Safe Open-Nested Transactions Through Owner ship

Kunal Agrawal

I-Ting Angelina Lee

Jim Sukha

MIT Computer Science and Artificial Intelligence Laborator
{kunal_ag, angelee, sukhaj}@mit.edu

ABSTRACT

Researchers in transactional memory (TM) have proposed ope
nesting as a methodology for increasing the concurrencyaobt
actional programs. The idea is to ignore “low-level” memoper-
ations of an open-nested transaction when detecting ctiicits
parent transaction, and instead perform abstract comayrreon-
trol for the “high-level” operation that the nested trargat rep-
resents. To support this methodology, TM systems use an-open
nested commit mechanism that commits all changes perfobyed
an open-nested transaction directly to memory, therebydang
low-level conflicts. Unfortunately, because the TM runtireein-
aware of the different levels of memory, unconstrained dGispen-
nested commits can lead to anomalous program behavior.

We describe the framework afvnership-aware transactional
memory which incorporates the notion of modules into the TM
system and requires that transactions and data be assowiile
specifictransactional modulesor Xmodules. We propose a new
ownership-aware commit mechanisma hybrid between an open-
nested and closed-nested commit which commits a piece af dat
differently depending on which Xmodule owns the data. Muezp
we provide a set of precise constraints on interactions hadrsy
of data among the Xmodules based on familiar notions of abstr
tion. The ownership-aware commit mechanism and thesdaaestr
tions on Xmodules allow us to prove that ownership-aware B8l h
clean memory-level semantics. In particular, it guarastegial-
izability by modulesan adaptation of the definition of multilevel
serializability from database systems. In addition, wecdbe how
a programmer can specify Xmodules and ownership in a Jega-li
language. Our type system can enforce most of the constnaint
quired by ownership-aware TM statically, and can enforeerth
maining constraints dynamically. Finally, we prove thar#nsac-
tions in the process of aborting obey restrictions on thanmuory
footprint, then ownership-aware TM is free frosemantic dead-
lock.

Categories and Subject DescriptorsD.2.1 [Software Engineer-
ing]: Requirements/Specifications — Methodologies; D.B®f

This research was supported in part by NSF Grants NSF GraNg& C
0615215 and CNS-0540248 and a grant from Intel corporation.

A preliminary version of this paper appeared as a post&PatPP2008
and as a brief announcementSRAA 2008.

Permission to make digital or hard copies of all or part o thdrk for personal or
classroom use is granted without fee provided that copeesiar made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’09, February 14-18, 2009, Raleigh, North Carolina, USA.
Copyright(© 2009 ACM 978-1-60558-397-6/09/02. . . $5.00.

gramming LanguagésLanguage Constructs and Features — Con-
current programming structures

General Terms Design, Languages

Keywords Abstract Serializability, Open-nested Transactions,
Ownership-aware Transactions, Ownership Types, Safeirgest
Semantic Deadlock, Serializability by Modules, Transawi
Memory, Transactional Memory Semantics, XModules.

1. INTRODUCTION

Transactional memory (TM) [6] is meant to simplify concumcy
control in parallel programming by providing a transacébimter-
face for accessing memory; the programmer simply encldses t
critical region inside aat oni ¢ block, and the TM system ensures
that this section of code executes atomically. A TM systefarers
atomicity by tracking memory locations accessed by traiwas
(usingread setandwrite set3, finding transactional conflicts, and
aborting transactions that conflict. TM guarantees thatsaations
areserializable[12]; that is, transactions affect global memory as
if they were executed one at a time in some order, even if iiityea
several executed concurrently.

Transactions may beested If a transactiorY is closed nested
[8] inside another transactioX, then for the purpose of detecting
conflicts, the TM system considers any memory locationsssete
by Y as conceptually also being accessed by its paXenthus,
whenY commits, the TM system merg&Ss read and write sets
into the read and write sets of. TM with closed-nested trans-
actions guarantees that transactions are serializablhe d¢vel of
memory. Researchers have observed, however, that closgédge
might unnecessarily restrict concurrency in programs beeat
does not allow two “high-level” transactions to ignore canfl due
to “low-level” memory accessed by nested transactions.

Researchers have proposed the methodologgpei-nested
transactionsto increase concurrency in transactional programs
by breaking serializability at the memory level. The opesting
methodology incorporates thepen-nested commit mechanism
[7,10]. When an open-nested transactiorfnested inside trans-
action X) commits,Y’s changes are committed to memory and
Y’s read and write sets are discarded. Thus, the TM system no
longer detects conflicts with due to memory accessed Wy In
this methodology, the programmer consid&’s internal mem-
ory operations to be at a “lower level” thaf thus X should not
care about the memory accessedrbyhen checking for conflicts.
Instead,Y must acquire amabstract lockbased on the high-level
operation tha¥ represents and propagate this lockteso that the
TM system can perform concurrency control at an abstraet.lev
Also, if X aborts, it may need to execut®@mpensating actions
to undo the effect of its committed open-nested subtraimsagt
Moss [9] illustrates the use of open nesting with an appbeeathat
employs a B-tree. Ni et al. [11] describe a software TM systteamh
supports the open-nesting methodology.

An unconstrained use of the open-nested commit mechanism

can lead to anomalous program behavior that can be trickgao r
son about [2]. We believe that one reason for the apparent com
plexity of open nesting is that the mechanism and the metbggo
make different assumptions about memory. Consider a tciinsa
Y open nested inside transacti¥nThe open-nesting methodology
requires thaiX ignore the “lower-level” memory conflicts gener-
ated byY, while the open-nested commit mechanism will ignore
all the memory operations insidé SayY accesses two memory
locations/q and ¢, and X does not care about changes made to
{, but does care abodi. The TM system cannot distinguish be-
tween these two accesses, and will commit both in an opeiedhes
manner, leading to anomalous behavior.

Researcherhave demonstrated specific examples [4, 11] that

transactions in the absence of sharing, in spite of the appar
semantic pitfalls.

5. We prove that under certain restricted conditions, a adaip
tion executing under th®AT model can not enter a semantic
deadlock.

In later sections, we distinguish between the variatiomsested
transactions as follows. We say that a transactiasvanilla open
nestedwhen referring to a TM system which performs the open-
nested commit of. We say thalY is safe nestedvhen referring
to the ownership-aware TM system which performs the owiersh
aware commit off. Finally, we say that a transactidhis an open-
nested transaction when we are referring to the abstrattadet
ogy, rather than a particular implementation with a speciimmit

safely use an open-nested commit mechanism. These examplesnechanism.

work, however, because the inner (open) transactions meiterto
any data that is accessed by the outer transactions. Maresovee
these examples require only two levels of nesting, it is heiaus
how one can correctly use open-nested commits in a program wi
more than two levels of abstraction. The literature on TMeisff
relatively little in the way of formal programming guidedis which
one can follow to hav@rovableguarantees of safety when using
open-nested commits.

Contributions

In this paper, we bridge the gap between memory-level mésimesn

for open nesting and the high-level view by explicitly intating

the notions oftransactional modulegXmodules) andownership
into the TM system. We believe th@vnership-aware TM sys-
temallows the programmer to safely use the methodology of open
nesting, because the runtime’s behavior more closely teftbe
programmer’s intent. In addition, the structure imposeabyer-
ship allows a compiler and runtime to enforce propertiesladdo
provide provable guarantees of “safety” to the programiilere
specifically, the contributions of this paper are as follows

1. We suggest a concrete set of guidelines for sharing ofatata
interactions between Xmodules.

2.
in a Java-like language and propose a type system that esforc
most of the above-mentioned guidelines in the programsenrit
using this language extension.

. We formally describe the operational model for ownership
aware TM, called th©AT model, which uses a neswnership-
aware commit mechanism The ownership-aware commit
mechanism is a compromise between an open-nested and
closed-nested commit; when a transactiomommits, access
to a memory locatior is committed globally i¥ belongs to the
same Xmodule a§; otherwise, the access tas propagated to
T’s parent transaction. Unlike an ordinary open-nested ciomm
the ownership-aware commit treats memory locations differ
ently depending on which Xmodule owns the location. Note
that the ownership-aware commit is still a mechanism; pro-
grammers must still use it in combination with abstract fock
and compensating actions to implement the full methodology

. We prove that if a program follows the proposed guidelines
for Xmodules, then th@®©AT model guarantees serializability
by modules, which is a generalization of “serializability b
levels” used in database transactions. Ownership-awanenéo

We describe how the Xmodules and ownership can be specified

Outline

The paper is organized as follows. In Section 2 we present an
overview of ownership-aware TM and highlight key featuresg

an example application. Section 3 describes languagercetstor
specifying Xmodules and ownership. In Section 4, we revieev t
transactional computation framework [2], and extend thésnie-
work to formally incorporate Xmodules and ownership. Seth
describes theOAT model, and Section 6 gives a formal defini-
tion of serializability by modules, and a proof sketch tha ©AT
model guarantees this definition. Section 7 provides canditun-
der which theOAT model does not exhibit semantic deadlocks.
Section 8 concludes with a discussion of some related work.

2. OWNERSHIP-AWARE TRANSACTIONS

In this section, we give an overview of ownership-aware TM. T
motivate the need for the concept of ownership in TM, we first
present an example application which might benefit from open
nesting. We then introduce the notion of an Xmodule and infor
mally explain the programming guidelines when using Xmod-
ules. Finally, we highlight some of the key differences tedw
ownership-aware TM and a TM with vanilla open nesting. Irs thi
section, we present the intuitive descriptions of the cptgén
ownership-aware TM; we defer formal definitions until lasec-
tions.

Example Application

We describe an example application for which one might usa-op
nested transactions. This example is similar to the oneithesthy
Moss [9], but it includes data sharing between nested tciioses

%nd their parents, and has more than two levels of nesting.

Since the open-nesting methodology is designed for program
that have multiple levels of abstraction, we choose a modpa
plication. Consider a user application which concurreatigesses
a database of many individuals’ book collections. The datab
stores records in a binary search tree, keyed by name. Ealgh no
in the binary search tree corresponds to a person, and stdists
of books in his/her collection. The database supports gsdyy
name, as well as updates that add a new person or a new book to a
person’s collection. The database also maintains a pitiakemap,
keyed by book title, to support a reverse query; given a bals t
it returns a list of people who own the book. Finally, the usps
plication wants the database to log changes on disk for ezabil-
ity. Whenever the database is updated, it inserts metaatatdhe

is the same as open-nested commit if no Xmodule ever accesseduffer of a logger to record the change that just took plaegiod-

data belonging to other Xmodules. Thus, one corollary of our
theorem is that open-nested transactions are serializdi#e
Xmodules do not share data. This observation explains why

ically, the user application is able to request a checkpmpetration
which flushes the buffer to disk.
This application is modular, with five natural modules — the

researchers [4, 11] have found it natural to use open-nesteduser applicationser App), the databaseDB), the binary search

tree BST), the hashtableHasht abl €), and the loggerLgger).
The User App module calls methods from thBB module when

it wants to insert into the database, or query the database. T
database in turn maintains internal metadata and callB$ie
module and theHasht abl e module to answer queries and insert
data. Both user application and the database may call mefrod
theLogger module.

If the modules use open-nested transactions, a TM systeim wit
vanilla open-nested commits can result in non-intuitivecomes.
Consider the example where a transactional methddom the
User App module tries to insert a bodkinto the database, and the
insert is an open-nested transaction. The meth@dhich corre-
sponds to transactioX) calls an insert method in theB module
and passeb (the Book object) to be inserted. This insert method
generates an open-nested transactioBupposer writes to some
field of the bookb (memory locatior?1), and also writes some in-
ternal database metadata (locatigh After a vanilla open-nested
commit of Y, the modifications to botli; and/, become visible
globally. Assuming théJser App does not care about the internal
state of the database, committing the internal state diBt{&) is a
desirable effect of open nesting; this commit increaseswaancy,
because other transactions can potentially modify thebda&in
parallel with X without generating a conflict. Thieser App does,
however, care about changes to the bbpkhus, the commit of
{1 breaks the atomicity of transactiof A transactionZ in paral-
lel with transactionX can access this locatiah afterY commits,
before the outer transactiot commits! To increase concurrency,
we want the method froB to commit changes to its own internal
data; we do not, however, want it to commit the data tlsat App
cares about.

To enforce this kind of restriction, we need some notion of
ownership of dataif the TM system is aware of the fact that the
book object “belongs” to thélser App, then it can decide not to
commitDB's change to the book object globally. For this purpose,
we introduce the notion afransactional modulesor Xmodules.
When a programmer explicitly defines Xmodules and specifies t
ownership of data, the TM system can make the correct judgeme
about which data to commit globally.

Xmodules and the Ownership-Aware Commit Mechanism

The ownership-aware TM system requires that programs ke org
nized into Xmodules. Intuitively, an XmoduM is as a stand-alone
entity that contains data and transactional methods; andxifeo
owns data that it privately manages, and uses its methodwoto p
vide public services to other Xmodules. During program exea,

a call to a method from an XmoduM generates a transaction in-
stance (e.g.X). If this method in turn calls another method from
an XmoduleN, an additional transaction, safe nested insid€, is
created only ifM = N. Therefore, defining an Xmodule automati-
cally specifies safe-nested transactions.

In the ownership-aware TM system, every memory location is
owned by exactly one Xmodule. If a memory locatiéris in a
transactionT’s read or write set, the ownership-aware commit of a
transactionT commits this access globally only Tf is generated
by the same Xmodule that owrs in this case, we say that is
“responsible” for that access to Otherwise, the read or write to
is propagated up to the read or write sefl¢g parent transaction;
that is, the TM system behaves as tholglwas a closed-nested
transaction with respect to locatién

We wish to guarantee that ownership-aware TM behaves §riicel
For example, in the TM system, some transaction must bedresp

1 Note that abstract locks [9] do not address this problem trabslocks
are meant to disallow other transactions from noticing &t that the book
was inserted into thBB. They do not usually protect the individual fields of
the book object itself.

sible” for committing every memory access. Similarly, th1 T
system should guarantee some form of serializability. Targotee
these properties, we must restrict interactions betweeondes;
if Xmodules could arbitrarily call methods from or accessnme
ory owned by other Xmodules, then these properties mighbaeot
satisfied.

Rules for Xmodules

Ownership-aware TM uses Xmodules to control both the siract
of nested transactions, and the sharing of data between Xewd
(i.e., to limit which memory locations a transaction ingtarcan
access). In our system, Xmodules are arrangedrasdule tree
denoted a®. In D, an XmoduleN is a child ofM if N is “encap-
sulated by”M. The root ofD is a special Xmodule calledbr | d.
Each Xmodule is assigned and by visiting the nodes o) in a
left-to-right depth-first search order, and assigning idscreasing
order, starting withkid(wor | d) = 0. Thereforewr | d has the min-
imumxid, and “lower-level” Xmodules have larger d numbers.

DEFINITION 1. We impose two rules on Xmodules based on the
module tree:

1. Rule 1: A method of an Xmodule M can access a memory
location/ directly only if¢ is owned by either M or an ancestor
of M in the module tree. This rule means that an ancestor
Xmodule N of M may pass data down to a method belonging
to M, but a transaction from module M cannot directly access
any “lower-level” memory.

2. Rule 2: A method from M can call a method from N only if
N is the child of some ancestor of M, ardld(N) > xid(M)
(i.e., if N is “to the right” of M in the module tree). This rule
requires that an Xmodule can call methods of some (but npt all
lower-level Xmodule$.

The intuition behind these rules is as follows. Xmodulesehav
methods to provide services to other higher-level Xmodudesi
Xmodules maintain their own data in order to provide these se
vices. Therefore, a higher-level Xmodule can pass its data t
lower-level Xmodule and ask for services. A higher-level otule
should not directly access the internal data belonging tmneei-
level Xmodule.

If Xmodules satisfy Rules 1 and 2, TM can have a well-defined
ownership-aware commit mechanism; some transaction iayalw
“responsible” for every memory access (proved in Sectionrb)
addition, these rules and the ownership-aware commit nmésina
guarantee that transactions satisfy the property of “kzataility
by modules” (proved in Section 6).

One potential limitation of ownership-aware TM is that some
“cyclic dependencies” between Xmodules are prohibitec dtil-
ity to define one module as being at a lower level than another i
fundamental to the open-nesting methodology. Thus, oumdbr
ism requires that Xmodules be partially ordered; if an Xmedd
can call XmoduleN, then conceptualliv is at a higher level thaN
(i.e.,xid(M) < xid(N)), and thusN cannot calM. If two compo-
nents of the program call each other, then, conceptualithereof
these components is at a higher-level than the other, andoutw
require that these two components be combined into one Xiaodu

Xmodules in the Example Application

Consider a Java implementation of the example applicat®n d
scribed earlier. It may have the following classeser App as the
top-level application that manages the book collectidis son

2 An Xmodule can, in fact, call methods within its own Xmodutefrom its
ancestor Xmodules, but we model these calls differently.ew#ain these
cases at the end of this section.

world | 4.0
[
UserApp | yiq:1
xid:2| DB Logger | 4ia:s
BST Hashmap
xid:3 xid:4

Figure 1. A module tree?D for the program described in Sec-

tion 2. Thexid's are assigned according to a left-to-right depth-

first tree walk, numbering Xmodules in increasing ordentstg
with xi d(wor | d) = 0.

andBook as the abstractions representing book owners and books,

DB for the databaseBST andHashmap for the binary search tree
and hashmap maintained by the database lLagder for logging
the metadata to disk. In addition, there are some otheriaoxil
classes: tree nodgSTNode for the BST, Bucket in the Hashmap,
andBuf f er used by the.ogger .

For ownership-aware TM, not all of a program’s classes are
meant to be Xmodules; some classes only wrap data. In our ex-

ample, we identified five Xmoduleddser App, DB, BST, Hashnap,

andLogger ; these classes are stand-alone entities which have en-

capsulated data and methods. Classes suBtioasandPer son, on
the other hand, are data types usedJegr App. Similarly, classes
like BSTNode andBucket are data types used B$T andHashmap
to maintain their internal state.

We organize the Xmodules of the application into the module

tree shown in Figure 1User App is encapsulated byor | d, DB
and Logger are encapsulated undéser App; BST and Hashmap
are encapsulated undBB. By dividing Xmodules this way, the
ownership of data falls out naturally, i.e., an Xmodule owegain
pieces of data if the data is encapsulated under the XmoEate.
example, the instances Bér son or Book are owned bydser App
because they should only be accessed by eitker App or its
descendants.

Let us consider the implications of Definition 1 for the exam-
ple. Due to Rule 1, all obB, BST, Hashnap, andLogger can di-
rectly access data owned byer App, but theUser App cannot di-
rectly access data owned by any of the other Xmodules. Thés ru
corresponds to standard software-engineering rules &iradion;
the “high-level” XmoduleUser App should be able to pass its data
down, allowing lower-level Xmodules to access that dataddly,

butUser App itself should not be able to directly access data owned

by lower-level Xmodules. Due to Rule 2, thiser App may invoke
methods fronDB, DB may invoke methods froST andHashnap,
and every other Xmodule may invoke methods friargger . Thus,
Rule 2 allows all the operations required by the exampleieppl
tion. As expected, th&ser App can call thei nsert andsearch
methods from thédB and can even pass its data to Biefor in-
sertion. More importantly, notice the relationship betwB8T and
Logger . TheBST Xmodule can call methods frofrogger , but the
BST cannot pass data it owns directly into ttegger . It can, how-
ever, pass data owned by thger App to the logger, which is all
this application requires.

Advantage of Ownership-Aware Transactions

One of the major problems with vanilla open nesting is thateso
transactions can see inconsistent data. Say a transactsaopen
nested inside transactiot. Let v be the initial value of location

¢, and suppos¥ writes valuev; to location? and then commits.
Now a transactiorZ in parallel with X can read this locatiot,
write valuevs to ¢, and commit, all beforX commits. ThereforeX
can now read this locatiohand see the value, which is neither
the initial valuevy (the value of¢ whenX started), nowvy which
was written byX'’s inner transactiony. This behavior might seem
counterintuitive.

Now consider the same example for ownership-aware transac-
tions. SayX is generated by a method of Xmoduié andY is
generated by a method of Xmoduke If N owns/, X cannot ac-
cesst, sincexid(M) < xid(N) (by Definition 1, Rule 2), and no
transaction from a higher-level module can access datadbye
a lower-level module (by Definition 1, Rule 1). Thus, the peob
does not arise. IN does not owr?, the ownership-aware commit
of Y will not commit the changes té6globally and/ will be prop-
agated taX’s write set. Therefore, i¥ tries to accesg beforeX
commits, the TM system will detect a conflict. Thdscannot see
an inconsistent value fat3

Callbacks

At first glance, the assumptions we have made regarding metho
of Xmodules seem somewhat restrictive. In the descriptiars t
far, we prohibit an Xmodulé/ from calling another transactional
method fromM or a proper ancestor &f. In particular, it appears
as though our model disallows callbacks. Our model, howelegs
permit both these cases; we simply model these calls diffigre

If a methodX from XmoduleM calls another method from
an ancestor Xmodul&, this call does not generate a new safe-
nested transaction instance. Instedds subsumed iX using flat
(or closed) nesting. Recall that Rule 1 in Definition 1 allodvso
access data belonging b or any of its ancestors directly. Thus,
we can treat any data access by a flat (or closed) nesteddtiamnsa
Y as being accessed by directly, provided thal and its nested
transactions access only memory belongingltor N's ancestors.
We say thaty is aproper callbackmethod for XmoduleN if its
nested calls are all proper callback methods belonging tocres
which are ancestors dfl. In our formal model in Section 4, we
assume that we only have proper callbacks and model them as
direct memory accesses, allowing us to ignore them in thadbr
definitions.

Closed-Nested Transactions

In our model, every method call that crosses an Xmodule bound
ary automatically generates a safe-nested transactionef3wip-
aware TM can effectively provide closed-nested transastibow-
ever, with appropriate specifications of ownership. If anoiule

M owns no memory, but only operates on memory belonging to its
proper ancestors, then transactiondvoWill effectively be closed
nested. In the limit, if the programmer specifies that all rmgm

is owned by thewor | d Xmodule, then all changes in any transac-
tion’s read or write set are propagated upwards; thus alkosiip-
aware commits behave exactly as closed-nested commits.

3. OWNERSHIP TYPESFOR XMODULES

When using ownership-aware transactions, the Xmoduleslatad
ownership in a program must be specified for two reasond, Hies
ownership-aware commit mechanism depends on these cencept
Second, we can guarantee some notion of serializability ibral
program has Xmodules which conform to the rules in Definifion

In this section, we describe language constructs and a pgters
that can be used to specify Xmodules and ownership in a dava-|

3 For simplicity, we have described the case wheiedirectly nested inside
X. The case wher¥ is more deeply open nested insidebehaves in a
similar fashion.

language. Our type system — tiAT type system— statically
enforces some of the restrictions described in Definition 1.

The OAT type system extends the ownership types of Boyapati
et al. [3], which is described first in this section. We thesatibe
extensions to this type system to enforce some of the réstr&c
in Definition 1. Next, we present code for parts of the exanajple
plication described in Section 2. Finally, we discuss soestric-
tions required by Definition 1 which theAT type system does not
enforce statically. The type system’s annotations, howeamable
dynamic checks for these restrictions.

Boyapati et al.'s Parametric Ownership Type System

The type system of Boyapati et al. provides a mechanism fegisp
fying ownership of objects. The type system enforces thpgutaes
stated in Lemma 1.

LEMMA 1. Boyapati et al's type system enforces the following
properties:

1
2.
3.

Every object has a unique owner.

The owner can be either another objectyar | d.

The ownership relation forms amwnership tregof objects)
rooted atwor | d.

. The owner of an object does not change over time.

. An object a can access another object b directly only if b’'s
owner is either a, or one of a’s proper ancestors in the own-
ership tree.

Boyapati et al.’s type system requires ownership annatatio
class definitions and type declarations to guarantee Lemrga-1
ery class typdll has a set of associated ownership tags, denoted
T1(f1, fa,... fn). The first formalf; denotes the owner of the cur-
rent instance of the object (i.g.hi s object). The remaining for-
mals fp, f3,... fy are additional tags which can be used to instan-
tiate and declare other objects within the class definifidre for-
mals get assigned with actual own@is oy, . ..oy When an object
a of type T1 is instantiated. By parameterizing class and method
declarations with ownership tags, this type system peravitser
polymorphism. Thus, one can define a class type (e.g. a generi
hash table) once, but instantiate multiple instances ofiaas with
different owners in different parts of the program.

The type system enforces the properties in Lemma 1 by per-
forming the following checks:

1. Within the class definition of typEL, only the tagq f1, f2,... fa} U
{thi s,worl d} are visible. The hi s ownership tag represents
the object itself.

2. Avariablec, with typeT2(f,,...) can be assigned to a variable
c1 with typeT1(fy,...) if and only if T2 is a subtype of'1 and
f1 = fo.

3. If an objecta’s tags are instantiated to log, 0z, . .. 0p whenais
created, then in the ownership tree,must be a descendant of
0, Vi € 2..n, (denoted by, =< o henceforth).

Boyapati et al. show that these type checks guarantee tpenpies
of Lemma 1.

In some cases, to enable the type system to perform check 3
locally, the programmer may need to specifyieer e clause in
a class declaration. For example, suppose the class demtacd
typeT1 has formal tag$f1, f2, f3), and insidel'l’s definition, some
typeT2 object is instantiated with ownership tads, f3). The type
system cannot determine whether or rigt< f3. To resolve this
ambiguity, the programmer must specifyere (f, <= f3) atthe
class declaration of typEl. When an instance of type object is
instantiated, the type system then checks thaimtee e clause is
satisfied.

The OAT Type System

The ownership tree described by Boyapati et al. exhibitsesom
the same properties as the module tree we described in 8&stio
however, this ownership scheme does not enforce two major re
quirements of our system.

¢ In [3], any object can own other objects. Our rules, however,
require that only Xmodules own other objects.

¢ In [3], an object can call any of its ancestor’s siblings. Ques
(namely Definition 1), however, dictate that an XmodMean
only call its ancestor’s siblings to the right.

With these requirements in mind, we extend Boyapati et gide
system to create th@AT type system.

The extensions to handle the first requirement are straight-
forward. The OAT type system explicitly distinguishes objects
and Xmodules by requiring that Xmodules extend from a spe-
cial Xnodul e class. TheDAT type system only allows classes that
extendXnodul e to uset hi s as an ownership tag. In the context
of the Boyapati et al.'s ownership tree, this restrictiopates a
tree where all the internal nodes are Xmodules and all leakes
non-Xmodule objects. If we ignore any order imposed on thke ch
dren of an Xmodule, for ownership-aware TM, the module tese (
described in Section 2) is essentially the ownership tref wii
non-Xmodule objects removed.

The second requirement is more complicated to enforcet, Firs
we extend each owner instancéo have two fieldsname repre-
sented byo.name andindex, represented bg.index The name
field is conceptually the same as an ownership instance iagay
et al.'s type system. The index field is added to help the ctamim
infer ordering between children of the same Xmodule in theui®
tree. TheOAT type system allows the programmer to palsiss| i]
as the ownership tag (i.e., with an indgxnstead oft hi s. Simi-
larly, one can useor| d[i] as an ownership tag. Indices enable
the type system to infer an ordering between two sibling Xuahes|
M andN; for instance, if an Xmodulé instantiatesM andN with
ownerst hi s[i] andthi s[i+1], respectively, theiM appears to
the left of N in the module tree.

Finally, for technical reasons, th®AT system prohibits all
XmodulesM from declaring primitive fields. M had primitive
fields, then by Boyapati et al.’'s type system, these field®ared
by theM’s parent. Since this property seems counter-intuitive, we
opted to disallow primitive fields for Xmodules.

In summary, theAT type system performs these checks:

. Within the class definition of typEL, only the tagq f1, f2,... fa} U
{thi s,worl d} are visible.

. A variablec, with typeT2(f,,...) can be assigned to a variable
c1 with type T1(fy,...) if and only if T2 = T1, and all the for-
mals are initialized to the same owners with the same indices
if indices are specified.

. For a typeT(o1,0o,...0n), we must have, for all € {2,...n},
eithero; . name< 0;. nameor 01. name= 0;. nameando; . index<
o;.index(if both indices are knowrfj.

The ownership taghi s can only be used within the definition
of a class that extendémdul e.

4.

5. Xmodule objects cannot have primitive-type fields.

The first three checks are analogous to the checks in Boyapati
et al.’s type system. The last two checks are added to entbece
additional requirements of Xmodules.

41n the ownership tree, for any Xmodullé, the OAT type system implic-
itly assigns non-Xmodule children o higher indices than the Xmodule
children ofM, unless the user specifies otherwise.

1 public class UserApp<appC> extends Xnodul e<appO> {
2 private Logger<this[1], this[2]> |ogger;

3 private DB<this[0], this[1], this[2]> db;

4 publ ic UserApp() {

5 | ogger = new Logger<this[1], this[2]>();

6 db = new DB<this[0], this[1], this[2]>(|ogger);
7 }

8 }

9 public class DB<dbO, |0g0O dataC>

10 ext ends Xmodul e<dbO> where (1090 < dataQ {
11 private Logger<l ogO dataO> |ogger;

12 private BST<this[0], logO dataO> bst;

13 private Hashmap<this[1], |0gO dataO> hashmap;
14 publi c DB(Logger<logO, dataC> |ogger) {

15 this.logger = |ogger;

16 Y

17}

Figure 2. Specifying Xmodules and ownership for the example
application described in Section 2.

TheOAT type system supportdher e clauses of the formher e
(fi < fj); when f; and f; are instantiated witlo; and oj, the
type system ensures that eitfigrname=< o;. name or o;. name=
0j.nameand ¢;.index< o;.index The detailed type rules for the
OAT type system are described in [1].

Example Application Using theDAT Type System

Figure 2 illustrates how one can specify Xmodules and ovirigrs
using ownership types. The programmer specifies an Xmodule b
creating a class which extends from a spexialdul e class. The
DB class has three formal owner taggbO which is the owner of
the DB Xmodule instancel, ogOwhich is the owner of th&ogger
Xmodule instance that tHaB Xmodule will use, andlat aO which

is the owner of the user data being stored in the databasen @rhe
instance ofUser App initializes Xmodules in lines 5-6, it declares
itself as the owner of theogger, the DB, and the user data being
passed int®B. The indices on hi s are declaring the ordering of
Xmodules in the module tree, i.e., the user data is lowestighan
theLogger, and theLogger is lower level than thé®B. lines 11-13
illustrate how theédB class can initialize its Xmodules and propagate
the formal owner tags (i.e.pgOanddat aO) down.

Note that in order for this code to type check, Biieclass must
declard 0ogO < dat aOusing theaher e clause in line 10, otherwise
the type check would fail at line 11, due to ambiguity of their
relation in the module tree. Thier e clause in line 10 is checked
whenever an instance BB is created, i.e. at line 6.

The OAT Type System’s Guarantees

The following lemma about th®AT type system can be proved in
a reasonably straightforward manner using Lemma 1.

LEMMA 2. The OAT type system guarantees the following proper-
ties.

1. An Xmodule M can access a (non-Xmodule) object b with own-
ership tag @ only if M < op. name.

2. An Xmodule M can call a method in another Xmodule N with
owner g only if one of the following is true:
(@) M =oyn.name (i.e. M owns N);
(b) The least common ancestor of M and N in the module tree

is oy.name.

(c) N=M (i.e. N is an ancestor of M).

Lemma 2 does not, however, guarantee all the properties we
want from Xmodules (i.e., Definition 1). In particular, Lerar2
does not consider any ordering of sibling Xmodules. DA type
system can, however, provide stronger guarantees for agog
which satisfies what we call thenique owner indiceassumption:
for all XmodulesM, all children ofM in the module tree are instan-
tiated with ownership tags with unique indices that can becslly
determined. For such a program, the type system can ordehilhe
dren of every Xmodul®! from smallest to largest index, and assign
thexid to each Xmodule as described in Section 2. Then, the fol-
lowing result holds:

THEOREM 3. For a program with unique owner indices, in ad-
dition to Lemma 2, the OAT type system guarantees that if the
least common ancestor of Xmodules M and N in the module tree is
on.nhame, then M can call a method in N onlyifd(M) < xid(N).

PROOF SKETCH.

We prove (by contradiction) that if the least common anaesto
of M andN in the module tree isy.name andxid(M) > xid(N),
thenM cannot have a formal tag with valog . Therefore, it cannot
declare a type with owner tagy, and cannot acced$. We only
sketch the proof here. For the details, please see [1].

Let L be the least common ancestorMfandN, let Q be the
ancestor oM which isN’s sibling, and letog be Q's ownership
tag (i.e., the tag with whick is instantiated). Sincl andQ have
the same parent (i.&.) in the module tree, we haway.name=
0g.name= L. Sincexid(M) > xid(N), M is to the right ofN
in the ownership tree. Therefor®, which is an ancestor df1,
is to the right of N in the ownership tree. Therefore, we have
0g.index> oy.index

Assume for contradiction thdl does havey as one of its tags.
Using Lemma 1, one can show that the only wayNbto receive
tagoy is if Q also has a formal tag with valumy. Thus,Q’s first
formal owner tag has valuey and another one of its formals has
value oy. Therefore, the type system fails to type check, either
at the point whereQ is instantiated due tog.index> oy.index
(check 3), or at some other place where a disambiguatirege
clause is used.

Theorem 3 only modifies the Condition 2b of Lemma 2. There-
fore, Lemma 2 along with Theorem 3 imposes restrictions @nyev
Xmodule M which are only slightly weaker than the restrictions
required by Definition 1. Condition 1 in Lemma 2 corresporals t
Rule 1 of Definition 1. Conditions 2a and 2b are the cases uni
by Rule 2. Condition 2c, however, corresponds to the speaisd
of callbacks or calling a method from the same Xmodule, wigch
not permitted by Definition 1. This case is modeled diffelgrats
we explained in Section 2.

The OAT type system is a best-effort type system to check for
the restrictions required by Definition 1. TBRAT type system can-
not fully guarantee, however, that a type-checked progrees dot
violate Definition 1. Specifically, th®AT type system can not al-
ways detect the following violations statically. Firsttlie program
does not have unique owner indices, tlhemay instantiate botm
andN with the same index. Then, by LemmaM,andN, can call
each other’'s methods, and we can get cyclic dependenciesdet
Xmodules® Second, the program may perform improper callbacks.
Say a method fronM calls back to metho@& from L. An improper
callbackB can call a method oN, even though the type system
knows thatM is to the right ofN. In both cases, the type system al-

5Since all non-Xmodule objects are implicitly assigned kigimdices than
their Xmodule siblings, these non-Xmodule objects canmwoduce cyclic
dependencies between Xmodules.

lows a program with cyclic dependency between Xmodules $s pa
the type checks, which is not allowed by Definition 1.

To have an ownership-aware TM which guarantees exactly Def-
inition 1, one needs to impose additional dynamic checks.rtih-
time system can use the ownership tags to build a module tiee d
ing runtime, and use this module tree to perform dynamickhex
verify that every Xmodule has unique owner indices and donsta
only proper callbacks. The runtime system can do this by ilyna
ically inferring indices according to which Xmodule callhigh
other Xmodule, and reporting an error if there is any circakll-

ing8
4, COMPUTATIONSWITH Xmodules

In this section, we formally define the structure of transena! pro-
grams with Xmodules. This section converts the informalaxa-
tion from Section 2 into a formal model that we later use to/pro
properties of ownership-aware TM. We briefly review the sy
tional computation framework [2] and add Xmodules and owner
ship to this framework, finally providing the formal statemhef
Definition 1.

Transactional Computations

In our framework [2], the execution of a program is modeleidgis
a “computation tree” that summarizes the information about both
the control structure of a program and the nesting structdire
transactions, and an “observer functighivhich characterizes the
behavior of memory operations. A program execution is agslim
to generate &race (C,d).

A computation treeC is defined as an ordered tree with two
types of nodesmemory-operation nodesemOps((C) as leaves and
control nodesspNodes(() as internal nodes. A memory operation
v either reads from or writes to a memory location. Controlexod
are eithelS(series) oP (parallel) nodes. Conceptually, the children
of an Snode must be executed serially, from left to right, while
the children ofP node can be executed in parallel. So8wodes
are labeled as transactions; defizetions(C) as the set of these
nodes.

Instead of specifying the value that an operation reads besvr
to a memory locatiorf, we abstract away the values by using an
observer function®. For a memory operation that accesses a
memory locatior?, the noded(v) is defined to be the operation
that wrote the value of thatv sees.

We define several structural notations on the computaties tr
C. Denote theroot of C asroot((). For any tree node, let
ances(X) denote the set of aK’s ancestors (including itself)
in C. Denote the set of proper ancestorsXoby pAnces(X). For
any tree nodeX, we define thdéransactional parentof X, denoted
by xparent(X), asparent(X) if parent(X) € xactions((),
or xparent(parent(X)) if parent(X) ¢ xactions((). Define
the transactional ancestorf X as xAnces(X) = ances(X) N
xactions((). Denote thdeast common ancestoof two nodes
X1, X2 € ChyLCA(X1,X2). DefinexLCA (X1, Xp) asZ =LCA(X1,X2)
if Z € xactions((), and asparent(Z) otherwise.

O P-Node
O s-Node
[] Transaction
O Memory Op.

Figure3. A sample (a) computation tre@and (b) its correspond-
ing dagG((C).

Classical theories on serializability refer to a particidaecu-
tion order for a program as listory [12]. In our framework, a
history corresponds to a topological sgrof the computation dag
G(C). We define our models of TM using these sorts. Reordering a
history to produce a serial history is equivalent to chogsinliffer-
ent topological sors’ of G(C) which has all transactions appearing
contiguously, but which is still “consistent” with the olger func-
tion associated witls.

Xmodules and Computation Tree

As mentioned in Section 2, in this paper, we consider program
that contain Xmodules. In our theoretical framework, wesider
traces generated by a program which is organized into a(set
Xmodules. Each Xmodul& € A’ has some number of methods
and a set of memory locations associated with it.

We partition the set of all memory locations into sets of
memory owned by each Xmodule. lisidMemory (M) C L denote
the set of memory locations owned . For a location/ €
modMemory (M), we say thabwner(¢) = M. When a method of
Xmodule M is called by a method from a different Xmodule,
a safe-nested transactidn is generated. We use the notation
xMod(T) = M to associate the instande with the XmoduleM.
We also define the instances associated Witas

: xMod(T)=M}.

As mentioned in Section 2, Xmodules of a program are ar-
ranged as a module tree, denoted DBy Each Xmodule is as-
signhed anxid according to a left-to-right depth-first tree walk,
with the root of D beingwor| d with xid = 0. Denote the par-
ent of XmoduleM in D asmodParent (M), the ancestors dfl as

modXactions(M) = {T € xactions(()

A computation can also be represented as a computationmodAnces(M), and the descendants Mf asmodDesc(M). We say

dag (directed acyclic graph). Given a treg the dagG(C) =
(V(C),E(C)) corresponding to the tree is constructed recursively.
Every internal nodeX in the tree appears as two vertices in the
dag. Between these two vertices, the childrerXadre connected

in series ifX is anSnode, and are connected in paralleKifis a

P node. Figure 3 show a computation tree and its corresponding

computation dag.

61t is possible to statically check for unique owner indicgsiimposing
additional restrictions on the program. We opted, howeieedescribe a
more flexible programming model with weaker static guaresite

thatxMod(root(C)) =worl d, i.e., the root of the computation tree
is a transaction associated with th@ | d Xmodule.

We use the module treB to restrict the sharing of data between
Xmodules and to limit the visibility of Xmodule methods acdimg
to the rules given in Definition 2.

DEFINITION 2 (Formal Restatement of Definition 1A program
with a module treeD should generate only traceg”,) which
satisfy the following rules:

7 As we explained in Section 2, callbacks are handled diffigren

1. For any memory operation v which accesses a memory lotatio
¢, let T = xparent(Vv). Thenowner(¢) € modAnces(xMod(T)).

2. Let XY € xactions((C) be transaction instances such that
xMod(X) =M andxMod(Y) = N. We can have % xparent(Y)
only ifmodParent (N) € modAnces(M), andxid(M) < xid(N).

5. THE OAT MODEL

In this section, we informally sketch tH@AT model, an abstract
execution model for TM with ownership and Xmodules. The hove
feature of theDAT model is that it uses the structure of Xmodules
to provide a commit mechanism which can be viewed as a hybrid
of closed- and open-nested commits. TO&T model presents an
operational semantics for TM, and is not intended to descaif
actual implementation. For the full formal descriptiontoé imodel,

see [1].

Basic Operation

one transaction that is responsible for committing the nmgmo
operation. The proof of the theorem requires the followiagma
which we prove by induction on the nesting depth of transasti

LEMMA 4. Given a computation tre€, consider any transaction
T exactions(C).Let S = {xMod(T’) : T’ € xAnces(T)}. Then
we havenodAnces(xMod(T)) C Sy.

PROOF We prove this fact by induction on the nesting depth
of transactionsT in the computation tree. In the base case, the
lemma holds trivially, since the top-level transactibr= root(C),
andxMod(root(C)) = worl d. For the inductive step, assume that
modAnces(xMod(T)) C St holds for any transactiom at depthd.
We show that the fact holds for afy* € xactions(C) at depth
d+1.

For any suchT*, we know T = xparent(T*) is at depthd.
Then, by Rule 2 of Definition 2, we hawdParent (xMod(T*)) €
modAnces(xMod(T)). Thus, we know thatodAnces (xMod(T*)) C
modAnces(xMod(T)) U {xMod(T*)}. By construction of the s&r,

The TM system is modeled as a nondeterministic state machineWe haveSr- = Sr U {xMod(T*)}. Therefore, using the inductive

with two components: @rogramand aruntime systemThe run-
time system, which we call th@eAT model, dynamically constructs
a computation tre€” as it executes instructions generated by the
program. This sequence of instructions is a valid topoigorts
of G((). During execution, each transacti®rin the tree maintains
astatusfield, which can be one @OW TTED, ABORTED, PENDI NG,
or PENDI NG_ABORT. TheOAT model maintains a set oéadynodes,
denoted byready(C), and at every step, th®AT model nonde-
terministically chooses one of these ready nodes to isiadkt
instruction. The program then issues an instruction onrnbie’s
behalf.

To detect conflicts, th©AT model maintains a read sB(T)
and a write seW(T) for all T € xactions((). The read sek(T)
is a set of pairg/,v), wherel € L is a memory location, and
v € memOps () is @ memory operation that reads frém\e define
W(T) similarly. We also assume that a write is implicitly a read as
well; thus,W(T) C R(T).

The OAT model performs eager conflict detection; whenever
a memory operatiorv accesses a locatio, the OAT model
checks to see ifv creates any conflicts. Informally, @ which
is aread (wite) generates a conflict if there is another active
transactionT ¢ xAnces(v) (T is active if its status i®ENDI NG or
PENDI NG_.ABORT) which has/ in its write (read) set. Ifiv gener-
ates a conflict, then some transaction must be aborted, tiséng
mechanism explained at the end of this section.

If v does not generate a conflict, thesucceeds and observes
the valuel fromR(Y), whereY is the closest transactional ancestor
of vwith Zin its read set (i.e.(¢,u) € R(Y)). Let X = xparent (V).
Then, ifvis ar ead, (¢,v) is added t&®(X). If visawri te, (¢,v) is
added to botf(X) andw(X).

Ownership-Aware Commit

The OAT model implements aownership-aware commit mech-
anism for nested transactions which contains elements of both
closed-nested and open-nested commitsPEADI NG transaction

Y issues arxend instruction to commitY into X = xparent(Y).
Thisxend commits locations from its read and write sets which are
owned byzMod(Y) in an open-nested fashion to the root of the tree,
while it commits locations owned by other Xmodules in a ctbse
nested fashion, by merging those reads and writesX{igtoead and
write sets.

Unique Committer Property

Definition 2 guarantees certain properties of the comparatiee
which are essential to the ownership-aware commit mectmanis

hypothesis, we haugodAnces(xMod(T*)) C Sr-. O

THEOREM 5. If a memory operation v accesses a memory loca-
tion ¢, then there exists a unique transactioh & xAnces(v), such
that

1. owner(¢) = xMod(T*), and
2. For all transactions X pAnces(T*) Nxactions(C), X can-
not directly access locatiof

This transaction T is the committerof memory operation v, de-
noted bycommitter(v).

PrRooF This result follows from the properties of the module tree
and computation tree stated in Definition 2.

Let T = xparent(Vv). First, by Rule 1, we knowwner(¢) €
modAnces(xMod(T)). We know modAnces(xMod(T)) C St by
Lemma 4. Thus, there exists some transacilione xAnces(T)
such thabwner(¢) = xMod(T*). We can use Rule 2 to show that the
T* is unique. LetX; be the chain of ancestor transactiongof.e.,
letXp =T, and letX; = xparent (X;_1), up untilXy = root(C). By
Rule 2, we knowxid(xMod (X)) < xid(xMod(X_1)), that is, the
xids strictly decrease walking up the tree frdmThus, there can
only be one ancestor transactidf of T with xid(xMod(T™*))
xid(owner(/)).

For any X € pAnces(T*) Nxactions((C), we can check the
second condition. By Rule X can accesd directly only if
owner (/) € modAnces(xMod(X)); thus, we haveid(owner(¢)) <
xid(xMod(X)). But we know thatowner({) = xMod(T*) and
xid(xMod(T*)) > xid(xMod(X)). O

Intuitively, T* = committer(Vv) is the transaction which “be-
longs” to the same Xmodule as the locatiomhichv accesses, and
is “responsible” for committingy to memory and making it visible
to the world. The second condition of Theorem 5 states thainro
cestor transaction of * in the call stack can ever directly accéss
thus, it is “safe” forT* to commit/.

Transaction Abort

When the OAT model detects a conflict, it aborts one of the
conflicting transactions by changing its status fré&NDI NG to
PENDI NG_ABORT. In the OAT model, a transactioiX might not
abort immediately; instead, it might continue to issue miore
structions after its status has changedP&NDI NG_ABORT. The
set of operations issued by or its descendants aftef's status
changes tdENDI NG_ABORT are calledX’s abort actions denoted
by abortactions(X). This condition allows< to compensate for
the safe-nested transactions that may have committedariir

Theorem 5 proves that every memory operation has one and onlyactionY is nested insideX, then the abort actions of contain

the compensating action ¥f Eventually aPENDI NG_ABORT trans-
action issues amend instruction, which changes its status from
PENDI NG_ABORT to ABORTED.

If a potential memory operatiomgenerates a conflict witf,,
andTy'’s status iPENDI NG, then theOAT model can nondetermin-
istically choose to abort eitheparent (v), or Ty. In the latter case,

v waits for Ty, to finish aborting (i.e., change its statusARORTED)
before continuing. Ify’s status i§ENDI NG_ABORT, thenv just waits
for Ty to finish aborting before trying to issuead orwri t e again.

This operational model uses the same conflict detection algo
rithm as TM with ordinary closed-nested transactions ddes;
only subtleties are thatcan generate a conflict withPENDI NG.ABORT
transactiorTy, and that transactions no longer abort instantaneously
because they have abort actions. Some restrictions on thea
tions of a transaction may be necessary to avoid deadlockgeas
describe later in Section 7.

6. SERIALIZABILITY BY MODULES

In this section, we definserializability by modulesa definition
inspired by the database notion of multilevel serializabie.g.,
as described in [13]). We then provide a proof sketch thaQh&
model from Section 5 guarantees serializability by modufes
more details about the proof, see [1].

Notation and Definitions

We first describe some notation needed to formally descehials
izability by modules. All definitions in this section aagosteriori
i.e., they are defined on the computation tree after the prodras
finished executing.

We define “content” sets for every transactidrby partition-
ing memOps(T) (all the memory operations enclosed insitle
including those belonging to its nested transactions) three
sets: cContent(T), oContent(T) and aContent(T). For any

u € memOps(T), we define the content sets based on the final status

of transactions irC that one visits when walking up the tree from
utoT.

DEFINITION 3. For any transaction T and memory operation u,
define the seteContent(T), oContent(T), and aContent(T)
according theContentType(u, T) procedure:

ContentType(u,T)
X« xparent (U)
while (X #T)
if (X is ABORTED) return u € aContent(T)
if (X = committer(u)) returnu & oContent(T)
X < xparent (X)
return u € cContent(T)

> For any ue mem0Ops(T)

OO~ WNE

Recall that in theOAT model, the safe-nested commit of

commits some memory operations in an open-nested fashion,

to root((), and some operations in a closed-nested fashion, to
xparent(T). Informally, oContent(T) is the set of memory op-
erations that are committed in an “open” mannerTty subtrans-
actions. SimilarlyaContent(T) is the set of operations that are
discarded due to the abort of some subtransaction'srsubtree.
Finally, cContent(T) is the set of operations that are neither com-
mitted in an “open” manner, nor aborted.

Transactional semantics dictate that memory operatidesye
ing to an aborted transactidnshould not be observed by (i.e., are
hiddenfrom) memory operations outside of

DEFINITION 4. For u € memOps(C),veV((C), let X =
xLCA(u,v). We say that u isiddenfrom v if uc aContent(X).

Our notion of serializability requiresequential consistency
Without transactions, a trad€, ®) is said to be sequentially con-

sistent if there exists a topological sgttof the computation dag
G(C) in which a memory operation that accesseéobserves the
value written by the last writer tdin §; that is, the observer func-
tion ® is the same as thkast writer function. For transactional
sequential consistency, we define thensactional last writerof
memory operatiom as a memory operationthat is the last write
in the orderS beforeu, skipping over nodesy which are hidden
from (i.e., aborted with respect ta) Henceforth, we say that a
sort orders is sequentially consistent with respect @if ® is the
transactional last writer.

Defining Serializability by Modules

In [2], a trace(C,®) was said to beserializableif there exists a
topological sorts of G(C) such that$ is sequentially consistent
with respect tab, and all transactions appear contiguous irse-
rializability in this context can be thought of as sequdnt@nsis-
tency plus the requirement that transactions are atomis. deéfi-
nition of serializability is the “correct definition” for ftaor closed-
nested transactions. This definition of serializabilitydse strong,
however, for ownership-aware transactions. A TM systerheha
forces this definition of serializability cannot ignore lemlevel
memory accesses when detecting conflicts for higher-lesakt
actions.

Instead, we describe a definition of serializability by miegu
which checks for correctness of one Xmodule at a time. Given a
trace (C,®), for each Xmodule M, we transform the trgzinto
a new treemTree((C,M). The treemTree(C,M) is constructed in
such a way as to ignore memory operations of Xmodules which
are lower-level thaiM, and also to ignore all operations which are
hidden from transactions . For each Xmodule M, we check that
the transactions dfl in the tracemTree(C,M), ®) is serializable.

If the check holds for all Xmodules, then tragg, @) is said to be
serializable by modules.

Definition 5 formalizes the construction afree(C,M).

DEFINITION 5. For any computation tre€’, letmTree(C,M) be
the result of modifying” as follows:

1. For all memory operations @ mem0Ops () with u accessind,
if owner(¢) = N for somexid(N) > xid(M), convert u into a
nop.

2. For all transactions T€ modXactions(M), convert all ue
aContent(T) into nops.

The intuition behind Condition 1 of Definition 5 is the follavg.
When looking at Xmodulévl, we throw away memory operations
belonging to a lower-level Xmodull, since by Theorem 5, trans-
actions ofM can never directly access the same memory as those
operations anyway. In Condition 2, we ignore the contentryf a
aborted transactions nested inside transactioh; dfiose transac-
tions might access the same memory locations as operatiuch w
we did not turn into nops, but those operations are aborted wi
respect to transactions bf.

Lemma 6 argues that if a tra¢e, ®) is sequentially consistent,
then(nTree(C,M), ®) is a valid trace; an operatianthat remains
in the trace never attempts to observe a value from a memory
operationv = ®(u) which was turned into a nop due to Definition 5.
In addition, the transformed trace is also sequentiallysisiant.

LEMMA 6. Let (C,®) be any sequentially consistent trace. Then
for any Xmodule M (mTree(C,M),®) is a valid trace. If ue
mem0Ops(mTree(C,M)), then we hav@®(u) € memOps(mTree(C,M)).
Furthermore, anys which is sequentially consistent féxin (C, ®)

is also sequentially consistent forin (mTree(C,M), ®).

PROOF Inthe new treaTree(C,M), pick any memory operation
u € memOps (mTree(C,M)) which remains. Assume for contradic-
tion thatv = @®(u) was turned into a nop in one of Steps 1 and 2.

If v was turned into a nop in Step 1 of Definition 5, then we
know thatv accessed a memory locatiéwherexid(owner(¢)) >
xid(M). Sinceu must access the same locatiénu must also
be converted into a nop. if was turned into a nop in Step 2 of
Definition 5, therv € aContent (T) for somexMod(T) = M. Then
we can show that eitheHu, or u should have also been turned into
a nop. LetX = xLCA(v,u). SinceX andT are both ancestors of
eitherX is an ancestor of or T is a proper ancestor of.

1. First, supposé is a proper ancestor of. Consider the path
of transaction®0, Y1, ... Yk, whereYp = xparent(Vv), for each
0 <i <k, we havexparent(Yj) =Yi;1, andxparent(Yy) =T.
Sincev € aContent(T), for someY; for 0 < j < k must have
status[Yj] = ABORTED. SinceT is a proper ancestor oX,
X =Yy for somex satisfying 0< x < k.

(a) If status[Yj] = ABCRTED for any j satisfying 0< j < x,
then we knowv € aContent(X), and thusvHu. Since we
assumed(, @) is sequentially consistent ade{u) = v, we
know —vHu, leading to a contradiction.

(b) If Yj is ABORTED for any j satisfyingx < j <k, then
status|Yj] = ABORTED implies thatu € aContent(X), and
thus,u should have been turned into a nop, contradicting the
original setup of the statement.

2. Next, consider the case whexeis an ancestor off. Since
Vv € aContent(T), we havev € aContent(X). Therefore, this
case is analogous to Case la above.

Finally, if ® is the transactional last writer according §afor
(C,®), it is still the transactional last writer fdmTree(C,M), ®)
because the memory operations which are not turned inton@sps
main in the same relative order. Thus, the last conditioatisted.

(|

Note that Lemma @lepends orthe restrictions on Xmodules
described in Definition 2. Without this structure of modubesd
ownership, the construction of Definition 5 is not guaradtéa
generate a valid trace.

Finally, we can define serializability by modules.

DEFINITION 6. A trace (C,®) is serializable by moduled it is
sequentially consistent, and if for all Xmodule M4n there exists
a topological sortS of Gy = mTree(C, M) such that:

1. S is sequentially consistent with respectd®pand
2. For the treeCy, VT € modXactions(M) and v € V(Qv), if
we havexbegin(T) <s Vv <s xend(T), then ve V(T).

Informally, a tracg C, ®) is serializable by modules if it is sequen-
tially consistent, and if for every XmoduM, there exists a sequen-
tially consistent ordess for the tracemTree(C,M), ®) which has
all transactions oM contiguous.

OAT Model Guarantees Serializability by Modules

We can show that th®AT model described in Section 5 generates
traces that satisfy Definition 6.

THEOREM 7. Any trace(C,®) generated by the OAT model is
serializable by modules.

PROOF SKETCH. The proof consists of three steps. First, we
generalize the notion of “prefix race freedom” [2] to comhiatas
with Xmodules. Second, we prove that tBAT model guarantees
that a program execution is prefix race free. Finally, we arpat
any trace which is prefix race free is also serializable by utesd
See [1] for details. OJ

Abstract Serializability

By Theorem 7, th@©AT model guarantees serializability by mod-
ules. We now relate this definition to the notionaifstract seri-
alizability used in multilevel database systems [13]. As we men-
tioned in Section 1, the ownership-aware commit mechanssen i
part of a methodology which includes abstract locks and @mp
sating actions. In this section we argue tlsT model provides
enough flexibility to accommodate abstract locks and corsgen
ing actions. In addition, if a program is “properly lockeddazom-
pensated,” then serializability by modules guaranteesadiseri-
alizability.

The definition of abstract serializability in databases] [4$-
sumes that the program is divided into levels, and that @#&wetion
at leveli can only call a transaction at leviel- 1.8 In addition, trans-
actions at a particular level have predefined commutativitgs,
i.e., some transactions of the same Xmodule can commute with
each other and some cannot. The transactions at the lowest le
(sayk) are naturally serializable; call this schedulg Given a se-
rializable schedulez; 1 of leveld + 1 transactions, the schedule is
said to be serializable at leveif all transactions inZj ;1 can be
reordered, obeying all commutativity rules, to obtain aasdizable
order zZ; for leveld transactions. The original schedule is said to be
abstractly serializable if it is serializable for all lesel

These commutativity rules might be specified using abstract
locks [11]: if two transactions cannot commute, then thegbgr
the same abstract lock in a conflicting manner. In the apiidica
described in Section 2, for instance, transactions callimggr t
andrenove on theBST using the same key do not commute and
should grab the same write lock. Although abstract locksnate
explicitly modeled in theODAT model, we can model transactions
acquiring the same abstract lock as transactions writirgdom-
mon memory locatiort.® Locks associated with an Xmodubé
are owned bymodParent(M). A module M is said to beprop-
erly lockedif the following is true for all transaction$;, T, with
xMod(T1) = xMod(T2) = M: if Ty andT, do not commute, then they
access soméc modMemory (modParent (M)) in a conflicting man-
ner.

If all transactions are properly locked, then serializapiby
modules implies abstract serializability (as defined apavehe
special case when the module tree is a chain (i.e., eacheadn-|
module has exactly one child). L&t be the sortS in Definition 6
for XmoduleM with xid(M) =i. This§; corresponds tc; in the
definition of abstract serializability.

In the general case for ownership-aware TM, however, by Rule
2 of Definition 1, we know a transaction at levehight call trans-
actions from multiple levelg > i, not justx =i + 1. Thus, we must
change the definition of abstract serializability slightlystead of
reordering justZi, while serializing transactions at leviglwe
have to potentially reordeky for all x where transactions at level
i can call transactions at level Even in this case, if every module
is properly locked (by the same definition as above), one baws
serializability by modules guarantees abstract seriailiza

The methodology of open nesting often requires the notion of
compensating actions or inverse actions. For instanceB#T ahe
inverse ofi nsert is renove with the same key. When a transac-
tion T aborts, all the changes made by its subtransactions must be
inverted. Again, although th®@AT model does not explicitly model
compensating actions, it allows an aborting transactidgh status
PENDI NG_ABORT to perform an arbitrary but finite number of opera-

8We assume level number increases as you go from a higher tte\el
lower-level to be consistent with our numberingxafd. In the literature,
levels typically go in the opposite direction.

9More complicated locks can be modeled by generalizing tiieitien of
conflict.

tions before changing the status8ORTED. Therefore, an aborting
transaction can compensate for all its aborted subtrapngsact

7. DEADLOCK FREEDOM

In this section, we argue that tf@AT model described in Sec-
tion 5 can never enter a “semantic deadlock” if we imposeablet
restrictions on the memory accessed by a transaction’s alser
tions. In particular, an abort action generated by transadt from
xMod(T) should read (write) from a memory locatidrbelonging
to modAnces(xMod(T)) only if ¢ is already inR(T) (W(T)). Under
these conditions, we show that tB&AT model can always “finish”
reasonable computations.

An ordinary TM without open nesting and with eager conflict
detection never enters a semantic deadlock because it &/alw
possible to finish aborting a transactidrwithout generating addi-
tional conflicts; a scheduler in the TM runtime can abortralhsac-
tions, and then complete the computation by running the ir@nga
transactions serially. Using tl@AT model, however, a TM system
can enter a semantic deadlock because it can enter a statieitv
is impossible to finish aborting two parallel transactidngnd T,
which both have statuBENDI NG_ABORT. If T;'s abort action gen-
erates a memory operatianwhich conflicts withT,, thenu will
wait for T, to finish aborting (i.e., when the status Bf becomes
ABORTED). Similarly, T,’s abort action can generate an operation
which conflicts withT; and waits forT; to finish aborting. Thus
T1 andT, can both wait on each other, and neither transaction will
ever finish aborting.

Defining Semantic Deadlock

Intuitively, we want to say that a TM system exhibits a sertant
deadlock if it might enter a state from which it is impossible
to “finish” a computation because of transaction conflicteisT
section defines semantic deadlock precisely and distihgsist
from these other reasons for noncompletion, such as liketoc
infinite loop.

Recall that our abstract model has two entities: the progaauch
a generic operational modgl representing the runtime system. At
any timet, given a ready nod¥ € ready(C), the program chooses
an instruction and haX issue the instruction. If the program issues
an infinite number of instructions, thed cannot complete the
program no matter what it does. To eliminate programs whaskeh
infinite loops, we only considdyounded programs

DEFINITION 7. We say that a program isoundedfor an opera-
tional model ¥ if any computation tree thaf generates for that
program is of a finite depth, and there exists a finite numbeunéhs
that at any time t, every node ®nodes'!) () has at most K chil-
dren with status?ENDI NGor COVM TTED.

Even if the program is bounded, it might still run forevertif i
livelocks We use the notion of acheduleto distinguish livelocks
from semantic deadlocks.

DEFINITION 8. A schedulel" on some time intervalty,t;] is
the sequence of nondeterministic choices made by an opeséti
model in the interval.

An operational modelF makes two types of nondeterministic
choices. First, at any tinte 7 nondeterministically chooses which
ready nodeX € ready(C) executes an instruction. This choice
models nondeterminism in the program due to interleavinthef
parallel executions. Second, while performing a memory apen

u which generates a conflict with transactidn # nondetermin-
istically chooses to abort eitheparent(u) or T. This nondeter-
ministic choice models the contention manager of the TMino@t

A program may livelock iff repeatedly makes “bad” scheduling
choices.

Intuitively, an operational model deadlocks if it allowb@unded
computationto reach a state where schedulean complete the
computation after this point.

DEerFINITION 9. Consider anf executing a bounded computation.
We say thatF does not exhibit aemantic deadloclkf for all finite
sequences oftinstructions that7 can issue that generates some
intermediate computation tre€, there exists a finite schedule
on [to,t1] such that¥ brings the computation tree to a rest statg
i.e., ready((1) = {root((1)}.

This definition is sufficient, since once the computatior fiee
at the rest state, and only the root node is regdygan execute each
transaction serially and complete the computation.

Restrictions to Avoid Semantic Deadlock

The generaDAT model described in Section 5 exhibits semantic
deadlock because it may enter a state where two parallet-abor
ing transactiong; and T, keep each other from completing their
aborts. For a restricted set of programs, wheRENDI NG ABORT
transactionT never accesses hew memory belonging to Xmodules
atxMod(T)’s level or higher, however, we can show (AT model
is free of semantic deadlock.

More formally, for all transaction3, we restrict the memory
footprint of abortactions(T).

DEFINITION 10. An execution (represented by a computation tree
C) hasabort actions with limited footprintif the following con-
dition is true for all transactions Te aborted(C). At time t, if

a memory operation ¥ abortactions(T) accesses locatiof
and owner(¢) € modAnces(xMod(T)), then (1) if v is a read, then

¢ e R(T), and (2) if vis a write therf € W(T).

Intuitively, Definition 10 requires that once a transactibis
status becomeBENDI NG_ABORT, any memory operatiorn which
T or a nested transaction insideperforms to finish abortind
cannot read from (write to) any locatigrnwhich is owned by any
Xmodules which are ancestors &flod(T) (including xMod(T)
itself), unlesd is already in the read (or write set) ©f

First, we show that the properties of Xmodules from Theorem 5
in combination with the ownership-aware commit mechanism i
ply that transaction read sets and write sets exhibit niopepties.
In particular, we have Corollary 8, which states that a liocet can
appear in the read set of a transactioonly if T's Xmodule is a
descendant adwner(¢) in the module treeD.

COROLLARY 8. Forany transaction T if € R(T), thenxMod(T) €
modDesc (owner(/)).

PrROOF Follows from Definition 1 and Theorem 5, and induction
on how a locatior? can propagate into readsets and writsets using
the ownership-aware commit mechanism. (I

If all abort actions have a limited footprint, we can showttha
operations of an abort action of an XmodWMecan only generate
conflicts with a “lower-level” Xmodule.

LEMMA 9. Suppose the OAT model generates an execution where
abort actions have limited footprint. For any transaction don-
sider a potential memory operationevabortactions(T). If v
conflicts with transaction ' thenxid(xMod(T’)) > xid(xMod(T)).

PROOF Suppose € abortactions(T) accesses a memory loca-
tion £ with owner (¢) = M. Sinceabortactions(T) C memOps(T),
by the properties of Xmodules given in Definition 2, we knowatth
eitherM € modAnces(xMod(T)), or xid(M) > xid(xMod(T)). If

M € modAnces(xMod(T)), then by Definition 10T already had

in its read or write set. Thereforecan not generate a conflict with
T’ because thef would already have had a conflict with before

v occurred, contradicting the eager conflict detection of GAe its methods have well-defined inverses, the authors showthiba

model. execution appears to be “abstractly serializable.” Bogstioes not,

Thus, we havexid(M) > xid(xMod(T)). If v conflicts with however, address the cases when the lower-level madulgites
some other transactiof, thenT’ has/ in its read or write set. to memory owned by the enclosing higher-level module, orrwhe
Therefore, from Corollary &Mod(T’) is a descendant &fl. Thus, programs have more than two levels of modules.
we havexid(xMod(T')) > xid(M) > xid(xMod(T)). O

Acknowledgements

THEOREM 10. In the case where aborted actions have limited \ve thank James Noble of Victoria University of Wellingtorei@k
footprint, the OAT model is free from semantic deadlock. Rayside, Martin Rinard, Amy Williams, and Charles Leisersad

PROOF Let (j be the computation tree after any finite sequence
of tg instructions. We describe a schedlle/hich finishes aborting
all transactions in the computation by executing aboriastiand
transactions serially.

Without loss of generality, assume that at titge all active
transactiond havestatus[T] = PENDI NG.ABORT. Otherwise, the

other members of the Supercomputing Technologies Grougbt M
CSAIL for helpful discussions and comments on the paper.lé¢ée a
thank all the reviewers of this and prior versions of the pdpe
their comments. In particular, we are grateful to Bill S@rdor his
help in improving the paper.

first phase of the scheduleis to make this status change for all REFERENCES

active transactions. [1]
For a module treeD with k = |D| Xmodules (including the

wor | d), we construct a schedulE with k phases,k — 1,k —

2,...1,0. The invariant we maintain is that immediately before

phasei, we bring the computation tree into a staf¥) which

has no active transaction instandesvith xid(xMod(T)) > i, i.e., [2

no instancesl from Xmodules withxid larger thani. During

phasei, we finish aborting all active transaction instan@esvith

xid(xMod(T)) =i. By Lemma 9, any abort action forg, where

xid(xMod(T)) =i, can only conflict with a transaction instarité 3

from a lower-level Xmodule, whereid(xMod(T’)) > i. Since the

scheduld™ executes serially, and since by the inductive hypothesis

we have already finished all active transaction instanoes fower

levels, phasécan finish without generating any conflicts. [4

—

—

[l

Restrictions on compensating actions

If transactionsyy, Y»,...Yj are nested inside transactighand X

aborts, typically abort actions &f simply consists of compensating [5
actions forYy,Y,,...Yj. Thus, restrictions on abort actions trans-

late in a straightforward manner to restrictions on compgng

actions: a compensating action for a transacfdmvhich is part of

the abort action oK), should not read (write) any memory owned

by xMod(X) or its ancestor Xmodules unless the memory location [6
is already inX's read (write) set. Assuming locks are modeled as
accesses to memory locations, the same restriction appliesn-

ing, a compensating action cannot acquire new locks thad wetr

already acquired by the transaction it is compensating for. [7]

—_

—

8. CONCLUSIONS

In this paper, we describe ownership-aware transactiohghw 8]
provide a disciplined methodology for open nesting whilargun-
teeing abstract serializability. In this section, we disetwo other [9]
approaches for improving open-nested transactions, atidglilish
them from our work.
Ni, et al. [11] propose using aopen_at omi ¢ class to specify [10]
open-nested transactions in a Java-like language witsarions.
Since the private fields of an object withepen_at oni ¢ class type
can not be directly accessed outside of that class, one zdndh [11]
the open_at oni ¢ class as defining an Xmodule. This mapping is
not exact, however, because neither the language nor TMryst
restrict exactly what memory can be passed into a method of an
open_atoni ¢ class, and the TM system performs a vanilla open-
nested commit for a nested transaction, not a safe-nestathito [12]
Thus, it is unclear what exact guarantees are provided wghect
to serializability and/or deadlock freedom. [13]
Herlihy and Koskinen [5] describe a technique of transaectio
boosting which allows transactions to call methods from a-no
transactional modul®l. Roughly, as long aM is linearizable and

K. Agrawal, I.-T. A. Lee, and J. Sukha. Safe open-nestaddactions
through ownership (Technical report). Technical repoabdratory of
Computer Science and Artificial Intelligence, Massachedestitute
of Technology, June 2008. Available at:
http://supertech.csail.mt.edu/ papers/safe-tech. pdf.

K. Agrawal, C. E. Leiserson, and J. Sukha. Memory modei®pen-
nested transactions. FProceedings of the ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness (MSP&9ber
2006. In conjunction ASPLOS.

C. Boyapati, B. Liskov, and L. Shrira. Ownership types @bject
encapsulation. IiProceedings of the ACM Symposium on Principles
of Programming Languages (PORLNew Orleans, Louisiana, Jan.
2003.

B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, @&n

K. Olukotun. Transactional collection classes. Rroceedings of

the ACM SIGPLAN Symposium on Principles and Practices dlPar
lel Programming (PPoPR)pages 5667, New York, NY, USA, 2007.
ACM Press.

M. Herlihy and E. Koskinen. Transactional boosting: atiheelology
for highly-concurrent transactional objects. Pnoceedings of ACM
SIGPLAN Symposium on Principles and Practices of Paralle- P
gramming (PPoPPR)pages 207-216, New York, NY, USA, Feb 2008.
ACM.

M. Herlihy and J. E. B. Moss. Transactional memory: Atebtural
support for lock-free data structures. Pnoceedings of the Interna-
tional Symposium on Computer Architecture (ISQ#eges 289-300,
1993.

A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh, H. @ha
C. Kozyrakis, and K. Olukotun. Architectural semantics foactical
transactional memory. IRroceedings of the International Symposium
on Computer Architecture (ISCAJune 2006.

J. E. B. Moss. Nested Transactions: An Approach to Reliable Dis-
tributed ComputingMIT Press, Cambridge, MA, USA, 1985.

J. E. B. Moss. Open nested transactions : Semantics gopbsu
In Proceedings of the Workshop on Memory Performance Issues
(WMPI), Austin, Texas, Feb 2006.

J. E. B. Moss and A. L. Hosking. Nested transactional mom
Model and architecture sketches. $gience of Computer Program-
ming volume 63, pages 186—-201. Elsevier, Dec 2006.

1] Y. Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hison,

J. E. B. Moss, B. Saha, and T. Shpeisman. Open nesting inaeftw
transactional memory. IRroceedings of ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming (PP9PHar.
2007.

C. H. Papadimitriou. The serializability of concurtetatabase up-
dates.Journal of the ACM26(4):631-653, 1979.

G. Weikum. A theoretical foundation of multi-level courrency
control. InProceedings of the ACM SIGACT-SIGMOD symposium
on Principles of database systems (POQ&ges 31-43, New York,
NY, USA, 1986. ACM Press.

