
Memory-Mapping Support for Reducer Hyperobjects

I-Ting Angelina Lee
∗

MIT CSAIL

32 Vassar Street
Cambridge, MA 02139 USA

angelee@csail.mit.edu

Aamir Shafi
†

National University of
Sciences and Technology

Sector H-12
Islamabad, Pakistan

aamir.shafi@seecs.edu.pk

Charles E. Leiserson

MIT CSAIL

32 Vassar Street
Cambridge, MA 02139 USA

cel@mit.edu

ABSTRACT

Reducer hyperobjects (reducers) provide a linguistic abstraction
for dynamic multithreading that allows different branches of a par-
allel program to maintain coordinated local views of the same non-
local variable. In this paper, we investigate how thread-local mem-

ory mapping (TLMM) can be used to improve the performance
of reducers. Existing concurrency platforms that support reducer
hyperobjects, such as Intel Cilk Plus and Cilk++, take a hyper-
map approach in which a hash table is used to map reducer ob-
jects to their local views. The overhead of the hash table is costly
— roughly 12× overhead compared to a normal L1-cache mem-
ory access on an AMD Opteron 8354. We replaced the Intel Cilk
Plus runtime system with our own Cilk-M runtime system which
uses TLMM to implement a reducer mechanism that supports a re-
ducer lookup using only two memory accesses and a predictable
branch, which is roughly a 3× overhead compared to an ordinary
L1-cache memory access. An empirical evaluation shows that the
Cilk-M memory-mapping approach is close to 4× faster than the
Cilk Plus hypermap approach. Furthermore, the memory-mapping
approach admits better locality than the hypermap approach during
parallel execution, which allows an application using reducers to
scale better.

Categories and Subject Descriptors

D.1.3 [Software]: Programming Techniques—Concurrent pro-

gramming; D.3.3 [Software]: Language Constructs and Features—
Concurrent programming structures.

General Terms

Design, Experimentation, Performance.

This work was supported in part by the National Science Foundation under
Grant CNS-1017058. Aamir Shafi was funded in part by a Fulbright grant
during his visit at MIT.
∗
I-Ting Angelina Lee is currently affiliated with Intel Labs, Hillsboro, OR.

†
Aamir Shafi is currently an Assistant Professor at NUST SEECS and was

a Visiting Fulbright Scholar at MIT during the course of this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

Keywords

Cilk, dynamic multithreading, memory mapping, reducers, re-
ducer hyperobjects, task parallelism, thread-local memory mapping
(TLMM), work stealing.

1. INTRODUCTION
Reducer hyperobjects (or reducers for short) [12] have been

shown to be a useful linguistic mechanism to avoid determinacy
races [11] (also referred as general races [28]) in dynamic multi-
threaded programs. Reducers allow different logical branches of
a parallel computation to maintain coordinated local views of the
same nonlocal variable. Whenever a reducer is updated — typi-
cally using an associative operator — the worker thread on which
the update occurs maps the reducer access to its local view and per-
forms the update on that local view. As the computation proceeds,
the various views are judiciously reduced (combined) by the run-
time system using an associative reduce operator to produce a final
value.

Although existing reducer mechanisms are generally faster than
other solutions for updating nonlocal variables, such as locking
and atomic-update, they are still relatively slow. Concurrency plat-
forms that support reducers, specifically Intel’s Cilk Plus [19] and
Cilk++ [25], implement the reducer mechanism using a hypermap

approach in which each worker employs a thread-local hash ta-
ble to map reducers to their local views. Since every access to a
reducer requires a hash-table lookup, operations on reducers are
relatively costly — about 12× overhead compared to an ordinary
L1-cache memory access on an AMD Opteron 8354. In this paper,
we investigate a memory-mapping approach for supporting reduc-
ers, which leverages the virtual-address translation provided by the
underlying hardware to yield a close to 4× faster access time.

A memory-mapping reducer mechanism must address four key
questions:

1. What operating-system support is required to allow the
virtual-memory hardware to map reducers to their local
views?

2. How can a variety of reducers with different types, sizes, and
life spans be handled?

3. How should a worker’s local views be organized in a compact
fashion to allow both constant-time lookups and efficient se-
quencing during reductions?

4. Can a worker efficiently gain access to another worker’s local
views without extra memory mapping?

Our memory-mapping approach answers each of these questions
using simple and efficient strategies.

1. The operating-system support employs thread-local memory

mapping (TLMM) [23]. TLMM enables the virtual-memory

 0 2 4 6 8 10 12 14

L1−memory

memory−mapped

hypermap

locking

Normalized overhead

Figure 1: The relative overhead for ordinary L1-cache memory accesses,
memory-mapped reducers, hypermap reducers, and locking. Each value
is calculated by the normalizing the average execution time of the mi-
crobenchmark for the given category by the average execution time of the
microbenchmark that performs L1-cache memory accesses.

hardware to map the same virtual address to different views
in the different worker threads, allowing reducer lookups to
occur without the overhead of hashing.

2. The thread-local region of the virtual-memory address space
only holds pointers to local views and not the local views
themselves. This thread-local indirection strategy allows a
variety of reducers with different types, sizes, and life spans
to be handled.

3. A sparse accumulator (SPA) data structure [14] is used to
organize the worker-local views. The SPA data structure has
a compact representation that allows both constant-time ran-
dom access to elements and sequencing through elements
stored in the data structure efficiently.

4. By combining the thread-local indirection and the use of the
SPA data structure, a worker can efficiently transfer a view
to another worker. This support for efficient view transferal

allows workers to perform reductions without extra memory
mapping.

We implemented our memory-mapping strategy by modifying
Cilk-M [23], a Cilk runtime system that employs TLMM to manage
the “cactus stack,” to make it a plug-in replacement for Intel’s Cilk
Plus runtime system. That is, we modified the Cilk-M runtime sys-
tem to replace the native Cilk runtime system shipped with Intel’s
C++ compiler by making Cilk-M conform to the Intel Cilk Plus
Application Binary Interface (ABI) [17]. We then implemented
the memory-mapping strategy in the Cilk-M runtime system and
compared it on code compiled by the Intel compiler to Cilk Plus’s
hypermap strategy.

Figure 1 graphs the overheads of ordinary accesses, memory-
mapped reducer lookups, and hypermap reducer lookups on a sim-
ple microbenchmark that performs additions on four memory loca-
tions in a tight for loop, executed on a single processor. The mem-
ory locations are declared to be volatile to preclude the compiler
from optimizing the memory accesses into register accesses. Thus,
the microbenchmark measures the overhead of L1-cache memory
accesses. For the memory-mapped and hypermap reducers, one re-
ducer per memory location is used. The figure also includes for
comparison the overhead of locking — one pthread_spin_lock

per memory location is employed, where the microbenchmark per-
forms lock and unlock around the memory updates on the corre-
sponding locks. The microbenchmark was run on a AMD Opteron
processor 8354 with 4 quad-core 2 GHz CPU’s with a total of
8 GBytes of memory and installed with Linux 2.6.32. As the figure
shows, a memory-mapped reducer lookup is only about 3× slower
than an ordinary L1-cache memory access and almost 4× faster
than the hypermap approach (and as we shall see in Section 8, the
differences between the two increases with the number of reduc-
ers). The overhead of locking is similar but slightly worse than the
overhead of a hypermap reducer lookup.

A memory-mapped reducer admits a lookup operation that can
be performed using only two memory accesses and a predictable

1 bool has_property(Node *n);
2 std::list <Node *> l;
3 // ...
4 void walk(Node *n) {
5 if(n) {
6 if(has_property(n))
7 l.push_back(n);
8 cilk_spawn walk(n->left);
9 walk(n->right);

10 cilk_sync;
11 }
12 }

(a)

1 bool has_property(Node *n);
2 list_append_reducer <Node *> l;
3 // ...
4 void walk(Node *n) {
5 if(n) {
6 if(has_property(n))
7 l->push_back(n);
8 cilk_spawn walk(n->left);
9 walk(n->right);

10 cilk_sync;
11 }
12 }

(b)

Figure 2: (a) An incorrect parallel code to walk a binary tree and create
a list of all nodes that satisfy a given property. The code contains a race
on the list l. (b) A correct parallelization of the code shown in Figure 2(a)
using a reducer hyperobject.

branch, which is more efficient than a hypermap reducer. An unex-
pected byproduct of the memory-mapping approach is that it pro-
vides greater locality than the hypermap approach, which leads to
more scalable performance.

The rest of the paper is organized as follows. Section 2 provides
the necessary background on reducer semantics, which includes the
linguistic model for dynamic multithreading and the reducer inter-
face and guarantees. Section 3 reviews the hypermap approach to
support the reducer mechanism. Sections 4, 5, 6, and 7 describe
our design and implementation of the memory-mapped reducers,
where each section addresses one of the four questions we men-
tioned above in details. Section 8 presents the empirical evaluation
of the memory-mapped reducers by comparing it to the hypermap
reducers. Section 9 summarizes related work. Lastly, Section 10
offers some concluding remarks.

2. CILK LINGUISTICS
This section reviews Cilk’s linguistic model for dynamic multi-

threading in general and reducer hyperobjects in particular using
the Cilk Plus [19] formulation. The results reported in this ar-
ticle should apply to other dynamic-multithreading1 concurrency
platforms — including MIT Cilk [13], Cilk++ [25], Cilk Plus ,
Fortress [2], Habanero [4, 9], Hood [7], Java Fork/Join Frame-
work [21], OpenMP 3.0 [29], Task Parallel Library (TPL) [24],
Threading Building Blocks (TBB) [31], and X10 [10] — but to
our knowledge, Cilk++ and Cilk Plus are the only platforms that
currently support reducers.

The dynamic multithreading support in Cilk Plus [19] augments
serial C/C++ code with two principal keywords: cilk_spawn and
cilk_sync.2 The term dynamic multithreading alludes to the fact

1Sometimes called task parallelism.
2Cilk Plus also includes a cilk_for keyword, which provides the paral-
lel counterpart of a for loop, allowing all iterations of the loop to operate
in parallel. We omit it here, since the Cilk Plus compiler simply “desug-
ars” the cilk_for into code containing cilk_spawn and cilk_sync that

that these keywords expose the logical parallelism of the compu-
tation without mentioning the number of processors on which the
computation should run. The underlying runtime system efficiently
schedules the computation across available worker threads, which
serve as processor surrogates, in a manner that respects the logical
parallelism specified by the programmer.

We shall illustrate how these keywords work using an example.
The code in Figure 2(a) walks a binary tree in preorder fashion to
create a list of all nodes that satisfy a given property. The code
checks and appends the current node onto an output list if the node
satisfies the given property and subsequently walks the node’s left
and right children. The code is parallelized to walk the left and
right children in parallel, which is achieved by preceding the call to
walk the left child in line 8 with the cilk_spawn keyword. When
a function invocation is preceded by the keyword cilk_spawn, the
function is spawned, and the scheduler may continue to execute the
continuation of the caller in parallel with the spawned subroutine
without waiting for it to return. Thus, in this example, the walk of
the left child may execute in parallel with the continuation of the
parent, which invokes the call to walk the right child (line 9).

The complement of cilk_spawn is the keyword cilk_sync,
which acts as a local barrier and joins together the parallelism
forked by cilk_spawn. The underlying runtime system ensures
that statements after a cilk_sync are not executed until all func-
tions spawned before the cilk_sync statement have completed and
returned. Thus in this example, a cilk_sync statement is inserted
at line 10 to ensure that the function does not return until the walk
of the left and right children are done. This parallelization is in-
correct, however, since it contains a determinacy race [11] (also
referred a as general race [28]) on the list l, because the logically
parallel subcomputations — the walks of the left and right subtrees
— may potentially access the list in parallel.
Reducer hyperobjects (or reducers for short) [12] provide a lin-

guistic mechanism to avoid such determinacy races in dynamically
multithreaded computations. Figure 2(b) shows a correct paral-
lelization of the walk function using a reducer. The code simply
declares l in line 2 to be a reducer with a reduce operation that
performs list append. By declaring list l to be a reducer, parallel
accesses to l are coordinated by the runtime system, and the re-
sulting output list produced by the code is identical to the result
produced by a serial execution.

In order for a reducer to produce a deterministic output, the re-
duce operation must be associative. More precisely, a reducer is
defined in terms of an algebraic monoid: a triple (T,⊗,e), where
T is a set and ⊗ is an binary associative operation over T with the
identity e. Example monoids include (Z,+,0) (addition on inte-
gers), ({TRUE, FALSE} ,∧,TRUE) (logical AND on Booleans), and
list append with the empty list as the identity, as in the example.
The Cilk Plus runtime coordinates concurrent accesses to a reducer,
guaranteeing that the output is the always the same as in a serial ex-
ecution, as long as its reduce operation is associative.

3. SUPPORT FOR HYPERMAP

REDUCERS
This section overviews the implementation of the Cilk++ [25]

and Cilk Plus [19] reducer mechanism, which is based on hyper-
maps. Support for reducers was first proposed in [12] and imple-
mented in Cilk++. The implementation in Cilk Plus closely fol-
lows that in Cilk++. This section summarizes the runtime sup-

recursively subdivides the iteration space to execute in parallel. Cilk Plus
also includes support for vector operations, which are not relevant to the
discussion here.

port relevant for comparing the hypermap approach to the memory-
mapping approach. We refer interested readers to the original arti-
cle [12] for full details on the hypermap approach.

Support for reducers in Cilk Plus is implemented as a C++ tem-
plate library. The user invokes functions in the runtime system, and
the runtime system calls back to user-defined functions according
to an agreed-upon API [18]. The type of a reducer is dictated by
the monoid it implements and the type of data set that the monoid
operates on. The reducer library implements the monoid interface
and provides two important operations that the runtime invokes:
IDENTITY, which creates an identity view for a given reducer, and
REDUCE, which implements the binary associative operator that
reduces two views. A user can override these operations to define
her own reducer types.

During parallel execution, accesses to a reducer hyperobject
cause the runtime to generate and maintain multiple views for the
given reducer, thereby allowing each worker to operate on its own
local view. A reducer is distinctly different from the notion of
thread-local storage (or TLS) [33], however. Unlike TLS, a worker
may create and operate on multiple local views for a given reducer
throughout execution. New identity views for a given reducer may
be created whenever there is parallelism, because the runtime must
ensure that updates performed on a single view retain serial se-
mantics. In that sense, a local view is associated with a particular
execution context but not with a particular worker. Consequently, a
hypermap that contains local views is not permanently affixed to a
particular worker, but rather to the execution context.

To see how local views are created and maintained, we first re-
view how a work-stealing scheduler operates. In Cilk Plus (as well
as in Cilk-M), the runtime creates a frame for every instance of a
Cilk function that can spawn, which provides storage for bookkeep-
ing data needed by the runtime. Whenever a worker encounters a
cilk_spawn, it invokes the child and suspends the parent, push-
ing the parent frame onto the bottom of its deque (double-ended
queue), so as to allow the parent frame to be stolen. When the child
returns, it pops the bottom of the deque and resumes the parent
frame. Pushing and popping frames from the bottom of the deque
is the common case, and it mirrors precisely the behavior of a serial
execution.

The worker’s behavior departs from the serial execution if it runs
out of work. This situation can arise, for example, when the code
executed by the worker encounters a cilk_sync and children of the
current frame have not returned. In this case the worker becomes a
thief , and it attempts to steal the topmost (oldest) frame from a ran-
domly chosen victim worker. If the steal is successful, the worker
resumes the stolen frame. Another situation where a worker runs
out of work occurs if it returns from a spawned child to discover
that its deque is empty (the parent has been stolen). In this case,
it checks whether the parent is stalled at a cilk_sync and if this
child is the last child to return. If so, it performs a joining steal

and resumes the parent function, passing the cilk_sync at which
the parent was stalled. Otherwise, the worker engages in random
work-stealing as in the case when a cilk_sync was encountered.

A worker’s behavior precisely mimics the serial execution be-
tween successful steals. Logical parallelism morphs into true paral-
lelism when a thief steals and resumes a function (the continuation
of the parent after a spawn). Whenever a Cilk function is stolen,
its frame is promoted into a full frame, which contains additional
bookkeeping data to handle the true parallelism created, including
hypermaps that contain local views. Specifically, each full frame
may contain up to 3 hypermaps — the user hypermap, left-child
hypermap, and right-sibling hypermap — each of which respec-

tively contains local views generated from computations associated
with the given frame, its leftmost child, and its right sibling.

During parallel execution, a worker performs reducer-related op-
erations on the user hypermap stored in the full frame sitting on top
of its deque (since everything below the full frame mirrors the serial
execution). The hypermap maps reducers to their corresponding lo-
cal views on which the worker operates. Specifically, the address
of a reducer is used as a key to hash the local view. Whenever a
full frame is stolen, its original user hypermap is left with its child
executing on the victim, and an empty user hypermap is created on
the thief. When a worker encounters a reducer declaration, it cre-
ates a reducer hyperobject if one does not yet exist, and it inserts
a key-value pair into its hypermap. The key is the address of the
reducer, and the value is the initial identity view, referred to as the
leftmost view. When a reducer goes out of scope, at which point
its leftmost view should reflect all updates, the worker removes the
key-value pair from its hypermap. Finally, whenever the worker
encounters an access to a reducer in the user code, the worker per-
forms a lookup in its hypermap and returns the corresponding local
view. If nothing is found in the hypermap (the user hypermap starts
out empty when the frame is first promoted), the worker creates and
inserts an identity view into the hypermap and returns the identity.

The other two hypermaps are placeholders. They store the ac-
cumulated values of the frame’s terminated right siblings and ter-
minated children, respectively. Whenever a frame is promoted, an
additional set of local views may be created to accumulate updates
from the computation associated with the full frame. These views
are eventually reduced either with views from the worker’s left sib-
ling or parent in an appropriate order consistent with a serial exe-
cution. When a frame F1 executing onW1 terminates (i.e., returns),
however, its sibling or parent F2 may still be running, executed by
another worker W2. To avoid interfering with W2 executing F2, W1

simply deposits its set of local views stored in F1’s user hypermap
into F2’s left-child or right-sibling hypermap placeholder, depend-
ing on the relation between F1 and F2. We refer to the process of
one worker depositing its local views into a frame running on an-
other worker as view transferal, which more generally, refers to the
process of transferring ownership of local views from one worker
to another.

Similarly, before W1 can perform view transferal from F1 to F2,
it may find a second set of local views stored in F1’s left-child or
right-sibling hypermap placeholders. If so,W1 must reduce the two
sets of views together — iterate through each view from one hy-
permap, look up the corresponding view in another hypermap, and
reduce the two views into a single view. This process is referred as
the hypermerge process. Worker W1 performs hypermerges until it
has only one set of local views left to deposit. We omit details on
how the runtime maintains the correct orders of reduction and refer
readers to [12].

4. THREAD-LOCAL MEMORYMAPPING
This section describes thread-local memory mapping (TLMM)

[22, 23], which Cilk-M uses to cause the virtual-memory hardware
to map reducers to local views. TLMM provides an efficient and
flexible way for a thread to map certain regions of virtual mem-
ory independently from other threads while still sharing most of its
virtual-memory address space. This section reviews the functional-
ity that the TLMM mechanism provides and how we implemented
it in a Linux operating system.

Cilk-M’s memory-mapping reducer mechanism employs the
virtual-address hardware to map accesses to a given reducer to dif-
ferent local views depending on the worker performing the access.
Different workers must be able to map different physical pages

thread0 thread1

page0heap .datapage2 page1

Figure 3: Example of a x86 64-bit page-table configuration for two threads
on TLMM-Linux. The portion of the data structure dealing with the TLMM
region is shaded light grey, and the remainder corresponding to the shared
region is shaded dark grey. In the TLMM region, thread0 maps page2 first
and then page0, whereas thread1 maps page1 first and then page0. The
pages associated with the heap and the data segments are shared between
the two threads.

within the same virtual address range so that the same global virtual
address can map to different views for different workers. Given that
a dynamic-multithreaded program typically executes on a shared-
memory system, part of the address space must be shared to al-
low workers to communicate with each other and enable parallel
branches of the user program to share data on the heap. In other
words, this memory-mapping approach requires part of the virtual
address space to be private, in which workers can map indepen-
dently with different physical pages, while the rest being shared,
in which different workers can share data allocated on the heap as
usual.

By default, a traditional operating system does not provide such
mixed sharing mode — either nothing is shared (each process has
its own virtual-address space, and no two processes share the same
virtual-address space), or everything is shared (all threads within
a given process share the process’s entire virtual-address space).
TLMM designates a region, referred to as the TLMM region, of a
process’s virtual-address space as private. This special TLMM re-
gion occupies the same virtual-address range for each worker, but
each worker may map different physical pages to the TLMM re-
gion. The rest of the virtual-address space is shared among workers
in the process as usual.

Cilk-M’s TLMM mechanism [22, 23] was originally developed
to enable a work-stealing runtime system to maintain a “cactus-
stack” abstraction, thereby allowing arbitrary calling between par-
allel and serial code. To implement TLMM, we modified the Linux
kernel, producing a kernel version we call TLMM-Linux. The ex-
isting implementation is for Linux kernel 2.6.32 running on x86
64-bit CPU’s, such as the AMD Opteron and Intel Xeon.

Figure 3 illustrates the design. TLMM-Linux assigns a unique
root page directory to each thread in a process. The x86 64-bit
page tables have four levels, and the page directories at each level
contain 512 entries. One entry of the root-page directory is re-
served for the TLMM region, which corresponds to 512 GBytes of
virtual-address space, and the rest of the entries correspond to the
shared region. Threads in TLMM-Linux share page directories that
correspond to shared region. Therefore, the TLMM-Linux virtual-
memory manager must synchronize the entries in each thread’s root
page directory but populate the shared lower-level page directories
only once.

The TLMM mechanism provides a low-level virtual-memory in-
terface organized around allocating and mapping physical pages.
We omit the descriptions of its interface and refer interested readers
to [23] for details. For the purpose of our discussion, simply note
that the TLMM interface provides a way for workers to “name” a
physical page using a page descriptor, which is analogous to a file

descriptor and accessible by all workers. The system call sys_pmap
allows a worker to map its TLMM region with particular physical
pages specified by an array of page descriptors. Thus, a worker
can share its TLMM region with another worker by publicizing the
page descriptors corresponding to the physical pages mapped in its
TLMM region.

The TLMM mechanism supports the following system calls,
which provides a low-level virtual-memory interface organized
around allocating and mapping physical pages. sys_palloc al-
locates a physical page and returns its page descriptor. A page de-
scriptor is analogous to a file descriptor, which “names” a physical
page and can be accessed by any thread in the process. sys_pfree
frees a page descriptor and its associated physical page. To con-
trol the physical-page mappings in a thread’s TLMM region, the
thread calls sys_pmap, specifying an array of page descriptors to
map, as well as a base address in the TLMM region at which to
begin mapping the descriptors. sys_pmap steps through the array
of page descriptors, mapping physical pages for each descriptor to
subsequent page-aligned virtual addresses, to produce a continu-
ous virtual-address mapping that starts at the base address. A spe-
cial page-descriptor value PD_NULL indicates that a virtual-address
mapping should be removed.

We added the memory-mapping reducer mechanism to Cilk-M,
which now utilizes the TLMM region for both the cactus stack and
memory-mapped reducers. Since a stack naturally grows down-
ward, and the use of space for reducers is akin to the use of heap
space, at system start-up, the TLMM region is divided into two
parts: the cactus stack is allocated at the highest TLMM address
possible, growing downwards, and the space reserved for reduc-
ers starts at the lowest TLMM address possible, growing upwards.
The two parts can grow as much as needed, since in a 64-bit address
space, as a practical matter, the two ends will never meet.

5. THREAD-LOCAL INDIRECTION
This section describes how Cilk-M’s memory-mapping strategy

for implementing reducers exploits a level of indirection so that the
reducer mechanism can handle a variety of reducers with different
types, sizes, and life spans. We describe the problems that arise for
a naive approach in which the TLMM region directly holds reducer
views. We then describe how thread-local indirection solves these
problems without unduly complicating the runtime system.

We first examine a seemingly straightforward approach for lever-
aging TLMM to implement reducers. In this scheme, whenever a
reducer is declared, the runtime system allocates the reducer at a
virtual address in the TLMM region that is globally agreed upon
by all workers. The runtime system instructs each worker to map
the physical page containing its own local view at that virtual ad-
dress. Thus, accesses to the reducer by a worker operate directly
on the worker’s local view.

Although this approach seems straightforward, it fails to address
two practical issues. First, the overhead of mapping can be great
due to fragmentation arising from allocations and deallocations of
reducers in the TLMM region. Second, performing a hypermerge
of views in TLMM regions is complicated and may incur heavy
mapping overhead. We discuss each of these issues in turn.

Regarding the first issue, if views are allocated within a TLMM
region, the runtime system must manage the storage in the region
separately from its normal heap allocator. Since reducers can be al-
located and deallocated throughout program execution, the TLMM
region can become fragmented with live reducer hyperobjects scat-
tered across the region. Consequently, when a worker maps in
physical pages associated with a different worker’s TLMM region,
as must occur for a hypermerge, multiple physical pages may need

to be mapped in, each requiring two kernel crossings (from user
mode to kernel mode and back). Even though the remapping over-
head can be amortized against steals (and the Cilk-M runtime al-
ready performs a sys_pmap call upon a successful steal to main-
tain the cactus stack), if the number of sys_pmap calls is too great,
the kernel crossing overhead can become a scalability bottleneck,
outweighing the benefit of replacing the hash-table lookups of the
hypermap approach with virtual address translations.

The second issue involves the problem of performing hyperme-
rges. Consider a hypermerge of the local views in two workers W1

and W2, and suppose that W1 is performing the hypermerge. To
perform a monoid operation on a given pair of views, both views
must be mapped into the same address space. Consequently, at
least one of the views cannot be mapped to its appropriate loca-
tion in the TLMM region, and the code to reduce them with the
monoid operation must take that into account. For example, ifW2’s
view contains a pointer, W1 would need to determine whether the
pointer was to another of W2’s views or to shared memory. If the
former, it would need to perform an additional address translation.
This “pointer swizzling” could be done when W1 maps W2’s views
into its address space, but it requires compiler support to determine
which locations are pointers, as well as adding a level of complex-
ity to the hypermerge process.

Since “any problem in computing can be solved by adding an-
other level of indirection,”3, we shall employ thread-local indirec-

tion. The idea is to use the TLMM region to store pointers to local
views which themselves are kept in shared memory visible to all
workers. When a reducer is allocated, a memory location is re-
served in the TLMM region to hold a pointer to its local view. If no
view has yet been created, the pointer is null. Accessing a reducer
simply requires the worker to check whether the pointer is null, and
if not, dereference it, which is done by the virtual-address transla-
tion provided by the hardware. In essence, the memory-mapping
reducer mechanism replaces the use of hypermaps with the use of
the TLMM region.

The two problems that plague the naive scheme are solved by
thread-local indirection. The TLMM region contains a small, com-
pact set of pointers, all of uniform size, which precludes internal
fragmentation. The storage management of reducers is simple and
avoids pointer swizzling. The TLMM region requires only a simple
scalable4 memory allocator for single-word objects (the pointers).
Since local views are stored in shared memory, the job of handling
them is conveniently delegated to the ordinary heap allocator. The
residual problem of managing the storage for the pointers in the
TLMM region is addressed in Section 6.

Thread-local indirection also solves the problem of one worker
gaining access to the views of another worker in order to perform
hypermerge. Since the local views are allocated in shared memory,
a worker performing the hypermerge can readily access the local
views of a different worker. The residual problem of determining
which local views to merge is part of the view-transferal protocol,
addressed in Section 7.

6. ORGANIZATION OF

WORKER-LOCAL VIEWS
This section describes how Cilk-M organizes a worker’s local

views in a compact fashion. Recall that after a steal, the thief
resuming the stolen frame starts with an empty set of views, and

3Quotation attributed to David Wheeler in [20].
4To be scalable, Cilk-M memory allocator for the TLMM region allocates
a local pool per worker and occasionally rebalances the fixed-size slots
among local pools when necessary in the manner of Hoard [5].

whenever the thief accesses a reducer for the first time, a new iden-
tity view is created lazily. Once a local view has been created,
subsequent accesses to the reducer return the local view. More-
over, during a hypermerge, a worker sequences through two sets of
local views to perform the requisite monoid operations. This sec-
tion shows how a worker’s local views can be organized compactly
using a “sparse accumulator (SPA)” data structure [14] to support
these activities efficiently. Specifically, we show the following:

• Given (the address of) a reducer hyperobject, how to support
a constant-time lookup of the local view of the reducer.

• How to sequence through all of a worker’s local views during
a hypermerge in linear time and reset the set of local views
to the empty set.

A traditional SPA consists of two arrays:5 an array of values,
and an array containing an unordered “log” of the indices of the
nonzero elements. The data structure is initialized to an array of
zeros at start-up time. When an element is set to a nonzero value, its
index is recorded in the log, incrementing the count of elements in
the SPA (which also determines the location of the end of the log).
Sequencing is accomplished in linear time by walking through the
log and accessing each element in turn.

Cilk-M implements the SPA idea by arranging the pointers to
local views in a SPA map within a worker’s TLMM region. A SPA
map is allocated on a per-page basis, using 4096-byte pages on x86
64-bit architectures. Each SPA map contains the following fields:

• a view array of 248 elements, where each element is a pair
of 8-byte pointers to a local view and its monoid,

• a log array of 120 bytes containing 1-byte indices of the valid
elements in the view array,

• the 4-byte number of valid elements in the view array, and

• the 4-byte number of logs in the log array.

Cilk-M maintains the invariant that empty elements in the view
array are represented with a pair of null pointers. Whenever a new
reducer is allocated, a 16-byte slot in the view array is allocated,
storing pointers to the executing worker’s local view and to the
monoid. When a reducer goes out of scope and is destroyed, the 16-
byte slot is recycled. The simple memory allocation for the TLMM
region described in Section 5 keeps track of whether a slot is as-
signed or not. Since a SPA map is allocated in a worker’s TLMM
region, the virtual address of an assigned 16-byte slot represents
the same reducer for every worker throughout the life span of the
reducer and is stored as a member field tlmm_addr in the reducer
object.

A reducer lookup can be performed in constant time, requiring
only two memory accesses and a predictable branch. A lookup
entails accessing tlmm_addr in the reducer (first memory access),
dereferencing tlmm_addr to get the pointer to a worker’s local view
(second memory access), and checking whether the pointer is valid
(predictable branch). The common case is that the tlmm_addr con-
tains a valid local view, since a lookup on an empty view occurs at
most once per reducer per steal. As we shall see in Section 7, how-
ever, a worker resets its SPA map by filling it with zeros between
successful steals. If the worker does not have a valid view for the
corresponding reducer, the tlmm_addr simply contains zeros.

Sequencing through the views can be performed in linear time.
Since a worker knows exactly where a log array within a page starts
and how many logs are in the log array, it can efficiently sequence
through valid elements in the view array according to the indices
stored in the log array. The Cilk-M runtime stores pointers to a

5For some applications, a third array is used to indicate which array ele-
ments are valid, but for our application, invalidity can be indicated by a
special value in the value array.

local view and the reducer monoid side-by-side in the view array,
thereby allowing easy access to the monoid interface during the
hypermerge process. In designing the SPA map for Cilk-M, we
explicitly chose to have a 2 : 1 size ratio between the view array and
the log array. Once the number of logs exceed the length of the log
array, the Cilk-M runtime stops keeping track of logs. The rationale
is that if the number of logs in a SPA map exceeds the length of
its log array, the cost of sequencing through the entire view array,
rather than just the valid entries, can be amortized against the cost
of inserting views into the SPA map.

7. VIEW TRANSFERAL
This section describes how a worker in Cilk-M can efficiently

gain access to another worker’s local views and perform view trans-
feral efficiently. The Cilk-M runtime system includes an efficient
view-transferal protocol that does not require extra memory map-
ping. This section brings all the pieces together and presents the
complete picture of how the memory-mapping reducer mechanism
works.

In the hypermap approach, view transferal simply involves
switching a few pointers. Suppose that worker W1 is executing
a full frame F1 that is returning. The worker simply deposits its
local views into another frame F2 executing on worker W2 that is
either F1’s left sibling or parent, at the appropriate hypermap place-
holder. In the memory-mapping approach, more steps are involved.
In particular, even though all local views are allocated in the shared
region, their addresses are only known to W1, the worker who al-
located them. Thus, W1 must publish pointers to its local views,
making them available in a shared region.

There are two straightforward strategies for W1 to publish its lo-
cal views. The first is the mapping strategy: worker W1 leaves a
set of page descriptors in frame F2 corresponding to the SPA maps
in its TLMM region, which W2 then maps into its TLMM region to
perform the hypermerge. The second strategy is the copying strat-

egy: W1 copies those pointers from its TLMM region into a shared
region. Cilk-M employs the copying strategy, because the number
of reducers used in a program is generally small, and thus the over-
head of memory mapping greatly outweighs the cost of copying a
few pointers.

For W1 to publish its local views, whose references are stored in
the private SPAmaps in its TLMM regions,W1 simply allocates the
same number of public SPA maps in the shared region and trans-

fers views from the private SPA maps to the public ones. As W1

sequences through valid indices in a view array to copy from a pri-
vate SPA map to a public one, it simultaneously zeros out those
valid indices in the private SPA map. When all transfers are com-
plete, the public SPA maps contain all the references to W1’s local
views, and the private SPA maps are all empty (the view array con-
tains all zeros). Zeroing out W1’s private SPA maps is important,
since W1 must engage in work-stealing next, and the empty private
SPA maps ensure that the stolen frame is resumed on a worker with
an empty set of local views.

Since a worker must maintain space for public SPA maps
throughout its execution, Cilk-M explicitly configures SPA maps
to be compact and allocated on a per-page basis. Each SPA map
holds up to 248 views, making it unlikely that many SPA maps are
ever needed. Recall from Section 6 that the Cilk-M runtime system
maintains the invariant that an entry in a view array contains either
a pair of valid pointers or a pair of null pointers indicating that the
entry is empty. A newly allocated (recycled) SPA map is empty.6

6To be precise, only the number of logs and the view array must contain
zeros.

Name Description

add-n Summing 1 to x into n add-reducers in parallel
min-n Processing x random values in parallel to find the min

and accumulate the results in n min-reducers
max-n Processing x random values in parallel to find the max

and accumulate the results in n max-reducers

Figure 4: The three microbenchmarks for evaluating lookup operations.
For each microbenchmark, the value x is chosen according to the value of n
so that roughly the same number of lookup operations are performed.

The fact that a SPA map is allocated on the per-page basis allows
the Cilk-M runtime system to recycle empty SPA maps easily by
maintaining memory pools7 of empty pages solely for allocating
SPA maps.

In the memory-mapping approach, a frame contains placehold-
ers to SPA maps, instead of to hypermaps, so that workerW1 in our
scenario can deposit the populated public SPA maps into F2 without
interrupting worker W2. Similarly, a hypermerge involves two sets
of SPA maps instead of hypermaps. When W2 is ready to perform
the hypermerge, it always sequences through the map that contains
fewer view pointers and reduces them with the reduce operation
into the map that contains more view pointers. After the hyperme-
rge, one set of SPA maps contain pointers to the reduced views,
whereas the other set (assuming they are public) are all empty and
can be recycled. Similar to the transfer operation, when W2 per-
forms the hypermerge, as it sequences through the set with fewer
views, it zeros out the valid views, thereby maintaining the invari-
ant that only empty SPA maps are recycled.

View transferal in the memory-mapping approach incurs higher
overhead than that in the hypermap approach, but this overhead can
be amortized against steals, since view transferals are necessary
only if a steal occurs. As Section 8 shows, even with the overhead
from view transferal, the memory-mapping approach performs bet-
ter than the hypermap approach and incurs less total overhead dur-
ing parallel execution.

8. AN EMPIRICAL EVALUATION OF

MEMORY-MAPPED REDUCERS
This section compares the memory-mapping approach for imple-

menting reducers used by Cilk-M to the hypermap approach used
by Cilk Plus. We quantify the overheads of the two systems in-
curred during serial and parallel executions on three simple syn-
thetic microbenchmarks and one application benchmark. Our ex-
perimental results show that memory-mapped reducers not only ad-
mit more efficient lookups than hypermap reducers, they also incur
less overhead overall during parallel executions, despite the addi-
tional costs of view transferal.
General setup. We compared the two approaches using a few

microbenchmarks that employ reducers included in the Cilk Plus
reducer library, as well as one application benchmark. Figure 4
describes the microbenchmarks, all of which are synthetic, which
perform lookup operations repeatedly with simple REDUCER oper-
ations that perform addition, finding the minimum, and finding the
maximum. The value n in the name of the microbenchmark dic-
tates the number of reducers used, which is determined at compile-
time. The value x is an input parameter chosen so that a given mi-
crobenchmark with different n performs 1024 million lookup oper-
ations, or 2048 million lookup operations in the case of the reduce

7The pools for allocating SPA maps are structured like the rest of the pools
for the internal memory allocator managed by the runtime. Every worker
owns its own local pool, and a global pool is used to rebalance the memory
distribution between local pools in the manner of Hoard [5].

overhead study.8 The application benchmark is a parallel breath-
first search program [26] called PBFS.

All benchmarks were compiled using the Cilk Plus compiler ver-
sion 12.0.0 with -O2 optimization. The experiments were run on
an AMD Opteron 8354 system with 4 quad-core 2 GHz CPU’s hav-
ing a total of 8 GBytes of memory. Each core on a chip has a 64-
KByte private L1-data-cache, a 512-KByte private L2-cache, and a
2-MByte shared L3-cache.

Performance evaluation using microbenchmarks

Figure 5 shows the microbenchmark execution times for a set of
tests with varying numbers of reducers running on the native Cilk
Plus runtime system and the Cilk-M 1.0 runtime system. Fig-
ure 5(a) shows the execution times running on a single proces-
sor, whereas Figure 5(b) shows them for 16 processors. Each data
point is the average of 10 runs with a standard deviation of less
than 5%. Across all microbenchmarks, the memory-mapped re-
ducers in Cilk-M consistently outperform the hypermap reducers
in Cilk Plus, executing about 4–9 times faster for serial executions,
and 3–9 times faster for parallel executions.

One interesting thing to note is that, every instance of min-n (for
different n) took longer to execute than its corresponding counter-
part of max-n on both runtime systems. At first glance, the two
microbenchmarks min-n and max-n ought to perform similarly
given that the same number of comparisons are executed in both
microbenchmarks. That is not the case, however — due the to arti-
fact of how reducer min and max libraries are implemented, more
updates are performed on a given view in the execution of min-n
than that in the execution of max-n for the same n. Thus, min-n
took longer execution time than max-n.

Lookup overhead. Figure 6 presents the lookup overheads of
Cilk-M 1.0 and Cilk Plus on add-n with varying n. The overhead
data was obtained as follows. First, we ran the add-n with x it-
erations on a single processor. Then, we ran a similar program
called add-base-n, which replaces the accesses to reducers with
accesses to a simple array, also running x iterations. Since hyper-
merges and reduce operations do not take place when executing on
a single processor, add-base-n essentially performs the same op-
erations as add-n minus the lookup operations. Figure 6 shows the
difference in the execution times of add-n and add-base-n with
varying n. Each data point takes the average of 10 runs with a stan-
dard deviation of less than 2% for Cilk-M and less than 12% for
Cilk Plus.

The lookup overhead in Cilk-M stays fairly constant independent
of n, but the lookup overhead in Cilk Plus varies significantly. This
discrepancy can be understood by observing that a lookup opera-
tion in Cilk-M translates into two memory accesses and a branch
irrespective of the value of n, whereas a lookup operation in Cilk
Plus translates into a hash-table lookup whose time depends on
how many items the hashed bucket happens to contain, as well as
whether it triggers a hash-table expansion.

The reduce overhead during parallel execution. Besides the
lookup overhead, we also studied the other overheads incurred by
reducers during parallel executions. We refer to the overheads
incurred only during parallel executions as the reduce overhead,
which includes overheads in performing hypermerges, creating
views, and inserting views into a hypermap in Cilk Plus or a SPA
map in Cilk-M. For Cilk-M, this overhead also includes view trans-
feral. For both systems, additional lookups are performed during

8In the case of the reduce overhead study, we configured the microbench-
mark to perform more lookup operations to prolong the execution time, be-
cause the runtime overhead measured in this study constitutes only a small
part of the overall execution time.

 0

 5

 10

 15

 20

 25

 30

 35

add−4

add−16

add−64

add−256

add−1024

m
in−4

m
in−16

m
in−64

m
in−256

m
in−1024

m
ax−4

m
ax−16

m
ax−64

m
ax−256

m
ax−1024

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

o
n

d
s) Cilk−M

Cilk Plus

(a)

 0

 0.5

 1

 1.5

 2

add−4

add−16

add−64

add−256

add−1024

m
in−4

m
in−16

m
in−64

m
in−256

m
in−1024

m
ax−4

m
ax−16

m
ax−64

m
ax−256

m
ax−1024

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

o
n

d
s) Cilk−M

Cilk Plus

(b)

Figure 5: Execution times for microbenchmarks with varying numbers of
reducers using Cilk-M and Cilk Plus, running on (a) a single processor and
(b) on 16 processors, respectively.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

add−4

add−8

add−16

add−32

add−64

add−128

add−256

add−512

add−1024

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s) Cilk−M

Cilk Plus

Figure 6: Reducer lookup overhead of Cilk-M and Cilk Plus running the
microbenchmark using add reducers on a single processor. A single cluster
in the x-axis shows the overheads for both systems for a given n, and the
y-axis shows the overheads in execution time in seconds.

a hypermerge, and they are considered as part of the overhead as
well.

Figure 7 compares the reduce overhead of the two systems. The
data was collected by running add-n with varying n on 16 pro-
cessors for both systems and instrumenting the various sources of
reduce overhead directly inside the runtime system code. In order
to instrument the Cilk Plus runtime, we obtained the open-source
version of the Cilk Plus runtime, which was released with ports of
the Cilk Plus language extensions to the C and C++ front-ends of
gcc-4.7 [3]. We downloaded only the source code for the runtime
system (revision 181962), inserted instrumentation code, and made
it a plug-in replacement for the Cilk Plus runtime released with the
official Intel Cilk Plus compiler version 12.0.0. This open-source
runtime system is a complete runtime source to support the Linux
operating system [3], and its performance seems comparable to the
runtime released with the compiler. Given the high variation in

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

add−4

add−8

add−16

add−32

add−64

add−128

add−256

add−512

add−1024

E
x
ec

u
ti

o
n
 t

im
e

(m
ic

ro
se

co
n
d
s)

Cilk−M
Cilk Plus

Figure 7: Comparison of the reduce overheads of Cilk-M and Cilk Plus
running add-n on 16 processors. A single cluster in the x-axis shows the
overheads for both system for a given n, and the y-axis shows the reduce
overheads in milliseconds.

 0

 10

 20

 30

 40

 50

 60

 70

 80

add−4

add−8

add−16

add−32

add−64

add−128

add−256

add−512

add−1024

E
x
ec

u
ti

o
n
 t

im
e

(m
il

li
se

co
n

d
s) view creation

view insertion
hypermerge
view transferal

Figure 8: The breakdown of the reduce overhead in Cilk-M for add-n on
16 processors with varying n.

the reduce overhead when memory latency plays a role, the data
represents the average of 100 runs. Since the reduce overhead is
correlated with the number of (successful) steals, we also verified
that in these runs, the average numbers of steals for the two systems
are comparable.

As can be seen in Figure 7, the reduce overhead in Cilk Plus
is much higher than that in Cilk-M. Moreover, the discrepancy in-
creases with n, which makes sense, because a higher n means more
views are created, inserted, and must be reduced during hyperme-
rges. The overhead in Cilk Plus also grows much faster than that in
Cilk-M. It turns out that the Cilk Plus runtime spends much more
time on view insertions (inserting newly created identity views into
a hypermap), which dominates the reduce overhead, especially as
n increases. Thus, Cilk Plus incurs a much higher reduce overhead,
even though the Cilk-M runtime has the additional overhead of
view transferal. In contrast, Cilk-M spends much less time on view
insertions than Cilk Plus. A view insertion in Cilk-M involves writ-
ing to one memory location in a worker’s TLMM region, whereas
in Cilk Plus, it involves inserting into a hash table. Moreover, a
SPA map in Cilk-M stores views much more compactly than does
a hypermap, which helps in terms of locality during a hypermerge.

Figure 8 breaks down the reduce overhead for Cilk-M. Overhead
is attributed to four activities: view creation, view insertion, view
transferal, and hypermerge, which includes the time to execute the

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16

S
p

ee
d

u
p

 o
v

er
 s

in
g

le
-w

o
rk

er
 e

x
ec

u
ti

o
n

Number of workers

add-4
add-16
add-64

add-256
add-1024

Figure 9: Speedups of add-n executing on Cilk-M with 1, 2, 4, 8, and 16
processors. The x-axis shows P, the number of processors used. The y-
axis is the speedup, calculated by dividing the execution time running on a
single processor with the execution time running on P processors.

monoid operation. As can be seen from the figure, the overhead due
to view transferal grows rather slowly as n increases, demonstrat-
ing that the SPA map allows efficient sequencing. Furthermore,
the dominating overhead turns out to be view creations, showing
that the design choices made in the memory-mapping approach do
indeed minimize overhead.

Figure 9 shows the speedups for add-n when executing on 1, 2,
4, 8, and 16 workers. To simplify the presentation, only five differ-
ent n values are shown — 4, 16, 64, 256, and 1024. As can be seen
from Figure 9, despite the reduce overhead during parallel execu-
tions, the scalability is not affected. All instances of add-n (with
different n) have good speedups with add-1024 having superlinear
speedup. As mentioned earlier, the reduce overhead is correlated
with the number of successful steals and can be amortized against
steals. As long as the application has ample parallelism and that the
number of reducers used is “reasonable,”9 as in the case of add-n,
scalability of the application will not be affected by the reduce over-
head.

Performance evaluation using PBFS

We evaluated the two runtime systems on a parallel breath-first
search application called PBFS [26]. Given an input graph G(V,E)
and a starting node v0, the PBFS algorithm finds the shortest dis-
tance between v0 and every other node in V . The algorithm ex-
plores the graph “layer-by-layer,” alternating between two “bag”
data structures for insertion. As the program explores the nodes
stored in one bag, all of which belong to a common layer, it inserts
newly discovered nodes from the next layer into another bag. The
bags are declared to be reducers to allow parallel insertion.

Figure 10(a) shows the relative execution time between Cilk-M
and Cilk Plus on a single processor and on 16 processors. Since the
work and span of a PBFS computation depend on the input graph,
we evaluated the relative performance with 8 input graphs whose
characteristics are shown in Figure 10(b). These input graphs are
the same ones used in [26] to evaluate the algorithm. For each
data point, we measured the mean of 10 runs, which has a standard
deviation of less than 1%. Figure 10(a) shows the mean for Cilk-M
normalized by the mean for Cilk Plus.

9It is possible to write an application to use large number of reducers in
such a way that the reduce overhead dominates the total work in the com-
putation. In such case, the reduce overhead will affect scalability. This topic
is investigated in more detail in further work by Lee [22, Ch. 5].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

kkt_pow
er

freescale1

cage14

w
ikipedia

grid3d200

rm
at23

cage15

nlpkkt160

C
il

k
−

M
 1

.0
 /

 C
il

k
 P

lu
s

on a single processor
on 16 processors

(a)

of
Name |V | |E| D lookups

kkt_power 2.05M 12.76M 31 1027
freescale1 3.43M 17.1M 128 1748
cage14 1.51M 27.1M 43 766
wikipedia 2.4M 41.9M 460 1631
grid3d200 8M 55.8M 598 4323
rmat23 2.3M 77.9M 8 71269
cage15 5.15M 99.2M 50 2547
nlpkkt160 8.35M 225.4M 163 4174

(b)

Figure 10: (a) The relative execution time of Cilk-M to that of Cilk Plus
running PBFS on a single processor and on 16 processors. Each value is
calculated by normalizing the execution time of the application on Cilk-M
with the execution time on Cilk Plus. (b) The characteristics of the input
graphs for parallel breath-first search. The vertex and edge counts listed
correspond to the number of vertices and edges.

For single-processor executions, the two systems performed
comparably, with Cilk-M being slightly slower. Since the num-
ber of lookups in PBFS is extremely small relative to the input
size, the lookups constitute a tiny fraction of the overall work (mea-
sured by the size of the input graph). Thus, it is not surprising that
the two systems perform comparably for serial executions. On the
other hand, Cilk-M performs noticeably better during parallel exe-
cutions, which is consistent with the results from the microbench-
marks. Since the reduce overhead in Cilk-M is much smaller than
that in Cilk Plus, PBFS scales better.

9. RELATEDWORK
Traditional virtual-memory mechanisms have been described in

the literature to support various linguistic abstractions. This sec-
tion summarizes this work and describes how each uses a virtual-
memory mechanism to implement its respective linguistic abstrac-
tion.

Abadi et al. [1] describes how one can efficiently support “strong
atomicity” in a software transactional memory (STM) [32] sys-
tem using a traditional virtual-memory mechanism supported by
standard hardware. An STM system implements strong atomic-

ity [8] if the system detects conflicts between transactions as well
as conflicts between a transaction and a normal memory access per-
formed outside of a transaction. Supporting strong atomicity may
incur significant overhead, however, if the system must also keep
track of every normal memory access. To avoid such overhead,
Abadi et al. propose an alternative approach to leverage the page
protection mechanism provided by the virtual-memory hardware,
mapping the heap space twice, one for normal accesses and one
for transactional accesses. When a page is being read or written to

by a transaction, the system revokes certain access permissions on
its corresponding mapping allocated for normal accesses, thereby
detecting potential conflicts at the page granularity.

Berger et al. [6] propose Grace, a runtime system that elimi-
nates concurrency errors and guarantees deterministic executions
for multithreaded computations based on fork-join parallelism.
Grace employs a threads-as-processes paradigm, where a thread
seen by a user program running on Grace is in fact implemented as
a process. Since processes do not share virtual address space, this
paradigm enables different processes in Grace to map the shared
regions (i.e., global variables and heap) with different access per-
missions, thereby detecting potential currency errors such as races,
deadlocks, and atomicity violations at the page granularity. Up-
dates to the shared regions are buffered (via copy-on-write map-
pings) and committed at “logical thread boundaries” in a determin-
istic order only when the updates do not cause a “conflict” with
existing values. Upon a successful commit, updates are reflected in
shared mappings and become globally visible.

Liu et al. [27] present Dthreads, which has the same goal as
Grace, to prevent concurrency errors and enforce deterministic exe-
cutions on multithreaded computations. The Dthreads runtime sys-
tem adopts the same threads-as-processes paradigm as Grace and
leverages the virtual memory mechanism similarly. Dthreads dif-
fers from Grace in three ways, however. First, Dthreads supports
most general-purpose multithreaded programs, whereas Grace sup-
ports only fork-join parallelism. Second, Dthreads supports the full
synchronization primitives implemented by POSIX threads [16],
whereas Grace does not. Finally, Dthreads resolves “conflicts”
among threads deterministically using a last-writer-wins protocol,
whereas Grace executes parallel branches speculatively and must
roll back upon conflict detection. Consequently, Dthreads enables
better performance than Grace.

Finally, Pyla and Varadarajan [30] describe Sammati, a
language-independent runtime system that provides automatic
deadlock detection and recovery. Like the aforementioned works,
Sammati employs the same threads-as-processes paradigm and
leverages the virtual-memory hardware to allow processes to em-
ploy different accesses permissions on address space allocated for
shared memory. Unlike the other work, Sammati focuses on au-
tomatic deadlock detection and recovery but not on deterministic
executions. Thus, Sammati does not enforce a deterministic order-
ing in when updates are committed. Moreover, the system assumes
that the program is written correctly — even though Sammati can
detect races involving two writes to the same location, it cannot
detect races involving a read and a write.

Like the Cilk-M research described here, each of these three
studies describes how virtual-memory hardware can support a par-
ticular linguistic mechanism. One distinct difference between these
studies and Cilk-M’s memory-mapped reducers is that they employ
traditional virtual-memory mechanisms supported by existing oper-
ating systems, whereas Cilk-M utilizes thread-local memory map-
ping (TLMM), which enables each thread to map part of the virtual
address range independently while preserves sharing in the rest of
the address space.

10. CONCLUSION
Recently, concurrency platforms have begun to offer high-level

“memory abstractions” to support common patterns of parallel-
programming. A memory abstraction [22] is an abstraction layer
between the program execution and the memory that provides a
different “view” of a memory location depending on the execution
context in which the memory access is made. For instance, trans-
actional memory [15] is a type of memory abstraction — memory

accesses dynamically enclosed by an atomic block appear to occur
atomically. Arguably, the Grace [6] and Dthreads [27] systems de-
scribed in Section 9 are also examples of memory abstractions —
every memory access is buffered and eventually committed (i.e.,
becomes globally visible) in some deterministic order. The cactus-
stack mechanism implemented in Cilk-M [22,23] provides another
example of a memory abstraction. Reducer hyperobjects are yet
another memory abstraction for dynamic multithreading.

This paper has laid out a new way of implementing reducers,
namely, through use of the TLMM mechanism. As demonstrated in
Section 8, experimental results show that the memory-mapping ap-
proach admits an efficient implementation. Interestingly, it appears
that TLMM can be used to implement Grace and Dthreads with
lower runtime overhead, which suggests that the TLMM mecha-
nism may provide a general way for building memory abstractions.

With the proliferation of multicore architectures, the computing
field must move from writing serially executing software to parallel
software in order to unlock the computational power provided by
modern hardware. Writing parallel programs, however, gives rise
to a new set of challenges in how programs interact with memory,
such as how to properly synchronize concurrent accesses to shared
memory. We believe that investigating memory abstractions is a
fruitful path. Memory abstractions ease the task of parallel pro-
gramming, directly by mitigating the complexity of synchroniza-
tion, and indirectly by enabling concurrency platforms that utilize
resources more efficiently.

Acknowledgments

Thanks to Matteo Frigo for tips and insights on the reducers imple-
mentation in Cilk++. Thanks to Pablo Halpern of Intel, one of the
original designers of reducers and a Cilk Plus developer, for helpful
discussions on the implementation of reducers in Cilk Plus. Thanks
to the Cilk team at Intel and the Supertech Research Group at MIT
CSAIL for their support.

11. REFERENCES

[1] Martín Abadi, Tim Harris, and Mojtaba Mehrara. Transactional
memory with strong atomicity using off-the-shelf memory protection
hardware. In Proceedings of the 14th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’09, pages
185–196, Raleigh, NC, USA, 2009. ACM.

[2] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam
Tobin-Hochstadt. The Fortress Language Specification Version 1.0.
Sun Microsystems, Inc., March 2008.

[3] Balaji Ayer. Intel R© CilkTM Plus is now available in open-source and
for GCC 4.7! http://www.cilkplus.org, 2011. The source code
for the compiler and its associated runtime is available at
http://gcc.gnu.org/svn/gcc/branches/cilkplus.

[4] Rajkishore Barik, Zoran Budimlić, Vincent Cavè, Sanjay Chatterjee,
Yi Guo, David Peixotto, Raghavan Raman, Jun Shirako, Saǧnak
Taşırlar, Yonghong Yan, Yisheng Zhao, and Vivek Sarkar. The
habanero multicore software research project. In Proceeding of the

24th ACM SIGPLAN Conference on Object-Oriented Programming

Systems Languages and Applications (OOPSLA), OOPSLA ’09,
pages 735–736, Orlando, Florida, USA, 2009. ACM.

[5] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and
Paul R. Wilson. Hoard: A scalable memory allocator for
multithreaded applications. In Proceedings of the 19th International

Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS-LX), pages 117–128, Cambridge,
MA, November 2000.

[6] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark.
Grace: Safe multithreaded programming for c/c++. In Proceedings of

the 24th ACM SIGPLAN conference on Object Oriented

Programming Systems Languages and Applications, OOPSLA ’09,
pages 81–96, Orlando, Florida, USA, 2009. ACM.

[7] Robert D. Blumofe and Dionisios Papadopoulos. Hood: A user-level
threads library for multiprogrammed multiprocessors. Technical
Report, University of Texas at Austin, 1999.

[8] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin.
Deconstructing transactional semantics: The subtleties of atomicity.
In Workshop on Duplicating, Deconstructing, and Debunking

(WDDD), June 2005.

[9] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar.
Habenero-Java: the new adventures of old X10. In PPPJ. ACM,
2011.

[10] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and
Vivek Sarkar. X10: An object-oriented approach to non-uniform
cluster computing. In Proceedings of the 20th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 519–538, New York, NY, USA,
2005.

[11] Mingdong Feng and Charles E. Leiserson. Efficient detection of
determinacy races in Cilk programs. In Proceedings of the Ninth

Annual ACM Symposium on Parallel Algorithms and Architectures

(SPAA), pages 1–11, Newport, Rhode Island, June 1997.

[12] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen
Lewin-Berlin. Reducers and other Cilk++ hyperobjects. In
Proceedings of the Twenty-First Annual ACM Symposium on

Parallelism in Algorithms and Architectures, pages 79–90, Calgary,
Canada, August 2009. Won Best Paper award.

[13] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
implementation of the Cilk-5 multithreaded language. In Proceedings

of the ACM SIGPLAN ’98 Conference on Programming Language

Design and Implementation, pages 212–223, Montreal, Quebec,
Canada, June 1998. Proceedings published ACM SIGPLAN Notices,
Vol. 33, No. 5, May, 1998.

[14] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices
in MATLAB: Design and implementation. SIAM J. Matrix Anal.

Appl, 13:333–356, 1992.

[15] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
Architectural support for lock-free data structures. In Proceedings of

the 20th International Conference on Computer Architecture. (Also

published as ACM SIGARCH Computer Architecture News, Volume

21, Issue 2, May 1993.), pages 289–300, San Diego, California, 1993.

[16] Institute of Electrical and Electronic Engineers. Information
technology — Portable Operating System Interface (POSIX) — Part
1: System application program interface (API) [C language]. IEEE
Standard 1003.1, 1996 Edition.

[17] Intel Corporation. Intel R© CilkTM Plus Application Binary Interface

Specification, 2010. Revision: 0.9.

[18] Intel Corporation. C++ and C interfaces for Cilk reducer

hyperobjects. Intel Corporation, 2011. Intel R© C++ Compiler 12.0:
reducer.h Header File.

[19] Intel Corporation. Intel R© CilkTM Plus Language Specification, 2011.
Revision: 1.1.

[20] Butler Lampson, Martín Abadi, Michael Burrows, and Edward
Wobber. Authentication in distributed systems: theory and practice.
ACM Trans. Comput. Syst., 10:265–310, November 1992.

[21] Doug Lea. A Java fork/join framework. In Proceedings of the ACM

2000 Conference on Java Grande, pages 36–43. ACM, 2000.

[22] I-Ting Angelina Lee. Memory Abstractions for Parallel

Programming. PhD thesis, Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science, June
2012. To be submitted in February 2012.

[23] I-Ting Angelina Lee, Silas Boyd-Wickizer, Zhiyi Huang, and
Charles E. Leiserson. Using memory mapping to support cactus
stacks in work-stealing runtime systems. In PACT ’10: Proceedings

of the 19th International Conference on Parallel Architectures and

Compilation Techniques, pages 411–420, Vienna, Austria, September
2010. ACM.

[24] Daan Leijen and Judd Hall. Optimize managed code for multi-core
machines. MSDN Magazine, 2007. Available from
http://msdn.microsoft.com/magazine/.

[25] Charles E. Leiserson. The Cilk++ concurrency platform. Journal of
Supercomputing, 51(3):244–257, March 2010.

[26] Charles E. Leiserson and Tao B. Schardl. A work-efficient parallel
breadth-first search algorithm (or how to cope with the
nondeterminism of reducers). In Proceedings of the 22nd ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 303–314, June 2010.

[27] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads:
Efficient deterministic multithreading. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 327–336, Cascais, Portugal, 2011. ACM.

[28] Robert H. B. Netzer and Barton P. Miller. What are race conditions?
ACM Letters on Programming Languages and Systems, 1(1):74–88,
March 1992.

[29] OpenMP application program interface, version 3.0. OpenMP
specification, May 2008.

[30] Hari K. Pyla and Srinidhi Varadarajan. Avoiding deadlock avoidance.
In Proceedings of the 19th International Conference on Parallel

Architectures and Compilation Techniques, PACT ’10, pages 75–86,
Vienna, Austria, 2010. ACM.

[31] James Reinders. Intel Threading Building Blocks: Outfitting C++ for

Multi-core Processor Parallelism. O’Reilly Media, Inc., 2007.

[32] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the 14th Annual ACM Symposium on Principles of

Distributed Computing (PODC), pages 204–213, Ottowa, Ontario,
Canada, August 1995.

[33] D. Stein and D. Shah. Implementing lightweight threads. In USENIX

’92, pages 1–9, 1992.

