence (&x, 1), the processor initiates the link to the guarded location, which
involves three instructions. The first two instructions setlitARit with 1 andLEAddr with the
address ok (lines/K1.1 and K1.2 in Figure 7-3(b)). Next, the instruction in line K1.3 loadx
into the cache in Exclusive state, so that no other processor holds @tepyits cache. Once the

4The code shown is not strictly assembly. First, it is not using a particului®n set. Second, for the sake of
clarity, | chose to use the store instruction (line K1.4) instead of using thearemove instructions to specify instructions
that write to memory (i.e., non registers).

122

cache line ofx is obtained in Exclusive state, the link is fully set. Téeinstruction in line K1.4
stores the value 1 g committing it into the store buffer. If for any reason the link is broken, implied
by the zero value inEBit (line/K1.5), the processor executesmdfience (line/K1.6). Themfence
causes the processor to serialize its execution — it flushes the storg baflehus completes the
store of the guarded location, making it globally observable by other gsoce. If the link is not
broken when thet in line|K1.4 commits, the processor may continue without flushing the store
buffer.

Let's now examine how the cache controller interacts with the processoiatd ¢iue location
stored inLEAddr. Essentially, the LE/ST mechanism piggybacks on the cache coherasiogqr
to detect another processor’s attempt to access the guarded locati@neVgh boti.EBit and
LEAddr are set, the cache controller listens to cache coherency traffic, an@sithiéi processor if
any request requires the cache controller to downgrade the state @ldhe llne corresponding to
the guarded location. There are three possible events that cause ltleinado be downgraded
from Exclusive state:

A. Eviction —the cache line needs to be evicted;
B. Concurrent read —the cache line needs to be downgraded to Shared state; and
C. Concurrent write —the cache line needs to be downgraded to Invalid state.

When the cache controller encounters an eviction or a concurrentead — in these cases
the cache controller notifies the processor and waits for the processgponse before it takes any
actions regarding the guarded location, since these events requireitiieat#on of the instruction
stream. When the processor receives the notification from the cactreltnit clears the.EBit
andLEAddr and flushes the store buffer. The processor responds to the aauheller only when
the most up-to-date value of the guarded location is flushed from the stifee to the cache. When
the cache controller receives the response it replies back to the tiegu@ecessor. Since the cache
controller only resumes the action regarding the guarded location afteeit/es a response from
the processor, it is guaranteed that it will send the most up-to-date vatbe tead request (or to
memory in the case of eviction). By clearing ttEBit, the processor remembers that the link to the
guarded location is broken. In the event that the link is broken befo(kéne K1.4) was committed,
the code forl-mfence takes the branch that executesmence, causing the store buffer to flush
(line[K1.5) after the store commits. If none of the scenarios above odbertink remains set for
as long as the store is not yet complete and the processor still owns theelicech

When the cache controller encounters a concurrent write— in this case the LE/ST mecha-
nism does not guarantee the serialization and regards-thience as a regular store. The cache
controller notifies the processor, and the processor simply clears thenlinleaponds immediately
to the cache controller, without flushing the store buffer. The cach&atlan can then respond
to the requesting processor. Themfence semantic is not guaranteed in the event of concurrent
write because the LE/ST mechanism may create additional dependenciesth@@cessors when
several of them attempt to flush their store buffers, and these deeslemy cause the system to
deadlock. To avoid the possibility of a deadlock and allow the system as le wehmake forward
progress, the LE/ST mechanism gives up the serialization guarantee iregdenpe of concurrent
writes and regards the store associated withlthefence as a regular write. How additional de-
pendencies are created by the LE/ST mechanism and why regardingnifwence as a store avoids
a deadlock are discussed in detail after the following concluding remarkseomardware imple-
mentation.

The design of the LE/ST hardware mechanism is intended to be light-weidleffacient, which
uses only existing mechanisms and adds minimal hardware. Since the desigrea®nly one pair
of LEBit andLEAddr is allocated per processor, if a processor encounters a sécarfédnce

123

Processor 1 Processor 2

T11 x = 1; T21 y = 1;
T1.2 1mfence(&y, 1); T2.2 1mfence(&x, 1);

Figure 7-4: An example of multiple writers to the same location, whemas®f the writes are not protected
by 1-mfence. This situation can cause deadlock without the additioretimnism to avoid it.

while the link from the firstl-mfence is still in effect, the processor must clear the link and flush
the store buffer before it can proceed with the secbntfence, unlessthe second -mfence has

the same guarded location as the first one. That means that a proceggoossily handle two
consecutiva -mfence instructions with the same guarded location without flushing the store buffer
in between. The semantics dbfmfence is still guaranteed (assuming no concurrent writes), even
if another processor attempts to read the guarded location between themfsnce instructions.
However, in the event where a downgrade request arrives at tioegsor between setting up the
LEBit (line/K1.1) and committingst (line [K1.4) for the second-mfence, the processor will
flush the store buffer twice — the first flush is performed when the psocas notified, making
the store associated with the filstmfence visible, and the second flush is performed afterdhe
commits, via taking the branch (lines K1.5 and K1.6) since the link has beerd|eaaking the
store associated with the secanehfence visible.

Examining the LE/ST mechanism in the context of the Dekker protocol, dies@nsures that
the primary processor has the cache linexor Exclusive state before the in line/K1.4, its cache
controller must receive a downgrade request from a secondacggsor before the secondary pro-
cessor can accessFurthermore, since the cache controller of the primary processoot@spond
to the downgrade request until the primary processor responds to itsaiiifi, the secondary pro-
cessor will see the most up-to-date value.of

Why 1-mfence does not guarantee serialization when concurrent writes éxis

To explain how the system may deadlock in the case where concurrens exitd, let's examine
a simple example in which two processors may deadlock. Figure 7-4 shalesso@pets that are
executing concurrently on two different processors. Procd3sarites to memory locatiox and
executes an-mfence with guarded locatiory. Similarly, P, executes the mirrored code which
writes to locationy and executes ah-mfence with guarded locatiox. Now lets look at the store
buffer of P, after it executes ab-mfence on locationy. Since the write toc is not guarded by an
1-mfence, locationx may or may not be if;’s cache (and it is not in this example, given tRais
executing concurrently), but locatigris in P;’s cache in Exclusive stat®,’s store buffer similarly
containsy followed byx, with x being inP,’s cache in Exclusive state but nat

Suppose tha®; is trying to flush locatiorx from its store buffer to its private cache. In order to
do so,P;’s cache must gain Exclusive state xinBy the MESI protocolP;’s cache controller thus
sends arequest B8, who holds, to downgrade its state to Invalid. AssumiRgs 1-mfence is still
in effect when it received the request, in order to guaraBseserialization in such a scenarid,’s
cache controller must notify the processor and not respoRgg@ache request untih, performs an
mfence successfully. In order foP, to execute amfence, P,’s cache controller must now obtain
the cache line foy in Exclusive state, which involves sending a reque$tto invalidate its cache
line ony. Similarly, sinceP;’s 1-mfence is still in effect, in order to guaranté®’s serialization,
P1's cache controller cannot respondRgs cache request unti; executes amfence successfully,
which means it must obtain Exclusive statexoThus, the cache controllers of the two processors
are locked in circular dependencies Pris waiting on gettingk in Exclusive state before it can
release the cache line gnandP; is waiting on gettingy in Exclusive state before it can release the

124

cache line orx.

This example illustrates the dependency the LE/ST mechanism creates bettisgring an
incoming request to invalidate the guarded location and obtaining Exclusieem some memory
location in the store buffer. This dependency means that the cachel®mif@ processoP; with
anl-mfence in effect can no longer immediately respond to an invalidation request frmtihear
cache controller on the guarded location. Instead, the cache control¢mvail until P, success-
fully flushes its store buffer (at least up to the point where the guardedidm is flushed into the
cache), which involves gaining Exclusive state on memory locatiois'snstore buffer. The sys-
tem deadlocks if another proces$brhas exactly the opposite dependency, PehasP;’s guarded
location in its store buffer and has aAmfence in effect on a location which happens to bePi's
store buffer. Regarding thHe-mfence as an ordinary store breaks the circular dependency, because
the processor does not attempt to flush its store buffer and the cactmelleorcan immediately
respond to the incoming invalidation request.

Even though Figure 7+4 illustrates a simple example involving only two processith two
memory locations, the circular dependencies can potentially occur amoagisprocessors with
multiple guarded memory locations, where each processor hasmefence in effect. Since all
processors regards themfence as a regular store when a concurrent write is detected, the potential
circular dependencies are guaranteed to be broken and the systewhateacan make forward
progress.

The circular dependencies between satisfying an incoming requesbeaining Exclusive state
can only rise when concurrent writes exist in the program. This is beaanlg a write operation
is saved in the store buffer, and needs to gain Exclusive state betareimg the cache. A read
operation does not go through the store buffer, and therefore wiltaate a dependency when
the processor is trying to flush the store buffer. To distinguish betweshagd write attempts,
the LE/ST mechanism relies on the cache controller and its implementation of the @atwerency
protocol, to only send an invalidation request to another cache if it intenglstito a location, but
not if it intends to read — in which case, it sends a “downgrade to shaeegiest.

The design decision to downgrade themnfence into an ordinary store and not guarantee se-
rialization if a concurrent write is detected was made to keep the LE/ST meohéigtgweight.

In addition, concurrent writes in a program without proper synchatiun typically constitute a

bug and result in nondeterministic execution. Therefore, keeping-theence semantics would
cumbersome the implementation and would not benefit the programmer. Eveh ttheLexistence

of concurrent writes may not necessarily lead to circular dependeritisscertain that circular
dependencies involve concurrent writes. Concurrent writes aily datected by the type of the co-
herency message received by the cache controller, and the pnogetssos are simple and effective

— the deadlock is avoided. Thus, whenever concurrent writes aretedt¢he LE/ST mechanism
downgrades the-mfence semantics, instead of keeping track of actual dependencies, which would
require global coordination among all cache controffers.

Finally, there is one important implication that follows from how the LE/ST mechahisndles
concurrent writes. That is, a memory location guarded by-arfence should be allocated on its
own cache line so as to avoid false sharing. Otherwise, a cache contrallgeceive an invalidation

50ne could imagine that some form of policy can be employed in the cadtteolier so that arl-mfence is not
immediately downgraded whenever a concurrent write is detected. $tanite, one could employ some form of time-out
policy — a cache controller guarding locatigrbut needs Exclusive onto flush the store buffer only downgrades the
1-mfence if some amount of time has elapsed and its requestluas not been fulfilled. One could also employ some
“tie-breaking” policy so that in the event of circular dependencies, ong/processor will ever downgrade itanfence.
One possible tie breaker is to say that a cache controller guarding logatiwhneeds Exclusive gnonly downgrades
thel-mfence if the address ok is smaller thary.

125

request on the cache line not because another processor wishegettowhe guarded location,
but rather because another processor wishes to write to some memoryrddbatibvappens to be
allocated next to the guarded location.

7.3 Formal Specification and Correctness of-mfence

This section formally defines the specificationieihf ence and proves that the LE/ST mechanism
described in Sectidn 4.3 implements the specification. This section also shoyis tha event that
there are concurrent writes during an execution, the LE/ST mechanssmadbintroduce deadlock.
Then, based on the specificationlefnfence, one can show that the asymmetric Dekker Protocol
usingl-mfence (as shown in Figure 7+3(a)) achieves mutual exclusion.

Formal specification of1-mfence

To formally define the specification of armfence, some notation and definitions are required.
Throughout this section, we shall use the short hand not&iek(x) to mean thaS s a store
performed by processét, writing a value to memory locatiox Similarly, the short hand notation
L = Rp(X) means that is a load performed by process®y reading from memory locatior In
cases where it is not important to distinguish which processor perforreeaptiration, the notation
W(x) or R(x) is used, omitting which processor performed the memory operation.

To formally define the specification afmfence, Definition/ 7.2 first defines the “serialization
order” for a given memory location.

Definition 7.2 (Serialization order) Given a memory location X, the ordering of accesses to x per-
formed by all processors is as follows.

1. Aload L= R(x) is serialized immediately aftea store S=W(x) if and only if L reads the
value written by S.

2. A store S=Wk(x) is serialized immediately aftea store $=W(x) if at the timecompletion
of S, had P executed a load+Rp(x), L would have read the value written by S

3. Aload L= R(x) is serialized immediately befora store S= W(x) if there exists a store
S =W(x) such that L is serialized immediately aftér &d S is also serialized immediately
after S.

Given two memory accesses @nd A to a memory location x, we say thai & serialized
before Az, denoted as A<s Ay, if and only if A is serialized immediately before por if Az is
serialized immediately before some other memory access that is seriadioed B. Vice versa, A
is serialized afterA;. The order of all accesses to x performed by all processors is ezfeoras the
serialization orderof x.

While the relation of serialized immediately before / after is not transitive, tti@lization order
defined in Definition 7.2 is transitive, i.e. M <sA, andA; <sAg, thenA; <sAgz. Furthermore, the
serialization order on a given memory location is globally consistent aclges®eessors, since the
serialization because it is defined by the time of completion, not the time of commitniplete a
store to locatiorx, the executing processBrmust gain Exclusive state ofnand thus all processors
must agree on a single serialization order for the location

The program orderof a processoP is defined by the ordering of memory accesses executed
in P's instruction stream. Formally, the program order is determined by the time dtistruare
committed.

126

Definition 7.3 (Program order) Theprogram orderof a processor P is defined by the ordering
of memory accesses committed in P’s instruction stream. Lehd A be Rx(x) and / or W(y)
(where x may or may not be the same as y). We say that-A®, if A; executed before An P’s
program order.

Given serialization order on all memory locations and the program ordal pfocessors, Def-
inition 7.4 defines thénferred orderof memory accesses for a given proced3ptdenoted as<p:

Definition 7.4 (Inferred order) Let A and A be memory operations performed by processor P,
and let B and C be memory operations performed by other procegsBrsTheinferred orderfor
P is defined as follows.

1. If Ay <p Ao then A <p As.

2. f B<sA; and A <p Ay, then B<p A1 <p Az. Similarly, if A <sB and A <p Ay, then
A1 <p A2 <p B.

3. IfA<pBandB=<pC, then A<pB<pC.

For each processd?, the inferred order combineR's program order with the serialization
orders of memory locations th& accessed. By definition, two memory accesses are ordered in
program order £p) if and only if both memory accesses are performedPbyin addition, two
memory accesses are ordered in serialization orde) énly if both memory accesses have the
same target memory Iocati@nFinaIIy, the inferred order relation is transitive. The inferred order
does not provide a total order on all accesses performed by allggose Rather, it provides a
partial order for each procesd®rthat agrees witl’s program order and the serialization orders of
all the memory locations accessedmy

Definition 7.5 (Consistent inferred orders) The inferred orders of processorg &d B are con-
sistentwith respect to specific memory accessesd A if all the following conditions are satis-
fied:

1. A and A are ordered by both inferred ordersp, and <p,,
2. A and A were performed by the same processor, and
3. If Ay <p, Ao then A <p, Ao.

The last condition guarantees thatdf preceded\; in one inferred order, it must precedas
in the other order, and vice verse, so that the relative orderidg ahdA, in both orders agree.

Let's go back to the TSO and PO models that are the assumed architectieslfatif ence im-
plementation. Itis due to the TSO and PO reordering that the inferredsastidifferent processors
may be inconsistent. The ordering principles of TSO and PO defined inifiefii.1 (Section 7.1)
lay out the discrepancies between the inferred orders that two diffprenessors may deduce.
Memory fences were created to provide consistency in the inferredsptmeenforcing consistency
between particular memory accesses across the inferred orders mfcaspors.

The difference in the inferred orders can be demonstrated using arpexaAssumingnfence
or 1-mfence is not used, imagine the following scenario. A procesdocommittedWp, (x) and
then committedRp, (y), and another processBs committedWe, (y) and then committe®e, (x). By
Definition[7.3, we have:

\NP1<X) <P Rpl(y)7 (7.1)
VVPz(y) <p, RPz(X)' (7-2)

81n this case, “only if” but not “if and only if” is used, because two re&mlthe same location may not be ordered.

127

However, at the end d?;, andP, execution, it is possible to reach the following serialization order
given the TSO and PO re-orderings and Definition 7.2:

RPZ(X) <s \/\431()(), (73)
Re(y) <s Wh(y). (7.4)
Then, by Definition 7.4, we have:
RP2<X> =P VVPl(X) =P RP1<y) =P \sz(y)7 (7-5)
RP1<y) =P, \sz(y) =P, RPz(X) =P, VVPl(X)' (7-6)

Pi's inferred order (7.5) is obtained via orderings (7.3), (7.1), ang (B#nilarly, P,’s inferred order
(7.6) is obtained via orderings (7.4), (7.2), and (7.3). Therefoe éwough fronP;’s perspective,
We, (X) <p, Rp,(Y), P, observed the opposite order. Similarly, even though s perspective,
Wk, (Y) <p, Re,(X), P1 observed the opposite order. These differences in their inferrextoete
consistent with Principle |4 of Definition 7.1. In additioR; observed thaWp, (X) <p, We,(Y),
wheread, observed the opposite order, which is consistent with Principle 6 of Definitib.

As mentioned at the end of Section 7.1, correct usage of a memory fericalltynvolves a
pair of mfence instructions. Using the same example, one can also showtlaadP, can observe
different ordering of memory accesses if only amgence is used. Assume thd executed a
mfence betweenMp, (X) andRp, (y), butP, did not usenfence. At the end ofP; andP, executions,
it is still possible to end up with serialization orderings (7.3) and (7.4), lscauen though an
mfence executed byP; ensures thaRp, (y) did not commit untig, (X) completedWe, (x) could
have still completeafter Rs,(x) committed, resulting in ordering 7.3, ai$, (y) could have still
committedbefore W, (y) completed, resulting in ordering 7.4. Given the same program orders 7.1
and 7.2 and the same serialization orders (7.3)/and [143ndP- inferred orders are still different,
even thoughP; used amfence. HadP, alsoexecuted amfence between, (y) andRep,(x), this
scenario could not have happened, and both processors woulddrasistent inferred orders with
respect to their read and write operations.

Now Definition 7.6 defines the specificationbfmfence formally.

Definition 7.6 (L-mfence specification) Let C be a program execution that does not contain con-
current writes, S be a store associated with afmfence executed by processog,Pand A be a
memory access also executed hy Rt B be another processor whose inferred order enforces an
ordering between A and S. Let Bnd B, be the two memory operations executed pyaetess-
ing the same locations as A and S that lead to the ordering of A and Ssinierred order. The
l-mfence enforces that the inferred orders of Bnd B are consistent with respect to A and S if
they are also consistent with respect tpdhd B.

The condition that the inferred ordersffandP, are consistent with respectBg andB;, performed
by P, implicitly states that if the relevant memory accesses are a write followed bydatrese
ought to be amfence (or 1-mfence) between them to prevent reorderingRyis inferred order.
This condition follows from the correct usagemffence (and1-mfence), that involves a pair of
fences. If the condition is met, then aAmfence with a storeS=Wp, (x) enforces an inferred order
betweernSand another accegsperformed byPy, that is consistent with the inferred orderft

Correctness proof of the LE/ST mechanism

First let's see some definitions and lemmas that will help us show that the LE/S¥amism (which
includes the code sequence shown in Figure 7-3(b)) implements the sptémifiof 1-mfence.

128

Definition 7.7 Given a particular instance of-mfence with guarded location x implemented with
the LE/ST mechanism, a link for themfence is setif LEB4 t containsl, LEAddr contain x, and the
executing processor’s private cache holds the cache line for x (i.e., ilugxe or Modified state).
If any of these conditions is not met, the linkcisar.

Lemma 7.8 Given a particular instance of-mfence with guarded location X, iLEB%t contains
1 when the associated store commits (line K1.4), the link must be set.

PROOF By executing the instructions in lines K1.1-K[L.3, the executing processsmup the
link. SinceLEBit is set as thdirst instruction of thel-mfence execution, if the link was broken at
any point before the commit aft in line(K1.4, the LE/ST mechanism cledtEBit as part of the
protocol to break the link. Once the link is broké&EBit is never set again until the next instance
of 1-mfence. O

Lemma 7.9 The LE/ST mechanism maintains the ordering principles defined by the P&D /
memory model described in Section|7.1.

PROOE The ordering principles are maintained by the fact that instructions anendted in
order, and a processor’s store buffer is flushed in FIFO ordee OE/ST mechanism employs
regular IoaoB stores, and memory fences, which do not interfere with the commit ordefing
instructions and the FIFO ordering of the store buffer. Thus, the TSO didering principles are
maintained. O

Lemma 7.10 Let S=Wp, (X) be a store associated with an-mfence performed by processor P
Let L= Rp,(x) be a read operation performed by processgrdhd committed after /Pgained
Exclusive state on x (line K1.3 in Figure 7-3(a)). The LE/ST mechanisorenthat, before P
commits the next instruction following this-mfence, either the store S in line K1.4 is already
complete, or L is serialized after S, i.e.<SL.

PrROOF Since the lemma assumes tRatexecutes the read aftBr gained Exclusive state o

it must be that the cache controllerf sent a request to downgragéo Shared td;. Let's look

at the link situation whei® commits, and examine the actionsRfwhen it receive$’s request.
There are two cases to consider: either the link is clear at the time &bemmits, or the link is
still set.

1. Link is clear when S commits. The link can be clear only iP,’s request was detected
after the Exclusive state was gained (line K1.3) but befdtead a chance to commit. By
Lemma 7.8, we know that if the link is clear, th&Bit must be 0. Therefore, by the imple-
mentation of the LE/ST mechanism (Figure|7-3(b)), the condition for thechréime K1.5)
is false, and thu®; must execute amfence in line/K1.6 right after it commitsS, causingS
to complete before the next instruction (line K3 in Figure| 7-3(a)) commits. Nateiriithis
casel is serialized befor&.

2. Link is set when Scommits. If the link is set, then by Definition 7.7, we know th@ag still
hasx in Exclusive / Modify state whe8commits. By the LE/ST mechanism, this means that
when the cache controller receiviess downgrade requed®;’s cache controller must notify
the processor when such a request arrives, and upon notificgtiolears the link, flushes its
store buffer to complet§, and replies to the cache controller. After tHats cache controller
responds to the downgrade request. Thusust be serialized aft&:

"As explained in Section 7.1, thee instruction is very similar to a regular load and can be implemented using the
existing architecture and cache coherency protocol.

129

a

Theorem 7.11 is the main theorem that shows that the LE/ST mechanism impleneé@nrisftbnce
specification.

Theorem 7.11 The LE/ST mechanism implemebt# fence as specified in Definitidn 7.6. That is,
let C be a program execution that does not contain concurrent writes, Ssher@ associated with

an l-mfence executed by processog,Rand A be a memory access also executediby & B be
another processor whose inferred order enforces an ordering legtweand S. Let Band B be

the two memory operations executed byacessing the same locations as A and S that lead to the
ordering of A and S in § inferred order. Anl-mfence implemented using the LE/ST mechanism
guarantees that the inferred orders of &d B are consistent with respect to A and S if they are
also consistent with respect tq Bnd B.

PrROOF The proof is splitinto two cases: one that proves that the inferredoodall processors
are consistent with respect to accesses that happened beforafamce in the program order of
the executing processor, and the other proves the same about aaftssthel -mfence.

Case 1:A<p, S SinceA <p, Sand bothA andSwere executed b, it must be thaA <p, S If
Ais a store, then by the TSO and PO ordering Principle 5 in Definition 7.1 an@foyria 7.9, it is
impossible for another procesdeyto infer thatS<p, A.

If Ais aload, in order foP; to infer thatS—<p, A, it must be thaScompleted befor& committed.
Given our assumption th@ <p, S, by the TSO Principle 2 in Definition 7.1 and by Lemmal7.9,
this cannot be the case.

Case 2:S<p, A. SinceS<p, Aand bothSandA were executed b, it must be thaB<p, A. If
Alis a store then by the TSO and PO ordering Principle 5 in Defirition 7.1 and foyrlae7.9, it is
impossible for another procesdey to infer thatA <p, S Thus, we only need to consider the case
whereAis a load, which can be reordered with older stores by the TSO and Péngrgenciples.

Without loss of generality, le8=Wp, (x) andA = Rp,(y), wherex s the location guarded by the
1-mfence. The case wherg=y is trivial — assumingk =y, since bothA andS are executed by
P1, A must have observed the value written®gue to store-buffer forwarding, and no reordering
could have occurred, since in this c&8es A. Hence, another processBr must also infer that
S<p, Aand the inferred orders are consistent with respeatandS. Thus, we should consider the
casex#y.

There are three possible pairing®f andB, executed by, that allowsP; to infer and ordering
betweermA andS, and we consider them one by one.

1. B1 = Rp,(y) andB; = Rp,(x). Given that the inferred orders Bf andP; are consistent with
respect tB; andB,, there are two cases to consider: eitBets B, or B, <s S, depending
on the value read b,. If S<gB,, there is no placement @& andB; that could forceP; to
infer A <p, S Thus, the inferred orders & andP, are consistent with respectfoandS,

If B, <s 'S, then it must be thad committed afteB, committed. Moreover, it must be that
B, committed before the-mfence executed byP; onx gained the Exclusive state anThis
follows from Lemma 7.10, which says thatB committed after the Exclusive state was
gained byPy, then eithelSis completed by the tim& committed, orB; is serialized after
S Since we assume thBh <s S it must be thaSis completed by the tim@& committed.
Thus, P, cannot possibly infer thah <p, S Thus, the inferred orders & andP, are also
consistent with respect 8andSin this case.

130

2. B1 =Wp,(y) andB; =Wk, (x). The case thaB, <p, B is trivial, since in this case, nothing
can forceP; to infer thatA <p, S, no matter what the serialization order betw@&randA,
andB; andSare. Thus, let’'s consider the caBe<p, By.

Let's assume for the sake of contradiction tRainfers an ordering inconsistent frolfa with
respect toA andS. That is,A <p, S, which can only be true iA <sB; andB; <s S Since
both B; andB; are stores, by Principlel 5 in Definition 7.1 and by Lemma 7.9, the inferred
orders ofP; andP, must be consistent with respectBg andB,. Furthermore, sinc8; is

a store to locationx, guarded byS, based on the assumption th@tcontains no concurrent
write, B, cannot occur while the link fdP; is in effect. I1fB, reached the cache before the link
was set, theB, must have completed befoBeommitted, which is befor& committed. This
leads to a contradiction to our assumption — siBgeompleted befor&, completed, which
is beforeS committed, which is beford committed, it cannot be possible to hate<s B;.
Thus,P; andP, must infer a consistent ordering with respecitandS. On the other hand,
if B, reached cache when the link was no longer set, that means 8ittees completed at
this point, orS has not committed but would complete befédreommits since the link was
broken. IfShas completed, then it must be tlSat s B2, which leads to a contradiction to our
assumptionB, <s S. If Shas not committed but would complete befdreommits, this again
leads to a contradiction that<g B;, sinceB; must be completed by the tini reached the
cache.

3. B1 =Wk, (y), B2 = Re,(X). The only interesting case here is wHgn<p, B,. This is because,
if B, <p, By, thenP, can always infer tha$ <p, A, no matter what the serialization orders
betweerB; andA, andB; andSare. Thus, we focus on the case whBre<p, B,. Again, let's
assume for the sake of contradiction that the inferred ordeRs ahd P, are not consistent
with respect tcA andS. That is,P; infer thatA <p, S, which can only be true ik <p, B1 <p,

B2 <p, S Furthermore, since the lemma guarantees that the inferred ordérsantiP, are
consistent with respect & andS only if they are also consistent with respecBioandBsy,
we must also assume thag <p, Bo.

To achieve this assumption, all the following constraints must hold:

(&) A commits beforéB; completes,
(b) B2 commits beforeés completes,
(c) By completes beforB, commits.

Note that constraint (c), if not occurring naturally, can be enforcgeither inserting an
mfence Or anl-mfence betweerB; andB,. An mfence guarantees that the next instruction
after thenf ence commits only after all instructions before theence have completed, which
meets the constraint.

On the other hand, if abh-mfence is used to serializ8; andB,, by Lemmd 7.10, either
B; <sA, or B; completes beforB, commits. Sincd3; <s A breaks the first constraint, which
leads to a contradiction, it must be thi&tcompletes befor8, commits.

Taking all the constraints togethéy,must commit beforé& completes foP; andP; to infer
inconsistent orders with respect$@andA.

Let's examine tha-mfence link status ofP; when it commitsA.

e Thelink is clear whe commits. By Lemma 7.1 must be completed before the next
instructionA commits, which means th&tis already completed whelcommits. This
leads to a contradiction to thAtmust commit befor& completes, and thug, cannot
infer thatA <p, S

e The link is set wherA commits. This means th& has been committed but not yet
completed, and thd; holds the guarded locationin Exclusive or Modify state. LeZ

131

be the next access xperformed by any processor.2f= R(x), by Lemma 7.10, it must
be thatS<s Z. If Z = B, then constraint (b) is violated, which leads to a contradiction.
If Z# By, sinceZ is the next access toafterS, and since constraints (a) and (c) dictate
that A commits beforeB, commits, it must be thab <sZ <sB,. This again violates
constraint (b) and leads to a contradictionZ K= W(X) is the next access tq since the
lemma assumes that does not contain concurrent writes, it must be thabmpleted
beforeZ completed, and therefore the link was not set wA@ompleted. ThusS<sZ.
Following the same reasoning as the case wlereR(x) andZ # B,, this again leads

to a contradiction. Thug, cannot inferA <p, S.

In all cases, we have shown that the inferred ordei? @ndP, must be consistent with respect to
A andS, assuming that they are also consistent with respeB{ emdB, executed byP, accessing

the same locations asandS. Thus, the LE/ST mechanism correctly implements the specification
of 1-mfence as specified in Definition 7.6. O

Theorem 7.11 shows that the LE/ST mechanism correctly implements the sptemifiaf1-mfence,
which provides guarantees only for computations that do not contaiuo@emt writes. This is nec-
essary to avoid deadlock due to the additional dependencies that the bhi&Tanism creates.
Next, we show next that the LE/ST mechanism does not introduce systaitodk.

Theorem 7.12 The LE/ST mechanism does not introduce system deadlock.

PROOE The LE/ST mechanism is implemented using mostly instructions ready available in the
architecture, where each instruction can make progress by itself. Theiaration in which the
LE/ST mechanism introduces a new dependency is when the link is set fem@ance executed
by a processdry, the store associated with themfence has been committed inf's store buffer,
and a different processéb requestd; to invalidate its guarded location. In this cagg,cannot
satisfy the incoming invalidation request frafa until all its outgoing requests to get Exclusive
states on locations in the store buffer before the guarded location arféeegatiBhis is because;
must flush the locations in its store buffer in FIFO order up to and including ubedgd location
before it can invalidate the guarded location.

A concurrent write is easily detected by the LE/ST mechanism when the caclmller re-
ceives an invalidation request for the guarded location while the link is sdtenvihvalidation
request to the guarded location is detected, the LE/ST mechanism notifie®tessor, which in
turn just clears the link and let the cache controller reply to the invalidatiomestgmmediately.
Since the cache controller no longer need to wait for other locations in treetmtéfer to be com-
pleted before it responds to the invalidation request, the system doesatibdk. O

Given that the LE/ST mechanism implements the specification as describedriitiDefr.6, it
is not difficult to see that the asymmetric Dekker protocol shown in FigilB@Yguarantees mutual
exclusion. Since the primary thread useslamfence between the store toand the read frony,
and the secondary thread usesndance between the store tpand read fronx, according to the
specification, we know that the primary thread and the secondary thgeae @pon the orderings of
Wk, (X) <p, p, Re,(Y) andWh, (Y) <p,.p, Re,(X). As long as they agree on the orderings of the relevant
memory accesses, mutual exclusion is guaranteed.

The asymmetric Dekker protocol is designed to optimize away the overhealddmnto the
primary thread at the expense of additional overhead on the secahdzag, which is advantageous
for applications that exhibit asymmetric synchronization patterns. Henag,emce is used in the

132

secondary thread instead of aamfence to avoid incurring additional overhead on the primary
thread. If the secondary thread was usindglamnfence, the primary thread may need to wait for
the secondary thread to flush its store buffer when it attempts toyriedithe K3. Nevertheless, the
secondary thread has the option of executing the mirrored code (usitignce (&y, 1) in line[J2),
and the protocol still provides mutual exclusion in such case.

7.4 An Empirical Evaluation of Location-Based Memory Fences

This section presents an empirical evaluation of a software-based impl¢imenfdocation-based
memory fences, which have two purposes. First, the evaluation demosshateerformance ben-
efits can be gained using location-based memory fences instead ofrprbgsed memory fences.
Second, the evaluation allows us to analyze the expected performance miofosed hardware
mechanism, based on performance results of the software implementation.

The software prototype af-mfence used in this section is implemented using software signals.
This implementation is applied to two applications that exhibit asymmetric synchtiomizaat-
terns, and their performance is evaluated during serial and paral®itexe All experiments were
conducted on an AMD Opteron system with 4 quad-core 2 GHz CPU’s gavintal of 8 GBytes
of memory. Each core on a chip has a 64-KByte private L1-data-cauthe &12-KByte private
L2-cache, and all cores on a chip share a 2-MByte L3-cache.

When executed serially, the benchmarks perform better using the sefimvptementation of
1-mfence instructions than their counterparts using ordinafgnce instructions. The reason for
these results is that the software prototype incurs effectively no caérbe the executing thread
when it runs serially. When executed in parallel, even though the commumicateshead of the
software prototype is high, some benchmarks still see performance toieoefiusing the soft-
ware implementation af-mfence instructions. While the software implementation is feasible, the
LE/ST mechanism should significantly enhance the performance of tharernks in parallel exe-
cutions (without affecting the results in the serial executions), and endatger class of programs
to benefit froml-mfence.

This section briefly summarizes the software prototype, compares theeadebetween the
software prototype and the LE/ST mechanism, describes the experimeniitd ased on the soft-
ware prototype, and discusses how the outcomes would differ with the Liaéshanism.

Software prototype ofi-mfence

The software prototype of the location-based memory fences is implemenmedsignals, similar
to the approach proposed in [34]. The software prototype must ¢lyrepture two main effects.
First, the primary thread must not reorder the write and the read at the cothepiéd This can
be achieved simply by inserting a compiler fence at the appropriate locatewon8, before the
secondary thread attempts to read the variable written by the primary thraadstitcause the
primary thread to serialize, and only proceed with the raféel the primary thread has performed
the serialization. This is achieved via signals — a software signal genematiegerrupt on the
processor receiving the signal, and the processor flushes its sfifee thefore calling the signal
handling routine. Thus, the secondary thread sends a signal to the ytimead and waits for
an acknowledgment by spinning on a shared variable. Upon receiangjghal (which implicitly
flushes the store buffer), the primary thread executes a user-dsfgread handler, which sets the
shared variable as an acknowledgment, thereby allowing the secondsagl tb resume execution.

133

Overhead comparisons between the software prototype aed /ST mechanism

Let's compare the overhead between the software prototype and the bi&@Manism in two cases:
when the primary thread executes alone, and when other secondayskesest in the same context.

When the primary thread executes alone, the software prototype incgligilole overhead
from the compiler fence, while the LE/ST mechanism would incur small additmrexhead from
setting the link, performing the load-exclusive, and taking the brancheniesless, this additional
overhead should be negligible as well, since the target cache line of thstiglin the primary
processor’s cache, and the branch is a predictable branch for theanbs

During parallel execution, the software implementation using signals would muaah higher
communication overhead compared to the LE/ST mechanism. In the software impdiomg
the communication overhead includes the secondary thread sending thkeasigrwaiting for the
primary thread to flush its store buffer and handle the signal. Furtherthiseoftware implemen-
tation also slows down the primary thread whenever communication occwa,deethe primary
thread must handle the signal (which entails crossing between kerneisananodes four times
to execute a user-defined sigf)avhile the secondary thread waits. The estimated cost of a single
round trip communication is on the order of, 000 cycles on the system in which the experiments
were run. On the other hand, the round trip time in the LE/ST mechanism invehiéag for the
cache controllers of the two processors to send and handle mesdegés @L1 cache miss /L2
cache hit), and for the primary processor to flush its store buffer. & symthetic benchmark to sim-
ulate this round trip time, which costs about 150 cycles on the system wheegghgments were
conducted. Moreover, the performance impact on the primary pracisssegligible: it just needs
to flush the store buffer and regain the cache line the next time around;dbesgor performance
is not affected by the cache controller listening to cache traffic and hgmilgssages.

Performance benefit can be gained usiagfence if the latency avoided by the primary thread
is greater than the communication overhead borne by the secondary. tRveitidg the overhead
comparison into the context of benchmark execution, the software implementatjoires signif-
icantly more asymmetry in the benchmarks in order to obtain performance gairihtad E/ST
mechanism.

Applications overview

Two applications are used to evaluate the location-based memory fencgshesisoftware pro-
totype — the asymmetric Cilk-5 runtime system and an asymmetric multiple-reader-girige
lock.

For the first application, the open-source Cilk-5 runtime systen%[léghodified to incorporate
1-mfence into the Dekker-like protocol employed by its work stealing schedulerrnedeo as the
ACilk-5 runtime system In a work-stealing scheduler, when a thief (the secondary threadsne
to find more work to do, it engages in an augmented Dekker-like protocolangitien victim (the
primary thread) in order to steal work from the victim’s deque. Assuming émelimarks contains
ample parallelism, a victim would access its own deque much more frequently thif, decause
steals occur infrequently.

The second application uses asymmetric multiple-reader single-writer logkvhere the lock
is biased towards the readers, henceforth referred to asRlé lock From time to time, a reader
(the primary thread) turns into a writer (the secondary thread), and attéonatgjuire the ARW

80ne could modify the operating system to cut the signal handling oveduwaa by half (crossing two times instead
of four), but that would still be on the order of thousands of cycles.
9The open-source Cilk-5 system is available at http://supertech.csail ufitl&ttilk-5.4.6.tar.gz.

134

Benchmark| Input Description

cholesky | 4000/40000| Cholesky factorization
cilksort | 10° Parallel merge sort

fft 226 Fast Fourier transform

fib 42 Recursive Fibonacci

fibx 280 Alternate between fib(n-1) and fib(n-40)
heat 2048x 500 | Jacobi heat diffusion
knapsack | 32 Recursive knapsack

lu 4096 LU-decomposition

matmul 2048 Matrix multiply

nqueens 14 Count ways to placdl queens
gsort 108 Parallel quick sort

rectmul 4096 Rectangular matrix multiply
strassen | 4096 Strassen matrix multiply

Figure 7-5: The 13 benchmark applications.

lock in the write mode by engaging in an augmented Dekker protocol with datie eegistered
readers.

Evaluation using ACilk-5

13 benchmarks are used to evaluate the effect of location-based mesnogsf comparing how
ACIilk-5 performs against Cilk-5 running these benchmarks. Figure o¥iges a brief description
of each benchmark.

Figure 7-6(a) compares the performance of the benchmarks runnidgitk-5 and Cilk-5
when executed serially. Figure 7-6(b) shows a similar performance ewopavhen executed on
16 cores. For each measurement, the mean of 10 runs is used (with dtdadiation of less than
3%). A value below 1 means that the benchmark runs faster on ACilk-5 th&illo-5.

Not surprisingly, when executed serially, benchmarks on ACilk-5 ratefabecause the victim
executes on the fast path with virtually no overhead from memory fendes.iniprovement that
ACilk-5 exhibits over Cilk-5 when running a given benchmark is directlytegldo the ratio between
the overall work in a given benchmark and the number of fences avaideé benchmark (which
corresponds to the the number and the granularity of parallel tasks thagricemark generates).
The fewer the number of memory accesses performed under a giva fae more saving gained
from avoiding the fence. All these benchmarks excepttfias, fibx, andknapsack have their
base case coarsened (so as to generate enough parallel taskoiandasallel overhead when
there is enough parallelism), so the ratio of work per fence is high. On tle¥ bnd,fib is
specifically designed to measure the spawn (for generating parall€) tagkbead, and the number
suggests that the spawn overhead is cut by half if the fence is avoidedieVe the numbers will
be comparable if-mfence were implemented using the LE/ST mechanism.

Figurel 7-6(b) shows the same performance comparison when execuiédoores. When ex-
ecuted in parallel, the software implementationieifence incurs an additional communication
overhead for every steal attempt (which impacts both the victim and the tileBpite the com-
munication overhead, many benchmarks still exhibit saving or stay evemiimgehat savings and
overhead even out). The three exceptions @relesky, heat, and1lu. There are two factors
at play here. First, while the work-first principle [49] states that onaulshput the scheduling
overhead onto the steal (thief's) path instead of onto the work (victimi), peae must be able to
amortize the overhead against successful steals in order to obtain g¢aladikty. In the case of

135

i R SRALCRLRTTEP T PR PEEPRRPRERY i AR LR LR P PP PP P R PREPRPREPRED

Qo -
- o o N N o - _
%0-8”_' N R N I R T T A 0 T] o () B B S) R
E (O o 0 B A B sy I T T 0 YU o Y B S o
o)/8 5 IR L O A P
S
g 02 02
- 7 0 _ L
ChoSig e 16) e e o, 9508t Chofik e b 6,65/l Mgl 950780t
o) QUnJUdS0rs CHHQ os & Cqp %, Qi IESors]

Figure 7-6: (a) The relative serial execution time of the ACilk-5 runtimesgm compared to the original
Cilk-5 runtime system for 13 Cilk benchmark®) The relative execution time of the ACilk-5 runtime system
compared to the original Cilk-5 runtime system for 13 Cilkablemarks on 16 cores. A value below 1 means
that the application runs faster on ACilk-5 than on Cilk-3atue above 1 means the other way around. Each
value is calculated by normalizing the execution time oflieachmarks on ACilk-5 with that on Cilk-5.

cholesky andlu, much of the communication overhead did not translate into successful-steals
only 536% of signals sent irholesky turn into successful steals, and only.§% for 1u (while

other benchmarks have over 90%). As a result, the benchmarks deat®s well. Second, while
over 90% of the signals sent ireat translate to successful steals, the number of fences avoided
per signal sent is much smaller compared to other benchmarks, so the comtimmnaverhead
incurred byl-mfence outweighs the benefit. Given that the LE/ST mechanism has much smaller
communication overhead and impacts only the thief, | believe both problems wewadoided.

Evaluation using ARW lock

The next application of location-based memory fences is the ARW lock enbeicompare the read
throughput between the ARW lock and its symmetric counterpart: the samendrsigising an
mfence for the primary thread in the Dekker protocol instead ofiamfence, henceforth referred
as theSRW lock The application works as follows. Each thread performs read opesatiost
of the time, and only occasionally performs a write. In the tests, the threadsn@m and write
to an array with 4 elements. The read-to-write ratio is an input parameter to thebenchmark:
assuming the ratio idl : 1, and there ar® threads executing, then for evely/P reads, a thread
performs a write. With each configuration, the microbenchmark is run faetOnds to measure
the overall read throughput.

Figure 7-7(a) shows the throughput comparison between the ARW latkh@nSRW lock. In
the software implementation afFmfence, since a request for serialization translates to a signal, the
writer ends up signaling a list of readers and waiting for their respomsebyone, which becomes
a serializing bottleneck. This is particularly inefficient when the threadtsdarigh, and the read-
to-write ratio is low (less asynchronous), since the communication ovedweaeighs the benefit
from avoiding fences.

| believe that the lack of scalability is again due to the high communication owtihdlae soft-
ware implementation. To confirm this, | devised an ARW lock that implemenigiting heuristic
when a writer wants to write, instead of sending signals to the readers immedidtedyindicates
intent to write and spin-waits to see if any reader responds, acknowtgtiggnwriter’s intent to
write. Only after spin-waiting for awhile, the writer sends signals to readboshave not acknowl-
edged. The ARW lock with this heuristic is referred as AW+ lock

136

W 300:1 read-write ratio

M 500:1 read-write ratio

B 1000:1 read-write ratio

O 10000:1 read-write ratio
O 100000:1 read-write ratio

:1 read-write ratio

:1 read-write ratio
0:1 read-write ratio
00:1 read-write ratio
000:1 read-write ratio

Normalized Throughput

Thread Counts Thread Counts

(@) (b)

Figure 7-7: (a) The relative read throughput of execution using the ARW loaipared to that using the
SRW lock. (b) The relative throughput of execution using the ARW+ lock.(itae ARW lock with the
waiting heuristics) compared to that using the SRW lock. ln@@above 1 means that the ARW lock / ARW+
lock performs better; a value below 1 means that the SRW lecfopms better. Each value is calculated by
normalizing the read throughput from the execution usimgARW lock by that using the SRW lock.

Figurel 7-7(b) shows the throughput comparison between the ARW+ lodkhee SRW lock.
A value above 1 means that the ARW+ lock performs better. There are twotreadfs to notice.
Indeed, the ARW+ lock scales much better and consistently has higheghimoucompared to the
SRW lock, except for the 300 : 1 read / write ratio (which is close to 1). @otable outlier in
Figure 7-7(b) is the data point for 300 : 1 ratio with two threads, which hashrhigher throughput
compared to other thread counts. This is due to the fact that when theoelgrsvo threads, the
writer end up receiving the acknowledgment most of the time and does @dtosend signals.

While the waiting heuristic seems to work well in the microbenchmarks, if the resms not
access the lock frequently, the heuristic would not help as much, besélussd would only check
for pending intent during lock acquire and release. With that in mind, thatsdaspire confidence
that the ARW lock should perform and scale well when th@fence is implemented with the
LE/ST mechanism.

7.5 Related Work

This work is closely related to studies performed on biased locks and asyimeygtchronization,
so this section focuses on these studies. Several researchers gtigléda, mainly in the context
of improving performance for Java locks.

[134] describes a fast biased lock algorithm, which allows the primarydhceavoid executing
memory fences, until a secondary thread attempts to enter the critical senttbrs case, the sec-
ondary thread must wait for the primary thread to grant access in ordentmue execution. While
this request and grant protocol is performed via shared variablas #retefore fairly efficient, this
implementation can potentially deadlock if the biased lock is nested within anothe(doany
resource that can block). Imagine the following scenario: supposea thamary thread and sec-
ondary thread try to acquire a loékand then an biased lod&k(biased towards the primary thread).
If the secondary threads acquirgdirst, the system deadlocks, because the secondary thread must
wait for the primary thread to set the grant bit while the primary thread is blbok acquiring lock

137

A, which is held by the secondary thread.

The studies in [36] and [119] describe similar biased lock implementationsevine owner of
the lock is on the fast path for accessing the lock, and other threadsmemake it and compete
for ownership, and the lock ownership may transfer. Both algorithms @s&ctilocation” trick,
where the status field and the lock field are allocated on the same word. &teyriie to one field
and then the whole word is read. The correctness of the algorithm deparlde fact that hardware
typically does not reorder a read before an older write when the adgreserlap. This collocation
trick, while interesting, is not guaranteed to be safe, and on systems thirsetrick works correctly,
it always forces a memory fence to be issued regardless of whetherisrentention [33].

Serialization using signal and notify was proposed in [34], along with atitee heavy-weight
serialization mechanisms. Their work focus on software means to cauakzation in another
thread, while decreasing synchronization overhead on the primaryltimraaplications that exhibit
asymmetric synchronization patterns.

Finally, Lin et al. [99] propose a hardware mechanism for conditional nngriemces, whose
aim is also to reduce the overhead of memory fences when synchronizationecessary. In [99],
however, the assumption is that the compiler would automatically insert memasgsf@anorder to
enforce sequential consistency everywhere, and there may be multiptaraling memory fences
for a given thread at a given moment. Thus, their hardware mechanisncismmre heavyweight
compared to the LE/ST mechanism for implementingfence. The LE/ST mechanism, on the
other hand, aims to be lightweight and does not focus on enforcing iIségjusonsistency every-
where automatically.

7.6 Conclusion

This chapter investigates in location-based memory fences, which aim toeréuel overhead in-
curred by memory fences in parallel algorithms. Location-based memorgdeare particularly
well-suited for algorithms that exhibit asymmetric synchronization patterns.chiapter describes
a hardware mechanism to support location-based memory fencess fiieerrectness and eval-
uates the feasibility of the fences using a software prototype. The evaluatil the software
prototype inspires confidence that the suggested LE/ST mechanisnpfaoréng location-based
memory fences in hardware is worth considering.

Finally, location-based memory fences lend itself to a different way of vigwinograms com-
pared to the traditional program-based memory fences. It would be ititgyrés investigate what
other algorithms can benefit from location-based memory fences, assaahar mechanisms that
exploit the location-based model.

138

Chapter 8

Conclusion

This dissertation has explored five different memory abstractions:

1. TLMM-based cactus stacks that interoperate with linear stacks (GI&)pte
2. memory-mapped reducers (Chapter 4),

3. reducer arrays (Chapter 5),

4. ownership-aware transactions (Chapter 6), and

5. location-based memory fences (Chapter 7).

These memory abstractions ease the task of parallel programming, eitlotlyding mitigating the
complexity of synchronization, and/or indirectly, by enabling one to desigpnaurrency platform
which utilizes resources more efficiently than one could do without the menbstyaation.

| would like to revisit the definition of memory abstractions and provide somspgetive on
the work explored in this dissertation. At the beginning of this dissertatiomfiheld memory
abstraction to be an abstraction layer between the program executioreandriory that provides a
different view of a memory location depending on the execution contextichithe memory access
is made. This definition does not specify where a memory abstraction steugpkemented. There
can be many layers along the software stack between the raw memory prtwidee hardware
system and the program execution. A memory abstraction can be implementadaviipecific
layer or with support across multiple layers and have the topmost layeidprg\an interface for
the program execution to interact with the memory abstraction.

In a sense, a memory abstraction can be viewed as a contract definegbetyprogram execu-
tion and the system layer on which the program is executing. The congfices how the program
execution may interact with the memory and what kind of guarantees thelyindesystem pro-
vides. Here, the system layer can be anything within the software stack vndeelying hardware
architecture, the operating system, a virtual machine, or a concurréatbyrm. Taking this view
of a memory abstraction, one begins to see that memory abstractions constitetengegral parts
of the system that we use on a daily basis, such as the virtual memory mechmnigded by the
operating system or the automatic memory management in a managed runtimeraaniron

Virtual memory [44,7@ is a memory abstraction provided by an operating system for programs
running directly on top of the operating system. Virtual memory abstracts #veaynderlying
raw physical memory so that the addresses as seen by the programedyedacoupled from the
addresses of the physical memory provided by the underlying hardiwai®decoupling provided
by the virtual memory significantly simplifies the task of programming. It freeptbgrammer

1Articles from Peter J. Denning [31, 32] provide a nice overview and tigstbcontext for the development of virtual
memory.

139

from worrying about the problem adverlaying— replacing a block of code or data with another
when the program or data accessed by the program is larger than the nmaémynseipported by the
hardware. Because the problem of overlaying, or address spacatally is handled automatically
by the operating system, modular programming becomes possible, whereremtgof programs
can be compiled separately and reused. The virtual memory mechanismalstep an additional
layer of safety. An operating system employing the virtual memory mecharasnse€amlessly
time-share among multiple executing processes, precluding them from iimtgréd@th each other
and providing the illusion that each process is executing in isolation. A gsazan specify regions
of address space with different protection modes, and the virtual-memailyamism ensures that
the access protection is not violated. For instance, a user program adgalentally accesses a
region of address space that should only be accessed in kernel rigggeda fault.

Automatic memory management provided by a managed runtime environment, ssualiaa
Virtual Machine [100] and Common Language Runtime [107], is yet an@tkemple of a memory
abstraction. This memory abstraction is enabled by the use of a garbageardli€4], which
manages the allocation and deallocation of memory for programs executinghinasmnanaged
runtime environment. The automatic memory management abstracts away the riciquiiot
memory addresses, which simplifies the task of programming and provides afayemory safety.
It simplifies the task of programming, because the programmer is freed fromaiyamanaging
memory usage. The programmer no longer needs to worry about allocagimgylth amount of
memory for a piece of data or remembering to free a piece of allocated memerytiva memory
is no longer being used. This memory abstraction also provides a layer of meafety. In
such a managed runtime, a program execution assigns names to objecaspame provides a
handle to its associated object. Since this model eliminates the possibility of apregecution
performing arbitrary memory accesses, a program execution carcegsacemory out of bounds
without generating an exception or accidentally corrupt a piece of datiaglidg pointers, resulted
from freeing some memory while the memory is still in use, can no longer existubecaemory
deallocation is handled automatically by the runtime system.

With the proliferation of multicore architectures, the computing field must mowva fkoiting
sequential software to parallel software in order to take advantage ebthputation power pro-
vided by modern hardware. Writing parallel programs, however, gigeso a new set of challenges
in how programs interact with memory, such as how to properly synchraoizeurrent accesses
to shared memory. | believe that investigating memory abstractions is a fruatiul phe previous
two examples of memory abstractions designed for sequential programraingdaty adopted and
have proven to be successful. They hide the complexity of dealing with ramnonyeas supported
by the underlying hardware, thereby significantly simplifying the task offmmming, and they
provide an additional layer of safety. These are precisely the same thaalge would like to
achieve today for parallel programming.

This dissertation explores three memory abstractions designed to mitigate thiexiomgf
synchronization, namely memory-mapped reducers, reducer arrayswaership-aware transac-
tions. Reducer hyperobjects [48] are shown to be a useful linguisticanésh for avoiding deter-
minacy race [42,116] in a dynamically multithreaded computation. This disserfatoposes an
alternative design and implementation of reducers (Chapter 4) and restuags (Chapter 5) that
perform much more efficiently than existing implementations. The ownersh@peatransactions
(OAT) enable the use of the open-nesting methodology [113], which is efficéent than closed
nesting, while providing a sensible semantics that the programmer can ussao bout the pro-
gram behaviors. The hope is that, by exploring different kinds of merabsgractions, we can
obtain a deeper understanding of these new sets of challenges ¢ogdesw parallel programs
interact with the memaory, which then allows us to design sensible synchromizaichanisms that

140

simplify parallel programming and achieve safe and efficient concuam®sses to shared memory
as well.

As we gather more experiences in designing memory abstractions, | belédweetishould also
move down the software stack and investigate what other memory abstrattt#olmsver system
layers may provide to enable support for memory abstractions in the higlees | his dissertation
proposes operating system support for thread-local memory mappingM7Y, which in itself can
be viewed as a memory abstraction provided by the operating system that aljmavtially shared
and partially private virtual address space. The support for TLMMVigles a convincing case
study, since it has been shown to be useful for implementing memory abstecfiered by a
concurrency platform, such as TLMM-based cactus stacks (Chapterednory-mapped reducers
(Chapter 4), and reducer arrays (Chapter 5). Besides these menstnyciions, TLMM can benefit
other memory abstractions proposed by other researchers [2,112B)As well.

The memory abstractions explored in this dissertation by no means provided arfswer to
the challenges in parallel programming — not a complete one anyway. Irtliacg, is still much
room for exploration, improvement, and addressing challenges. In #eeafanemory-mapped
reducers and reducer arrays, the way that the reducer mecharesategpimposes a fundamental
limitation on how many reducers (or how large size of a reducer arrayjteydar computation
can employ before the reduce overhead becomes a scalability bottlensekeduce overhead is
incurred by the need to reduce all the additional views created durirdjgdaxecution, which is
difficult to avoid if one wishes to maintain the serial ordering in which the update performed on
the reducer. In some cases, however, if the updates are commutatie## as associative, one may
be able to design a more efficient mechanism for commutative reducerse ¢taske of ownership-
aware transactions, the use of ownership types, albeit necessaiptoectine proper data sharing
that the OAT system depends on, results a cumbersome linguistic interfaeexpressiveness of
OAT’s linguistic interface is another area that is not fully investigated. Nbetess, | hope the that
the study on memory abstractions documented in this dissertation represerdf atsp towards
understanding how memory abstractions may aid parallel programming in the.futu

141

Appendix A

The OAT Model and Sequential
Consistency

This appendix contains the details of the proof of Theorem|6.20: if the OAdeingenerates a
trace(C,®) and a topological sort ordef, thens satisfies Definition 6.13, i.eS is sequentially
consistent with respect @©.

The first part of the appendix proves that the OAT model preservesaénvariants on memory
operations and content sets of transactions. The second part ofredpuses these invariants to
prove Theorem 6.20.

The OAT model invariants

In order to state the OAT model invariants, we shall first examine the notittyofamic content
sets” for transactions, which is a generalization of the static content satdfefinition 6.10.

Definition A.1 At any time t, for any transaction & xactions®)(C) and a memory operation@
mem0Ops V) (), define thedynamic content setsContent®)(T), oContent®(T), aContent®(T),
andvContent V) (T) according theContentType(t,u, T) procedure:

ContentType(t,u,T) / For any ue mem0Ops ™ (T)
1 X = xparent(Uu)
2 while(X#T)

3 if X € activeXactions((), return u € vContent®(T)
4 if X € aborted®((), return u € aContent®(T)

5 if (X=committer(u)) returnuec oContent(t>(T)

6 X = xparent(X)

7 return u € cContent®)(T)

The difference between the dynamic content sets defined in Definition Al.thenstatic content
sets (defined in Definition 6.10) is that for dynamic content setsPENDING or PENDING_ABORT
transaction is encountered when walking up the tree from a memory opendtantransactioit,

uis placed in theactive contenof T, i.e.,u e vContent(t>(T). The static content sets, on the other
hand, are defined on the computation tree after the program has finisbadieg, and no active
transactions should be encountered. If a transadtioompletes at timé& g, it is not hard to see
that the dynamic classificatiadtfontentType(t,u, T) gives the same answer as the static classifica-
tion ContentType(u, T) for all timest > tengt. Furthermore, once a memory operatiois classi-
fied into one of the following the content setsontent ") (T), oContent®(T), oraContent®(T)

142

with respect to a transactioh at timet, u stays in that content set with respectltdor all times
t* > t. Lemma A.2 states this observation formally.

Lemma A.2 Any any time t, for any transaction & xactions¥ (), and a memory operation
u € memOps Y (), the following invariants are satisfied:

1. If ue cContent®(T), then ue cContent(T).
2. Ifu€ oContent®(T), then uc oContent(T).
3. Ifue aContent®(T), then uc aContent(T).

PROOF LetSr(u) =xactions™(C) N ances(u) N pDesc(T). That s, definer ¥ (u) to be
the set of transactions along the path frorto T at timet, excludingT. We shall consider each of
the three cases one by one.

1. u€ cContent®(T): Sinceu e cContent™(T), the seSr V) (u) is precisely the set of transac-
tions examined by the proceduententType(t,u, T) before it returns. Moreover, we know
that there is no active transactions at tinmeSr V) (u), i.e.,Sr V) (u)NactiveXactionsV (C) =
0, or u would be invContent®(T) instead. ThereforeSr® (u) = St (u) for all times
t* > t. Since theContentType(u, T) procedure examines the &t'") (u), with t* being the
time execution ends, and the statuaB6RTED andCOMMITTED transactions does not change,
it must be thati € cContent(T).

2. u € oContent®(T): Sinceu € oContentV(T), it must be thatommitter(u) € St (u).
Let X = committer(u) and defineSx"(u) = xactions(C) N ances(u) N desc(X)
(which includesX), i.e.,S¢ " (u) is precisely the setontentType(t,u, T) examines before it
returns (it returns as soon as it finds We know that there is no active transactions at time
in S¢ (u), or u would be invContent® (X) instead. Thus, the same argument from Case 1
applies, and it must be thate oContent(T).

3. u € aContent™(T): This case is similar to Case 2 if we defiXeto be the “first” aborted
transactions encountered when walking along the path €réoT. That is, define:

leaf(S) = {Z & S:pDesc(Z)NS=0}
SV = {A e StV (u) : statusA] = ABORTED}

Let X = leaf(Sa), and the same argument from Case 2 follows, i.e., since there is no active
transactions itS (V) (u), it must be thati € aContent (T).

O
Lemmd A.3 characterizes when a transaction should have a location in its write se

Lemma A.3 At any time step t, consider any transactioncTactiveXactions(C) and any
memory locatiort. Let S = {ue mem0Ops Y (C) : W(u,/)}. Exactly one of the following cases
holds:

1. Itis the case that ¢ W (T), andcContent®(T) NS = 0.
2. There exists afu,¢) € W) (T) which happens at timg,tand two conditions are satisfied:
(@) (CContent(t)(T) UoContent® (T))N sW.
(b) For any operation \& (Sg(t) — {u}> which happens at timg,twhere f, <t, <t,ve
aContent)(T)UvContent®(T).

143

3. T=root(C), (L,¢) € w(T), and two conditions are satisfied:

(a) cContent™(T)NSM =0.
(b) Forallve S, ve aContent®(T)UvContent®(T).

PROOF This theorem can be proved by induction on time, showing that every atistnuexe-
cuted in the OAT model preserves the invariant.

In the base case, at time step 0, the OAT model starts with a computation tr€d¢hat has a
single transactiomroot(C) with (_L,¢) € W(root((C)) for all ¢ € L. On this step, we only have a
single transaction which falls into Case 3, and the invariant is reserved.

For the inductive step, consider each instruction that a program in then@4&EI can issue, as
described in Section 6.Fork, join, xbegin, xend, xabort, read, andwrite. The instructions
fork and join do not create or finish any transactions, nor do they change any dtemsarite
sets. Thus, they do not affect the invariant in Lemma A.3. Similarly, a sefidesad does not
affect the invariant because it only adds a new paif) into a read set of a transaction, but does
not change any write sets.

Consider a successfuttite on setug that creates a memory operatiosatisfyingw(u, /). Let
X = xparent(u). Then therrite adds(u, ¢) towW(X). For all transaction$ € activeXactions®((),
let's examine how affect the invariant foif .

1. Suppose thal = X. Sincewrite adds(u,?) to W®(X), we shall check that Case 2 holds
for X on stept. To check the first condition, we know that cContent(®)(X) becaus& =
xparent(u), and so the first condition holds. The second condition holds triviallyaumse
happens on the current time stgand there are no other operationsuch that, > t,,.

2. For any transactiom # X with ¢ ¢ w(t) (T), we know by the inductive hypothesis and Case 1
thatcContent 1 (T)NS~Y = 0. After the step, we still haveg w® (T) andcContent® (T)N
S = 0, sinceu only changes the closed content set@éntent) (X).

3. For any transactiolt # X with (w,¢) € W (T), we know thafT € xAnces(u), which also
implies thatT € xAnces(X). Otherwise,u would have caused a memory conflict with
according to Definition 6.6.

There are two subcases to consider: eithef L orw=_1.

e If w#L1, by inductive hypothesis and Case 2a¢c (cContent(T)UoContent(T))
before and after step Also, sinceX is issuing thewrite instruction, we know that
X € activeXactions(®((), and thusu is added tosContent®(T), and Case 2b still
holds.

e If w=_1, which implies thafl = root(C), we have a similar subcase, except that
falls into Case B8 of Lemma A.3 instead of Case 2. Case 3a is preservedd&cgX
and thewrite instruction does not chang&ontent™(T). Casé 3b is preserved as
well because is added tarContent® (T).

Thus, a successfutrite instruction preserves the invariant of Lemma A.3.

Consider arxbegin that creates a transacti@n SinceZ begins withR(Z) =w(Z) = 0, Z falls
into Casé 1, which is trivially satisfied becaustntent® (Z) = 0.

Next, consider amend that successfully commits a transactionLetY = xparent(Z). Then,
since thexend change<’s status fronPENDING to COMMITTED, we know that

cContent(t)(Y) = cContent(tfl)(Y) U cContent(tfl)(Z) —

{W € cContent™(Z) : Z= committer(w)} .

144

That is, the commit oZ merges its closed content into the closed content of its parent, except
for the memory operations that operate on memory locations ownetds(Z) (since those are
committed in an open-nested fashiorrtmt (C)).

The write sets and content sets for all other transactions begidésandroot((C) are un-
changed by theend, and we no longer need to considés write set and content sets since it is
no longer active (i.eZ ¢ activeXactionsV (()). Thus, we only need to check weather thad
still preserves the invariant of Lemma A.3 férandroot(C). For any memory locatiof consider
the possible cases for how the commiZotan chang&@(Y) andw(root(C)).

1. Suppose that¢ w1 (Z). By inductive hypothesis and Case 1, we know ttaintent =1 (Z)n
St = 0. We also know that the seContent(Y)NS is the same before and after step
t. The same argument applies to theot(C). Thus, forY androot(C), xend preserves
Case 1, Case 2a, or Case 3a in this scenario.

Now we check for Case 2b or Case 3b. The only way thak#ae instruction can contradict
Case 2b or Case 3b is to remove a memory operatfomm aContent(Y) or vContent(Y).
This cannot be the case, however. BOpntent(Y), we know by Lemma A.2 that, for any
memory operation € aContent 1 (Y), it must be thatContent® (Y). ForvContent(Y),

on the other hand, any memory operatioemoved fromyContent =1 (Y) must be added to
cContent V) (Y), but this cannot be the case becau8entent(Y) remains the same. Again,
the same argument applies to thet (). Thus, thexend instruction also preserves Case 2b
or Case 3b in this scenario.

2. Suppose thatu,?) € WY (Z). To check whether the invariant still holds f#rand for
root((), we have two subcases to consid2e- committed(u) or Z # committed(u).

e SUpPPOSE&Z = committer(u). It must be the case that, /) ¢ Wt (Y) before and after
the step, since by Theorem 638ijs the unique committer of, andY, being a proper
ancestor ofZ, can never directly access This scenario falls under Case 1, and the
invariant is preserved fof.

For root((C), on the other handu,) is propagated ta) (root(C)), so we need to
check that Casel 2 still holds. We know that Case 2a holds, Zinregommitter(u),

and so wheiZ commits on step, u € oContent (root(C)).

Now we check that Case 2b holds fesot (). By the inductive hypothesis (Case 2),
we know that for allv e SV such thatt, > t,, we havev € aContent1(Z)U
oContent !~ (Z). WhenZ commits on step, however, it must be thatontent®) (Z) =

0, sinceZ can only commit if all its nested transactions have completed. Thus, any such
vmust be iraContent !~ (Z). SinceaContent !~V (Z) C aContent Y (root(C)) =
aContent®(root(()), v satisfies Case 2b fatoot(C).

e Suppos€& # committer(u). In this case, we just need to check that the invariant still
holds forY, since the write set and content setsfobt(() with respect to remains

the same before and after the step. Siigé committer(u), we know that after step
(u,£) e WY (Y), so we need to check Caske 2 far

First, we can verify that Case 2a holds YorBy inductive hypothesis) € cContent - (Z).
Thus, aftetxend, we haveu € cContent) (Y).

Next, we can very that Case 2b holds %ar This subcase is similar to the subcase of
root((C) whenZ = committer(u), and the same argument applies.

Thus,xend preserves the invariant in Lemima A.3.

145

Finally, thexabort instruction (which could be triggered ey gabort) preserves the invariant
in LemmaA.3. Thexabort of a transactioZ caused to be removed fromactiveXactionsV (),
which eliminates the need to check the invariantsZfoin addition, the only content sets affected by
the abort of transactiaf are the content sets of transactiohs pAnces(Z) NactiveXactions(C),
wherexabort of Z only moves an operationfrom vContent =1 (X) to aContent®)(X), so the
invariant is preserved for any active transactions thaZaeroper ancestors. O

The intuition for Lemma A.3 lies mostly in Case 2; if at tiha pair(/,u) is the write set of a
transactiorT, thenu is the last write td in T’s subtree which is “committed with respect {6” Any
v which writes to/ aftert, (the timeu occurs) must belong t@’s subtree; otherwise, there would
have been a conflict. Furthermore, anwhich happens aftdr, must still be aborted or pending
with respect tar (i.e.,v € aContent®(T)UvContent® (T)); otherwisey should replace in T’s
write set. Finally, for the most part, when a write operatiois committed with respect t®, it is
the case thatl € cContent(T) (in Case 2a), unlesk = root(C), since if T # root(C) and has
(u,£) € W(T), it must be thakid(owner(¢)) < xid(xMod(T)). OtherwiseT would not be able to
accesg directly by Theorem 6/8. The only case whéwel) € W(T) andw € oContent(T) is when
T =root(C(), since a transactioh = committer(u) commits(u, /) toW(root((C)) as described in
Section 6.3.

Case 1 says the write setbfdoes not contain a locatidgrif no memory operation iff’’s subtree
commits/ to T. Case 3 of Lemma Al|3 handles the special case of the root.

Proof of sequential consistency

Finally, Theorem 6.20 uses invariants from Lemma A.2 and Lemma A.3 to proysfttiee OAT
model generates a tra¢€’, @) and a topological sort orded, thens satisfies Definition 6.13, i.e.,
® = X, or S is sequentially consistent with respecido

PROOF [Theorem 6.20]
To show thai® = X, one must show that for all € memOps(C), let (v) = u, andu satisfies the
four conditions of the transactional last writenoficcording taS, as described in Definition 6.12:

. W(u,?),

L U<g v,

. =(uHv), and

YWWW) A (U<sW<sV)) = WHV.

A OWDNPRP

The first condition and second conditions are true by construction, Hiec®AT model can
only setd(v) = uif u<sv,W(u,?) andR(v,£) VW(v,?).

Now we check the third condition. Suppose at tignenemory operatiom happens and the OAT
model setsb(v) = u. We know thau € S as defined in Lemma A.3, sinee<; v andu = ®(v)
(i.e.,uis awrite). Also, it must be thatu, /) € W) (X) for some transactioX € xAnces(V), or
v would have caused a conflict with (by Definition/6.6). LetL = xLCA(u,v), and we know that
X € xAnces(L), sinceu,Vv € memOps(X) andL = xLCA(u,v). By Lemma A.3 Case 2a, we haue
cContent ™ (X) UoContent®™ (X). SinceX € xAnces(L), it must be thati € cContent ™) (L) U
oContent™ (L) as well. Thus, by Lemmia A.2, it must be that cContent (L) UoContent(L) at
the end of the computation, arduHVv), satisfying the third condition.

To check the fourth condition, assume for contradiction that there exigtsueh thaiV(w, /),
andu <5 w < v. Sinceu € Wt (X), by Lemmd A.3 Case 2b, we know € aContent ™ (X) U
vContent ™ (X) (which also impliesv € mem0ps) (X)).

146

LetY = xLCA(W,V). Sincew € mem0Ops (™ (X), we knowX € ances(Y). There are two cases to
consider fow:

1. Suppos& € aContent ™ (X). SinceX € ances(Y), we cContent ™ (Y) NaContent™ (Y).
We can show by contradiction thatc aContent) (Y), and so we haveHv.

(a) Suppos¥ = T. Then we already hawe € aContent ™ (Y) by the original assumption.

(b) Supposd € pAnces(Y). If we hadw € cContent ™) (Y), then by Lemma A.3, we must
have somarrite y such that(y,?) € W (Y). This statement contradicts the fact that
OAT model found(u, ¢) from transactiorX, since a closer transactidhhad/ in its read
set. Thus, it must be that € aContent™ (Y).

2. Supposev € vContent ™ (T). Then, we knowv € cContent ™ (Y) UvContent™ (Y). As
in the previous case, we can shawZ cContent ™ (Y) and we havevHv.

If w e vContent™ (Y), then there exists some transactidore activeXactions®(Y) —

{Y} such that € W) (Z) (by Definition/ A.1). This statement leads to a contradiction, how-
ever. We know thaZ ¢ xAnces(V) sinceY = xLCA(w,Vv) andZ is a proper descendant of
Y. Thus, if it were the case that € W) (Z), sinceZ ¢ xAnces(v), v would have caused a
conflict, contradicting the assumption thes a successful operation.

In both cases, the fourth condition is satisfied. Therefore, we {raweX;. O

147

Appendix B

Rules for the OAT Type System

This appendix contains the type rules for the OAT type system. The gramntheftype system is
presented below:

P
defn
cDecl
constr
field
init

meth =

param

owner
formal
t

ct

e

cn

mn =

fd
Xy
f,g
iy]

defri’; e

class cDecl extends cDecl where constr { field"; init; meth }
cn(formal®™) | Object(formal) | Xmodule(formal)

formal < formal | formal = formal | formal # formal
t fd

cn(formal®) (parant) { super(formal™)(e*); this.fd=¢"* }
t mn{formal*)(parani’) where constr{ e }

t X

world[i] | formal | this]i]

f

int | constraint | ct

cn{owner")

new ct(e") | x | x=e | let (param=e) in {e}

| xfd | x.fd=e | xmnowner")(e")

a class name that is n@ibject nor Xmodule
a method name that is not a constructor
a field name

a variable name

an owner formal

anint literal

148

For simplicity, the OAT type system makes the following assumptions. First, éashltas only
one constructor (specified by the temit), and that all fields are initialized properly after the call
to the constructor. Second, all field names (whether inherited or declred)stinct. Third, the
call tosuper is explicit. Fourth, an index is always specified when the ownershipaagds andthis
are used. Fifth, the class nan@sgiect andXmodule are special and assumed to be properly defined
by the system. Finally, the explicit use of upcast and downcast are nafeal)@s specified in the
abstract syntax.

For the constraints on ownersofistl), the notation< is used as defined in Section 6.2: Assum-
ing f1 and f, are instantiated witlo; ando,, f1 < f, specifies that eithes;.name< o0,.name or
01.name= 0p.nameando;.index< op.index Similarly, f; = f, specifies thab;.name= 0,.name
andosz.index= 0y.index On the other handf; # f, specifies that eithew;.name+# 0,.name or
01.name= 0z.nameando;.index=#£ 0y.index

The OAT type system uses some shorthand notation. Henceforth, fotyptee notation<
is used in place of the keyworgktends (i.e., A extendsB is written asA <1 B). The notation<
between class names is the reflexive and transitive closure induced kyrétation. On the other
hand, the notatior®® simply indicates that thed relation does not hold. Note that the is not
the same as subtyping (denoted<a$, becauseq only considers the static relation defined by the
extends keyword, and does not account for the ownership tags. Furtheriieltecy cn(...) is
used to mean that class(...) declaredield and field €; cn(...) is used to mean that class(...)
inheritsfield. Finally, field € cn(...) is used to mean that eithdield €4 cn(...) or field; cn(...).
These notations are used fdr(field name) meth(method), anamn(method name) similarly.

The following predicates are used in the typing rules:

| Predicate | Meaning \
ClassOnce(P) No class is declared twice ix

ven,en' in P, cn# cnl
FieldsOnce(P) | No class contains two fields with the same name

vet vfd,fd € ct in P, fd # fd’
MethodsOnce(P) No class declares two methods with the same name

Vet Vmnmn €q ¢t in P, mn# mrl
WFClasses(P) | No cycles in the class hierarchy; i.e., therelation is antisymmetric
ven,en' in P,cn<cn A cn <cn = cn=cn

The typing judgment has the forn®; ' + e:t, whereP is the program being checked to
provide information about class definitiorisjs the typing environment, providing mappings from
a variable name to its static type for the free variables finally, t is the static type oé.

The typing environmerit isdefinedad ::=0 | I', x:t | ', f :owner| I', constr: constraint.
That is, the typing environmerit contains the types of variables, the owner parameters and the
constraints among owners. Note that an ewtgstralways has typeonstraint , which is a type
used implicitly by the type system and cannot be used by the user progransinticity, the
type rules drop theonstraint type when listing theconstrentries in[” when it is clear from the
context. When checking for well-formness of the typing environment, waras the new entries
are checked in the order listed, from left to right. The domain of the typirg@mment,Dom(I"),
intuitively, is defined to be the set of variables, owner parameters, arairamts bound by .

149

The typing system uses the following judgments:

| Judgment | Meaning
FP:t programP yields typet
P - defn defnis a well-formed class
P I cn(fi n) < cn'(gi k) | class cn(fy) extends class cr' (g k)
P cndcn cn' is an ancestor afnin the graph defined by thextends keyword
P I fieldegen(...) classcn(...) declaredield
P I fieldgien(...) classen(...) inheritsfield
P I fieldecn(...) classcn(...) declares / inherit§eld
P initecn(...) classen(...) declaresnit
P+ metheqen(...) classcn(...) declaresneth
P + methe;cn(...) classen(...) inheritsmeth
P + methe cn(...) classcn(...) declares / inheritsneth
P; T field fieldis a well-formed field
P; ' - meth methis a well-formed method
P; I - wf typing environmenf is well-formed
P, T Ht t is a well-formed type
P; I ~ constr constraintconstris satisfied
P;: T Fowner O 0is an owner
P; T Fe:t expressiore has typd
Pr-t<t t is a subtype of’

In the type rules, we also use the following auxiliary rules:

| The Extends Relatidn

P I class cn(fy n) extends cn'{gy.m) - ..

P F cn{fin) < cn(gem)

P F cn{fin) < cn(gi.m)

P cn<cr PFecn <cn’

PF cn<ecn

Type Lookup
type) = ()
typet x) =t
typgt fd) = t

type(ty X, ta, Xo, ...

PFcn<ecenl

PFcn<ecer

) = tg, t, ...

150

Field Lookup

P + field € cn(g1.m)
P F classen(fy) ... {... field ...} P+ cn(fin) < cn{(01.m)

P field €q4 cn(f1 n) P I field[01/01]..[0m/Om] €i cn(f1n)

P I field €4 cn(fin) V P F field € cn(fy n)
P I field € cn(fyn)

Init Lookup

P+ classcn(fin) ... {...init ...}
P init € cn(fy n)

Method Lookuq)

P + methe cn'(gy.m)
P I classcn(fyn) ... {... meth...} P+ cn(fyn) < e (01 m)

P F meth €4 cn(fy pn) P = meth[o1/d1]..[0m/Om] € cn{fin)

P metheq cn(fyn) V P - methg; cn(fi)
P - meth e cn(fy pn)

P F cn{fyin) < cn(orm)

Prtmn(..) x M%) .. eq en(fyn)
P+ t[g1/01]..[Om/0Om] mn...)(ti[g1/01]..[Om/Om| Vi '61"") ... ¢ cnl{gLm)
OverrideOKcn(fy), cr'(o1.m), meth

P F cn{fyin) < cn(opm)
P tmn(foen)G x 0K L. eq on(frp)
Pt mn(gnian) (6 yi ') ... € cnf(grm)
t = t' [01/01]..[om/Om] typeti % '<HK) = type(t yi '*) [01/04].[Om/Om]
OverrideOKen(fy), cn' (01 m), meth

151

The type rules are presented below:

[PROG

WFClasse&) ClassOncéP) FieldsOncéP) MethodsOncgP)
P=defn ,; e P defn P,0F e:t

Pt

[CLASS

P + cn € Xmodule
= fin:owner f1 < fi:constraint, constr, this:cn(fy)
P, I+ wf P, I + cn/(fy, o) P; I + field P; I+ init P; I + meth
OverrideOK cn(fy), cr(f;, 0*), meth)

P class cn(fy n) extends cr(f1, 0*) where consti { field; init; meth }

[XMODULE CLASS]

P F cn < Xmodule
= f1.n:owner, f; < fi:constraint, const, this:cn(fi), this:owner, this[i] < f;
P; I - wf P, I cn/(fy, o) P; I F field P; I F init P;: I meth
typq field) # int OverrideOK cn(fy n), cr(f, 0*), meth)
P I class cn(fy n) extends cr(fi, 0") where constr { field"; init; metH }

[INIT]

P cn(fyn) < cn(f1,00.m)
r’:_r, parant P; " - wf = this.fd; = g
PR oe(gum %' {...} € crf{gim) P, I+ & :t [f1/01][02/92].-.[Om/9m]
P; T cn(fyn)(parani) { super(fi, op.m)(g '€+K); this.fd=e*}

[P, T+ field| |P; T + meth
[FIELD] [METHOD]

Pl Ft " =T, fin:owner constr, parani P; " - wf PT'F e:t
P, I+ tfd P; I = t mn(fy n)(param’) where constr {e}

152

[ENV O] [ENV X] [ENV OWNER|

P, T -t x ¢ Dom(") P; I - wf f ¢ Dom(") P, I - wf
P; 0 - wf P, I, x:t - wf P; I, f:ownert wf

[ENV CONSTR<]

P; I - wf P: T Fowner O, O =T, o< o :constraint
Aig(P; T F f<g AP T Fg<f) AigP T+ f<g A (PT'F f=0)
P; I o<0o + wf

[ENV CONSTR=]

P; I + wf P; I Fowner O, O " =T, constr: constraint

AigP T f<g A (P T'F f=0)

AP T+ f=0) AigP; T+ f=g) A (P T"F f#£0)
P; I', constr - wf

Aig (P T Fg<f)

[ENV CONSTR#]

P; I + wf P; I Fowner O, O =T, 0# 0 : constraint
ArgPT"Ef<g AR T Ff#g Arg(PTEf=g AP+ f#g)
P; I, constr - wf

[TYPE INT] [TYPE CONSTRAINT [TYPEOBJECT [TYPE XMODULE]

P; ' Fowner O P; ' Fowner O
P, +int P; T F constraint P; I - Object(0) P; I = Xmodule(o)

[TYPE CT|

P I class cn(fi n) ... where constr ...
P; T Fowner Oi P; I 01 < 0 : constraint P; ' = constr[oy/f1]..[on/ fn]

P; I F cn{o1n)

153

]P; M+ constr\

[CONSTR ENV [< WORLD || [< WORLD I1] (< THIS)
P; T Fowner O <]

r=r’, constr " P; T F o# world i< P; T Fowner this

P; I + constr P; I F o<world[i] P; T world[i] <world[j] P; I I this]i] < this][j]
[< TRANS] [= WORLD] [= THIS] [= TRANS]
P;T F 01 <0y =] P, Fo=0;
P,IT'For<os P; T F world[i] = world[j] P; I F this[i] = this[]] P, o1=03
[= REFL] [WORLD] # THIS]

P; T Fowner O I #]
P; I + 0 world P; I - 0 this i #] P; T Fowner this
P,TFo=o0 P; I F world[i] Zworld[j] P; I F this[i] # this[]]
[WORLD] [SUBSTITUTION [RELATION]
P,THFo=0
P; I F this[i] # world P; I F constr[o1/0y] P;T F o1#02
[OWNER WORLD [OWNER FORMAL] [OWNER THIS
r=r’, f:owner " [=TI, this:owner "

P, r l_owner World“] P, r l_owner f P, r l_owner th|S[|]
[EXP SUB [EXP NEW| [EXP VAR]

P,T Fe:t PE en(fon)(t x 'S4 {...} € en(fyn)
PrrHt <t P; T + cn(oyn) P; I+ &:t[01/f1]..[on/ fr] r=r,x:tr"

P;T I e:t P; T newcn(or n)(e ' € 1) :cn(oy) P T+ x:t

154

[EXP VAR ASSIGN [EXP LET] [EXP RER

P, F x:t P,ré:t P; T F x:cn{oyn)
Pl + e:t P I, x:t' - wf P, x:t' - e:t Prtfde cn(fyn)
P, - x=e:t P, Fletit'x=¢€)in{e}:t P; I - x.fd:t[o1/f1]..[on/]

[EXP REF ASSIGN

P; I+ x:cn(o1n) PFtfde cn(fyn) P; T+ e:t]oy/f1]..[on/ fn]
P, I+ xfd = e:t]oy/f1]..[on/ fr]

[EXP INVOKE]

P = tmn(fyq) n) (G vi'<"") where constr ... € cn(fy i)
P; I x:cn(og k) P; T & :tj[o1/f1)..[on/ fn] P; I + constr[ok;1/ fkr1)--[0n/ fnl

P; I F xmn{0g;1).n)(€1.n) 1t [01/f1]..[0n/ fr]

’P; ret<: t"
[SUBTYPE [SUBTYPE TRANS [SUBTYPE REFI]
P; I cn(oyn) Pr-t<:t
P E cn(frn) < c(fF) Pr -t <t Pr k-t
P; I + cn{og n) <: e (f)[o1/f1]..[on/ fr] P Ht<:t’ P Ht<it

155

Bibliography

[1] Intel® Cilk™ Plus is now available in open-source and for gcc 4aEkp: //www.cilkplus.org,
2011. The source code for the compiler and its associatedimenis available at
http://gcc.gnu.org/svn/gcc/branches/cilkplus.

[2] M. Abadi, T. Harris, and M. Mehrara. Transactional megnaith strong atomicity using off-the-shelf
memory protection hardware. FProceedings of the 14th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programmind®PoPP '09, pages 185-196, Raleigh, NC, USA, 2009. ACM.

[3] Advanced Micro DevicesAMDG64 Architecture Programmer’s Manual Volume 2: SysteiwgiPam-
ming June 2010.

[4] K. Agrawal, I.-T. A. Lee, and J. Sukha. Safe open-nestaddactions through ownership. Rro-
ceedings of the 14th ACM SIGPLAN Symposium on Principle®aactice of Parallel Programming
(PPoPP) pages 151-162, Raleigh, NC, USA, 2009. ACM.

[5] K. Agrawal, C. E. Leiserson, and J. Sukha. Memory modei®pen-nested transactions.Rroceed-
ings of the ACM SIGPLAN Workshop on Memory Systems Perfaeraard Correctness (MSP(San
Jose, California, USA, Oct. 2006. In conjunction ASPLOS.

[6] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. MaassS. Ryu, G. L. S. Jr., and S. Tobin-
Hochstadt.The Fortress Language Specification Version 50n Microsystems, Inc., Mar. 2008.

[7] C. S. Ananian, K. Asano@i B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unboundeds#etional
memory.|EEE Micro, 26(1), Jan. 2006. Won tHEEE Micro “Top Picks” award for the most industry
relevant and significant papers of the year in computer tactuire.

[8] N.S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread schieg for multiprogrammed multiproces-
sors. InProceedings of the Tenth Annual ACM Symposium on Paralggrihms and Architectures
pages 119-129, Puerto Vallarta, Mexico, June 1998.

[9] R. Barik, Z. Budimlic, V. Caw, S. Chatterjee, Y. Guo, D. Peixotto, R. Raman, J. Shirakdagrlar,
Y. Yan, Y. Zhao, and V. Sarkar. The Habanero multicore saftwasearch project. IRroceeding
of the 24th ACM SIGPLAN Conference on Object-Oriented Ruogning Systems Languages and
Applications (OOPSLAYOPSLA '09, pages 735—-736, Orlando, Florida, USA, 2009MAC

[10] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wifs Hoard: A scalable memory allocator
for multithreaded applications. Rroceedings of the 19th International Conference on Aeditral
Support for Programming Languages and Operating Syster8®I(®S-LX) pages 117-128, Cam-
bridge, MA, Nov. 2000.

[11] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safeltithreaded programming for c/c++.
In Proceedings of the 24th ACM SIGPLAN conference on Objean@d Programming Systems
Languages and Application® OPSLA '09, pages 81-96, Orlando, Florida, USA, 2009. ACM.

[12] G. E. Blelloch. NESL: A nested data-parallel languaggrgion 3.1). Technical Report CMU-CS-95-
170, School of Computer Science, Carnegie Mellon UniverSiept. 1995.

[13] G. E. Blelloch. Programming parallel algorithmSommunications of the ACN89(3), Mar. 1996.

156

http://www.cilkplus.org
http://gcc.gnu.org/svn/gcc/branches/cilkplus

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provablficént scheduling for languages with fine-
grained parallelism. IfProceedings of the Seventh Annual ACM Symposium on Pafddjelithms
and Architecturespages 1-12, Santa Barbara, California, July 1995.

R. D. Blumofe. Executing Multithreaded Programs EfficientlyPhD thesis, Department of Elec-
trical Engineering and Computer Science, Massachusedtiuie of Technology, Cambridge, Mas-
sachusetts, Sept. 1995. Available as MIT Laboratory for pater Science Technical Report
MIT/LCS/TR-677.

R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, &éi. Randall. An analysis of dag-consistent
distributed shared-memory algorithms. Pmoceedings of the Eighth Annual ACM Symposium on
Parallel Algorithms and Architecturepages 297-308, Padua, Italy, June 1996.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leisersk. H. Randall, and Y. Zhou. Cilk:
An efficient multithreaded runtime system. Rroceedings of the Fifth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programmingages 207-216, Santa Barbara, California, July
1995.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leisersd. H. Randall, and Y. Zhou. Cilk:
An efficient multithreaded runtime systedournal of Parallel and Distributed Computing7(1):55—
69, August 25 1996. (An early version appeared in Bieceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel ProgramgniPPoPP '95) pages 207-216, Santa
Barbara, California, July 1995.).

R. D. Blumofe and C. E. Leiserson. Space-efficient salieg of multithreaded computationSIAM
Journal on Computing27(1):202—229, Feb. 1998.

R. D. Blumofe and C. E. Leiserson. Scheduling multiftted computations by work stealinthurnal
of the ACM 46(5):720-748, Sept. 1999.

R. D. Blumofe and D. Papadopoulos. Hood: A user-leveddls library for multiprogrammed multi-
processors. Technical Report, University of Texas at A141999.

C. Boyapaiti, B. Liskov, and L. Shrira. Ownership types 6bject encapsulation. IRroceedings of
the ACM Symposium on Principles of Programming Languag@$(B, New Orleans, Louisiana, Jan.
2003.

R. P. Brent. The parallel evaluation of general arittimexpressionsJournal of the ACM21(2):201—
206, Apr. 1974.

F. W. Burton and M. R. Sleep. Executing functional pags on a virtual tree of processors.Rro-
ceedings of the 1981 Conference on Functional Programmamguages and Computer Architecture
pages 187-194, Portsmouth, New Hampshire, Oct. 1981.

B. D. Carlstrom, A. McDonald, M. Carbin, C. KozyrakindK. Olukotun. Transactional collection
classes. IrProceedings of the ACM SIGPLAN Symposium on Principles aadtiBes of Parallel
Programming (PPoPR)pages 56-67, San Jose, California, USA, 2007. ACM.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. gtie, K. Ebcioglu, C. von Praun, and V. Sarkar.
X10: An object-oriented approach to non-uniform clustempating. InProceedings of the 20th An-
nual ACM SIGPLAN Conference on Object-Oriented Prograngm8ystems, Languages, and Appli-
cations pages 519-538, New York, NY, USA, 2005.

Cilk Arts, Inc. Cilk++ Programmer’s Guiderelease 1.0 edition, December 2008.

L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: &trning STM by abolishing ownership
records. InProceedings of the 15th ACM SIGPLAN Symposium on Princgpid$ractice of Parallel
Programming (PPoPR)pages 67-78, Bangalore, India, 2010. ACM.

P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir,daD. Nussbaum. Hybrid transactional
memory. InProceedings of the 12th International Conference on Aettitral Support for Program-
ming Languages and Operating Systems (ASPLaeg)es 336—346, San Jose, California, USA, 2006.
ACM.

157

[30] J. S. Danaher, I.-T. A. Lee, and C. E. Leiserson. Prognarg with exceptions in JCilkScience of
Computer Programmings3(2):147-171, Dec. 2006.

[31] P.J. Denning. Virtual memonComputing Survey£(3):153-189, Sept. 1970.

[32] P. J. Denning. Before memory was virtual. Imthe Beginning: Personal Recollections of Software
Pioneers Nov. 1996.

[33] D. Dice. David dice’s weblog. https://blogs.com/dave/entry/biased_locking in_
hotspot#comments, 2006.

[34] D. Dice, H. Huang, and M. Yang. Asymmetric Dekker syrarfization. Technical report, Sun Mi-
crosystems Inc., July 2001.

[35] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experenwith a commercial hardware transac-
tional memory implementation. IRroceeding of the 14th International Conference on Architeal
Support for Programming Languages and Operating Syste®BI®S)pages 157-168, Washington,
DC, USA, 2009. ACM.

[36] D. Dice, M. Moir, and W. S. lll. Quickly reacquirable lks. Technical report, Sun Microsystems Inc.,
2003.

[37] D. Dice, O. Shalev, and N. Shavit. Transactional logKin In In Proceedings of the 20th International
Symposium on Distributed Computjr&tockholm, Sweden, Sept. 2006.

[38] E. W. Dijkstra. Solution of a problem in concurrent pragnming control.Commun. ACM8(9):569,
Sept. 1965.

[39] E. W. Dijkstra. Co-operating sequential processesF.IGenuys, editorProgramming Languages
pages 43-112. Academic Press, London, England, 1968. na@lligipublished as Technical Report
EWD-123, Technological University, Eindhoven, the Nethrds, 1965.

[40] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedugpugeefficiency in parallel system$EEE
Trans. Comput.38(3):408-423, Mar. 1989.

[41] R. Feldmann, P. Mysliwietz, and B. Monien. Studying iheads in massively parallel min/max-
tree evaluation. IrProceedings of the Sixth Annual ACM Symposium on Paraligbrkhms and
Architecturespages 94-103, Cape May, New Jersey, June 1994,

[42] M. Fengand C. E. Leiserson. Efficient detection of defeacy races in Cilk programs. Proceedings
of the Ninth Annual ACM Symposium on Parallel Algorithms Amnchitectures (SPAApages 1-11,
Newport, Rhode Island, June 1997.

[43] R. Finkel and U. Manber. DIB — A distributed implementeat of backtracking. ACM TOPLAS
9(2):235-256, Apr. 1987.

[44] J. Fotheringham. Dynamic storage allocation in thegttomputer, including an automatic use of a
backing storeCommunications of the ACM(10):435-436, Oct. 1961.

[45] V. W. Freeh, D. K. Lowenthal, and G. R. Andrews. Distiibd Filaments: Efficient fine-grain par-
allelism on a cluster of workstations. Rroceedings of the First Symposium on Operating Systems
Design and Implementatippages 201-213, Monterey, California, Nov. 1994,

[46] M. Frigo. Portable High-Performance Program#&hD thesis, Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Scie@eenbridge, Massachusetts, June 1999.

[47] M. Frigo, 2009. Private communication.

[48] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-BerlReducers and other Cilk++ hyperob-
jects. InProceedings of the Twenty-First Annual ACM Symposium oalledism in Algorithms and
Architecturespages 79-90, Calgary, Canada, Aug. 2009. Won Best Paped.awa

158

https://blogs.com/dave/entry/biased_locking_in_hotspot#comments

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

M. Frigo, C. E. Leiserson, and K. H. Randall. The implertation of the Cilk-5 multithreaded lan-
guage. IrProceedings of the ACM SIGPLAN 98 Conference on Programiamguage Design and
Implementationpages 212—-223, Montreal, Quebec, Canada, June 1998 eRloge published ACM
SIGPLAN Notices, Vol. 33, No. 5, May, 1998.

J. R. Gilbert, C. Moler, and R. Schreiber. Sparse mesric MATLAB: Design and implementation.
SIAM J. Matrix Anal. Appl13:333—-356, 1992.

S. C. Goldstein, K. E. Schauser, and D. Culler. Enahfirigitives for compiling parallel languages.
In Third Workshop on Languages, Compilers, and Run-Time i@gster Scalable Computersroy,
New York, May 1995.

J. Gosling, B. Joy, G. Steele, and G. Brachghe Java Language Specificatiolddison Wesley,
second edition, 2000.

R. L. Graham. Bounds for certain multiprocessing anigsa The Bell System Technical Journal
45:1563-1581, Nov. 1966.

M. Halbherr, Y. Zhou, and C. F. Joerg. MIMD-style paehlprogramming with continuation-passing
threads. IrProceedings of the 2nd International Workshop on Massivalledism: Hardware, Soft-
ware, and ApplicationsCapri, Italy, Sept. 1994.

R. H. Halstead, Jr. Multilisp: A language for concurresymbolic computation.ACM TOPLAS
7(4):501-538, Oct. 1985.

L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. DaBsHertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional memory coheeeand consistency. Proceedings of
the 31st Annual International Symposium on Computer Agchire (ISCA)pages 102-113, M
ddotunchen, Germany, June 2004.

T. Harris, J. Larus, and R. Rajwafransactional Memory, Second EditiorBynthesis Lectures on
Computer Architecture. Morgan & Claypool Publishers, 2010

T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optiziig memory transactions. Proceedings of
the 2006 ACM SIGPLAN conference on Programming Languaggasd Implementation (PLDJ)
pages 14-25, Ottawa, Ontario, Canada, 2006. ACM.

J. M. Hart. Windows System Programmingddison-Wesley, third edition, 2004.

E. A. Hauck and B. A. Dent. Burroughs’ B6500/B7500 staosgchanismProceedings of the AFIPS
Spring Joint Computer Conferengeages 245-251, 1968.

J. L. Hennessy and D. A. PattersorComputer Architecture: a Quantitative ApproactMorgan
Kaufmann, San Francisco, California, USA, fourth editi2007.

M. Herlihy and E. Koskinen. Transactional boosting: aethodology for highly-concurrent transac-
tional objects. InProceedings of the 13th ACM SIGPLAN Symposium on PrincgidsPractice of
Parallel Programming (PPoPR)ages 207-216, Salt Lake City, Utah, USA, Feb. 2008. ACM.

M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer lllSoftware transactional memory for
dynamic-sized data structures.Rroceedings of the ACM SIGACT-SIGOPS Symposium on Prscipl
of Distributed Computingpages 92-101, 2003.

M. Herlihy and J. E. B. Moss. Transactional memory: Atettural support for lock-free data struc-
tures. InProceedings of the 20th International Conference on CoerpAitchitecture. (Also published
as ACM SIGARCH Computer Architecture News, Volume 21, Baday 1993.)pages 289-300, San
Diego, California, 1993.

Institute of Electrical and Electronic Engineers.dmhation technology — Portable Operating System
Interface (POSIX) — Part 1: System application programrfate (API) [C language]. IEEE Standard
1003.1, 1996 Edition.

159

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Intel Corporation.Intel Cilk++ SDK Programmer’s GuideOct. 2009. Document Number: 322581-
001Us.

Intel Corporation.Intel® C++ Compiler 12.0 User and Reference Guidédstel Corporation, 2010.
Document number: 323271-011US.

Intel Corporation.Intel® Cilk™ Plus Application Binary Interface Specificatid010. Available at
http://software.intel.com/sites/products/cilk-plus/cilk_plus_abi.pdf.

Intel Corporation. Intel® Cilk™ Plus Language Specificatipn2010. Available at
http://software.intel.com/sites/products/cilk-plus/cilk_plus_language_
specification.pdf.

Intel Corporation. C++ and C interfaces for Cilk reducer hyperobjectsntel Corporation, 2011.
Intel® C++ Compiler 12.0reducer .h Header File.

Intel Corporation.Intel® 64 and IA-32 Architectures Software Developer's Manuabxe 3A: Sys-
tem Programming Guide, Part Jan. 2011.

E. H. Jensen, G. W. Hagensen, and J. M. Broughton. A n@noagh to exclusive data access in shared
memory multiprocessors. Technical Report UCRL-97663, leswe Livermore National Laboratory,
Livermore, California, Nov. 1987.

C. Joerg and B. C. Kuszmaul. Massively parallel ches®rbceedings of the Third DIMACS Parallel
Implementation Challeng&utgers University, New Jersey, Oct. 17-19 1994.

C. F. Joerg. The Cilk System for Parallel Multithreaded ComputinghD thesis, Department of
Electrical Engineering and Computer Science, Massactsubgttitute of Technology, Cambridge,
Massachusetts, Jan. 1996. Available as MIT Laboratory fam@uter Science Technical Report
MIT/LCS/TR-701.

R. M. Karp and Y. Zhang. Randomized parallel algoritfordacktrack search and branch-and-bound
computation.Journal of the ACM40(3):765-789, July 1993.

K. Kawachiya, A. Koseki, and T. Onodera. Lock resematiJava locks can mostly do without atomic
operations. IrProceedings of the 17th ACM SIGPLAN Conference on Objeign@d Programming
Systems, Languages, and Applicatiqmeges 130-141, Seattle, Washington, USA, Nov. 2002.

B. W. Kernighan and D. M. Ritchie.The C Programming LanguagePrentice Hall, Inc., second
edition, 1988.

T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. StenrOne-level storage systefiRE Trans.
Electronic Computerq2):223-235, Apr. 1962.

C. H. Koelbel, D. B. Loveman, R. S. Schreiber, J. Guy leed, and M. E. ZoselThe High Perfor-
mance Fortran HandbooKrhe MIT Press, 1994.

D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T: A higperformance parallel Lisp. IRroceed-
ings of the SIGPLAN '89 Conference on Programming Languaggidh and Implementatiopages
81-90, Portland, Oregon, June 1989.

S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyenbiritiytransactional memory. IRro-
ceedings of the 11th ACM SIGPLAN Symposium on Principle$eaactice of Parallel Programming
(PPoPP) pages 209-220, New York, New York, USA, 2006. ACM.

B. C. Kuszmaul.Synchronized MIMD Computind®hD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Tecgyditay 1994. Available as MIT Labora-
tory for Computer Science Technical Report MIT/LCS/TR-645

B. C. Kuszmaul. The StarTech massively parallel chesgnam. The Journal of the International
Computer Chess AssociatialB(1):3—-20, Mar. 1995.

160

http://software.intel.com/sites/products/cilk-plus/cilk_plus_abi.pdf
http://software.intel.com/sites/products/cilk-plus/cilk_plus_language_specification.pdf

[84] E. Ladan-Mozes, I.-T. A. Lee, and D. Vyukov. Locatioaded memory fences. Rroceedings of the
23rd ACM Symposium on Parallelism in Algorithms and Architees (SPAA)pages 75-84, San Jose,
California, USA, 2011. ACM.

[85] L. Lamport. A new solution of Dijkstra’s concurrent gr@amming problemCommunications of the
ACM, 17(8):453-455, 1974.

[86] L. Lamport. How to make a multiprocessor computer thatectly executes multiprocess programs.
IEEE Transactions on ComputeiG-28(9):690-691, Sept. 1979.

[87] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Autheation in distributed systems: theory
and practice ACM Transactions on Computer Systef®265-310, Nov. 1992.

[88] J.R. Larus and T. Ball. Rewriting executable files to mea program behavioSoftw. Pract. Exper.
24(2):197-218, 1994.

[89] C. Lasser and S. M. Omohundrolhe Essential *Lisp Manual, Release 1, Revision Thinking
Machines Technical Report 86.15, Cambridge, MA, 1986.

[90] D. Lea. A Java fork/join framework. IRroceedings of the ACM 2000 Conference on Java Grande
pages 36-43. ACM, 2000.

[91] I.-T. A. Lee, S. Boyd-Wickizer, Z. Huang, and C. E. Leisen. Using memory mapping to support
cactus stacks in work-stealing runtime systemsPACT '10: Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Teghes pages 411-420, Vienna, Austria,
September 2010. ACM.

[92] D. Leijen, W. Schulte, and S. Burckhardt. The design tdsk parallel library. IrProceeding of the
24th ACM SIGPLAN conference on Object-Oriented ProgramgnBystems, Languages, and Appli-
cations (OOPSLA)ages 227-242, Orlando, Florida, USA, 2009.

[93] C. E. LeisersonEncyclopedia of Distributed Computindoseph Urban and Partha Dasgupta, editors,
Kluwer Academic Publishers. to appear.

[94] C.E. Leiserson. The Cilk++ concurrency platfordournal of Supercomputing1(3):244—-257, March
2010.

[95] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. RnR&n, M. N. Ganmukhi, J. V. Hill,
W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M.. @/ong, S.-W. Yang, and R. Zak.
The network architecture of the Connection Machine CM-Iurnal of Parallel and Distributed
Computing 33(2):145-158, 1996.

[96] C. E. Leiserson and T. B. Schardl. A work-efficient phalbreadth-first search algorithm (or how to
cope with the nondeterminism of reducers). Aroceedings of the 22nd ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAARges 303-314, June 2010.

[97] Y. Lev and J.-W. Maessen. Split hardware transactidinge nesting of transactions using best-effort
hardware transactional memory. Pnoceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPPages 197-206, Salt Lake City, UT, USA, 2008.
ACM.

[98] Y. Lev, M. Moir, and D. Nusshaum. PhTM: Phased transael memory. IiThe 2nd ACM SIGPLAN
Workshop on Transactional Computing (TransaB®rtland, Oregon, USA, Aug. 2007.

[99] C.Lin, V. Nagarajan, and R. Gupta. Efficient sequerd@isistency using conditional fences.Rro-
ceedings of the 19th International Conference on Paraltehfiectures and Compilation Techniqules
pages 295-306, Vienna, Austria, Sept. 2010. ACM.

[100] T. Lindholm and F. Yellin.The Java Virtual Machine Specificatioddison-Wesley, Boston, Mas-
sachusetts, second edition, 2000.

[101] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Héint deterministic multithreading. IRro-
ceedings of the Twenty-Third ACM Symposium on Operatinggi@gsPrinciples SOSP 11, pages
327-336, Cascais, Portugal, 2011. ACM.

161

[102] V.J. Marathe, W. N. S. lii, and M. L. Scott. Adaptive sgére transactional memory. Rroceedings of
the 19th International Symposium on Distributed CompuidigC), pages 354—-368, Cracow, Poland,
Sept. 2005.

[103] M. Matz, J. Hubtka, A. Jaeger, and M. Mitchell. System V application binargrface AMD64
architecture processor supplement draft version 0.99.

[104] J. McCarthy. Recursive functions of symbolic express and their computation by machine, part i.
Communications of the ACN8(4):184-195, Apr. 1960.

[105] D. McCrady. Avoiding contention using combinabledtis. Microsoft Developer Network blog post,
Sept. 2008.

[106] A.McDonald, J. Chung, B. D. Carlstrom, C. C. Minh, H.&hC. Kozyrakis, and K. Olukotun. Archi-
tectural semantics for practical transactional memorroteedings of the 33rd Annual International
Symposium on Computer Architectudene 2006.

[107] E. Meijer and J. Gough. Technical overview of the commdanguage runtime.
http://research.microsoft.com/en-us/um/people/en@apers/CLR.pdf, 2000.

[108] J. M. Mellor-Crummey and M. L. Scott. Scalable readeiter synchronization for shared-memory
multiprocessors. IRroceedings of the Third ACM SIGPLAN Symposium on Prinsighel Practice of
Parallel Prgoramming (PPoPR)pages 106—-113, Williamsburg, Virginia, United State91L.ACM.

[109] MIPS Computer Systems, InRISCompiler Languages Programmer’s Guidecember 1988.

[110] G. E. Moore. Progress in digital integrated electesniIn International Electron Devices Meeting
Technical Digestpages 11-13, Dec. 1975.

[111] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. Wood. LogTM: Log-based transac-
tional memory. InProceedings of the 12th International Symposium on HiglidPerance Computer
Architecture (HPCA)pages 254265, Austin, Texas, USA, Feb. 2006.

[112] J. E. B. MossNested Transactions: An Approach to Reliable Distributedn@uting The MIT Press,
Cambridge, Massachusetts, USA, 1985.

[113] J. E. B. Moss. Open nested transactions: Semanticswgqbrt. InProceedings of the Workshop on
Memory Performance Issues (WMPAustin, Texas, Feb. 2006.

[114] J. E. B. Moss and A. L. Hosking. Nested transactionaimey: Model and architecture sketches.
63(2):186—-201, Dec. 2006.

[115] N. Nethercote and J. Seward. Valgrind: a frameworlhfsavyweight dynamic binary instrumentation.
In PLDI '07: Proceedings of the 2007 ACM SIGPLAN Conference mgfmming Language Design
and Implementatiarpages 89—-100, New York, NY, USA, 2007. ACM.

[116] R.H. B. Netzer and B. P. Miller. What are race conditid#¢M Letters on Programming Languages
and Systemd.(1):74-88, March 1992.

[117] Y.Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L.iktlson, J. E. B. Moss, B. Saha, and T. Shpeis-
man. Open nesting in software transactional memoryroteedings of ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming (PPgPMar. 2007.

[118] R. S. Nikhil. Cid: A parallel, shared-memory C for dibtuted-memory machines. Proceedings of
the Seventh Annual Workshop on Languages and Compileraifali& Computing Aug. 1994.

[119] T. Onodera, K. Kawachiya, and A. Koseki. Lock resevaffor java reconsidered. IRroceedings
of the 18th European Conference on Object-Oriented Prognarg, pages 559-583, Oslo, Norway,
June 2004. Springer Berlin / Heidelberg.

[120] OpenMP application program interface, version 3.pe@MP specification, May 2008.

[121] C. H. Papadimitriou. The serializability of concumtedatabase updatesJournal of the ACM
26(4):631-653, 1979.

162

[122] G. L. Peterson. Myths about the mutual exclusion mrobl Information Processing Letters
12(3):115-116, June 1981.

[123] H. K. Pylaand S. Varadarajan. Avoiding deadlock agoick. InProceedings of the 19th International
Conference on Parallel Architectures and Compilation Teghes PACT '10, pages 75-86, Vienna,
Austria, 2010. ACM.

[124] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transtional memory. InProceedings of the 32nd
Annual International Symposium on Computer Architecti®CA) Madison, Wisconsin, USA, June
2005.

[125] K. H. Randall.Cilk: Efficient Multithreaded Computing®hD thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institutechfiiblogy, May 1998.

[126] J. Reinders.ntel Threading Building Blocks: Outfitting C++ for Multiare Processor Parallelism
O'Reilly Media, Inc., 2007.

[127] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Mimaimnd B. Hertzberg. McRT-STM: a high
performance software transactional memory system for di4oie runtime. InProceedings of the
11th ACM SIGPLAN Symposium on Principles and Practice cdiRgiProgramming (PPoPR)pages
187-197, New York, NY, USA, 2006. ACM.

[128] N. Shavit and D. Touitou. Software transactional mgmoln Proceedings of the 14th Annual
ACM Symposium on Principles of Distributed Computing (PQpages 204-213, Ottowa, Ontario,
Canada, Aug. 1995.

[129] D. Stein and D. Shah. Implementing lightweight threalth USENIX '92 pages 1-9, 1992.
[130] B. StroustrupThe C++ Programming Languagedddison-Wesley, Boston, MA, third edition, 2000.

[131] J. Sukha. Brief announcement: A lower bound for depttricted work stealing. Ifhe Twenty-first
ACM Symposium on Parallelism in Algorithms and Architeetu€algary, Canada, Aug. 2009.

[132] Supercomputing Technologies Group, Massachusestiute of Technology Laboratory for Com-
puter ScienceCilk 5.4.6 Reference Manya006.

[133] M. T. Vandevoorde and E. S. Roberts. WorkCrews: Anralotibn for controlling parallelisminter-
national Journal of Parallel Programmind.7(4):347-366, Aug. 1988.

[134] N. Vasudevan, K. S. Namjoshi, and S. A. Edwards. Sinaplé fast biased locks. IRroceedings
of the 19th International Conference on Parallel Architges and Compilation Techniquesages
65-74, Vienna, Austria, Sept. 2010. ACM.

[135] D. L. Weaver and T. Germond, editor¥he SPARC Architecture Manual, Version BTR Prentice
Hall, 1994.

[136] G. Weikum. A theoretical foundation of multi-levelmaurrency control. IProceedings of the ACM
SIGACT-SIGMOD Symposium on Principles of Database SygR@BS) pages 31-43, Cambridge,
Massachusetts, United States, 1986. ACM.

[137] W. Wulf and M. Shaw. Global variable considered haim& GPLAN Notices8(2):28—-34, 1973.

163

	Introduction
	TLMM-Based Cactus Stacks
	Support for Efficient Reducers and Reducer Arrays
	Ownership-Aware Transactions
	Location-Based Memory Fences
	Contributions

	Part I: Memory Abstractions in Cilk-M
	Introduction to Cilk-M
	Cilk Technology and the Development of Cilk-M
	Support for TLMM
	An Alternative to TLMM

	TLMM-Based Cactus Stacks
	The Cactus-Stack Problem Seems Hard
	TLMM-Based Cactus Stacks in Cilk-M
	An Evaluation of TLMM-Based Cactus Stacks
	Conclusion

	Memory-Mapped Reducer Hyperobjects
	Reducer Linguistics
	Support for Reducers in Cilk Plus
	Support for Reducers in Cilk-M
	An Empirical Evaluation of Memory-Mapped Reducers
	Conclusion

	Library Support for Reducer Arrays
	Library Support for Reducer Arrays
	Analysis of Computations That Employ Reducer Arrays
	An Empirical Evaluation of Reducer Arrays
	Concluding Remarks

	Part II: Other Memory Abstractions
	Ownership-Aware Transactional Memory
	Ownership-Aware Transactions
	Ownership Types for Xmodules
	The OAT Model
	Serializability by Modules
	Deadlock Freedom
	Related Work
	Conclusions

	Location-Based Memory Fences
	Store Buffers and Memory Accesses Reordering
	Location-Based Memory Fences
	Formal Specification and Correctness of [basicstyle=]l-mfence
	An Empirical Evaluation of Location-Based Memory Fences
	Related Work
	Conclusion

	Conclusion
	The OAT Model and Sequential Consistency
	Rules for the OAT Type System

