
Safe Open-Nested Transactions Through Ownership

Kunal Agrawal I-Ting Angelina Lee Jim Sukha
MIT Computer Science and Artificial Intelligence Laboratory

{kunal ag, angelee, sukhaj}@mit.edu

ABSTRACT
Researchers in transactional memory (TM) have proposed open
nesting as a methodology for increasing the concurrency of trans-
actional programs. The idea is to ignore “low-level” memoryoper-
ations of an open-nested transaction when detecting conflicts for its
parent transaction, and instead perform abstract concurrency con-
trol for the “high-level” operation that the nested transaction rep-
resents. To support this methodology, TM systems use an open-
nested commit mechanism that commits all changes performedby
an open-nested transaction directly to memory, thereby avoiding
low-level conflicts. Unfortunately, because the TM runtimeis un-
aware of the different levels of memory, unconstrained use of open-
nested commits can lead to anomalous program behavior.

We describe the framework ofownership-aware transactional
memory which incorporates the notion of modules into the TM
system and requires that transactions and data be associated with
specific transactional modulesor Xmodules. We propose a new
ownership-aware commit mechanism, a hybrid between an open-
nested and closed-nested commit which commits a piece of data
differently depending on which Xmodule owns the data. Moreover,
we provide a set of precise constraints on interactions and sharing
of data among the Xmodules based on familiar notions of abstrac-
tion. The ownership-aware commit mechanism and these restric-
tions on Xmodules allow us to prove that ownership-aware TM has
clean memory-level semantics. In particular, it guarantees serial-
izability by modules, an adaptation of the definition of multilevel
serializability from database systems. In addition, we describe how
a programmer can specify Xmodules and ownership in a Java-like
language. Our type system can enforce most of the constraints re-
quired by ownership-aware TM statically, and can enforce the re-
maining constraints dynamically. Finally, we prove that iftransac-
tions in the process of aborting obey restrictions on their memory
footprint, then ownership-aware TM is free fromsemantic dead-
lock.

Categories and Subject DescriptorsD.2.1 [Software Engineer-
ing]: Requirements/Specifications — Methodologies; D.3.3 [Pro-

This research was supported in part by NSF Grants NSF Grants CNS-
0615215 and CNS-0540248 and a grant from Intel corporation.

A preliminary version of this paper appeared as a poster atPPoPP2008
and as a brief announcement atSPAA2008.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA.
Copyright c© 2009 ACM 978-1-60558-397-6/09/02. . . $5.00.

gramming Languages]: Language Constructs and Features — Con-
current programming structures

General Terms Design, Languages

Keywords Abstract Serializability, Open-nested Transactions,
Ownership-aware Transactions, Ownership Types, Safe Nesting,
Semantic Deadlock, Serializability by Modules, Transactional
Memory, Transactional Memory Semantics, XModules.

1. INTRODUCTION
Transactional memory (TM) [6] is meant to simplify concurrency
control in parallel programming by providing a transactional inter-
face for accessing memory; the programmer simply encloses the
critical region inside anatomic block, and the TM system ensures
that this section of code executes atomically. A TM system enforces
atomicity by tracking memory locations accessed by transactions
(usingread setsandwrite sets), finding transactional conflicts, and
aborting transactions that conflict. TM guarantees that transactions
areserializable[12]; that is, transactions affect global memory as
if they were executed one at a time in some order, even if in reality,
several executed concurrently.

Transactions may benested. If a transactionY is closed nested
[8] inside another transactionX, then for the purpose of detecting
conflicts, the TM system considers any memory locations accessed
by Y as conceptually also being accessed by its parentX. Thus,
whenY commits, the TM system mergesY’s read and write sets
into the read and write sets ofX. TM with closed-nested trans-
actions guarantees that transactions are serializable at the level of
memory. Researchers have observed, however, that closed nesting
might unnecessarily restrict concurrency in programs because it
does not allow two “high-level” transactions to ignore conflicts due
to “low-level” memory accessed by nested transactions.

Researchers have proposed the methodology ofopen-nested
transactions to increase concurrency in transactional programs
by breaking serializability at the memory level. The open-nesting
methodology incorporates theopen-nested commit mechanism
[7, 10]. When an open-nested transactionY (nested inside trans-
action X) commits,Y’s changes are committed to memory and
Y’s read and write sets are discarded. Thus, the TM system no
longer detects conflicts withX due to memory accessed byY. In
this methodology, the programmer considersY’s internal mem-
ory operations to be at a “lower level” thanX; thusX should not
care about the memory accessed byY when checking for conflicts.
Instead,Y must acquire anabstract lockbased on the high-level
operation thatY represents and propagate this lock toX, so that the
TM system can perform concurrency control at an abstract level.
Also, if X aborts, it may need to executecompensating actions
to undo the effect of its committed open-nested subtransaction Y.
Moss [9] illustrates the use of open nesting with an application that
employs a B-tree. Ni et al. [11] describe a software TM systemthat
supports the open-nesting methodology.

An unconstrained use of the open-nested commit mechanism
can lead to anomalous program behavior that can be tricky to rea-
son about [2]. We believe that one reason for the apparent com-
plexity of open nesting is that the mechanism and the methodology
make different assumptions about memory. Consider a transaction
Y open nested inside transactionX. The open-nesting methodology
requires thatX ignore the “lower-level” memory conflicts gener-
ated byY, while the open-nested commit mechanism will ignore
all the memory operations insideY. SayY accesses two memory
locationsℓ1 and ℓ2, andX does not care about changes made to
ℓ2, but does care aboutℓ1. The TM system cannot distinguish be-
tween these two accesses, and will commit both in an open-nested
manner, leading to anomalous behavior.

Researchershavedemonstrated specific examples [4, 11] that
safely use an open-nested commit mechanism. These examples
work, however, because the inner (open) transactions neverwrite to
any data that is accessed by the outer transactions. Moreover, since
these examples require only two levels of nesting, it is not obvious
how one can correctly use open-nested commits in a program with
more than two levels of abstraction. The literature on TM offers
relatively little in the way of formal programming guidelines which
one can follow to haveprovableguarantees of safety when using
open-nested commits.

Contributions

In this paper, we bridge the gap between memory-level mechanisms
for open nesting and the high-level view by explicitly integrating
the notions oftransactional modules(Xmodules) andownership
into the TM system. We believe theownership-aware TM sys-
temallows the programmer to safely use the methodology of open
nesting, because the runtime’s behavior more closely reflects the
programmer’s intent. In addition, the structure imposed byowner-
ship allows a compiler and runtime to enforce properties needed to
provide provable guarantees of “safety” to the programmer.More
specifically, the contributions of this paper are as follows:

1. We suggest a concrete set of guidelines for sharing of dataand
interactions between Xmodules.

2. We describe how the Xmodules and ownership can be specified
in a Java-like language and propose a type system that enforces
most of the above-mentioned guidelines in the programs written
using this language extension.

3. We formally describe the operational model for ownership-
aware TM, called theOATmodel, which uses a newownership-
aware commit mechanism. The ownership-aware commit
mechanism is a compromise between an open-nested and a
closed-nested commit; when a transactionT commits, access
to a memory locationℓ is committed globally ifℓ belongs to the
same Xmodule asT; otherwise, the access toℓ is propagated to
T ’s parent transaction. Unlike an ordinary open-nested commit,
the ownership-aware commit treats memory locations differ-
ently depending on which Xmodule owns the location. Note
that the ownership-aware commit is still a mechanism; pro-
grammers must still use it in combination with abstract locks
and compensating actions to implement the full methodology.

4. We prove that if a program follows the proposed guidelines
for Xmodules, then theOAT model guarantees serializability
by modules, which is a generalization of “serializability by
levels” used in database transactions. Ownership-aware commit
is the same as open-nested commit if no Xmodule ever accesses
data belonging to other Xmodules. Thus, one corollary of our
theorem is that open-nested transactions are serializablewhen
Xmodules do not share data. This observation explains why
researchers [4, 11] have found it natural to use open-nested

transactions in the absence of sharing, in spite of the apparent
semantic pitfalls.

5. We prove that under certain restricted conditions, a computa-
tion executing under theOAT model can not enter a semantic
deadlock.

In later sections, we distinguish between the variations ofnested
transactions as follows. We say that a transactionY is vanilla open
nestedwhen referring to a TM system which performs the open-
nested commit ofY. We say thatY is safe nestedwhen referring
to the ownership-aware TM system which performs the ownership-
aware commit ofY. Finally, we say that a transactionY is an open-
nested transaction when we are referring to the abstract methodol-
ogy, rather than a particular implementation with a specificcommit
mechanism.

Outline

The paper is organized as follows. In Section 2 we present an
overview of ownership-aware TM and highlight key features using
an example application. Section 3 describes language constructs for
specifying Xmodules and ownership. In Section 4, we review the
transactional computation framework [2], and extend this frame-
work to formally incorporate Xmodules and ownership. Section 5
describes theOAT model, and Section 6 gives a formal defini-
tion of serializability by modules, and a proof sketch that theOAT
model guarantees this definition. Section 7 provides conditions un-
der which theOAT model does not exhibit semantic deadlocks.
Section 8 concludes with a discussion of some related work.

2. OWNERSHIP-AWARE TRANSACTIONS
In this section, we give an overview of ownership-aware TM. To
motivate the need for the concept of ownership in TM, we first
present an example application which might benefit from open
nesting. We then introduce the notion of an Xmodule and infor-
mally explain the programming guidelines when using Xmod-
ules. Finally, we highlight some of the key differences between
ownership-aware TM and a TM with vanilla open nesting. In this
section, we present the intuitive descriptions of the concepts in
ownership-aware TM; we defer formal definitions until latersec-
tions.

Example Application

We describe an example application for which one might use open-
nested transactions. This example is similar to the one described by
Moss [9], but it includes data sharing between nested transactions
and their parents, and has more than two levels of nesting.

Since the open-nesting methodology is designed for programs
that have multiple levels of abstraction, we choose a modular ap-
plication. Consider a user application which concurrentlyaccesses
a database of many individuals’ book collections. The database
stores records in a binary search tree, keyed by name. Each node
in the binary search tree corresponds to a person, and storesa list
of books in his/her collection. The database supports queries by
name, as well as updates that add a new person or a new book to a
person’s collection. The database also maintains a privatehashmap,
keyed by book title, to support a reverse query; given a book title,
it returns a list of people who own the book. Finally, the userap-
plication wants the database to log changes on disk for recoverabil-
ity. Whenever the database is updated, it inserts metadata into the
buffer of a logger to record the change that just took place. Period-
ically, the user application is able to request a checkpointoperation
which flushes the buffer to disk.

This application is modular, with five natural modules — the
user application (UserApp), the database (DB), the binary search

tree (BST), the hashtable (Hashtable), and the logger (Logger).
The UserApp module calls methods from theDB module when
it wants to insert into the database, or query the database. The
database in turn maintains internal metadata and calls theBST
module and theHashtable module to answer queries and insert
data. Both user application and the database may call methods from
theLogger module.

If the modules use open-nested transactions, a TM system with
vanilla open-nested commits can result in non-intuitive outcomes.
Consider the example where a transactional methodA from the
UserApp module tries to insert a bookb into the database, and the
insert is an open-nested transaction. The methodA (which corre-
sponds to transactionX) calls an insert method in theDB module
and passesb (the Book object) to be inserted. This insert method
generates an open-nested transactionY. SupposeY writes to some
field of the bookb (memory locationℓ1), and also writes some in-
ternal database metadata (locationℓ2). After a vanilla open-nested
commit ofY, the modifications to bothℓ1 andℓ2 become visible
globally. Assuming theUserApp does not care about the internal
state of the database, committing the internal state of theDB (ℓ2) is a
desirable effect of open nesting; this commit increases concurrency,
because other transactions can potentially modify the database in
parallel withX without generating a conflict. TheUserApp does,
however, care about changes to the bookb; thus, the commit of
ℓ1 breaks the atomicity of transactionX. A transactionZ in paral-
lel with transactionX can access this locationℓ1 afterY commits,
before the outer transactionX commits.1 To increase concurrency,
we want the method fromDB to commit changes to its own internal
data; we do not, however, want it to commit the data thatUserApp
cares about.

To enforce this kind of restriction, we need some notion of
ownership of data: if the TM system is aware of the fact that the
book object “belongs” to theUserApp, then it can decide not to
commitDB’s change to the book object globally. For this purpose,
we introduce the notion oftransactional modules, or Xmodules.
When a programmer explicitly defines Xmodules and specifies the
ownership of data, the TM system can make the correct judgement
about which data to commit globally.

Xmodules and the Ownership-Aware Commit Mechanism

The ownership-aware TM system requires that programs be orga-
nized into Xmodules. Intuitively, an XmoduleM is as a stand-alone
entity that contains data and transactional methods; an Xmodule
owns data that it privately manages, and uses its methods to pro-
vide public services to other Xmodules. During program execution,
a call to a method from an XmoduleM generates a transaction in-
stance (e.g.,X). If this method in turn calls another method from
an XmoduleN, an additional transactionY, safe nested insideX, is
created only ifM 6= N. Therefore, defining an Xmodule automati-
cally specifies safe-nested transactions.

In the ownership-aware TM system, every memory location is
owned by exactly one Xmodule. If a memory locationℓ is in a
transactionT ’s read or write set, the ownership-aware commit of a
transactionT commits this access globally only ifT is generated
by the same Xmodule that ownsℓ; in this case, we say thatT is
“responsible” for that access toℓ. Otherwise, the read or write toℓ
is propagated up to the read or write set ofT ’s parent transaction;
that is, the TM system behaves as thoughT was a closed-nested
transaction with respect to locationℓ.

We wish to guarantee that ownership-aware TM behaves “nicely”.
For example, in the TM system, some transaction must be “respon-

1 Note that abstract locks [9] do not address this problem. Abstract locks
are meant to disallow other transactions from noticing the fact that the book
was inserted into theDB. They do not usually protect the individual fields of
the book object itself.

sible” for committing every memory access. Similarly, the TM
system should guarantee some form of serializability. To guarantee
these properties, we must restrict interactions between Xmodules;
if Xmodules could arbitrarily call methods from or access mem-
ory owned by other Xmodules, then these properties might notbe
satisfied.

Rules for Xmodules

Ownership-aware TM uses Xmodules to control both the structure
of nested transactions, and the sharing of data between Xmodules
(i.e., to limit which memory locations a transaction instance can
access). In our system, Xmodules are arranged as amodule tree,
denoted asD. In D, an XmoduleN is a child ofM if N is “encap-
sulated by”M. The root ofD is a special Xmodule calledworld.
Each Xmodule is assigned anxid by visiting the nodes ofD in a
left-to-right depth-first search order, and assigning ids in increasing
order, starting withxid(world) = 0. Thereforeworld has the min-
imumxid, and “lower-level” Xmodules have largerxid numbers.

DEFINITION 1. We impose two rules on Xmodules based on the
module tree:

1. Rule 1: A method of an Xmodule M can access a memory
locationℓ directly only ifℓ is owned by either M or an ancestor
of M in the module tree. This rule means that an ancestor
Xmodule N of M may pass data down to a method belonging
to M, but a transaction from module M cannot directly access
any “lower-level” memory.

2. Rule 2: A method from M can call a method from N only if
N is the child of some ancestor of M, andxid(N) > xid(M)
(i.e., if N is “to the right” of M in the module tree). This rule
requires that an Xmodule can call methods of some (but not all)
lower-level Xmodules.2

The intuition behind these rules is as follows. Xmodules have
methods to provide services to other higher-level Xmodules, and
Xmodules maintain their own data in order to provide these ser-
vices. Therefore, a higher-level Xmodule can pass its data to a
lower-level Xmodule and ask for services. A higher-level Xmodule
should not directly access the internal data belonging to a lower-
level Xmodule.

If Xmodules satisfy Rules 1 and 2, TM can have a well-defined
ownership-aware commit mechanism; some transaction is always
“responsible” for every memory access (proved in Section 5). In
addition, these rules and the ownership-aware commit mechanism
guarantee that transactions satisfy the property of “serializability
by modules” (proved in Section 6).

One potential limitation of ownership-aware TM is that some
“cyclic dependencies” between Xmodules are prohibited. The abil-
ity to define one module as being at a lower level than another is
fundamental to the open-nesting methodology. Thus, our formal-
ism requires that Xmodules be partially ordered; if an Xmodule M
can call XmoduleN, then conceptuallyM is at a higher level thanN
(i.e.,xid(M) < xid(N)), and thusN cannot callM. If two compo-
nents of the program call each other, then, conceptually, neither of
these components is at a higher-level than the other, and we would
require that these two components be combined into one Xmodule.

Xmodules in the Example Application

Consider a Java implementation of the example application de-
scribed earlier. It may have the following classes:UserApp as the
top-level application that manages the book collections,Person

2 An Xmodule can, in fact, call methods within its own Xmodule or from its
ancestor Xmodules, but we model these calls differently. Weexplain these
cases at the end of this section.

world!

UserApp!

DB! Logger!

BST! Hashmap!

xid:3 xid:4

xid:0

xid:1

xid:2 xid:5

Figure 1. A module treeD for the program described in Sec-
tion 2. Thexid’s are assigned according to a left-to-right depth-
first tree walk, numbering Xmodules in increasing order, starting
with xid(world) = 0.

andBook as the abstractions representing book owners and books,
DB for the database,BST andHashmap for the binary search tree
and hashmap maintained by the database, andLogger for logging
the metadata to disk. In addition, there are some other auxiliary
classes: tree nodeBSTNode for the BST, Bucket in the Hashmap,
andBuffer used by theLogger.

For ownership-aware TM, not all of a program’s classes are
meant to be Xmodules; some classes only wrap data. In our ex-
ample, we identified five Xmodules–UserApp, DB, BST, Hashmap,
andLogger; these classes are stand-alone entities which have en-
capsulated data and methods. Classes such asBook andPerson, on
the other hand, are data types used byUserApp. Similarly, classes
like BSTNode andBucket are data types used byBST andHashmap
to maintain their internal state.

We organize the Xmodules of the application into the module
tree shown in Figure 1.UserApp is encapsulated byworld, DB
and Logger are encapsulated underUserApp; BST and Hashmap
are encapsulated underDB. By dividing Xmodules this way, the
ownership of data falls out naturally, i.e., an Xmodule ownscertain
pieces of data if the data is encapsulated under the Xmodule.For
example, the instances ofPerson or Book are owned byUserApp
because they should only be accessed by eitherUserApp or its
descendants.

Let us consider the implications of Definition 1 for the exam-
ple. Due to Rule 1, all ofDB, BST, Hashmap, andLogger can di-
rectly access data owned byUserApp, but theUserApp cannot di-
rectly access data owned by any of the other Xmodules. This rule
corresponds to standard software-engineering rules for abstraction;
the “high-level” XmoduleUserApp should be able to pass its data
down, allowing lower-level Xmodules to access that data directly,
butUserApp itself should not be able to directly access data owned
by lower-level Xmodules. Due to Rule 2, theUserApp may invoke
methods fromDB, DB may invoke methods fromBST andHashmap,
and every other Xmodule may invoke methods fromLogger. Thus,
Rule 2 allows all the operations required by the example applica-
tion. As expected, theUserApp can call theinsert andsearch
methods from theDB and can even pass its data to theDB for in-
sertion. More importantly, notice the relationship between BST and
Logger. TheBST Xmodule can call methods fromLogger, but the
BST cannot pass data it owns directly into theLogger. It can, how-
ever, pass data owned by theUserApp to the logger, which is all
this application requires.

Advantage of Ownership-Aware Transactions

One of the major problems with vanilla open nesting is that some
transactions can see inconsistent data. Say a transactionY is open
nested inside transactionX. Let v0 be the initial value of location

ℓ, and supposeY writes valuev1 to locationℓ and then commits.
Now a transactionZ in parallel with X can read this locationℓ,
write valuev2 to ℓ, and commit, all beforeX commits. Therefore,X
can now read this locationℓ and see the valuev2, which is neither
the initial valuev0 (the value ofℓ whenX started), norv1 which
was written byX’s inner transaction,Y. This behavior might seem
counterintuitive.

Now consider the same example for ownership-aware transac-
tions. SayX is generated by a method of XmoduleM andY is
generated by a method of XmoduleN. If N ownsℓ, X cannot ac-
cessℓ, sincexid(M) < xid(N) (by Definition 1, Rule 2), and no
transaction from a higher-level module can access data owned by
a lower-level module (by Definition 1, Rule 1). Thus, the problem
does not arise. IfN does not ownℓ, the ownership-aware commit
of Y will not commit the changes toℓ globally andℓ will be prop-
agated toX’s write set. Therefore, ifZ tries to accessℓ beforeX
commits, the TM system will detect a conflict. ThusX cannot see
an inconsistent value forℓ.3

Callbacks

At first glance, the assumptions we have made regarding methods
of Xmodules seem somewhat restrictive. In the description thus
far, we prohibit an XmoduleM from calling another transactional
method fromM or a proper ancestor ofM. In particular, it appears
as though our model disallows callbacks. Our model, however, does
permit both these cases; we simply model these calls differently.

If a methodX from XmoduleM calls another methodY from
an ancestor XmoduleN, this call does not generate a new safe-
nested transaction instance. Instead,Y is subsumed inX using flat
(or closed) nesting. Recall that Rule 1 in Definition 1 allowsX to
access data belonging toN or any of its ancestors directly. Thus,
we can treat any data access by a flat (or closed) nested transaction
Y as being accessed byX directly, provided thatY and its nested
transactions access only memory belonging toN or N’s ancestors.
We say thatY is a proper callbackmethod for XmoduleN if its
nested calls are all proper callback methods belonging to Xmodules
which are ancestors ofN. In our formal model in Section 4, we
assume that we only have proper callbacks and model them as
direct memory accesses, allowing us to ignore them in the formal
definitions.

Closed-Nested Transactions

In our model, every method call that crosses an Xmodule bound-
ary automatically generates a safe-nested transaction. Ownership-
aware TM can effectively provide closed-nested transactions, how-
ever, with appropriate specifications of ownership. If an Xmodule
M owns no memory, but only operates on memory belonging to its
proper ancestors, then transactions ofM will effectively be closed
nested. In the limit, if the programmer specifies that all memory
is owned by theworld Xmodule, then all changes in any transac-
tion’s read or write set are propagated upwards; thus all ownership-
aware commits behave exactly as closed-nested commits.

3. OWNERSHIP TYPES FOR XMODULES
When using ownership-aware transactions, the Xmodules anddata
ownership in a program must be specified for two reasons. First, the
ownership-aware commit mechanism depends on these concepts.
Second, we can guarantee some notion of serializability only if a
program has Xmodules which conform to the rules in Definition1.
In this section, we describe language constructs and a type system
that can be used to specify Xmodules and ownership in a Java-like

3 For simplicity, we have described the case whereY is directly nested inside
X. The case whereY is more deeply open nested insideX behaves in a
similar fashion.

language. Our type system — theOAT type system— statically
enforces some of the restrictions described in Definition 1.

TheOAT type system extends the ownership types of Boyapati
et al. [3], which is described first in this section. We then describe
extensions to this type system to enforce some of the restrictions
in Definition 1. Next, we present code for parts of the exampleap-
plication described in Section 2. Finally, we discuss some restric-
tions required by Definition 1 which theOAT type system does not
enforce statically. The type system’s annotations, however, enable
dynamic checks for these restrictions.

Boyapati et al.’s Parametric Ownership Type System

The type system of Boyapati et al. provides a mechanism for speci-
fying ownership of objects. The type system enforces the properties
stated in Lemma 1.

LEMMA 1. Boyapati et al.’s type system enforces the following
properties:

1. Every object has a unique owner.
2. The owner can be either another object, orworld.
3. The ownership relation forms anownership tree(of objects)

rooted atworld.
4. The owner of an object does not change over time.
5. An object a can access another object b directly only if b’s

owner is either a, or one of a’s proper ancestors in the own-
ership tree.

Boyapati et al.’s type system requires ownership annotations to
class definitions and type declarations to guarantee Lemma 1. Ev-
ery class typeT1 has a set of associated ownership tags, denoted
T1〈 f1, f2, . . . fn〉. The first formalf1 denotes the owner of the cur-
rent instance of the object (i.e.,this object). The remaining for-
mals f2, f3, . . . fn are additional tags which can be used to instan-
tiate and declare other objects within the class definition.The for-
mals get assigned with actual ownerso1,o2, . . .on when an object
a of type T1 is instantiated. By parameterizing class and method
declarations with ownership tags, this type system permitsowner
polymorphism. Thus, one can define a class type (e.g. a generic
hash table) once, but instantiate multiple instances of that class with
different owners in different parts of the program.

The type system enforces the properties in Lemma 1 by per-
forming the following checks:

1. Within the class definition of typeT1, only the tags{ f1, f2, . . . fn}∪
{this,world} are visible. Thethis ownership tag represents
the object itself.

2. A variablec2 with typeT2〈 f2, . . .〉 can be assigned to a variable
c1 with typeT1〈 f1, . . .〉 if and only if T2 is a subtype ofT1 and
f1 = f2.

3. If an objecta’s tags are instantiated to beo1,o2, . . .on whena is
created, then in the ownership tree,o1 must be a descendant of
oi , ∀i ∈ 2..n, (denoted byo1 � oi henceforth).

Boyapati et al. show that these type checks guarantee the properties
of Lemma 1.

In some cases, to enable the type system to perform check 3
locally, the programmer may need to specify awhere clause in
a class declaration. For example, suppose the class declaration of
typeT1 has formal tags〈 f1, f2, f3〉, and insideT1’s definition, some
typeT2 object is instantiated with ownership tags〈 f2, f3〉. The type
system cannot determine whether or notf2 � f3. To resolve this
ambiguity, the programmer must specifywhere (f2 <= f3) at the
class declaration of typeT1. When an instance of typeT2 object is
instantiated, the type system then checks that thewhere clause is
satisfied.

TheOAT Type System

The ownership tree described by Boyapati et al. exhibits some of
the same properties as the module tree we described in Section 2;
however, this ownership scheme does not enforce two major re-
quirements of our system.

• In [3], any object can own other objects. Our rules, however,
require that only Xmodules own other objects.

• In [3], an object can call any of its ancestor’s siblings. Ourrules
(namely Definition 1), however, dictate that an XmoduleM can
only call its ancestor’s siblings to the right.

With these requirements in mind, we extend Boyapati et al.’stype
system to create theOAT type system.

The extensions to handle the first requirement are straight-
forward. The OAT type system explicitly distinguishes objects
and Xmodules by requiring that Xmodules extend from a spe-
cial Xmodule class. TheOAT type system only allows classes that
extendXmodule to usethis as an ownership tag. In the context
of the Boyapati et al.’s ownership tree, this restriction creates a
tree where all the internal nodes are Xmodules and all leavesare
non-Xmodule objects. If we ignore any order imposed on the chil-
dren of an Xmodule, for ownership-aware TM, the module tree (as
described in Section 2) is essentially the ownership tree with all
non-Xmodule objects removed.

The second requirement is more complicated to enforce. First,
we extend each owner instanceo to have two fields:name, repre-
sented byo.name; and index, represented byo. index. The name
field is conceptually the same as an ownership instance in Boyapati
et al.’s type system. The index field is added to help the compiler to
infer ordering between children of the same Xmodule in the module
tree. TheOAT type system allows the programmer to passthis[i]
as the ownership tag (i.e., with an indexi) instead ofthis. Simi-
larly, one can useworld[i] as an ownership tag. Indices enable
the type system to infer an ordering between two sibling Xmodules
M andN; for instance, if an XmoduleL instantiatesM andN with
ownersthis[i] andthis[i+1], respectively, thenM appears to
the left ofN in the module tree.

Finally, for technical reasons, theOAT system prohibits all
XmodulesM from declaring primitive fields. IfM had primitive
fields, then by Boyapati et al.’s type system, these fields areowned
by theM’s parent. Since this property seems counter-intuitive, we
opted to disallow primitive fields for Xmodules.

In summary, theOAT type system performs these checks:

1. Within the class definition of typeT1, only the tags{ f1, f2, . . . fn}∪
{this,world} are visible.

2. A variablec2 with typeT2〈 f2, . . .〉 can be assigned to a variable
c1 with typeT1〈 f1, . . .〉 if and only if T2 = T1, and all the for-
mals are initialized to the same owners with the same indices,
if indices are specified.

3. For a typeT〈o1,o2, . . .on〉, we must have, for alli ∈ {2, . . .n},
eithero1.name≺ oi .nameor o1.name= oi .nameando1. index<
oi . index(if both indices are known).4

4. The ownership tagthis can only be used within the definition
of a class that extendsXmodule.

5. Xmodule objects cannot have primitive-type fields.

The first three checks are analogous to the checks in Boyapati
et al.’s type system. The last two checks are added to enforcethe
additional requirements of Xmodules.

4 In the ownership tree, for any XmoduleM, theOAT type system implic-
itly assigns non-Xmodule children ofM higher indices than the Xmodule
children ofM, unless the user specifies otherwise.

1 public class UserApp<appO> extends Xmodule<appO> {
2 private Logger<this[1], this[2]> logger;
3 private DB<this[0], this[1], this[2]> db;

...
4 public UserApp() {
5 logger = new Logger<this[1], this[2]>();
6 db = new DB<this[0], this[1], this[2]>(logger);
7 }
8 }

9 public class DB<dbO, logO, dataO>
10 extends Xmodule<dbO> where (logO < dataO) {
11 private Logger<logO, dataO> logger;
12 private BST<this[0], logO, dataO> bst;
13 private Hashmap<this[1], logO, dataO> hashmap;
14 public DB(Logger<logO, dataO> logger) {
15 this.logger = logger;

...
16 }
17 }

Figure 2. Specifying Xmodules and ownership for the example
application described in Section 2.

TheOAT type system supportswhere clauses of the formwhere
(fi < f j); when fi and f j are instantiated withoi and o j , the
type system ensures that eitheroi .name≺ o j .name, or oi .name=
o j .nameandoi . index< o j . index. The detailed type rules for the
OAT type system are described in [1].

Example Application Using theOAT Type System

Figure 2 illustrates how one can specify Xmodules and ownership
using ownership types. The programmer specifies an Xmodule by
creating a class which extends from a specialXmodule class. The
DB class has three formal owner tags –dbO which is the owner of
theDB Xmodule instance,logO which is the owner of theLogger
Xmodule instance that theDB Xmodule will use, anddataO which
is the owner of the user data being stored in the database. When an
instance ofUserApp initializes Xmodules in lines 5–6, it declares
itself as the owner of theLogger, theDB, and the user data being
passed intoDB. The indices onthis are declaring the ordering of
Xmodules in the module tree, i.e., the user data is lower-level than
theLogger, and theLogger is lower level than theDB. lines 11–13
illustrate how theDB class can initialize its Xmodules and propagate
the formal owner tags (i.e.,logO anddataO) down.

Note that in order for this code to type check, theDB class must
declarelogO < dataO using thewhere clause in line 10, otherwise
the type check would fail at line 11, due to ambiguity of their
relation in the module tree. Thewhere clause in line 10 is checked
whenever an instance ofDB is created, i.e. at line 6.

TheOAT Type System’s Guarantees

The following lemma about theOAT type system can be proved in
a reasonably straightforward manner using Lemma 1.

LEMMA 2. The OAT type system guarantees the following proper-
ties.

1. An Xmodule M can access a (non-Xmodule) object b with own-
ership tag ob only if M� ob.name.

2. An Xmodule M can call a method in another Xmodule N with
owner oN only if one of the following is true:
(a) M = oN.name (i.e. M owns N);
(b) The least common ancestor of M and N in the module tree

is oN.name.
(c) N�M (i.e. N is an ancestor of M).

Lemma 2 does not, however, guarantee all the properties we
want from Xmodules (i.e., Definition 1). In particular, Lemma 2
does not consider any ordering of sibling Xmodules. TheOAT type
system can, however, provide stronger guarantees for a program
which satisfies what we call theunique owner indicesassumption:
for all XmodulesM, all children ofM in the module tree are instan-
tiated with ownership tags with unique indices that can be statically
determined. For such a program, the type system can order thechil-
dren of every XmoduleM from smallest to largest index, and assign
thexid to each Xmodule as described in Section 2. Then, the fol-
lowing result holds:

THEOREM 3. For a program with unique owner indices, in ad-
dition to Lemma 2, the OAT type system guarantees that if the
least common ancestor of Xmodules M and N in the module tree is
oN.name, then M can call a method in N only ifxid(M) < xid(N).

PROOFSKETCH.
We prove (by contradiction) that if the least common ancestor

of M andN in the module tree isoN.name, andxid(M) > xid(N),
thenM cannot have a formal tag with valueoN. Therefore, it cannot
declare a type with owner tagoN, and cannot accessN. We only
sketch the proof here. For the details, please see [1].

Let L be the least common ancestor ofM andN, let Q be the
ancestor ofM which is N’s sibling, and letoQ be Q’s ownership
tag (i.e., the tag with whichQ is instantiated). SinceN andQ have
the same parent (i.e.L) in the module tree, we haveoN.name=
oQ.name= L. Sincexid(M) > xid(N), M is to the right ofN
in the ownership tree. Therefore,Q, which is an ancestor ofM,
is to the right ofN in the ownership tree. Therefore, we have
oQ. index> oN. index.

Assume for contradiction thatM does haveoN as one of its tags.
Using Lemma 1, one can show that the only way forM to receive
tagoN is if Q also has a formal tag with valueoN. Thus,Q’s first
formal owner tag has valueoQ and another one of its formals has
value oN. Therefore, the type system fails to type check, either
at the point whereQ is instantiated due tooQ. index> oN. index
(check 3), or at some other place where a disambiguatingwhere
clause is used.

Theorem 3 only modifies the Condition 2b of Lemma 2. There-
fore, Lemma 2 along with Theorem 3 imposes restrictions on every
Xmodule M which are only slightly weaker than the restrictions
required by Definition 1. Condition 1 in Lemma 2 corresponds to
Rule 1 of Definition 1. Conditions 2a and 2b are the cases permitted
by Rule 2. Condition 2c, however, corresponds to the specialcase
of callbacks or calling a method from the same Xmodule, whichis
not permitted by Definition 1. This case is modeled differently, as
we explained in Section 2.

TheOAT type system is a best-effort type system to check for
the restrictions required by Definition 1. TheOAT type system can-
not fully guarantee, however, that a type-checked program does not
violate Definition 1. Specifically, theOAT type system can not al-
ways detect the following violations statically. First, ifthe program
does not have unique owner indices, thenL may instantiate bothM
andN with the same index. Then, by Lemma 2,M andN, can call
each other’s methods, and we can get cyclic dependencies between
Xmodules.5 Second, the program may perform improper callbacks.
Say a method fromM calls back to methodB from L. An improper
callbackB can call a method ofN, even though the type system
knows thatM is to the right ofN. In both cases, the type system al-

5 Since all non-Xmodule objects are implicitly assigned higher indices than
their Xmodule siblings, these non-Xmodule objects cannot introduce cyclic
dependencies between Xmodules.

lows a program with cyclic dependency between Xmodules to pass
the type checks, which is not allowed by Definition 1.

To have an ownership-aware TM which guarantees exactly Def-
inition 1, one needs to impose additional dynamic checks. The run-
time system can use the ownership tags to build a module tree dur-
ing runtime, and use this module tree to perform dynamic checks to
verify that every Xmodule has unique owner indices and contains
only proper callbacks. The runtime system can do this by dynam-
ically inferring indices according to which Xmodule calls which
other Xmodule, and reporting an error if there is any circular call-
ing.6

4. COMPUTATIONS WITH Xmodules
In this section, we formally define the structure of transactional pro-
grams with Xmodules. This section converts the informal explana-
tion from Section 2 into a formal model that we later use to prove
properties of ownership-aware TM. We briefly review the transac-
tional computation framework [2] and add Xmodules and owner-
ship to this framework, finally providing the formal statement of
Definition 1.

Transactional Computations

In our framework [2], the execution of a program is modeled using
a “computation tree”C that summarizes the information about both
the control structure of a program and the nesting structureof
transactions, and an “observer function”Φ which characterizes the
behavior of memory operations. A program execution is assumed
to generate atrace(C ,Φ).

A computation treeC is defined as an ordered tree with two
types of nodes:memory-operation nodesmemOps(C) as leaves and
control nodesspNodes(C) as internal nodes. A memory operation
v either reads from or writes to a memory location. Control nodes
are eitherS(series) orP (parallel) nodes. Conceptually, the children
of an S-node must be executed serially, from left to right, while
the children ofP node can be executed in parallel. SomeS nodes
are labeled as transactions; definexactions(C) as the set of these
nodes.

Instead of specifying the value that an operation reads or writes
to a memory locationℓ, we abstract away the values by using an
observer functionΦ. For a memory operationv that accesses a
memory locationℓ, the nodeΦ(v) is defined to be the operation
that wrote the value ofℓ thatv sees.

We define several structural notations on the computation tree
C . Denote theroot of C as root(C). For any tree nodeX, let
ances(X) denote the set of allX’s ancestors (includingX itself)
in C . Denote the set of proper ancestors ofX by pAnces(X). For
any tree nodeX, we define thetransactional parentof X, denoted
by xparent(X), as parent(X) if parent(X) ∈ xactions(C),
or xparent(parent(X)) if parent(X) 6∈ xactions(C). Define
the transactional ancestorsof X as xAnces(X) = ances(X)∩
xactions(C). Denote theleast common ancestorof two nodes
X1,X2∈C byLCA(X1,X2). DefinexLCA(X1,X2) asZ = LCA(X1,X2)
if Z ∈ xactions(C), and asxparent(Z) otherwise.

A computation can also be represented as a computation
dag (directed acyclic graph). Given a treeC , the dagG(C) =
(V(C),E(C)) corresponding to the tree is constructed recursively.
Every internal nodeX in the tree appears as two vertices in the
dag. Between these two vertices, the children ofX are connected
in series ifX is anS node, and are connected in parallel ifX is a
P node. Figure 3 show a computation tree and its corresponding
computation dag.

6 It is possible to statically check for unique owner indices by imposing
additional restrictions on the program. We opted, however,to describe a
more flexible programming model with weaker static guarantees.

u
1

w
1

w
2

v
2

v
1

T
2!

T
1!

T
3!

T
5!

(b) Transaction!

u
2

T
4!

x
1

x
2

Figure 3. A sample (a) computation treeC and (b) its correspond-
ing dagG(C).

Classical theories on serializability refer to a particular execu-
tion order for a program as ahistory [12]. In our framework, a
history corresponds to a topological sortS of the computation dag
G(C). We define our models of TM using these sorts. Reordering a
history to produce a serial history is equivalent to choosing a differ-
ent topological sortS ′ of G(C) which has all transactions appearing
contiguously, but which is still “consistent” with the observer func-
tion associated withS .

Xmodules and Computation Tree

As mentioned in Section 2, in this paper, we consider programs
that contain Xmodules. In our theoretical framework, we consider
traces generated by a program which is organized into a setN of
Xmodules. Each XmoduleM ∈ N has some number of methods
and a set of memory locations associated with it.

We partition the set of all memory locationsL into sets of
memory owned by each Xmodule. LetmodMemory(M)⊆ L denote
the set of memory locations owned byM. For a locationℓ ∈
modMemory(M), we say thatowner(ℓ) = M. When a method of
Xmodule M is called by a method from a different Xmodule,
a safe-nested transactionT is generated.7 We use the notation
xMod(T) = M to associate the instanceT with the XmoduleM.
We also define the instances associated withM as

modXactions(M) = {T ∈ xactions(C) : xMod(T) = M} .

As mentioned in Section 2, Xmodules of a program are ar-
ranged as a module tree, denoted byD. Each Xmodule is as-
signed anxid according to a left-to-right depth-first tree walk,
with the root ofD being world with xid = 0. Denote the par-
ent of XmoduleM in D asmodParent(M), the ancestors ofM as
modAnces(M), and the descendants ofM asmodDesc(M). We say
thatxMod(root(C)) = world, i.e., the root of the computation tree
is a transaction associated with theworld Xmodule.

We use the module treeD to restrict the sharing of data between
Xmodules and to limit the visibility of Xmodule methods according
to the rules given in Definition 2.

DEFINITION 2 (Formal Restatement of Definition 1).A program
with a module treeD should generate only traces(C ,Φ) which
satisfy the following rules:

7 As we explained in Section 2, callbacks are handled differently.

1. For any memory operation v which accesses a memory location
ℓ, let T = xparent(v). Thenowner(ℓ)∈ modAnces(xMod(T)).

2. Let X,Y ∈ xactions(C) be transaction instances such that
xMod(X)= M andxMod(Y)= N. We can have X= xparent(Y)
only ifmodParent(N)∈ modAnces(M), andxid(M)< xid(N).

5. THE OAT MODEL
In this section, we informally sketch theOAT model, an abstract
execution model for TM with ownership and Xmodules. The novel
feature of theOAT model is that it uses the structure of Xmodules
to provide a commit mechanism which can be viewed as a hybrid
of closed- and open-nested commits. TheOAT model presents an
operational semantics for TM, and is not intended to describe an
actual implementation. For the full formal description of the model,
see [1].

Basic Operation

The TM system is modeled as a nondeterministic state machine
with two components: aprogramand aruntime system. The run-
time system, which we call theOATmodel, dynamically constructs
a computation treeC as it executes instructions generated by the
program. This sequence of instructions is a valid topological sortS
of G(C). During execution, each transactionT in the tree maintains
astatusfield, which can be one ofCOMMITTED, ABORTED, PENDING,
or PENDING ABORT. TheOATmodel maintains a set ofreadynodes,
denoted byready(C), and at every step, theOAT model nonde-
terministically chooses one of these ready nodes to issue the next
instruction. The program then issues an instruction on thisnode’s
behalf.

To detect conflicts, theOAT model maintains a read setR(T)
and a write setW(T) for all T ∈ xactions(C). The read setR(T)
is a set of pairs(ℓ,v), where ℓ ∈ L is a memory location, and
v∈ memOps(C) is a memory operation that reads fromℓ. We define
W(T) similarly. We also assume that a write is implicitly a read as
well; thus,W(T)⊆ R(T).

The OAT model performs eager conflict detection; whenever
a memory operationv accesses a locationℓ, the OAT model
checks to see ifv creates any conflicts. Informally, av which
is a read (write) generates a conflict if there is another active
transactionT 6∈ xAnces(v) (T is active if its status isPENDING or
PENDING ABORT) which hasℓ in its write (read) set. Ifv gener-
ates a conflict, then some transaction must be aborted, usingthe
mechanism explained at the end of this section.

If v does not generate a conflict, thenv succeeds and observes
the valueℓ from R(Y), whereY is the closest transactional ancestor
of v with ℓ in its read set (i.e.,(ℓ,u) ∈ R(Y)). Let X = xparent(v).
Then, ifv is aread, (ℓ,v) is added toR(X). If v is awrite, (ℓ,v) is
added to bothR(X) andW(X).

Ownership-Aware Commit

The OAT model implements anownership-aware commit mech-
anism for nested transactions which contains elements of both
closed-nested and open-nested commits. APENDING transaction
Y issues anxend instruction to commitY into X = xparent(Y).
Thisxend commits locations from its read and write sets which are
owned byxMod(Y) in an open-nested fashion to the root of the tree,
while it commits locations owned by other Xmodules in a closed-
nested fashion, by merging those reads and writes intoX’s read and
write sets.

Unique Committer Property

Definition 2 guarantees certain properties of the computation tree
which are essential to the ownership-aware commit mechanism.
Theorem 5 proves that every memory operation has one and only

one transaction that is responsible for committing the memory
operation. The proof of the theorem requires the following lemma
which we prove by induction on the nesting depth of transactions.

LEMMA 4. Given a computation treeC , consider any transaction
T ∈ xactions(C). Let ST = {xMod(T ′) : T ′ ∈ xAnces(T)}. Then
we havemodAnces(xMod(T))⊆ ST .

PROOF. We prove this fact by induction on the nesting depth
of transactionsT in the computation tree. In the base case, the
lemma holds trivially, since the top-level transactionT = root(C),
andxMod(root(C)) = world. For the inductive step, assume that
modAnces(xMod(T)) ⊆ ST holds for any transactionT at depthd.
We show that the fact holds for anyT∗ ∈ xactions(C) at depth
d+1.

For any suchT∗, we know T = xparent(T∗) is at depthd.
Then, by Rule 2 of Definition 2, we havemodParent(xMod(T∗))∈
modAnces(xMod(T)). Thus, we know thatmodAnces(xMod(T∗))⊆
modAnces(xMod(T))∪{xMod(T∗)}. By construction of the setST ,
we haveST∗ = ST ∪ {xMod(T∗)}. Therefore, using the inductive
hypothesis, we havemodAnces(xMod(T∗))⊆ ST∗ .

THEOREM 5. If a memory operation v accesses a memory loca-
tion ℓ, then there exists a unique transaction T∗ ∈ xAnces(v), such
that

1. owner(ℓ) = xMod(T∗), and
2. For all transactions X∈ pAnces(T∗)∩ xactions(C), X can-

not directly access locationℓ.

This transaction T∗ is thecommitterof memory operation v, de-
noted bycommitter(v).

PROOF. This result follows from the properties of the module tree
and computation tree stated in Definition 2.

Let T = xparent(v). First, by Rule 1, we knowowner(ℓ) ∈
modAnces(xMod(T)). We know modAnces(xMod(T)) ⊆ ST by
Lemma 4. Thus, there exists some transactionT∗ ∈ xAnces(T)
such thatowner(ℓ) = xMod(T∗). We can use Rule 2 to show that the
T∗ is unique. LetXi be the chain of ancestor transactions ofT, i.e.,
let X0 = T, and letXi = xparent(Xi−1), up untilXk = root(C). By
Rule 2, we knowxid(xMod(Xi)) < xid(xMod(Xi−1)), that is, the
xids strictly decrease walking up the tree fromT. Thus, there can
only be one ancestor transactionT∗ of T with xid(xMod(T∗)) =
xid(owner(ℓ)).

For anyX ∈ pAnces(T∗)∩ xactions(C), we can check the
second condition. By Rule 1,X can accessℓ directly only if
owner(ℓ)∈ modAnces(xMod(X)); thus, we havexid(owner(ℓ))≤
xid(xMod(X)). But we know thatowner(ℓ) = xMod(T∗) and
xid(xMod(T∗)) > xid(xMod(X)).

Intuitively, T∗ = committer(v) is the transaction which “be-
longs” to the same Xmodule as the locationℓ whichv accesses, and
is “responsible” for committingv to memory and making it visible
to the world. The second condition of Theorem 5 states that noan-
cestor transaction ofT∗ in the call stack can ever directly accessℓ;
thus, it is “safe” forT∗ to commitℓ.

Transaction Abort

When theOAT model detects a conflict, it aborts one of the
conflicting transactions by changing its status fromPENDING to
PENDING ABORT. In the OAT model, a transactionX might not
abort immediately; instead, it might continue to issue morein-
structions after its status has changed toPENDING ABORT. The
set of operations issued byX or its descendants afterX’s status
changes toPENDING ABORT are calledX’s abort actions, denoted
by abortactions(X). This condition allowsX to compensate for
the safe-nested transactions that may have committed; if trans-
actionY is nested insideX, then the abort actions ofX contain

the compensating action ofY. Eventually aPENDING ABORT trans-
action issues anxend instruction, which changes its status from
PENDING ABORT to ABORTED.

If a potential memory operationv generates a conflict withTu,
andTu’s status isPENDING, then theOAT model can nondetermin-
istically choose to abort eitherxparent(v), orTu. In the latter case,
v waits forTu to finish aborting (i.e., change its status toABORTED)
before continuing. IfTu’s status isPENDING ABORT, thenv just waits
for Tu to finish aborting before trying to issueread or write again.

This operational model uses the same conflict detection algo-
rithm as TM with ordinary closed-nested transactions does;the
only subtleties are thatvcan generate a conflict with aPENDING ABORT
transactionTu, and that transactions no longer abort instantaneously
because they have abort actions. Some restrictions on the abort ac-
tions of a transaction may be necessary to avoid deadlock, aswe
describe later in Section 7.

6. SERIALIZABILITY BY MODULES
In this section, we defineserializability by modules, a definition
inspired by the database notion of multilevel serializability (e.g.,
as described in [13]). We then provide a proof sketch that theOAT
model from Section 5 guarantees serializability by modules. For
more details about the proof, see [1].

Notation and Definitions

We first describe some notation needed to formally describe serial-
izability by modules. All definitions in this section area posteriori,
i.e., they are defined on the computation tree after the program has
finished executing.

We define “content” sets for every transactionT by partition-
ing memOps(T) (all the memory operations enclosed insideT
including those belonging to its nested transactions) intothree
sets: cContent(T), oContent(T) and aContent(T). For any
u∈ memOps(T), we define the content sets based on the final status
of transactions inC that one visits when walking up the tree from
u to T.

DEFINITION 3. For any transaction T and memory operation u,
define the setscContent(T), oContent(T), and aContent(T)
according theContentType(u,T) procedure:

ContentType(u,T) � For any u∈ memOps(T)
1 X← xparent(u)
2 while (X 6= T)
3 if (X isABORTED) return u∈ aContent(T)
4 if (X = committer(u)) return u∈ oContent(T)
5 X← xparent(X)
6 return u∈ cContent(T)

Recall that in theOAT model, the safe-nested commit ofT
commits some memory operations in an open-nested fashion,
to root(C), and some operations in a closed-nested fashion, to
xparent(T). Informally, oContent(T) is the set of memory op-
erations that are committed in an “open” manner byT ’s subtrans-
actions. Similarly,aContent(T) is the set of operations that are
discarded due to the abort of some subtransaction inT ’s subtree.
Finally, cContent(T) is the set of operations that are neither com-
mitted in an “open” manner, nor aborted.

Transactional semantics dictate that memory operations belong-
ing to an aborted transactionT should not be observed by (i.e., are
hidden from) memory operations outside ofT.

DEFINITION 4. For u∈ memOps(C),v∈V(C), let X =
xLCA(u,v). We say that u ishidden from v if u∈ aContent(X).

Our notion of serializability requiressequential consistency.
Without transactions, a trace(C ,Φ) is said to be sequentially con-

sistent if there exists a topological sortS of the computation dag
G(C) in which a memory operationu that accessesℓ observes the
value written by the last writer toℓ in S ; that is, the observer func-
tion Φ is the same as thelast writer function. For transactional
sequential consistency, we define thetransactional last writerof
memory operationu as a memory operationv that is the last write
in the orderS beforeu, skipping over nodesw which are hidden
from (i.e., aborted with respect to)u. Henceforth, we say that a
sort orderS is sequentially consistent with respect toΦ if Φ is the
transactional last writer.

Defining Serializability by Modules

In [2], a trace(C ,Φ) was said to beserializableif there exists a
topological sortS of G(C) such thatS is sequentially consistent
with respect toΦ, and all transactions appear contiguous inS . Se-
rializability in this context can be thought of as sequential consis-
tency plus the requirement that transactions are atomic. This defi-
nition of serializability is the “correct definition” for flat or closed-
nested transactions. This definition of serializability istoo strong,
however, for ownership-aware transactions. A TM system that en-
forces this definition of serializability cannot ignore lower-level
memory accesses when detecting conflicts for higher-level trans-
actions.

Instead, we describe a definition of serializability by modules
which checks for correctness of one Xmodule at a time. Given a
trace(C ,Φ), for each Xmodule M, we transform the treeC into
a new treemTree(C ,M). The treemTree(C ,M) is constructed in
such a way as to ignore memory operations of Xmodules which
are lower-level thanM, and also to ignore all operations which are
hidden from transactions ofM. For each Xmodule M, we check that
the transactions ofM in the trace(mTree(C ,M),Φ) is serializable.
If the check holds for all Xmodules, then trace(C ,Φ) is said to be
serializable by modules.

Definition 5 formalizes the construction ofmTree(C ,M).

DEFINITION 5. For any computation treeC , let mTree(C ,M) be
the result of modifyingC as follows:

1. For all memory operations u∈ memOps(C) with u accessingℓ,
if owner(ℓ) = N for somexid(N) > xid(M), convert u into a
nop.

2. For all transactions T∈ modXactions(M), convert all u∈
aContent(T) into nops.

The intuition behind Condition 1 of Definition 5 is the following.
When looking at XmoduleM, we throw away memory operations
belonging to a lower-level XmoduleN, since by Theorem 5, trans-
actions ofM can never directly access the same memory as those
operations anyway. In Condition 2, we ignore the content of any
aborted transactions nested inside transactions ofM; those transac-
tions might access the same memory locations as operations which
we did not turn into nops, but those operations are aborted with
respect to transactions ofM.

Lemma 6 argues that if a trace(C ,Φ) is sequentially consistent,
then(mTree(C ,M),Φ) is a valid trace; an operationu that remains
in the trace never attempts to observe a value from a memory
operationv= Φ(u) which was turned into a nop due to Definition 5.
In addition, the transformed trace is also sequentially consistent.

LEMMA 6. Let (C ,Φ) be any sequentially consistent trace. Then
for any Xmodule M,(mTree(C ,M),Φ) is a valid trace. If u∈
memOps(mTree(C ,M)), then we haveΦ(u)∈ memOps(mTree(C ,M)).
Furthermore, anyS which is sequentially consistent forΦ in (C ,Φ)
is also sequentially consistent forΦ in (mTree(C ,M),Φ).

PROOF. In the new treemTree(C ,M), pick any memory operation
u∈ memOps(mTree(C ,M)) which remains. Assume for contradic-
tion thatv = Φ(u) was turned into a nop in one of Steps 1 and 2.

If v was turned into a nop in Step 1 of Definition 5, then we
know thatv accessed a memory locationℓ wherexid(owner(ℓ)) >
xid(M). Sinceu must access the same locationℓ, u must also
be converted into a nop. Ifv was turned into a nop in Step 2 of
Definition 5, thenv∈ aContent(T) for somexMod(T) = M. Then
we can show that eithervHu, or u should have also been turned into
a nop. LetX = xLCA(v,u). SinceX andT are both ancestors ofv,
eitherX is an ancestor ofT or T is a proper ancestor ofX.

1. First, supposeT is a proper ancestor ofX. Consider the path
of transactionsY0,Y1, . . .Yk, whereY0 = xparent(v), for each
0 < i < k, we havexparent(Yi) =Yi+1, andxparent(Yk) = T.
Sincev∈ aContent(T), for someYj for 0≤ j ≤ k must have
status[Yj] = ABORTED. Since T is a proper ancestor ofX,
X = Yx for somex satisfying 0≤ x≤ k.

(a) If status[Yj] = ABORTED for any j satisfying 0≤ j < x,
then we knowv ∈ aContent(X), and thusvHu. Since we
assumed(C ,Φ) is sequentially consistent andΦ(u) = v, we
know¬vHu, leading to a contradiction.

(b) If Yj is ABORTED for any j satisfying x ≤ j ≤ k, then
status[Yj] = ABORTED implies thatu∈ aContent(X), and
thus,u should have been turned into a nop, contradicting the
original setup of the statement.

2. Next, consider the case whereX is an ancestor ofT. Since
v∈ aContent(T), we havev∈ aContent(X). Therefore, this
case is analogous to Case 1a above.

Finally, if Φ is the transactional last writer according toS for
(C ,Φ), it is still the transactional last writer for(mTree(C ,M),Φ)
because the memory operations which are not turned into nopsre-
main in the same relative order. Thus, the last condition is satisfied.

Note that Lemma 6depends onthe restrictions on Xmodules
described in Definition 2. Without this structure of modulesand
ownership, the construction of Definition 5 is not guaranteed to
generate a valid trace.

Finally, we can define serializability by modules.

DEFINITION 6. A trace(C ,Φ) is serializable by modulesif it is
sequentially consistent, and if for all Xmodule M inD, there exists
a topological sortS of CM = mTree(C ,M) such that:

1. S is sequentially consistent with respect toΦ, and
2. For the treeCM, ∀T ∈ modXactions(M) and ∀v ∈ V(CM), if

we havexbegin(T)≤S v≤S xend(T), then v∈V(T).

Informally, a trace(C ,Φ) is serializable by modules if it is sequen-
tially consistent, and if for every XmoduleM, there exists a sequen-
tially consistent orderS for the trace(mTree(C ,M),Φ) which has
all transactions ofM contiguous.

OAT Model Guarantees Serializability by Modules

We can show that theOAT model described in Section 5 generates
traces that satisfy Definition 6.

THEOREM 7. Any trace(C ,Φ) generated by the OAT model is
serializable by modules.

PROOF SKETCH. The proof consists of three steps. First, we
generalize the notion of “prefix race freedom” [2] to computations
with Xmodules. Second, we prove that theOAT model guarantees
that a program execution is prefix race free. Finally, we argue that
any trace which is prefix race free is also serializable by modules.
See [1] for details.

Abstract Serializability

By Theorem 7, theOAT model guarantees serializability by mod-
ules. We now relate this definition to the notion ofabstract seri-
alizability used in multilevel database systems [13]. As we men-
tioned in Section 1, the ownership-aware commit mechanism is a
part of a methodology which includes abstract locks and compen-
sating actions. In this section we argue thatOAT model provides
enough flexibility to accommodate abstract locks and compensat-
ing actions. In addition, if a program is “properly locked and com-
pensated,” then serializability by modules guarantees abstract seri-
alizability.

The definition of abstract serializability in databases [13] as-
sumes that the program is divided into levels, and that a transaction
at leveli can only call a transaction at leveli+1.8 In addition, trans-
actions at a particular level have predefined commutativityrules,
i.e., some transactions of the same Xmodule can commute with
each other and some cannot. The transactions at the lowest level
(sayk) are naturally serializable; call this scheduleZk. Given a se-
rializable scheduleZi+1 of level-i +1 transactions, the schedule is
said to be serializable at leveli if all transactions inZi+1 can be
reordered, obeying all commutativity rules, to obtain a serializable
orderZi for level-i transactions. The original schedule is said to be
abstractly serializable if it is serializable for all levels.

These commutativity rules might be specified using abstract
locks [11]: if two transactions cannot commute, then they grab
the same abstract lock in a conflicting manner. In the application
described in Section 2, for instance, transactions callinginsert
andremove on theBST using the same key do not commute and
should grab the same write lock. Although abstract locks arenot
explicitly modeled in theOAT model, we can model transactions
acquiring the same abstract lock as transactions writing toa com-
mon memory locationℓ.9 Locks associated with an XmoduleM
are owned bymodParent(M). A module M is said to beprop-
erly locked if the following is true for all transactionsT1,T2 with
xMod(T1) = xMod(T2) = M: if T1 andT2 do not commute, then they
access someℓ∈ modMemory(modParent(M)) in a conflicting man-
ner.

If all transactions are properly locked, then serializability by
modules implies abstract serializability (as defined above) in the
special case when the module tree is a chain (i.e., each non-leaf
module has exactly one child). LetSi be the sortS in Definition 6
for XmoduleM with xid(M) = i. ThisSi corresponds toZi in the
definition of abstract serializability.

In the general case for ownership-aware TM, however, by Rule
2 of Definition 1, we know a transaction at leveli might call trans-
actions from multiple levelsx > i, not justx = i +1. Thus, we must
change the definition of abstract serializability slightly; instead of
reordering justZi+1 while serializing transactions at level-i, we
have to potentially reorderZx for all x where transactions at level
i can call transactions at levelx. Even in this case, if every module
is properly locked (by the same definition as above), one can show
serializability by modules guarantees abstract serializability.

The methodology of open nesting often requires the notion of
compensating actions or inverse actions. For instance, in aBST, the
inverse ofinsert is remove with the same key. When a transac-
tion T aborts, all the changes made by its subtransactions must be
inverted. Again, although theOATmodel does not explicitly model
compensating actions, it allows an aborting transaction with status
PENDING ABORT to perform an arbitrary but finite number of opera-

8 We assume level number increases as you go from a higher levelto a
lower-level to be consistent with our numbering ofxid. In the literature,
levels typically go in the opposite direction.
9 More complicated locks can be modeled by generalizing the definition of
conflict.

tions before changing the status toABORTED. Therefore, an aborting
transaction can compensate for all its aborted subtransactions.

7. DEADLOCK FREEDOM
In this section, we argue that theOAT model described in Sec-
tion 5 can never enter a “semantic deadlock” if we impose suitable
restrictions on the memory accessed by a transaction’s abort ac-
tions. In particular, an abort action generated by transaction T from
xMod(T) should read (write) from a memory locationℓ belonging
to modAnces(xMod(T)) only if ℓ is already inR(T) (W(T)). Under
these conditions, we show that theOAT model can always “finish”
reasonable computations.

An ordinary TM without open nesting and with eager conflict
detection never enters a semantic deadlock because it is always
possible to finish aborting a transactionT without generating addi-
tional conflicts; a scheduler in the TM runtime can abort all transac-
tions, and then complete the computation by running the remaining
transactions serially. Using theOAT model, however, a TM system
can enter a semantic deadlock because it can enter a state in which it
is impossible to finish aborting two parallel transactionsT1 andT2
which both have statusPENDING ABORT. If T1’s abort action gen-
erates a memory operationu which conflicts withT2, thenu will
wait for T2 to finish aborting (i.e., when the status ofT2 becomes
ABORTED). Similarly, T2’s abort action can generate an operationv
which conflicts withT1 and waits forT1 to finish aborting. Thus
T1 andT2 can both wait on each other, and neither transaction will
ever finish aborting.

Defining Semantic Deadlock

Intuitively, we want to say that a TM system exhibits a semantic
deadlock if it might enter a state from which it is impossible
to “finish” a computation because of transaction conflicts. This
section defines semantic deadlock precisely and distinguishes it
from these other reasons for noncompletion, such as livelock or
infinite loop.

Recall that our abstract model has two entities: the program, and
a generic operational modelF representing the runtime system. At
any timet, given a ready nodeX ∈ ready(C), the program chooses
an instruction and hasX issue the instruction. If the program issues
an infinite number of instructions, thenF cannot complete the
program no matter what it does. To eliminate programs which have
infinite loops, we only considerbounded programs.

DEFINITION 7. We say that a program isboundedfor an opera-
tional modelF if any computation tree thatF generates for that
program is of a finite depth, and there exists a finite number K such
that at any time t, every node B∈ nodes(t)(C) has at most K chil-
dren with statusPENDING or COMMITTED.

Even if the program is bounded, it might still run forever if it
livelocks. We use the notion of ascheduleto distinguish livelocks
from semantic deadlocks.

DEFINITION 8. A scheduleΓ on some time interval[t0,t1] is
the sequence of nondeterministic choices made by an operational
model in the interval.

An operational modelF makes two types of nondeterministic
choices. First, at any timet, F nondeterministically chooses which
ready nodeX ∈ ready(C) executes an instruction. This choice
models nondeterminism in the program due to interleaving ofthe
parallel executions. Second, while performing a memory operation
u which generates a conflict with transactionT, F nondetermin-
istically chooses to abort eitherxparent(u) or T. This nondeter-
ministic choice models the contention manager of the TM runtime.
A program may livelock ifF repeatedly makes “bad” scheduling
choices.

Intuitively, an operational model deadlocks if it allows abounded
computationto reach a state whereno schedulecan complete the
computation after this point.

DEFINITION 9. Consider anF executing a bounded computation.
We say thatF does not exhibit asemantic deadlockif for all finite
sequences of t0 instructions thatF can issue that generates some
intermediate computation treeC0, there exists a finite scheduleΓ
on [t0,t1] such thatF brings the computation tree to a rest stateC1,
i.e.,ready(C1) = {root(C1)}.

This definition is sufficient, since once the computation tree is
at the rest state, and only the root node is ready,F can execute each
transaction serially and complete the computation.

Restrictions to Avoid Semantic Deadlock

The generalOAT model described in Section 5 exhibits semantic
deadlock because it may enter a state where two parallel abort-
ing transactionsT1 andT2 keep each other from completing their
aborts. For a restricted set of programs, where aPENDING ABORT
transactionT never accesses new memory belonging to Xmodules
atxMod(T)’s level or higher, however, we can show theOATmodel
is free of semantic deadlock.

More formally, for all transactionsT, we restrict the memory
footprint ofabortactions(T).

DEFINITION 10. An execution (represented by a computation tree
C) hasabort actions with limited footprintif the following con-
dition is true for all transactions T∈ aborted(C). At time t, if
a memory operation v∈ abortactions(T) accesses locationℓ
andowner(ℓ) ∈ modAnces(xMod(T)), then (1) if v is a read, then
ℓ ∈ R(T), and (2) if v is a write thenℓ ∈ W(T).

Intuitively, Definition 10 requires that once a transactionT ’s
status becomesPENDING ABORT, any memory operationv which
T or a nested transaction insideT performs to finish abortingT
cannot read from (write to) any locationℓ which is owned by any
Xmodules which are ancestors ofxMod(T) (including xMod(T)
itself), unlessℓ is already in the read (or write set) ofT.

First, we show that the properties of Xmodules from Theorem 5
in combination with the ownership-aware commit mechanism im-
ply that transaction read sets and write sets exhibit nice properties.
In particular, we have Corollary 8, which states that a location ℓ can
appear in the read set of a transactionT only if T ’s Xmodule is a
descendant ofowner(ℓ) in the module treeD.

COROLLARY 8. For any transaction T ifℓ∈ R(T), thenxMod(T)∈
modDesc(owner(ℓ)).

PROOF. Follows from Definition 1 and Theorem 5, and induction
on how a locationℓ can propagate into readsets and writsets using
the ownership-aware commit mechanism.

If all abort actions have a limited footprint, we can show that
operations of an abort action of an XmoduleM can only generate
conflicts with a “lower-level” Xmodule.

LEMMA 9. Suppose the OAT model generates an execution where
abort actions have limited footprint. For any transaction T, con-
sider a potential memory operation v∈ abortactions(T). If v
conflicts with transaction T′, thenxid(xMod(T ′)) > xid(xMod(T)).

PROOF. Supposev∈ abortactions(T) accesses a memory loca-
tion ℓ with owner(ℓ) = M. Sinceabortactions(T)⊆ memOps(T),
by the properties of Xmodules given in Definition 2, we know that
eitherM ∈ modAnces(xMod(T)), or xid(M) > xid(xMod(T)). If
M ∈ modAnces(xMod(T)), then by Definition 10,T already hadℓ
in its read or write set. Therefore,v can not generate a conflict with
T ′ because thenT would already have had a conflict withT ′ before

v occurred, contradicting the eager conflict detection of theOAT
model.

Thus, we havexid(M) > xid(xMod(T)). If v conflicts with
some other transactionT ′, thenT ′ hasℓ in its read or write set.
Therefore, from Corollary 8,xMod(T ′) is a descendant ofM. Thus,
we havexid(xMod(T ′)) > xid(M) > xid(xMod(T)).

THEOREM 10. In the case where aborted actions have limited
footprint, the OAT model is free from semantic deadlock.

PROOF. Let C0 be the computation tree after any finite sequence
of t0 instructions. We describe a scheduleΓ which finishes aborting
all transactions in the computation by executing abort actions and
transactions serially.

Without loss of generality, assume that at timet0, all active
transactionsT havestatus[T] = PENDING ABORT. Otherwise, the
first phase of the scheduleΓ is to make this status change for all
active transactionsT.

For a module treeD with k = |D| Xmodules (including the
world), we construct a scheduleΓ with k phases,k− 1,k−
2, . . .1,0. The invariant we maintain is that immediately before
phasei, we bring the computation tree into a stateC (i) which
has no active transaction instancesT with xid(xMod(T)) > i, i.e.,
no instancesT from Xmodules withxid larger thani. During
phasei, we finish aborting all active transaction instancesT with
xid(xMod(T)) = i. By Lemma 9, any abort action for aT, where
xid(xMod(T)) = i, can only conflict with a transaction instanceT ′

from a lower-level Xmodule, wherexid(xMod(T ′)) > i. Since the
scheduleΓ executes serially, and since by the inductive hypothesis
we have already finished all active transaction instances from lower
levels, phasei can finish without generating any conflicts.

Restrictions on compensating actions

If transactionsY1,Y2, . . .Yj are nested inside transactionX andX
aborts, typically abort actions ofX simply consists of compensating
actions forY1,Y2, . . .Yj . Thus, restrictions on abort actions trans-
late in a straightforward manner to restrictions on compensating
actions: a compensating action for a transactionYi (which is part of
the abort action ofX), should not read (write) any memory owned
by xMod(X) or its ancestor Xmodules unless the memory location
is already inX’s read (write) set. Assuming locks are modeled as
accesses to memory locations, the same restriction applies, mean-
ing, a compensating action cannot acquire new locks that were not
already acquired by the transaction it is compensating for.

8. CONCLUSIONS
In this paper, we describe ownership-aware transactions, which
provide a disciplined methodology for open nesting while guaran-
teeing abstract serializability. In this section, we describe two other
approaches for improving open-nested transactions, and distinguish
them from our work.

Ni, et al. [11] propose using anopen atomic class to specify
open-nested transactions in a Java-like language with transactions.
Since the private fields of an object with anopen atomic class type
can not be directly accessed outside of that class, one can think of
the open atomic class as defining an Xmodule. This mapping is
not exact, however, because neither the language nor TM system
restrict exactly what memory can be passed into a method of an
open atomic class, and the TM system performs a vanilla open-
nested commit for a nested transaction, not a safe-nested commit.
Thus, it is unclear what exact guarantees are provided with respect
to serializability and/or deadlock freedom.

Herlihy and Koskinen [5] describe a technique of transactional
boosting which allows transactions to call methods from a non-
transactional moduleM. Roughly, as long asM is linearizable and

its methods have well-defined inverses, the authors show that the
execution appears to be “abstractly serializable.” Boosting does not,
however, address the cases when the lower-level moduleM writes
to memory owned by the enclosing higher-level module, or when
programs have more than two levels of modules.

Acknowledgements

We thank James Noble of Victoria University of Wellington, Derek
Rayside, Martin Rinard, Amy Williams, and Charles Leiserson and
other members of the Supercomputing Technologies Group at MIT
CSAIL for helpful discussions and comments on the paper. We also
thank all the reviewers of this and prior versions of the paper for
their comments. In particular, we are grateful to Bill Scherer for his
help in improving the paper.

REFERENCES
[1] K. Agrawal, I.-T. A. Lee, and J. Sukha. Safe open-nested transactions

through ownership (Technical report). Technical report, Laboratory of
Computer Science and Artificial Intelligence, Massachusetts Institute
of Technology, June 2008. Available at:
http://supertech.csail.mit.edu/papers/safe-tech.pdf.

[2] K. Agrawal, C. E. Leiserson, and J. Sukha. Memory models for open-
nested transactions. InProceedings of the ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness (MSPC), October
2006. In conjunction ASPLOS.

[3] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object
encapsulation. InProceedings of the ACM Symposium on Principles
of Programming Languages (POPL), New Orleans, Louisiana, Jan.
2003.

[4] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, and
K. Olukotun. Transactional collection classes. InProceedings of
the ACM SIGPLAN Symposium on Principles and Practices of Paral-
lel Programming (PPoPP), pages 56–67, New York, NY, USA, 2007.
ACM Press.

[5] M. Herlihy and E. Koskinen. Transactional boosting: a methodology
for highly-concurrent transactional objects. InProceedings of ACM
SIGPLAN Symposium on Principles and Practices of Parallel Pro-
gramming (PPoPP), pages 207–216, New York, NY, USA, Feb 2008.
ACM.

[6] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. InProceedings of the Interna-
tional Symposium on Computer Architecture (ISCA), pages 289–300,
1993.

[7] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun. Architectural semantics forpractical
transactional memory. InProceedings of the International Symposium
on Computer Architecture (ISCA), June 2006.

[8] J. E. B. Moss. Nested Transactions: An Approach to Reliable Dis-
tributed Computing. MIT Press, Cambridge, MA, USA, 1985.

[9] J. E. B. Moss. Open nested transactions : Semantics and support.
In Proceedings of the Workshop on Memory Performance Issues
(WMPI), Austin, Texas, Feb 2006.

[10] J. E. B. Moss and A. L. Hosking. Nested transactional memory:
Model and architecture sketches. InScience of Computer Program-
ming, volume 63, pages 186–201. Elsevier, Dec 2006.

[11] Y. Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hudson,
J. E. B. Moss, B. Saha, and T. Shpeisman. Open nesting in software
transactional memory. InProceedings of ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming (PPoPP), Mar.
2007.

[12] C. H. Papadimitriou. The serializability of concurrent database up-
dates.Journal of the ACM, 26(4):631–653, 1979.

[13] G. Weikum. A theoretical foundation of multi-level concurrency
control. In Proceedings of the ACM SIGACT-SIGMOD symposium
on Principles of database systems (PODS), pages 31–43, New York,
NY, USA, 1986. ACM Press.

