
Safe Open-Nested Transactions Through Ownership

Kunal Agrawal I-Ting Angelina Lee Jim Sukha

MIT Computer Science and Artificial Intelligence Laboratory

{kunal ag, angelee, sukhaj}@mit.edu

ABSTRACT

Researchers in transactional memory (TM) have proposed open nesting as a methodology for increasing
the concurrency of transactional programs. The idea is to ignore “low-level” memory operations of an
open-nested transaction when detecting conflicts for its parent transaction, and instead perform abstract
concurrency control for the “high-level” operation that the nested transaction represents. To support this
methodology, TM systems use an open-nested commit mechanism that commits all changes performed by
an open-nested transaction directly to memory, thereby avoiding low-level conflicts. Unfortunately, because
the TM runtime is unaware of the different levels of memory, unconstrained use of open-nested commits can
lead to anomalous program behavior.

We describe the framework ofownership-aware transactional memorywhich incorporates the notion of
modules into the TM system and requires that transactions and data be associated with specifictransactional
modulesor Xmodules. We propose a newownership-aware commit mechanism, a hybrid between an open-
nested and closed-nested commit which commits a piece of data differently depending on which Xmodule
owns the data. Moreover, we provide a set of precise constraints on interactions and sharing of data among
the Xmodules based on familiar notions of abstraction. The ownership-aware commit mechanism and these
restrictions on Xmodules allow us to prove that ownership-aware TM has clean memory-level semantics. In
particular, it guaranteesserializability by modules, an adaptation of the definition of multilevel serializability
from database systems. In addition, we describe how a programmer can specify Xmodules and ownership in
a Java-like language. Our type system can enforce most of theconstraints required by ownership-aware TM
statically, and can enforce the remaining constraints dynamically. Finally, we prove that if transactions in
the process of aborting obey restrictions on their memory footprint, then ownership-aware TM is free from
semantic deadlock.

1. INTRODUCTION

Transactional memory (TM) [6] is meant to simplify concurrency control in parallel programming by
providing a transactional interface for accessing memory;the programmer simply encloses the critical region
inside anatomic block, and the TM system ensures that this section of code executes atomically. A TM
system enforces atomicity by tracking the memory locationsthat each transaction accesses (usingread sets

This research was supported in part by NSF Grants NSF Grants CNS-0615215 and CNS-0540248 and a grant from Intel corporation.
Preliminary versions of this paper appeared as a poster atPPoPP2008 and as a brief announcement atSPAA2008.

Copyright is held by the author/owner(s).

ACM [to be supplied].

and write sets), finding transaction conflicts, and aborting transactionsthat conflict. TM guarantees that
transactions areserializable[12]; that is, transactions affect global memory as if they were executed one at
a time in some order, even if in reality, several executed concurrently.

When using TM, one issue that programmers must deal with is the semantics ofnested transactions. If a
transactionY is closed nested[8] inside transactionX, for the purpose of detecting conflicts, the TM system
considers any memory locations accessed byY as conceptually also being accessed by its parentX. Thus,
uponY’s commit, the TM system mergesY’s read and write sets into the read and write sets ofX. TM with
closed-nested transactions guarantees that transactionsare serializable at the level of memory. Researchers
have observed, however, that closed nesting might unnecessarily restrict concurrency in programs because it
does not allow two “high-level” transactions to ignore conflicts due to accesses to shared “low-level” memory
done by nested transactions.

Researchers have proposed the methodology ofopen-nested transactionsto increase concurrency in trans-
actional programs by carefully breaking serializability at the memory level. The open-nesting methodology
incorporates theopen-nested commit mechanism[7,10]. When an open-nested transactionY (nested inside
transactionX) commits,Y’s changes are committed to memory andY’s read and write sets are discarded.
Thus, the TM system no longer detects conflicts withX due to memory accessed byY. In this methodology,
the programmer considersY’s internal memory operations to be at a “lower level” thanX; thusX should
not care about the memory accessed byY when checking for conflicts. Instead,Y must acquire anabstract
lock based on the high-level operation thatY represents and propagate this lock toX, so that the TM system
can perform concurrency control at an abstract level. Also,if X aborts, it may need to executecompensating
actionsto undo the effect of its committed open-nested subtransaction Y. Moss in [9] illustrates use of open
nesting with an application that uses a B-tree. Ni et al. [11]describe a software TM system that supports the
open-nesting methodology.

An unconstrained use of the open-nested commit mechanism can lead to anomalous program behavior that
can be tricky to reason about [2]. We believe that one reason for the apparent complexity of open nesting is
that the mechanism and the methodology make different assumptions about memory. Consider a transaction
Y open nested inside transactionX. The open-nesting methodology requires thatX ignore the “lower-level”
memory conflicts generated byY, while the open-nested commit mechanism will ignoreall the memory
operations insideY. SayY accesses two memory locationsℓ1 andℓ2, andX does not care about changes
made toℓ2, but does care aboutℓ1. The TM system can not distinguish between these two accesses, and will
commit both in an open-nested manner, leading to anomalous behavior.

Researchershavedemonstrated specific examples [4, 11] that safely use an open-nested commit mech-
anism. These examples work, however, because the inner (open) transactions never write to any data that
is accessed by the outer transactions. Moreover, since these examples require only two levels of nesting, it
is not obvious how one can correctly use open-nested commitsin a program with more than two levels of
abstraction. The literature on TM offers relatively littlein the way of formal programming guidelines which
one can follow to haveprovableguarantees of safety when using open-nested commits.

Contributions

In this paper, we bridge the gap between memory-level mechanisms for open nesting and the high-level
view by explicitly integrating the notions oftransactional modules(Xmodules) andownershipinto the TM
system. We believe theownership-aware TM systemallows the programmer to safely use the methodology
of open nesting, because the runtime’s behavior more closely reflects the programmer’s intent. In addition,
the structure imposed by ownership allows a language and runtime to enforce properties needed to provide
provable guarantees of “safety” to the programmer. More specifically, the contributions of this paper are as
follows:

1. We suggest a concrete set of guidelines for sharing of dataand interactions between Xmodules.

2. We describe how the Xmodules and ownership can be specifiedin a Java-like language and propose a type
system that enforces most of the above-mentioned guidelines in the programs written using this language
extension.

3. We formally describe the operational model for ownership-aware TM, called theOAT model, which uses
a newownership-aware commit mechanism. The ownership-aware commit mechanism is a compromise
between an open-nested and a closed-nested commit; when a transactionT commits, a change to memory
location ℓ is committed globally ifℓ belongs to the module ofT; otherwise, the read or write toℓ
is propagated toT ’s parent transaction. Unlike an ordinary open-nested commit, the ownership-aware
commit treats memory locations differently depending on which Xmodule owns the location. Note that
the ownership-aware commit is still a mechanism; programmers must still use it in combination with
abstract locks and compensating actions to implement the full methodology.

4. We prove that if a program follows the proposed guidelinesfor Xmodules, then theOATmodel guarantees
serializability by modules, which is a generalization of “serializability by levels” used in database
transactions. Ownership-aware commit is the same as open-nested commit if no module ever accesses
data belonging to other modules. Thus, one corollary of our theorem is that open-nested transactions
are serializable when modules do not share data. This observation explains why researchers [4, 11] have
found it natural to use open-nested transactions in the absence of sharing, in spite of the apparent semantic
pitfalls.

5. We prove that under certain restricted conditions, a computation executing under theOAT model can not
enter a semantic deadlock.

In later sections, we distinguish between the variations ofnested transactions as follows. We say that a
transactionY is vanilla open nestedwhen referring to a TM system which performs the open-nestedcommit
of Y. We say thatY is safe nestedwhen referring to the ownership-aware TM system which performs the
ownership-aware commit ofY. Finally, we say that a transactionY is an open-nested transaction when we
are referring to the abstract methodology, rather than a particular implementation with a specific commit
mechanism.

Outline

The paper is organized as follows. In Section 2 we present an overview of ownership-aware TM and
highlight key features using an example application. Section 3 describes language constructs for specifying
Xmodules and ownership. In Section 4, we review the transactional computation framework [2], and extend
this framework to formally incorporate Xmodules and ownership. Section 5 describes theOAT model, and
Section 6 gives a formal definition of serializability by modules, and a proof-sketch that theOAT model
guarantees this definition. Section 7 provides conditions under which theOAT model does not exhibit
semantic deadlocks. Section 8 concludes with a discussion of some related work.

2. OWNERSHIP-AWARE TRANSACTIONS

In this section, we give an overview of ownership-aware TM. To motivate the need for the concept of
ownership in TM, we first present an example application which might benefit from open nesting. We
then introduce the notion of an Xmodule and informally explain the programming guidelines when using
Xmodules. Finally, we highlight some of the key differencesbetween ownership-aware TM and a TM with
vanilla open nesting. In this section, we present the intuitive descriptions of the concepts in ownership-aware
TM; we defer formal definitions until later sections.

Example Application

We describe an example application for which one might use open-nested transactions. This example is
similar to the one in [9], but it includes data sharing between nested transactions and their parents, and has
more than two levels of nesting.

Since the open-nesting methodology is designed programs tohave multiple levels of abstraction, we
choose a modular application. Consider a user application which concurrently accesses a database of many
individuals’ book collections. The database stores records in a binary search tree, keyed by name. Each node
in the binary search tree corresponds to a person, and storesa list of books in his/her collection. The database
supports queries by name, as well as updates that add a new person or a new book to a person’s collection.
The database also maintains a private hashmap, keyed by booktitle, to support a reverse query; given a
book title, it returns a list of people who own the book. Finally, the user application wants the database to
log changes on disk for recoverability. Whenever the database is updated, it inserts metadata into the buffer
of a logger to record the change that just took place. Periodically, the user application is able to request a
checkpoint operation which flushes the buffer to disk.

This application is modular, with five natural modules — the user application (UserApp), the database
(DB), the binary search tree (BST), the hashtable (Hashtable), and the logger (Logger). TheUserApp module
calls methods from theDB module when it wants to insert into the database, or query thedatabase. The
database in turn maintains internal metadata and calls theBSTmodule and theHashtable module to answer
queries and insert data. Both user application and the database may call methods from theLogger module.

If the modules use open-nested transactions, a TM system with vanilla open-nested commits can result
in non-intuitive outcomes. Consider the example where a transactional methodA from theUserApp module
tries to insert a bookb into the database, and the insert is an open-nested transaction. The methodA (which
corresponds to transactionX) calls an insert method in theDB module and passesb (the Book object) to
be inserted. This insert method generates an open-nested transactionY. SupposeY writes to some field of
the bookb (memory locationℓ1), and also writes some internal database metadata (location ℓ2). After a
vanilla open-nested commit ofY, the modifications to bothℓ1 and ℓ2 become visible globally. Assuming
the UserApp does not care about the internal state of the database, committing the internal state of theDB
(ℓ2) is a desirable effect of open nesting; this commit increases concurrency, because other transactions can
potentially modify the database in parallel withX without generating a conflict. TheUserApp does, however,
care about changes to the bookb; thus, the commit ofℓ1 breaks the atomicity of transactionX. A transaction
Z in parallel with transactionX can access this locationℓ1 afterY commits, before the outer transactionX
commits.1 To increase concurrency, we want the method fromDBto commit changes to its own internal data;
we do not, however, want it to commit the data thatUserApp cares about.

To enforce this kind of restriction, we need some notion ofownership of data: if the TM system is aware
of the fact that the book object “belongs” to theUserApp , then it can decide not to commitDB’s change to
the book object globally. For this purpose, we introduce thenotion of transactional modules, or Xmodules.
When a programmer explicitly defines Xmodules and specifies the ownership of data, the TM system can
make the correct judgement about which data to commit globally.

Xmodules and the Ownership-Aware Commit Mechanism

The ownership-aware TM system requires that programs be organized into Xmodules. Intuitively, an Xmod-
ule M is as a stand-alone entity that contains data and transactional methods; an Xmodule owns data that it
privately manages, and uses its methods to provide public services to other modules. During program exe-
cution, a call to a method from XmoduleM generates a transaction instance (e.g.,X). If this method in turn
calls another method from an XmoduleN, an additional transactionY, safe nested insideX, is created only
if M 6= N. Therefore, defining an Xmodule automatically specifies safe-nested transactions.

1Note that abstract locks [9] do not address this problem. Abstract locks are meant to disallow other transactions from noticing the
fact that the book was inserted into theDB. They do not usually protect the individual fields of the bookobject itself.

In the ownership-aware TM system, every memory location is owned by exactly one Xmodule. If a
memory locationℓ is in a transactionT ’s read or write set, the ownership-aware commit of a transaction
T commits this access globally only ifT is generated by the same Xmodule that ownsℓ; in this case, we
say thatT is “responsible” for that access toℓ. Otherwise, the read or write toℓ is propagated up to the
read or write set ofT ’s parent transaction; that is, the TM system behaves as though T was a closed-nested
transaction with respect to locationℓ.

For ownership-aware TM to behave “nicely”, we must restrictinteractions between Xmodules. For
example, in the TM system, some transaction must be “responsible” for committing every memory access.
Similarly, the TM system should guarantee some form of serializability. If Xmodules could arbitrarily call
methods from or access memory owned by other Xmodules, then these two properties might not be satisfied.

Rules for Xmodules

Ownership-aware TM uses Xmodules to control both the structure of nested transactions, and the sharing
of data between Xmodules (i.e., to limit which memory locations a transaction instance can access). In our
system, Xmodules are arranged as amodule tree, denoted asD. In D, an XmoduleN is a child ofM if N is
“encapsulated by”M. The root ofD is a special Xmodule calledworld . Each Xmodule is assigned anxid
by visiting the nodes ofD in a left-to-right depth-first search order, and assigning ids in increasing order,
starting withxid(world) = 0. Thereforeworld has the minimumxid, and “lower-level” Xmodules have
largerxid numbers.

DEFINITION 1. We impose two rules on Xmodules based on the module tree:

1. Rule 1: A method of an Xmodule M can access a memory locationℓ directly only ifℓ is either owned by
M or an ancestor of M in the module tree. This rule means that anancestor Xmodule N of M may pass
data down to a method belonging to M, but a transaction from module M can not directly access any
“lower-level” memory.

2. Rule 2: A method from M can call a method from N only if N is the child ofsome ancestor of M, and
xid(N) > xid(M) (i.e., if N is “to the right” of M in the module tree). This rulerequires that an Xmodule
can call methods of some (but not all) lower-level Xmodules.2

The intuition behind these rules is as follows. Xmodules have methods to provide services to other
higher-level Xmodules, and Xmodules maintain their own data in order to provide these services. Therefore,
a higher-level Xmodule can pass its data to a lower-level Xmodule and ask for services. A higher-level
Xmodule should not directly access the internal data belonging to a lower-level Xmodule.

If Xmodules satisfy Rules 1 and 2, TM can have a well-defined ownership-aware commit mechanism;
some transaction is always “responsible” for every memory access (proved in Section 5). In addition,
these rules and the ownership-aware commit mechanism guarantee that transactions satisfy the property
of “serializability by modules” (proved in Section 6).

One potential limitation of ownership-aware TM is that some“cyclic dependencies” between Xmodules
are prohibited. The ability to define one module as being at a lower level than another is fundamental to the
open-nesting methodology. Thus, our formalism requires that Xmodules be partially ordered; if an Xmodule
M can call XmoduleN, then conceptuallyM is at a higher level thanN (i.e.,xid(M) < xid(N)), and thus
N can not callM. If two components of the program call each other, then, conceptually, neither of these
components is at a higher-level than the other, and we would require that these two components be combined
into the same Xmodule.

2An Xmodule can, in fact, call methods within its own Xmodule or from its ancestor Xmodules, but we model these calls differently.
We explain these cases condition at the end of this section.

world!

UserApp!

DB! Logger!

BST! Hashmap!

xid:3 xid:4

xid:0

xid:1

xid:2 xid:5

Figure 1. A module treeD for the program described in Section 2. Thexid’s are assigned according to a
left-to-right depth-first tree walk, numbering Xmodules inincreasing order, starting withxid (world) = 0.

Xmodules in the Example Application

Consider a Java implementation of the example application described earlier. It may have the following
classes:UserApp as the top-level application that manages the book collections,Person andBook as the
abstractions representing book owners and books,DBfor the database,BSTandHashmap for the binary search
tree and hashmap maintained by the database, andLogger for logging the metadata to disk. In addition, there
are some other auxiliary classes: tree nodeBSTNode for theBST, Bucket in theHashmap, andBuffer used
by theLogger .

For ownership-aware TM, not all of a program’s classes are meant to be Xmodules; some classes only
wrap data. In our example, we identified five Xmodules–UserApp , DB, BST, Hashmap, andLogger ; these
classes are stand-alone entities which have encapsulated data and methods. Classes such asBook andPerson ,
on the other hand, are data types used byUserApp . Similarly, classes likeBSTNodeandBucket are data types
used byBSTandHashmap to maintain their internal state.

We organize the Xmodules of the application into the module tree shown in Figure 1.UserApp is
encapsulated byworld , DBandLogger are encapsulated underUserApp ; BSTandHashmap are encapsulated
underDB. By dividing Xmodules this way, the ownership of data falls out naturally, i.e., an Xmodule owns
certain pieces of data if the data is encapsulated under the Xmodule. For example, the instances ofPerson
or Book are owned byUserApp because they should only be accessed by eitherUserApp or its descendants.

Let us consider the implications of Definition 1 for the example. Due to Rule 1, all ofDB, BST, Hashmap,
andLogger can directly access data owned byUserApp , but theUserApp can not directly access data owned
by any of the other Xmodules. This rule corresponds to standard software-engineering rules for abstraction;
the “high-level” XmoduleUserApp should be able to pass its data down, allowing lower-level Xmodules to
access that data directly, butUserApp itself should not be able to directly access data owned by lower-level
Xmodules. Due to Rule 2, theUserApp may invoke methods fromDB, DBmay invoke methods fromBSTand
Hashmap, and every other Xmodule may invoke methods fromLogger . Thus, Rule 2 allows all the operations
required by the example application. As expected, theUserApp can call theinsert andsearch methods
from the DB and can even pass its data to theDB for insertion. More importantly, notice the relationship
betweenBSTandLogger . TheBSTXmodule can call methods fromLogger , but theBSTcan not pass data it
owns directly into theLogger . It can, however, pass data owned by theUserApp to the logger, which is all
this application requires.

Advantage of Ownership-Aware Transactions

One of the major problems with vanilla open nesting is that some transactions can see inconsistent data. Say
a transactionY is open nested inside transactionX. Let v0 be the initial value of locationℓ, and supposeY
writes valuev1 to locationℓ and then commits. Now a transactionZ in parallel withX can read this location
ℓ, write valuev2 to ℓ, and commit, all beforeX commits. Therefore,X can now read this locationℓ and see

the valuev2, which is neither the initial valuev0 (the value ofℓ whenX started), norv1 which was written by
X’s inner transaction,Y. This behavior might seem counterintuitive.

Now consider the same example for ownership-aware transactions. SayX is generated by a method
of Xmodule M andY is generated by a method of XmoduleN. If N owns ℓ, X can not accessℓ, since
xid(M) < xid(N) (by Definition 1, Rule 2), and no transaction from a higher-level module can access data
owned by a lower-level module (by Definition 1, Rule 1). Thus,the problem does not arise. IfN does not
ownℓ, the ownership-aware commit ofY will not commit the changes toℓ globally andℓ will be propagated
to X’s write set. Therefore, ifZ tries to accessℓ beforeX commits, the TM system will detect a conflict.
ThusX can not see an inconsistent value forℓ.3

Callbacks

At first glance, the assumptions we have made regarding methods of Xmodules seem somewhat restrictive.
In the description thus far, we prohibit an XmoduleM from calling another transactional method fromM or a
proper ancestor ofM. In particular, it appears as though our model disallows callbacks. Our model, however,
does permit both these cases; we simply model these calls differently.

If a methodX from XmoduleM calls another methodY from an ancestor XmoduleN, this new call does
not generate a new safe-nested transaction instance. Instead,Y is subsumed inX using flat (or closed) nesting.
Recall that Rule 1 in Definition 1 allowsX to access data belonging toN or any of its ancestors directly.
Therefore, we can treat any data access by a flat (or closed) nested transactionY as being accessed byX
directly, provided thatY and its nested transactions access only memory belonging toN or N’s ancestors.
We say thatY is aproper callbackmethod for XmoduleN if its nested calls are all proper callback methods
belonging to Xmodules which are ancestors ofN. In our formal model in Section 4, we assume that we only
have proper callbacks and model them as direct memory accesses, allowing us to ignore them in the formal
definitions.

Closed-Nested Transactions

In our model, every method call that crosses an Xmodule boundary automatically generates a safe-nested
transaction. Ownership-aware TM can effectively provide closed-nested transactions, however, with appro-
priate specifications of ownership. If an XmoduleM owns no memory, but only operates on memory be-
longing to its proper ancestors, then transactions ofM will effectively be closed nested. In the limit, if the
programmer specifies that all memory is owned by theworld Xmodule, then all changes in any transaction’s
read or write set are propagated upwards; thus all ownership-aware commits behave exactly as closed-nested
commits.

3. OWNERSHIP TYPES FOR Xmodules

When using ownership-aware transactions, the Xmodules anddata ownership in a program must be specified
for two reasons. First, the ownership-aware commit mechanism depends on these concepts. Second, we can
guarantee some notion of serializability only if a program has Xmodules which conform to the rules in
Definition 1. In this section, we describe language constructs and a type system that can be used to specify
Xmodules and ownership in a Java-like language. Our type system — theOAT type system— statically
enforces some of the restrictions described in Definition 1.

TheOAT type system extends the ownership types of Boyapati et al. [3], which is described first in this
section. We then describe extensions to this type system to enforce some of the restrictions in Definition 1.
Next, we present code for parts of the example application described in Section 2. Finally, we discuss some
restrictions required by Definition 1 which theOAT type system does not enforce statically. The type system’s
annotations, however, enable dynamic checks for these restrictions.

3For simplicity, we have described the case whereY is directly nested insideX. The case whereY is more deeply open nested inside
X behaves in a similar fashion.

Boyapati et al.’s Parametric Ownership Type System

The type system of Boyapati et al. provides a mechanism for specifying ownership of objects. The type
system enforces the properties stated in Lemma 1.

L EMMA 1. The type system in [3] enforces the following properties:

1. Every object has a unique owner.
2. The owner can be either another object, orworld.
3. The ownership relation forms anownership tree(of objects) rooted atworld.
4. The owner of an object does not change over time.
5. An object a can access another object b directly only if b’sowner is either a, or one of a’s proper ancestors

in the ownership tree.

Boyapati et al.’s type system requires ownership annotations to class definitions and type declarations to
guarantee Lemma 1. Every class typeT1 has a set of associated ownership tags, denotedT1〈 f1, f2, . . . fn〉.
The first formalf1 denotes the owner of the current instance of the object (i.e., this object). The remaining
formals f2, f3, . . . fn are additional tags which can be used to instantiate and declare other objects within
the class definition. The formals get assigned with actual ownerso1,o2, . . .on when an objecta of type
T1 is instantiated. By parameterizing class and method declarations with ownership tags, the type system
of [3] permits owner polymorphism. Thus, one can define a class type (e.g. a generic hash table) once, but
instantiate multiple instances of that class with different owners in different parts of the program.

The type system enforces the properties in Lemma 1 by performing the following checks:

1. Within the class definition of typeT1, only the tags{ f1, f2, . . . fn}∪{this ,world } are visible. Thethis
ownership tag represents the object itself.

2. Within a class definition, a variablec2 with type T2〈 f2, . . .〉 can be assigned to a variablec1 with type
T1〈 f1, . . .〉 if and only if T2 is a subtype ofT1 and f1 = f2.

3. If an objecta’s tags are instantiated to beo1,o2, . . .on whena is created, then in the ownership tree,o1

must be a descendant ofoi , ∀i ∈ 2..n, (denoted byo1� oi henceforth).

It is shown in [3] that these type checks guarantee the properties of Lemma 1.
In some cases, to enable the type system to perform check 3 locally, the programmer may need to specify

a where clause in a class declaration. For example, suppose the class declaration of typeT1 has formal
tags〈 f1, f2, f3〉, and insideT1’s definition, some typeT2 object is instantiated with ownership tags〈 f2, f3〉.
The type system can not determine whether or notf2 � f3. To resolve this ambiguity, the programmer
must specifywhere (f2 <= f3) at the class declaration of typeT1. When an instance of typeT2 object is
instantiated, the type system then checks that thewhere clause is satisfied.

TheOAT Type System

The ownership tree described in [3] exhibits some of the sameproperties as the module tree we described in
Section 2; however, the type system and ownership scheme of [3] do not enforce two major requirements of
our system.

• In [3], any object can own other objects. Our rules, however,require that only Xmodules own other
objects.

• In [3], an object can call any of its ancestor’s siblings. Ourrules (namely Definition 1), however, dictate
that an XmoduleM can only call its ancestor’s siblings to the right.

With these requirements in mind, we extend Boyapati et al.’stype system to create theOAT type system.
The extensions to handle the first requirement are straightforward. TheOAT type system explicitly

distinguishes objects and Xmodules by requiring that Xmodules extend from a specialXmodule class. The

OAT type system only allows classes that extendXmodule to usethis as an ownership tag. In the context of
the Boyapati et al.’s ownership tree, this restriction creates a tree where all the internal nodes are Xmodules
and all leaves are non-Xmodule objects. If we ignore any order imposed on the children of an Xmodule, for
ownership-aware TM, the module tree (as described in Section 2) is essentially the ownership tree with all
non-Xmodule objects removed.

The second requirement is more complicated to enforce. First, we extend each owner instanceo to have
two fields:name, represented byo.name; andindex, represented byo. index. The name field is conceptually
the same as an ownership instance in the type system of [3]. The index field is added to help the compiler
to infer ordering between children of the same Xmodule in themodule tree. TheOAT type system allows
the programmer to passthis[i] as the ownership tag (i.e., with an indexi) instead ofthis . Similarly, one
can useworld[i] as an ownership tag. Indices enable the type system to infer an ordering between two
sibling XmodulesM andN; for instance, if an XmoduleL instantiatesM andN with ownersthis[i] and
this[i+1] , respectively, thenM appears to the left ofN in the module tree.

Finally, for technical reasons, theOAT system prohibits all XmodulesM from declaring primitive fields.
If M had primitive fields, then by Boyapati et al.’s type system, these fields are owned by theM’s parent.
Since this property seems counter-intuitive, we opted to disallow primitive fields for Xmodules.

In summary, theOAT type system performs these checks:

1. Within the class definition of typeT1, only the tags{ f1, f2, . . . fn}∪{this ,world } are visible.

2. In a class declaration, a variablec2 with type T2〈 f2, . . .〉 can be assigned to a variablec1 with type
T1〈 f1, . . .〉 if and only if T2 andT1 have the same type and all the formals match in name. In addition, if
the indices are specified for the tags, then they must match.

3. For a typeT〈o1,o2, . . .on〉, we must have, for alli ∈ {2, . . .n}, eithero1.name≺ oi .nameor o1.name=
oi .nameando1. index< oi . index(if both indices are known).4

4. The ownership tagthis can only be used within the definition of a class that extendsXmodule .

5. Xmodule objects can not have primitive-type fields.

The first three checks are analogous to the checks in Boyapatiet al.’s type system. The last two checks are
added to enforce the additional requirements of Xmodules.

TheOAT type system supportswhere clauses of the formwhere (fi < f j) ; when fi and f j are instantiated
with oi ando j , the type system ensures that eitheroi .name≺ o j .name, oroi .name= o j .nameandoi . index<
o j . index. The detailed type rules for theOAT type system are described in [1].

Example Application using theOAT Type System

Figure 2 illustrates how one can specify Xmodules and ownership using ownership types. The programmer
specifies an Xmodule by creating a class which extends from a special Xmodule class. TheDB class has
three formal owner tags –dbO which is the owner of theDB Xmodule instance,logO which is the owner
of the Logger Xmodule instance that theDB Xmodule will use, anddataO which is the owner of the user
data being stored in the database. When an instance ofUserApp initializes Xmodules in lines 5–6, it declares
itself as the owner of theLogger , theDB, and the user data being passed intoDB. The indices onthis are
declaring the ordering of Xmodules in the module tree, i.e.,the user data is lower-level than theLogger , and
theLogger is lower level than theDB. lines 11–13 illustrate how theDBclass can initialize its Xmodules and
propagate the formal owner tags (i.e.,logO anddataO) down.

Note that in order for this code to type check, theDBclass must declarelogO < dataO using thewhere
clause in line 10, otherwise the type check would fail at line11, due to ambiguity of their relation in the
module tree. Thewhere clause in line 10 is checked whenever an instance ofDB is created, i.e. at line 6.

4 In the ownership tree, for any XmoduleM, theOAT type system implicitly assigns non-Xmodule children ofM higher indices than
the Xmodule children ofM, unless the user specifies otherwise.

1 public class UserApp<appO> extends Xmodule {
2 private Logger<this[1], this[2]> logger;
3 private DB<this[0], this[1], this[2]> db;

...
4 public UserApp() {
5 logger = new Logger<this[1], this[2]>();
6 db = new DB<this[0], this[1], this[2]>(logger);
7 }
8 }

9 public class DB<dbO, logO, dataO>
10 extends Xmodule where (logO < dataO) {
11 private Logger<logO, dataO> logger;
12 private BST<this[0], logO, dataO> bst;
13 private Hashmap<this[1], logO, dataO> hashmap;
14 public DB(Logger<logO, dataO> logger) {
15 this.logger = logger;

...
16 }
17 }

Figure 2. Specifying Xmodules and ownership for the example application described in Section 2.

TheOAT Type System’s Guarantees

The following lemma about theOAT type system can be proved in a reasonably straightforward manner
using Lemma 1.

L EMMA 2. The OAT type system guarantees the following properties.

1. An Xmodule M can access a (non-Xmodule) object b with ownership tag ob only if M� ob.name.
2. An Xmodule M can call a method in another Xmodule N with owner oN only if one of the following is

true:
(a) M = oN.name (i.e. M owns N);
(b) The least common ancestor of M and N in the module tree is oN.name.
(c) N�M (i.e. N is an ancestor of M).

Lemma 2 does not, however, guarantee all the properties we want from Xmodules (i.e., Definition 1). In
particular, Lemma 2 does not consider any ordering of sibling Xmodules. TheOAT type system can, however,
provide stronger guarantees for a program which satisfies what we call theunique owner indicesassumption:
for all XmodulesM, all children ofM in the module tree are instantiated with ownership tags withunique
indices that can be statically determined. For such a program, the type system can order the children of every
XmoduleM from smallest to largest index, and assign thexid to each Xmodule as described in Section 2.
Then, the following result holds:

THEOREM 3. For a program with unique owner indices, in addition to Lemma2, the OAT type system
guarantees that if the least common ancestor of Xmodules M and N in the module tree is oN.name, then M
can call a method in N only ifxid(M) < xid(N).

PROOF.
We prove (by contradiction) that if least common ancestor ofM andN in the module tree isoN.name, and

xid(M) > xid(N), thenM can not have a formal tag with valueoN. Therefore, it can not declare a type with
owner tagoN, and can not accessN.

Let L be the least common ancestor ofM. SinceL = oN.name, we know thatL is N’s parent. LetQ be the
ancestor ofM which isN’s sibling, and letoQ beQ’s ownership tag (i.e., the tag with whichQ is instantiated).

SinceN andQ have the same parent (i.e.L) in the module tree, we haveoN.name= oQ.name= L. Since
xid(M) > xid(N), M is to the right ofN in the ownership tree. Therefore,Q, which is an ancestor ofM, is
to the right ofN in the ownership tree. Therefore, we haveoQ. index> oN. index.

Assume for contradiction thatM does haveoN as one of its tags. Using Lemma 1, one can show that the
only way forM to receive tagoN is if Q also has a formal tag with valueoN. Thus,Q’s first formal owner tag
has valueoQ and another one of its formals has valueoN.

Let P0 = Q, and consider the chain of Xmodule instantiations where XmodulePi instantiatedPi−1. P1 has
to instantiateQ (which is the same asP0) using its formal ownership tags

〈

f 1
a , f 1

b , ...
〉

, where f 1
a has value

oQ and f 1
b has valueoN. (We must havef 1

a as the first formal, sinceoQ is the owner ofQ. Without loss of
generality, we can havef 1

b be the second formal since the type system does not care aboutthe ordering of
formal tags after the first one.)

SinceoN.name= oQ.name= L, this chain of instantiations must lead back toL, since that is the only
Xmodule that can create ownership tags with valuesoN andoQ in its class definition (using the keyword
this). 5 Let Pk = L. For the class declaration of each of the XmodulesPi for 1≤ i < k, the following must
be true.

• Pi must have formalsf i
a and f i

b, with valuesoQ andoN, respectively, andPi must pass these formals into
the instantiation ofPi−1.

• In the type definition ofPi ’s class,Pi must have the constraintf i
a < f i

b on its formal tags (either because
f i
a is the owner tag, or through awhere clause that enforcesf i

a < f i
b.k.

possible? The first condition must hold for us to be able to pass bothoN and oQ down to P0 = Q. The second
condition is true for the Xmodules by induction. In the base case,P1 must know thatf 1

a < f 1
b ; otherwise, the

type system will throw an error when it tries to instantiateP0 = Q with owner f 1
a . Then, inductively,Pi must

know f i
a < f i

b to be able to instantiatePi−1.
Finally, Pk−1 is instantiated in the class file corrsponding toPk = L. In this declaration, the formalf k

a with
valueoQ is instantiated withthis [x]. Similarly, f k

b with valueoN is instantiated withthis [y]. Since the class
definition ofPk type checks, we must havef k

a < f k
b . This check contradicts our original assumption thatx> y

however, since ifx > y our type check should fail. Therefore, we must haveoQ. index< oN. index.

Theorem 3 only modifies the Condition 2b of Lemma 2. Therefore, Lemma 2 along with Theorem 3
imposes restrictions on every XmoduleM which are only slightly weaker than the restrictions required by
Definition 1. Condition 1 in Lemma 2 corresponds to Rule 1 of Definition 1. Conditions 2a and 2b are the
cases permitted by Rule 2. Condition 2c, however, corresponds to the special case of callbacks or calling a
method from the same Xmodule, which is not permitted by Definition 1. This case is modeled differently, as
we explained in Section 2.

TheOAT type system is a best-effort type system to check for the restrictions required by Definition 1. The
OAT type system can not fully guarantee, however, that a type-checked program does not violate Definition 1.
Specifically, theOAT type system can not always detect the following violations statically. First, if the
program does not have unique owner indices, thenL may instantiate bothM andN with the same index.
Then, by Lemma 2,M andN, can call each other’s methods, and we can get cyclic dependencies between
Xmodules.6 Second, the program may perform improper callbacks. Say a method from M calls back to
methodB from L. An improper callbackB can call a method ofN, even though the type system knows that
M is to the right ofN. In both cases, the type system allows a program with cyclic dependency between
Xmodules to pass the type checks, which is not allowed by Definition 1.

5Note thatL could be theworld Xmodule, in which case bothoN and oQ were created in themain function using theworld
keyword.
6Since all non-Xmodule objects are implicitly assigned higher indices than their Xmodule siblings, these non-Xmodule objects can
not introduce cyclic dependencies between Xmodules.

To have an ownership-aware TM which guarantees exactly Definition 1, one needs to impose additional
dynamic checks. The runtime system can use the ownership tags to build a module tree during runtime, and
use this module tree to perform dynamic checks to verify thatevery Xmodule has unique owner indices and
contains only proper callbacks. The runtime system can do this by dynamically inferring indices according
to which Xmodule calls which other Xmodule, and reporting anerror if there is any circular calling.7

4. COMPUTATIONS WITH Xmodules

In this section, we formally define the structure of transactional programs with Xmodules. This section
converts the informal explanation from Section 2 into a formal model that we later use to prove properties
of ownership-aware TM. First, we briefly review the transactional computation framework described in [2].
We then add Xmodules and ownership to this framework, and provide the formal statement of Definition 1.

Transactional Computations

In the framework from [2], the execution of a program is modeled using a “computation tree”C that
summarizes the information about both the control structure of a program and the nesting structure of
transactions, and an “observer function”Φ which characterizes the behavior of memory operations. A
program execution is assumed to generate atrace(C ,Φ).

A computation treeC is defined as an ordered tree with two types of nodes:memory-operation nodes
memOps(C) as leaves andcontrol nodesspNodes(C) as internal nodes. A memory operationv satisfies the
read predicateR(v, ℓ) if v reads from locationℓ, while v satisfies thewrite predicateW(v, ℓ) if v writes toℓ.
Control nodes are eitherS (series) orP (parallel) nodes. Conceptually, the children of anS-node must be
executed serially, from left to right, while the children ofP node can be executed in parallel. SomeSnodes
are labeled as transactions; definexactions(C) as the set of these nodes.

Instead of specifying the value that an operation reads or writes to a memory locationℓ, we abstract away
the values by using anobserver functionΦ. For a memory operationv that accesses a memory locationℓ,
the nodeΦ(v) is defined to be the operation that wrote the value ofℓ thatv sees.

We define several structural notations on the computation treeC . Denote theroot of C asroot(C). For
any tree nodeX, let ances(X) denote the set of allX’s ancestors (includingX itself) in C . Similarly, let
desc(X) denote the set of allX’s descendants, includingX itself. Denote the set of proper ancestors of
X by pAnces(X). For any tree nodeX, we define thetransactional parentof X, denotedxparent(X),
as parent(X) if parent(X) ∈ xactions(C), or xparent(parent(X)) if parent(X) 6∈ xactions(C).
Define thetransactional ancestorsof X as xAnces(X) = ances(X) ∩ xactions(C). Denote theleast
common ancestorof two nodesX1,X2 ∈ C by LCA(X1,X2). Define xLCA(X1,X2) as Z = LCA(X1,X2) if
Z ∈ xactions(C), and asxparent(Z) otherwise.

A computation can also be represented as a computation dag (directed acyclic graph). Given a treeC , the
dagG(C) = (V(C),E(C)) corresponding to the tree is constructed recursively. Every internal nodeX in the
tree appears as two vertices in the dag. Between these two vertices, the children ofX are connected in series
if X is anS node, and are connected in parallel ifX is aP node. Figure 3 show a computation tree and its
corresponding computation dag.

Classical theories on serializability refer to a particular execution order for a program as ahistory [12].
In our framework, a history corresponds to a topological sort S of the computation dagG(C). We define our
models of TM using these sorts. Reordering a history to produce a serial history is equivalent to choosing
a different topological sortS ′ of G(C) which has all transactions appearing contiguously, but which is still
“consistent” with the observer function associated withS .

7 It is possible to statically check for unique owner indices by imposing additional restrictions on the program. We opted, however,
to describe a more flexible programming model with weaker static guarantees.

u
1

w
1

w
2

v
2

v
1

T
2!

T
1!

T
3!

T
5!

(b) Transaction!

u
2

T
4!

x
1

x
2

Figure 3. A sample (a) computation treeC and (b) its corresponding dagG(C).

Xmodules and Computation Tree

As mentioned in Section 2, in this paper, we consider programs that contain Xmodules. In our theoretical
framework, we consider traces generated by a program which is organized into a setN of Xmodules. Each
XmoduleM ∈N has some number of methods and a set of memory locations associated with it.

We partition the set of all memory locationsL into sets of memory owned by each Xmodule. Let
modMemory(M) ⊆ L denote the set of memory locations owned byM. For a locationℓ ∈ modMemory(M),
we say thatowner(ℓ) = M. When a method of XmoduleM is called by a method from a different Xmodule,
a safe-nested transactionT is generated.8 We use the notationxMod(T) = M to associate the instanceT with
the XmoduleM. We also define the instances associated withM as

modXactions(M) = {T ∈ xactions(C) : xMod(T) = M} .

As mentioned in Section 2, Xmodules of a program are arrangedas the module tree, denoted byD.
Each Xmodule is assigned anxid according to a left-to-right depth-first tree walk, with theroot ofD being
world with xid = 0. Denote the parent of XmoduleM in D asmodParent(M), and the ancestors ofM
asmodAnces(M) (includeM itself). Similarly, letmodDesc(M) be the set ofM’s descendants. We say that
xMod(root(C)) = world , i.e., the root of the computation tree is a transaction associated with theworld
Xmodule.

We use the module treeD to restrict the sharing of data between Xmodules and to limitthe visibility of
Xmodule methods according to the rules given in Definition 2.

DEFINITION 2 (Formal Restatement of Definition 1).A program with a module treeD should generate
only traces(C ,Φ) which satisfy the following rules:

1. For any memory operation v which accesses a memory location ℓ, let T = xparent(v). Thenowner(ℓ) ∈
modAnces(xMod(T)).

2. Let X,Y ∈ xactions(C) be transaction instances such thatxMod(X) = M and xMod(Y) = N. We can
have X= xparent(Y) only if modParent(N) ∈ modAnces(M), andxid(M) < xid(N).

5. THE OAT MODEL

In this section, we describe theOAT model, an abstract execution model for TM with ownership and
Xmodules. The novel feature of theOATmodel is that it uses the structure of Xmodules to provide a commit

8As we explained in Section 2, callbacks are handled differently.

mechanism which can be viewed as a hybrid of closed and open-nested commits. TheOAT model presents
an operational semantics for TM, and is not intended to describe an actual implementation, although these
semantics can be used to guide an implementation.

Overview

The TM system is modeled as a nondeterministic state machinewith two components: aprogram and a
runtime system. The runtime system, which we call theOAT model, dynamically constructs and traverses
a computation treeC as it executes instructions generated by the program. TheOAT model maintains a set
of readynodes, denoted byready(C) ⊆ nodes(C), and at every step, theOAT model nondeterministically
chooses one of these ready nodesX ∈ ready(C) to issue the next instruction. The program then issues one
of the following instructions (whose precondition is satisfied) onX’s behalf: fork , join , xbegin , xend ,
xabort , read , or write . For shorthand, we sometimes say thatX issues an instruction.

TheOATmodel describes a sequential semantics, that is, we assume at every time stept, a program issues
a single instruction. The parallelism in this model arises from the fact that at a particular time, several nodes
can be ready, and the runtime nondeterministically chooseswhich node to issue an instruction.

In the rest of this section, we give a detailed description ofthe OAT model. First, we describe the state
information maintained by theOAT model and define the notation we use to refer to this state. Second, we
describe how theOAT model constructs and traverses the computation tree as instructions are issued. Then,
we describe how theOAT model handles memory operations (i.e.,read andwrite), conflict detection, and
transaction commits, and transaction aborts.

5.1 State Information and Notation

As the OAT model executes instructions, it dynamically constructs the computation treeC . For each of
the sets defined in Section 4 (e.g.,nodes(C), spNodes(C), memOps(C), xactions(C), etc.), we define
corresponding time-dependent versions of these sets by indexing them with an additional time argument. For
example, we define the setnodes(t,C) denotes the set of nodes in the computation tree aftert time steps
have passed. The generalized sets from Section 4 are monotonically increasing, i.e., once an element is added
to the set, it is never removed at a later timet. Sometimes for shorthand, we omit the time argument when it
is clear that we are referring to a particular fixed timet.

At any time t, each internal nodeA ∈ spNodes(t,C) has astatusfield status[A]. These status fields
change with time. IfA∈ xactions(t,C), i.e.,A is a transaction, thenstatus[A] can be one ofCOMMITTED,
ABORTED, PENDING, or PENDINGABORT. Otherwise,A∈ spNodes(t,C)−xactions(t,C) is either a P-node
or a nontransactional S-node; in this case,status[A] can either beWORKINGor SYNCHED. We define several
abstract sets for the tree based on this status field. The first6 sets partition thespNodes(t,C), the set of
internal nodes of the computation tree. The last 4 sets categorize transactions and nodes as being either
active or complete.

1. pending(t,C) = {X ∈ xactions(t,C) : status[Z] = PENDING} (Pending transactions).

2. pendingAbort(t,C) = {X ∈ xactions(t,C) : status[Z] = PENDINGABORT} (Aborting transactions).

3. committed(t,C) = {X ∈ xactions(t,C) : status[Z] = COMMITTED} (Committed transactions).

4. aborted(t,C) = {X ∈ xactions(t,C) : status[Z] = ABORTED} (Aborted transactions).

5. working(t,C) = {Z ∈ spNodes(t,C)−xactions(t,C) : status[Z] = WORKING} (Working nodes).

6. synched(t,C) = {Z ∈ spNodes(t,C)−xactions(t,C) : status[Z] = SYNCHED} (Synched nodes).

7. activeX(t,C) = pending(t,C)∪pendingAbort(t,C) (Active transactions).

8. activeN(t,C) = activeX(t,C)∪working(t,C). (Active nodes).

9. doneX(t,C) = committed(t,C)∪aborted(t,C) (Complete transactions).

10. doneN(t,C) = doneX(t,C)∪synched(t,C) (Complete nodes).

TheOAT model maintains a set ofreadyS-nodes, denoted asready(t,C). We discuss the properties of
ready nodes later, in Section 5.2. Note thatready(t,C), and the sets defined above which are subsets of
activeN(t,C) are not monotonic, because completing nodes removes elements from these sets.

For the purposes of detecting conflicts, at any timet, for any active transactionT, i.e.,T ∈ activeX(t,C),
theOATmodel maintains aread setR(t,T) and awrite setW(t,T) for T. The read setR(t,T) is a set of pairs
(ℓ,v), whereℓ ∈ L is a memory location andv∈ memOps(t,C) is a memory operation that reads fromℓ. We
defineW(t,T) similarly. We represent main memory as the read set/write set of root(C). At time t = 0, we
assumeR(0,root(C)) andW(0,root(C)) initially contain a pair(ℓ,⊥) for all locationsℓ ∈ L .

In addition to the basic read and write sets, we also definemodule read setandmodule write setfor all
transactionsT ∈ activeX(t,C). Module read set is defined as

modR(t,T) = {(ℓ,v) ∈ R(t,T) : owner(ℓ) = xMod(T)} .

In other words,modR(t,T) is the subset ofR(t,T) that accesses memory owned byT ’s XmodulexMod(T).
Similarly, we define themodule write setas

modW(t,T) = {(ℓ,v) ∈ W(t,T) : owner(ℓ) = xMod(T)} .

TheOAT model maintains two invariants onR(t,T) andW(t,T). First,W(t,T)⊆ R(t,T) for every transac-
tion T ∈ xactions(t,C), i.e., a write also counts as a read. Second,R(t,T) andW(t,T) each contain at most
one pair(ℓ,v) for any locationℓ. Thus, we use the shorthandℓ ∈ R(t,T) to mean that there exists a nodeu
such that(ℓ,u) ∈ R(t,T), and similarly forW(t,T). We also overload the union operator: at some timet, an
operationR(T)← R(T)∪{(ℓ,u)} means we constructR(t +1,T) by

R(t +1,T) = {(ℓ,u)}∪
(

R(t,T)−
{

(ℓ,u′) ∈ R(t,T)
})

.

In other words, we add(ℓ,u) to R(T), replacing any(ℓ,u′) ∈ R(t,T) that existed previously.

5.2 Constructing the Computation Tree

In theOAT model, the runtime constructs the computation tree in a straightforward fashion as instructions
are issued. For completeness, however, we give a detailed description of this construction.

Initially, at timet = 0, we begin with only the root node in the tree, i.e.,nodes(0,C) = xactions(0,C) =
{root(C)}. This root node also begins as ready, i.e.,ready(0,C) = {root(C)}. Throughout the computa-
tion, the status of the root node of the tree is alwaysPENDING.

A new internal node is created if theOAT model picks ready nodeX and X issues afork or xbegin
instruction. IfX issues afork , then the runtime creates a P-nodeP as a child ofX, and two S-nodesS1 and
S2 as children ofP, all with statusWORKING. The fork also removesX from ready(C) and addsS1 andS2

to ready(C). If X issues anxbegin , then the runtime creates a new transactionY ∈ xactions(C) as a child
of X, with status[Y] = PENDING, removesX from ready(C), and addsY to ready(C).

The OAT model completes a nontransactional S-nodeZ ∈ ready(t,C)− xactions(t,C) (which must
havestatus[Z] = WORKING) by having Z issue ajoin instruction. Thejoin instruction first changes
status[Z] to SYNCHED. In the tree, sinceparent(Z) is always a P-node,Z has exactly one sibling. IfZ
is the first child ofparent(Z) to beSYNCHED, theOAT model removesZ from ready(C). Otherwise,Z is
the last child ofparent(Z) to beSYNCHED, and theOAT model removesZ andparent(Z) from ready(C),
changes the status of bothZ andparent(Z) to SYNCHED, and addsparent(parent(Z)) to ready(C).

TheOAT model can complete a transactionX ∈ ready(t,C) by having it issue either anxend or xabort
instruction. If status[X] = PENDING, then X can issue anxend to changestatus[X] to COMMITTED.
Otherwise,status[X] = PENDINGABORT, andX can issue anxabort to change its status toABORTED. For

bothxend andxabort , theOATmodel removesX fromready(C) and addsparent(X) back intoready(C).
Thexend instruction also performs an ownership-aware commit and changes read sets and write sets, which
we describe later in Section 5.4.

Finally, a ready nodeX issues aread andwrite instruction, if the instruction does not generate a conflict,
it adds a memory operation nodev to memOps(t,C), with v as a child ofX. If the instruction would create
a conflict, the runtime may change the status of onePENDING transactionT to PENDINGABORTto make
progress in resolving the conflict. For shorthand, we refer to the status change of a transactionT from
PENDINGto PENDINGABORTas asigabort of T.

This construction of the tree guarantees a few properties.
First, the sequence of instructionsS generated by theOAT model is a valid topological sort of the

computation dagG(C). Second, theOAT model generates a tree of a canonical form, where the root node
of the tree is a transaction, all transactions are S-nodes and every P-node has exactly two nontransactional
S-node children. This canonical form is imposed for convenience of description; it is not important for any
theoretical results. Finally, theOATmodel maintains the invariant the active nodes form a tree, with the ready
nodes at the leaves. This property is important for the correctness of theOAT model.

5.3 Memory Operations and Conflict Detection

TheOAT model performs eager conflict detection; before performinga memory operation that would create
a newv∈ memOps(C), theOAT model first checks whether creatingv would cause a conflict, according to
Definition 3.

DEFINITION 3. Suppose at time t, the OAT model issues aread or write instruction that potentially
creates a memory operation node v. We say that v generates amemory conflictif there exists a location
ℓ ∈ L and an active transaction Tu ∈ activeX(t,C) such that

1. Tu 6∈ xAnces(v), and
2. either R(v, ℓ)∧ ((ℓ,u) ∈ W(t,Tu)), or W(v, ℓ)∧ ((ℓ,u) ∈ R(t,Tu)).

If a potential memory operationv would generate a conflict, then the memory operationv does not occur;
instead, asigabort of some transaction may occur. We describe the mechanism foraborts in Section 5.5.
Otherwise,v does not generate a conflict and observes the valueℓ from R(Y), whereY is the closest ancestor
of v with ℓ in its readset (i.e.,(ℓ,u) ∈ R(Y) andΦ(v) = u). Theread also addsv to X’s readset. A successful
write operationv sets the observer functionΦ(v) in the same way as aread . Thewrite adds(ℓ,v) to both
R(X) andW(X).

5.4 Ownership-Aware Transaction Commit

Theownership-aware commit mechanismemployed by theOAT model contains elements of both closed-
nested and open-nested commits. APENDING transactionY issues anxend instruction to commitY into
X = xparent(Y). This xend commits locations from its read and write sets which are owned by xMod(Y)
in an open-nested fashion to the root of the tree, while it commits locations owned by other Xmodules in a
closed-nested fashion, merging those reads and writes intoX’s read and write sets.

We can describe theOAT model’s commit mechanism more formally in terms of module readsets and
writesets. Suppose at timet, Y ∈ xactions(t,C) with status[Y] = PENDING issues anxend . This xend
changes readsets and writesets as follows.

R(root(C)) ← R(root(C))∪modR(Y)

R(xparent(Y)) ← R(xparent(Y))∪ (R(Y)−modR(Y))

W(root(C)) ← W(root(C))∪modW(Y)

W(xparent(Y)) ← W(xparent(Y))∪ (W(Y)−modW(Y))

Unique Committer Property

Definition 2 guarantees certain properties of the computation tree which are essential to the ownership-aware
commit mechanism. Theorem 5 proves that every memory operation has one and only one transaction that is
responsible for committing the memory operation. The proofof the theorem requires the following lemma.

L EMMA 4. Given a computation treeC , for any T∈ xactions(C), let ST = {xMod(T ′) : T ′ ∈ xAnces(T)}.
ThenmodAnces(xMod(T))⊆ ST .

PROOF. We prove this fact by induction on the nesting depth of transactionsT in the computation tree. In
the base case, the top-level transactionT = root(C), andxMod(root(C)) = world . Thus, the fact holds
trivially. For the inductive step, assume thatmodAnces(xMod(T)) ⊆ ST holds for any transactionT at depth
d. We show that the fact holds for anyT∗ ∈ xactions(C) at depthd+1.

For any suchT∗, we knowT = xparent(T∗) is at depthd. Then, by Rule 2 of Definition 2, we have
modParent(xMod(T∗)) ∈ modAnces(xMod(T)). Thus, modAnces(xMod(T∗)) ⊆ modAnces(xMod(T)) ∪
{xMod(T∗)}. By construction of the setST , we haveST∗ = ST ∪{xMod(T∗)}. Therefore, using the inductive
hypothesis, we havemodAnces(xMod(T∗))⊆ ST∗ .

THEOREM 5. If a memory operation v accesses a memory locationℓ, then there exists a unique transaction
T∗ ∈ xAnces(v), such that

1. owner(ℓ) = xMod(T∗), and
2. For all transactions X∈ pAnces(T∗)∩xactions(C), X can not directly access locationℓ.

This transaction T∗ is thecommitterof memory operation v, denotedcommitter(v).

PROOF. This result follows from the properties of the module tree and computation tree stated in Defini-
tion 2.

Let T = xparent(v). First, by Definition 2, Rule 1, we knowowner(ℓ) ∈ modAnces(xMod(T)). We
know modAnces(xMod(T)) ⊆ ST by Lemma 4. Thus, there exists some transactionT∗ ∈ xAnces(T) such
thatowner(ℓ) = xMod(T∗). We can use Rule 2 to show that theT∗ is unique. LetXi be the chain of ancestor
transactions ofT, i.e., letX0 = T, and letXi = xparent(Xi−1), up untilXk = root(C). By Rule 2, we know
xid(xMod(Xi)) < xid(xMod(Xi−1)), that is, thexids strictly decrease walking up the tree fromT. Thus,
there can only be one ancestor transactionT∗ of T with xid(xMod(T∗)) = xid(owner(ℓ)).

To check the second condition of Theorem 5, consider anyX ∈ pAnces(T∗) ∩ xactions(C). By
Rule 1,X can accessℓ directly only if owner(ℓ) ∈ modAnces(xMod(X)) implying thatxid(owner(ℓ)) ≤
xid(xMod(X)). But we know thatowner(ℓ) = xMod(T∗) andxid(xMod(T∗)) > xid(xMod(X)).

Intuitively, T∗ = committer(v) is the transaction which “belongs” to the same Xmodule as thelocation
ℓ whichv accesses, and is “responsible” for committingv to memory and making it visible to the world. The
second condition of Theorem 5 states that no ancestor transaction of T∗ in the call stack can ever directly
accessℓ; thus, it is “safe” forT∗ to commitℓ.

5.5 Transaction Abort

When theOAT model detects a conflict, it aborts one of the conflicting transactions by changing its status
from PENDINGto PENDINGABORT. In theOAT model, a transactionX might not abort immediately; instead,
it might continue to issue more instructions after its status has changed toPENDINGABORT. Later, it will be
useful to refer to the set of operations a transactionX issues while its status isPENDINGABORT.

DEFINITION 4. The set of operations issued by X or descendants of X afterstatus[X] changes to
PENDING ABORT are called X’sabort actions. This set is denoted byabortactions(X).

The PENDINGABORTstatus allowsX to compensate for the safe-nested transactions that may have
committed; if transactionY is nested insideX, then the abort actions ofX contain the compensating action

of Y. Eventually aPENDINGABORTtransaction issues anxend instruction, which changes its status from
PENDINGABORTto ABORTED.

If a potential memory operationv generates a conflict withTu andTu’s status isPENDING, then theOAT
model can nondeterministically choose to abort eitherxparent(v), or Tu. In the latter case,v waits forTu to
finish aborting (i.e., change its status toABORTED) before continuing. IfTu’s status isPENDINGABORT, thenv
just waits forTu to finish aborting before trying to issueread or write again.

This operational model uses the same conflict detection algorithm as TM with ordinary closed-nested
transactions does; the only subtleties are thatv can generate a conflict with aPENDINGABORTtransactionTu,
and that transactions no longer abort instantaneously because they have abort actions. Some restrictions on
the abort actions of a transaction may be necessary to avoid deadlock, as we describe later in Section 7.

6. SERIALIZABILITY BY MODULES

In this section, we defineserializability by modules, a definition inspired by the database notion of multilevel
serializability (e.g., as described in [13]). First, we describe the definition of serializability in the transactional
computation framework, as given in [2]. Next, we incorporate Xmodules into this definition and define
serializability by modules. We then prove that theOATmodel guarantees serializability by modules. Finally,
we discuss the relationship between the definition of serializability by modules, and the notion of abstract
serializability for the methodology of open nesting.

6.1 Transactional Computations and Serializability

In [2], serializability for a transactional computation with computation treeC was defined in terms of
topological sortsS of the computation dagG(C). Informally, a trace(C ,Φ) is serializable if there exists
a topological sort orderS of G(C) such thatS is “sequentially consistent with respect toΦ”, and all
transactions appear contiguous in the orderS . In this section, we give more precise, formal definitions of
this concept.

Content Sets

We first describe some notation needed to formally describe serializability by modules. All definitions in
this section area posteriori, i.e., they are defined on the computation tree after the program has finished
executing.

We define “content” sets for every transactionT by partitioningmemOps(T) (all the memory operations
enclosed insideT including those belonging to its nested transactions) intothree sets:cContent(T),
oContent(T) andaContent(T). For anyu ∈ memOps(T), we define the content sets based on the final
status of transactions inC that one visits when walking up the tree fromu to T.

DEFINITION 5. For any transaction T and memory operation u, define the setscContent(T), oContent(T),
andaContent(T) according theContentType(u,T) procedure:

ContentType(u,T) � For any u∈ memOps(T)
1 X← xparent(u)
2 while (X 6= T)
3 if (X isABORTED) return u∈ aContent(T)
4 if (X = committer(u)) return u∈ oContent(T)
5 X← xparent(X)
6 return u∈ cContent(T)

Recall that in theOAT model, the safe-nested commit ofT commits some memory operations in
an open-nested fashion, toroot(C), and some operations in a closed-nested fashion, toxparent(T).
Informally, oContent(T) is the set of memory operations that are committed in an “open” manner byT ’s
subtransactions. Similarly,aContent(T) is the set of operations that are discarded due to the abort ofsome

subtransaction inT ’s subtree. Finally,cContent(T) is the set of operations that are neither committed in an
“open” manner, nor aborted.

Sequential Consistency with Transactions

For computations with transactions, we can modify the classic notion of sequential consistency to account
for transactions which abort. Transactional semantics dictate that memory operations belonging to an aborted
transactionT should not be observed by (i.e., arehidden from) memory operations outside ofT.

DEFINITION 6. For u ∈ memOps(C),v ∈ V(C), let X = xLCA(u,v). We say that u ishidden from v if
u∈ aContent(X).

Our definition of serializability by modules requires that computations satisfy some notion of sequential
consistency, generalized for the setting of TM.

DEFINITION 7. Consider a trace(C ,Φ) and a topological sortS of G(C). For all v ∈ memOps(C) such
that R(v, ℓ) ∨W(v, ℓ), the transactional last writerof v according toS , denotedXS (v), is the unique
u∈ memOps(C)∪{⊥} that satisfies four conditions:

1. W(u, ℓ),
2. u<S v,
3. ¬(uHv), and
4. ∀w(W(w, ℓ)∧ (u <S w <S v))⇒ wHv.

DEFINITION 8. A trace (C ,Φ) is sequentially consistentif there exists a topological sortS such that
Φ = XS . We say thatS is sequentially consistent with respect toΦ.

In other words, the transactional last writer of a memory operation u which accesses locationℓ, is the
last writev to locationℓ in the orderS , except we skip over writesw which are hidden from (i.e., aborted
with respect to)u. Intuitively, Definition 8 requires that there exists an order S explaining all the memory
operations of the computation.

Serializability

DEFINITION 9. A trace(C ,Φ) is serializableif there exists a topological sortS that satisfies two conditions:

1. Φ = XS (S is sequentially consistent with respect toΦ), and
2. ∀T ∈ xactions(C) and∀v∈V(C), we havexbegin(T)≤S v≤S xend(T) implies v∈V(T)).

Ordinary serializability can be thought of as a strengthening of sequential consistency which also requires
that the orderS both explains all memory operations, and also has all transactions appearing contiguous.

6.2 Defining Serializability by Modules

In [2], a trace(C ,Φ) was said to beserializableif there exists a topological sortS of G(C) such thatS is
sequentially consistent with respect toΦ, and all transactions appear contiguous inS . Serializability in this
context can be thought of as a sequential consistency plus the requirement that transactions are atomic. This
definition of serializability is the “correct definition” for flat or closed-nested transactions. This definition
of serializability is too strong, however, for ownership-aware transactions. A TM system that enforces this
definition of serializability can not ignore lower-level memory accesses when detecting conflicts for higher-
level transactions.

Instead, we describe a definition of serializability by modules which checks for correctness of one
Xmodule at a time. Given a trace(C ,Φ), for each Xmodule M, we transform the treeC into a new tree
mTree(C ,M). The treemTree(C ,M) is constructed in such a way as to ignore memory operations of
Xmodules which are lower-level thanM, and also to ignore all operations which are hidden from transactions

of M. For each Xmodule M, we check that the transactions ofM in the trace(mTree(C ,M),Φ) is serializable.
If the check holds for all Xmodules, then trace(C ,Φ) is said to be serializable by modules.

Definition 10 formalizes the construction ofmTree(C ,M).

DEFINITION 10. For any computation treeC , let mTree(C ,M) be the result of modifyingC as follows:

1. For all memory operations u∈ memOps(C) with u accessingℓ, if owner(ℓ) = N for somexid(N) >
xid(M), convert u into a nop.

2. For all transactions T∈ modXactions(M), convert all u∈ aContent(T) into nops.

The intuition behind Condition 1 of Definition 10 is the following. When looking at XmoduleM, we throw
away memory operations belonging to a lower-level XmoduleN, since by Theorem 5, transactions ofM can
never directly access the same memory as those operations anyway. In Condition 2, we ignore the content of
any aborted transactions nested inside transactions ofM; those transactions might access the same memory
locations as operations which we did not turn into nops, but those operations are aborted with respect to
transactions ofM.

Lemma 6 argues that if a trace(C ,Φ) is sequentially consistent, then(mTree(C ,M),Φ) is a valid trace;
an operationu that remains in the trace never attempts to observe a value from aΦ(u) which was turned into
a nop due to Definition 10. In addition, the transformed traceis also sequentially consistent.

L EMMA 6. Let(C ,Φ) be any sequentially consistent trace. Then for any Xmodule M, (mTree(C ,M),Φ) is a
valid trace. In other words, if u∈ memOps(mTree(C ,M)), thenΦ(u)∈ memOps(mTree(C ,M)). Furthermore,
anyS which is sequentially consistent with respect toΦ in (C ,Φ) is also sequentially consistent with respect
to Φ in (mTree(C ,M),Φ).

PROOF. In the new treemTree(C ,M), pick anyu ∈ memOps(mTree(C ,M)) which remains. Assume for
contradiction thatv = Φ(u) was turned into a nop in one of Steps 1 and 2.

If v was turned into a nop in Step 1 of Definition 10, then we know becausev accessed a memory location
ℓ wherexid(owner(ℓ)) > xid(M). Sinceu must access the same locationℓ, u must also be converted into a
nop.

If v was turned into a nop in Step 2 of Definition 10, thenv∈ aContent(T) for somexMod(T) = M. Then
we can show that eithervHu, or u should have also been turned into a nop. LetX = xLCA(v,u). SinceX and
T are both ancestors ofv, eitherX is an ancestor ofT or T is a proper ancestor ofX.

1. First, supposeT is a proper ancestor ofX. Consider the path of transactionsY0,Y1, . . .Yk, whereY0 =
xparent(v), xparent(Yi) = Yi+1, and xparent(Yk) = T. Since v ∈ aContent(T), for someYj for
0 ≤ j ≤ k must havestatus[Yj] = ABORTED. SinceT is a proper ancestor ofX, X = Yx for somex
satisfying 0≤ x≤ k.

(a) If status[Yj] = ABORTEDfor any j satisfying 0≤ j < x, then we knowv ∈ aContent(X), and thus
vHu. Since we assumed(C ,Φ) is sequentially consistent andΦ(v) = u, by Definition 7, we know
¬vHu, leading to a contradiction.

(b) If Yj is ABORTEDfor any j satisfying x ≤ j ≤ k, then status[Yj] = ABORTEDimplies that u ∈
aContent(X), and thus,u should have been turned into a nop, contradicting the original setup of
the statement.

2. Next, consider the case whereX is an ancestor ofT. Sincev∈ aContent(T), we havev∈ aContent(X).
Therefore, this case is analogous to Case 1a above.

Finally, if Φ is the transactional last writer according toS for (C ,Φ), it is still the transactional last writer
for (mTree(C ,M),Φ) because the memory operations which are not turned into nopsremain in the same
relative order. Thus, the last condition is satisfied.

Note that Lemma 6depends onthe restrictions on Xmodules described in Definition 2. Without this
structure of modules and ownership, the construction of Definition 10 is not guaranteed to generate a valid
trace.

Finally, we can define serializability by modules.

DEFINITION 11. A trace (C ,Φ) is serializable by modulesif it is sequentially consistent, and if for all
Xmodules M inD, there exists a topological sortS of CM = mTree(C ,M) such that:

1. S is sequentially consistent with respect toΦ, and
2. For the treeCM, ∀T ∈ modXactions(M) and∀v∈V(CM), if we havexbegin(T)≤S v≤S xend(T), then

v∈V(T).

Informally, a trace(C ,Φ) is serializable by modules if it is sequentially consistent, and if for every Xmodule
M, there exists a sequentially consistent orderS for the trace(mTree(C ,M),Φ) such that all transactions of
M are contiguous inS .

6.3 OAT Model Guarantees Serializability by Modules

In this section, we show that theOAT model described in Section 5 generates traces(C ,Φ) that are
serializable by modules, i.e., that satisfy Definition 11. The proof of this fact consists of three steps. First,
we generalize the notion of “prefix race-freedom” describedin [2], to computations with Xmodules. Second,
we prove that theOAT model guarantees that a program execution is prefix race-free. Finally, we argue that
any trace which is prefix race-free is also serializable by modules.

Defining Prefix Race-Freedom

First, we define prefix races. These definitions are essentially the same as those in [2], except adapted for a
system with an ownership-aware commit mechanism instead ofan open-nested commit mechanism.

DEFINITION 12. For any execution orderS , for any transaction T∈ xactions(C), consider any v6∈
memOps(T) such thatxbegin(T) <S v <S xend(T). We say there exists aprefix race between T and v
if there exists a memory operation w∈ cContent(T) s.t., w<S v,¬(vHw), v and w both accessℓ, and one
of v,w writes toℓ.

DEFINITION 13. A trace (C ,Φ) is prefix race-freeiff exists a topological sortS of G(C) satisfying two
conditions:

1. Φ = XS (S is sequentially consistent with respect toΦ), and
2. ∀v∈V(C) and∀T ∈ xactions(C) there is no prefix race between v and T.

S is called aprefix race-free sortof the trace.

Properties of theOAT Model

Second, we prove several invariants thatOAT model preserves, and then use these invariants to prove that
theOAT model generates only traces(C ,Φ) which are prefix race-free.

The sequence of instructions that theOAT model issues naturally generates a topological sortS of the
computation dagG(C): the fork and xbegin instructions correspond to the begin nodes of a parallel or
series blocks in the dag, thejoin , xend , andxabort instructions correspond to end nodes of parallel or
series blocks, and theread or write instructions correspond to memory operation nodesv∈ memOps(C).

THEOREM 7. Suppose the OAT model generates a trace(C ,Φ) and an execution orderS . Then,Φ = XS ,
i.e.,S is sequentially consistent with respect toΦ.

PROOF. This result is reasonably intuitive, but the proof is tedious and somewhat complicated. We defer
the details of this proof to Appendix A.

Next, we describe an invariant on readsets and writesets that the OAT model maintains. Informally,
Lemma 8 states that, if a memory operationu that reads (writes) locationℓ is in thecContent (T) for some
transactionT, thenℓ belongs to the read set (write set) of some active transaction underT ’s subtree between
the time when the memory operation is performed and the time whenT ends.

L EMMA 8. Suppose the OAT model generates a trace(C ,Φ) with an execution orderS . For any transaction
T , consider a memory operation u∈ cContent(T) which accesses memory locationℓ at step t0. Let
t f be step whenxend(T) or xabort(T) happens. At any time t such that t0 ≤ t < t f there exists some
T ′ ∈ xDesc(T)∩activeX(t,C) (i.e., T′ is an active transactional descendant of T) such that

1. If R(u, ℓ), thenℓ ∈ R(t,T ′).
2. If W(u, ℓ), thenℓ ∈ W(t,T ′).

PROOF. Let X1,X2, . . .Xk be the chain of transactions fromxparent(u) up to, but not includingT, i.e.,
X1 = xparent(u), Xj = xparent(Xj−1), andxparent(Xk) = T. Since we assume thatu ∈ cContent(T)
and sinceT completes at timet f , for every j such that 1≤ j < k, there exists a unique timet j (satisfying
t0 ≤ t j < t f) when anxend changesstatus[Xj] from PENDINGto COMMITTED; otherwise, we would have
u∈ aContent(T).

Also, by Theorem 5 and Definition 5, we knowcommitter(u) ∈ xAnces(T), i.e., none of theXj ’s will
commit locationℓ in an open-nested fashion to the world; otherwise, we would haveu∈ oContent(T).

First, supposeR(u, ℓ). At time ti , when the memory operationu completes,(ℓ,u) is added toR(X1). In
general, at timet j , the ownership-aware commit mechanism, as described in Section 5.4, will propagate
ℓ from R(Xj) to R(Xj+1). Therefore, for any timet in the interval[t j−1, t j), we knowℓ ∈ R(t,Xj), i.e., for
Lemma 8,T ′ = Xj . Similarly, for any timet in the interval[tk, t f), we haveℓ ∈ R(t,T), i.e., we choose
T ′ = T.

The case whereW(u, ℓ) is completely analogous to the case ofR(u, ℓ), except we have bothℓ ∈ R(t,T ′)
andℓ ∈ W(t,T ′).

Angelina: Check this.

We use Theorem 7 and Lemma 8 to prove that theOATmodel generates traces which are prefix race-free.

THEOREM 9. Suppose the OAT model generates a trace(C ,Φ) with an execution orderS . ThenS is an
prefix race-free sort of(C ,Φ).

PROOF.
For the first condition of Definition 13, we know by Theorem 7 that theOAT model generates an orderS

which is sequentially consistent with respect toΦ.
To check the second condition, assume for contradiction that we have an orderS generated by theOAT

model, but there exists a prefix race between a transactionT and a memory operationv 6∈ memOps(T). Let w
be the memory operation from Definition 12, i.e.,w∈ cContent(T), w <S v <S xendT, ¬(vHw), w andv
access the same locationℓ, with one of the accesses being a write. Lettw andtv be the time steps in which
operationsw andv occurred, respectively, and lettendT be the time at which eitherxend(T) or xabort(T)
occurs (i.e., eitherT commits or aborts). We argue that at timetv, the memory operationv should not have
succeeded because it generated a conflict.

There are three cases forv andw. First supposeW(v, ℓ) andR(w, ℓ). Sincetw < tv < tendT, by Lemma 8,
at time tv, ℓ is in the writeset of some active transactionT ′ ∈ desc(T). Sincev 6∈ memOps(T), we know
T 6∈ ances(v). Thus, sinceT ′ is a descendant ofT, we haveT ′ 6∈ ances(v). SinceT ′ 6∈ ances(v), by
Definition 3, at timetv, v generates a conflict withT ′. The other two cases, whereR(v, ℓ) ∧W(w, ℓ) or
W(v, ℓ)∧W(w, ℓ), are analogous.

Prefix Race-Freedom Implies Serializability by Modules

Finally, we show that a trace(C ,Φ) which is prefix race-free is also serializable by modules.

THEOREM 10. Any trace(C ,Φ) which is prefix race-free is also serializable by modules.

PROOF.
First, by Definition 10 and Lemma 6, it is easy to see that a prefix-race free sortS of a trace(C ,Φ) is also

prefix-race free of the sort(mTree(C ,M),Φ) for any XmoduleM. Now we shall argue that for any Xmodule
M, we can transformS into SM such that all transactions inxactions(M) appear contiguous inSM.

Consider a prefix-race free sortS of (mTree(C ,M),Φ) which hask nodesv which violate the second
condition of Definition 11. We show how to construct a new order S ′ which is still a prefix race-free sort of
(mTree(C ,M),Φ), but which has onlyk−1 violations.

We reduce the number of violations according to the following procedure:

1. Of all transactionsT ∈ modXactions(M) such that there exists an operationv such thatxbegin(T) ≤S

v≤S xend(T) andv 6∈V(T), choose theT = T∗ which has the latestxend(T) in the orderS .

2. In T∗, pick the firstv 6∈V(T∗) which causes a violation.

3. Create a new sortS ′ by movingv to be immediately beforexbegin(T∗).

In order to argue thatS ′ is still a prefix race-free sort of(mTree(C ,M),Φ), we need to show that moving
v does not generate any new prefix races, and does not create a sort S ′ which is no longer sequentially
consistent with respect toΦ (i.e., thatΦ is still the transactional last writer according toS ′). There are three
cases:v can be a memory operation, anxbegin(T ′), or anxend(T ′).

1. Supposev is a memory operation which accesses locationℓ. For all operationsw such thatxbegin(T) <S

w <S v, we argue thatw can not access the same locationℓ unless bothw andv read fromℓ. Since we
chosev to be the first memory operation such thatxbegin(T) <S v <S xend(T) such thatv 6∈V(T), we
knoww∈V(T). We know by construction ofmTree(C ,M), thatw∈ cContent(T) (if w∈ oContent(T)
or w∈ aContent(T), then steps 1 or 2, respectively, in Definition 10 will turnw into a nop). Therefore,
by Definition 12, unlessw andv both read fromℓ, v has a prefix race withT, contradicting the fact that
S is a prefix race-free sort of the trace. Thus, movingv to be beforexbegin(T) can not generate any
new prefix races or change the transactional last writer for any memory operation, andS ′ is still a prefix
race-free sort of the trace.

2. Next, supposev = xbegin(T ′). Moving xbegin(T ′) can not generate any new prefix races withT ′,
because the only memory operationsu which satisfyxbegin(T) <S u <S xbegin(T ′) satisfy u 6∈
cContent(T ′). Also, movingxbegin(T ′) does not change the transactional last writer for any nodev
because the move preserves the relative order of all memory operations. Therefore,S ′ is still a prefix
race-free sort.

3. Finally, supposev = xend(T ′). By moving xend(T ′) to be beforexbegin(T), we can only lose
prefix races withT ′ that already existed inS because we are moving nodes out of the interval
[xbegin(T ′),xend(T ′)]. Also, as withxbegin(T ′), movingxend(T ′) does not change any transaction
last writers. Therefore,S ′ is still a prefix race-free sort of the trace.

Since we can eliminate violations of the second condition ofDefinition 11 one at a time, we can construct
a sortSM which satisfies serializability by modules by eliminating all violations.

Finally, we can prove theOATmodel guarantees serializability by modules by putting theprevious results
together.

THEOREM 11. Any trace(C ,Φ) generated by the OAT model is serializable by modules.

PROOF. By Theorem 9, theOAT model generates only trace(C ,Φ) which are prefix race-free. By
Theorem 6.3, any trace(C ,Φ) which is prefix race-free is serializable by modules.

6.4 Abstract Serializability

By Theorem 11, theOAT model guarantees serializability by modules. We now relatethis definition to the
notion of abstract serializabilityused in multilevel database systems [13]. As we mentioned inSection 1,
the ownership-aware commit mechanism is a part of a methodology which includes abstract locks and
compensating actions. In this section we argue thatOAT model provides enough flexibility to accommodate
abstract locks and compensating actions. In addition, if a program is “properly locked and compensated,”
then serializability by modules guarantees abstract serializability.

The definition of abstract serializability in [13] assumes that the program is divided into levels, and that
a transaction at leveli can only call a transaction at leveli + 1.9 In addition, transactions at a particular
level have predefined commutativity rules, i.e., some transactions of the same Xmodule can commute with
each other and some can not. The transactions at the lowest level (sayk) are naturally serializable; call
this scheduleZk. Given a serializable scheduleZi+1 of level-i + 1 transactions, the schedule is said to be
serializable at leveli if all transactions inZi+1 can be reordered, obeying all commutativity rules, to obtain a
serializable orderZi for level-i transactions. The original schedule is said to be abstractly serializable if it is
serializable for all levels.

These commutativity rules might be specified using abstractlocks [11]: if two transactions can not
commute, then they grab the same abstract lock in a conflicting manner. In the application described in
Section 2, for instance, transactions callinginsert and remove on theBST using the same key do not
commute and should grab the same write lock. Although abstract locks are not explicitly modeled in the
OATmodel, we can model transactions acquiring the same abstract lock as transactions writing to a common
memory locationℓ.10 Locks associated with an XmoduleM are owned bymodParent(M). A moduleM is
said to beproperly lockedif the following is true for all transactionsT1,T2 with xMod(T1) = xMod(T2) = M: if
T1 andT2 do not commute, then they access someℓ ∈ modMemory(modParent(M)) in a conflicting manner.

If all transactions are properly locked, then serializability by modules implies abstract serializability (as
defined above) in the special case when the module tree is a chain (i.e., each non-leaf module has exactly
one child). LetSi be the sortS in Definition 11 for XmoduleM with xid(M) = i. ThisSi corresponds toZi

in the definition of abstract serializability.
In the general case for ownership-aware TM, however, by Rule2 of Definition 1, we know a transaction

at level i might call transactions from multiple levelsx > i, not justx = i + 1. Thus, we must change the
definition of abstract serializability slightly; instead of reordering justZi+1 while serializing transactions at
level-i, we have to potentially reorderZx for all x where transactions at leveli can call transactions at level
x. Even in this case, if every module is properly locked (by thesame definition as above), one can show
serializability by modules guarantees abstract serializability.

The methodology of open nesting often requires the notion ofcompensating actions or inverse actions. For
instance, in aBST, the inverse ofinsert is remove with the same key. When a transactionT aborts, all the
changes made by its subtransactions must be inverted. Again, although theOAT model does not explicitly
model compensating actions, it allows an aborting transaction with statusPENDINGABORTto perform an
arbitrary but finite number of operations before changing the status toABORTED. Therefore, an aborting
transaction can compensate for all its aborted subtransactions.

9We assume level number increases as you go from a higher levelto a lower-level to be consistent with our numbering ofxid. In
the literature (e.g. [13]), levels typically go in the opposite direction.
10More complicated locks can be modeled by generalizing the definition of conflict.

7. DEADLOCK FREEDOM

In this section, we argue that theOAT model described in Section 5 can never enter a “semantic deadlock”
if we impose suitable restrictions on the memory accessed bya transaction’s abort actions. In particular,
an abort action generated by transactionT from xMod(T) should read (write) from a memory locationℓ
belonging tomodAnces(xMod(T)) only if ℓ is already inR(T) (W(T)). Under these conditions, we show that
theOAT model can always “finish” reasonable computations.

An ordinary TM without open nesting and with eager conflict detection never enters a semantic deadlock
because it is always possible to finish aborting a transaction T without generating additional conflicts; a
scheduler in the TM runtime can abort all transactions, and then complete the computation by running the
remaining transactions serially. Using theOAT model, however, a TM system can enter a semantic deadlock
because it can enter a state in which it is impossible to finishaborting two parallel transactionsT1 andT2

which both have statusPENDINGABORT. If T1’s abort action generates a memory operationu which conflicts
with T2, thenu will wait for T2 to finish aborting (i.e., when the status ofT2 becomesABORTED). Similarly,
T2’s abort action can generate an operationv which conflicts withT1 and waits forT1 to finish aborting. Thus
T1 andT2 can both wait on each other, and neither transaction will ever finish aborting.

Defining Semantic Deadlock

Intuitively, we want to say that theOAT model exhibits a semantic deadlock if it causes the TM system
to enter a state in which it is impossible to “finish” a computation because of transaction conflicts. A
computation might not finish for other reasons, such as an infinite loop or livelock. This section defines
semantic deadlock precisely and distinguishes it from these other reasons for noncompletion.

Recall that our abstract model has two entities: the program, and a generic operational modelF represent-
ing the runtime system. At any timet, given a ready nodeX ∈ ready(C), the program chooses an instruction
and hasX issue the instruction. If the program issues an infinite number of instructions, thenF can not com-
plete the program no matter what it does. To eliminate programs which have infinite loops, we only consider
bounded programs.

DEFINITION 14. We say that a program isboundedfor an operational modelF if any computation tree
that F generates for that program is of a finite depth, and there exists a finite number K such that at any
time t, every node B∈ nodes(t,C) has at most K children with statusPENDING or COMMITTED.

Even if the program is bounded, it might run forever if itlivelocks. We use the notion of ascheduleto
distinguish livelocks from semantic deadlocks.

DEFINITION 15. A scheduleΓ on some time interval[t0, t1] is the sequence of nondeterministic choices
made by an operational model in the interval.

An operational modelF makes two types of nondeterministic choices. First, at any timet,F nondeterminis-
tically chooses which ready nodeX ∈ ready(C) executes an instruction. This choice models nondeterminism
in the program due to interleaving of the parallel executions. Second, while performing a memory operationu
which generates a conflict with transactionT, F nondeterministically chooses to abort eitherxparent(u) or
T. This nondeterministic choice models the contention manager of the TM runtime. A program may livelock
if F repeatedly makes “bad” scheduling choices.

Intuitively, an operational model deadlocks if it allows abounded computationto reach a state whereno
schedulecan complete the computation after this point.

DEFINITION 16. Consider anF executing a bounded computation. We say thatF does not exhibit aseman-
tic deadlockif for all finite sequences of t0 instructions thatF can issue that generates some intermediate
computation treeC0, there exists a finite scheduleΓ on [t0, t1] such thatF brings the computation tree to a
rest stateC1, i.e.,ready(C1) = {root(C1)}.

This definition is sufficient, since once the computation tree is at the rest state, and only the root node is
ready,F can execute each transaction serially and complete the computation.

Restrictions to Avoid Semantic Deadlock

The generalOATmodel described in Section 5 exhibits semantic deadlock because it may enter a state where
two parallel aborting transactionsT1 andT2 keep each other from completing their aborts. For a restricted set
of programs, where aPENDINGABORTtransactionT never accesses new memory belonging to Xmodules at
xMod(T)’s level or higher, however, we can show theOAT model is free of semantic deadlock.

More formally, for all transactionsT, we restrict the memory footprint ofabortactions(T).

DEFINITION 17. An execution (represented by a computation treeC) has abort actions with limited
footprint if the following condition is true for all transactions T∈ aborted(C). At time t, if a memory
operation v∈ abortactions(T) accesses locationℓ andowner(ℓ) ∈ modAnces(xMod(T)), then (1) if v is
a read, thenℓ ∈ R(T), and (2) if v is a write thenℓ ∈ W(T).

Intuitively, Definition 17 requires that once a transactionT ’s status becomesPENDINGABORT, any memory
operationv which T or a nested transaction insideT performs to finish abortingT can not read from (write
to) any locationℓ which is owned by any Xmodules which are ancestors ofxMod(T) (including xMod(T)
itself), unlessℓ is already in the read (or write set) ofT.

First, we show that the properties of Xmodules from Theorem 5in combination with the ownership-aware
commit mechanism imply that transaction read sets and writesets exhibit nice properties. In particular, we
have Corollary 12, which states that a locationℓ can appear in the read set of a transactionT only if T ’s
Xmodule is a descendant ofowner(ℓ) in the module treeD.

COROLLARY 12. For any transaction T ifℓ ∈ R(T), thenxMod(T) ∈ modDesc(owner(ℓ)).

PROOF. Follows from Definition 1 and Theorem 5, and induction on howa locationℓ can propagate into
readsets and writsets using the ownership-aware commit mechanism.

If all abort actions have a limited footprint, we can show that operations of an abort action of an Xmodule
M can only generate conflicts with a “lower-level” Xmodule.

L EMMA 13. Suppose the OAT model generates an execution where abort actions have limited footprint.
For any transaction T , consider a potential memory operation v∈ abortactions(T). If v conflicts with
transaction T′, thenxid(xMod(T ′)) > xid(xMod(T)).

PROOF. Supposev ∈ abortactions(T) accesses a memory locationℓ with owner(ℓ) = M. Since
abortactions(T)⊆ memOps(T), by the properties of Xmodules given in Definition 2, we know that either
M ∈ modAnces(xMod(T)), orxid(M) > xid(xMod(T)). If M ∈ modAnces(xMod(T)), then by Definition 17,
T already hadℓ in its read or write set. Therefore, using Definition 3,v can not generate a conflict withT ′

because thenT would already have had a conflict withT ′ beforev occurred, contradicting the eager conflict
detection of theOAT model.

Thus, we havexid(M) > xid(xMod(T)). If v conflicts with some other transactionT ′, thenT ′ hasℓ in its
read or write set. Therefore, from Corollary 12,xMod(T ′) ∈ modDesc(M). Thus, we havexid(xMod(T ′)) >
xid(M) > xid(xMod(T)).

THEOREM 14. In the case where aborted actions have limited footprint, the OAT model is free from
semantic deadlock.

PROOF. Let C0 be the computation tree after any finite sequence oft0 instructions. We describe a schedule
Γ which finishes aborting all transactions in the computationby executing abort actions and transactions
serially.

Without loss of generality, assume that at timet0, status[T] = PENDINGABORTfor all active transactions
T. Otherwise, the first phase of the scheduleΓ is to make this status change for all active transactionsT.

For a module treeD with k = |D| Xmodules (including theworld), we construct a scheduleΓ with k
phases, numberedk−1,k−2, . . .1,0. The invariant we maintain is that immediately before phase i, we bring
the computation tree into a stateC (i) which has no active transaction instancesT with xid(xMod(T)) > i, i.e.,
no instancesT from Xmodules withxid larger thani. During phasei, we finish aborting all active transaction
instancesT with xid(xMod(T)) = i. By Lemma 13, any abort action for aT, wherexid(xMod(T)) = i, can
only conflict with a transaction instanceT ′ from a lower-level Xmodule, wherexid(xMod(T ′)) > i. Since
the scheduleΓ executes serially, and since by the inductive hypothesis wehave already finished all active
transaction instances from lower levels, phasei can finish without generating any conflicts.

Restrictions on compensating actions

If transactionsY1,Y2, . . .Yj are nested inside transactionX and X aborts, typically abort actions ofX
simply consists of compensating actions forY1,Y2, . . .Yj . Thus, restrictions on abort actions translate in a
straightforward manner to restrictions on compensating actions: a compensating action for a transactionYi

(which is part of the abort action ofX), should not read (write) any memory owned byxMod(X) or its ancestor
Xmodules unless the memory location is already inX’s read (write) set. Assuming locks are modeled as
accesses to memory locations, the same restriction applies, meaning, a compensating action can not acquire
new locks that were not already acquired by the transaction it is compensating for.

8. CONCLUSIONS

In this paper, we describe ownership-aware transactions, which provide a disciplined methodology for open
nesting while guaranteeing abstract serializability. In this section, we describe two other approaches for
improving open-nested transactions, and distinguish themfrom ownership-aware transactions.

In [11], Ni, et al. propose using anopen atomic class to specify open-nested transactions in a Java-like
language with transactions. Since the private fields of an object with anopen atomic class type can not be
directly accessed outside of that class, one can think of theopen atomic class as defining an Xmodule. This
mapping is not exact, however, because neither the languageor TM system restrict exactly what memory
can be passed into a method of anopen atomic class, and the TM system performs a vanilla open-nested
commit for a nested transaction, not a safe-nested commit. Thus, it is unclear what exact guarantees are
provided with respect to serializability and/or deadlock freedom.

Herlihy and Koskinen in [5] describe a technique of transactional boosting which allows transactions to
call methods from a nontransactional moduleM. Roughly, as long asM is linearizable and its methods have
well-defined inverses, the authors show that the execution appears to be “abstractly serializable.” Boosting
does not, however, address the cases when the lower-level module M writes to memory owned by the
enclosing higher-level module, or when programs have more than two levels of modules.

Acknowledgements

We thank James Noble of Victoria University of Wellington, Derek Rayside, Martin Rinard, Amy Williams,
and Charles Leiserson and other members of the Supercomputing Technologies Group at MIT CSAIL for
helpful discussions and comments on the paper. We also thankall the reviewers of this and prior versions
of the paper for their comments. In particular, we are grateful to Bill Scherer for his help in improving the
paper.

REFERENCES
[1] K. Agrawal, I.-T. A. Lee, and J. Sukha. Safe open-nested transactions through ownership. Technical Report

MIT-CSAIL-TR-2008-038, Laboratory of Computer Science and Artificial Intelligence, Massachusetts Institute
of Technology, June 2008. Available online at
http://supertech.csail.mit.edu/˜angelee/safeTech.pd f .

[2] K. Agrawal, C. E. Leiserson, and J. Sukha. Memory models for open-nested transactions. InProceedings of
the ACM SIGPLAN Workshop on Memory Systems Performance and Correctness (MSPC), October 2006. In
conjunction ASPLOS.

[3] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. InProceedings of the ACM
Symposium on Principles of Programming Languages (POPL), New Orleans, Louisiana, Jan. 2003.

[4] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, and K. Olukotun. Transactional collection classes. In
Proceedings of the ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming (PPoPP),
pages 56–67, New York, NY, USA, 2007. ACM Press.

[5] M. Herlihy and E. Koskinen. Transactional boosting: a methodology for highly-concurrent transactional objects.
In Proceedings of ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming (PPoPP),
pages 207–216, New York, NY, USA, Feb 2008. ACM.

[6] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free data structures. In
Proceedings of the International Symposium on Computer Architecture (ISCA), pages 289–300, 2003.

[7] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh, H. Chafi, C. Kozyrakis, and K. Olukotun. Architectural
semantics for practical transactional memory. InProceedings of the International Symposium on Computer
Architecture (ISCA), June 2006.

[8] J. E. B. Moss.Nested Transactions: An Approach to Reliable Distributed Computing. MIT Press, Cambridge,
MA, USA, 1985.

[9] J. E. B. Moss. Open nested transactions : Semantics and support. InProceedings of the Workshop on Memory
Performance Issues (WMPI), Austin, Texas, Feb 2006.

[10] J. E. B. Moss and A. L. Hosking. Nested transactional memory: Model and architecture sketches. InScience of
Computer Programming, volume 63, pages 186–201. Elsevier, Dec 2006.

[11] Y. Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B. Moss, B. Saha, and T. Shpeisman.
Open nesting in software transactional memory. InProceedings of ACM SIGPLAN Symposium on Principles and
Practices of Parallel Programming (PPoPP), Mar. 2007.

[12] C. H. Papadimitriou. The serializability of concurrent database updates.Journal of the ACM, 26(4):631–653,
1979.

[13] G. Weikum. A theoretical foundation of multi-level concurrency control. InProceedings of the ACM SIGACT-
SIGMOD symposium on Principles of database systems (PODS), pages 31–43, New York, NY, USA, 1986. ACM
Press.

A. THE OAT MODEL AND SEQUENTIAL CONSISTENCY

This appendix contains the details of the proof of Theorem 7:if the OAT model generates a trace(C ,Φ) and
a topological sort orderS , thenS satisfies Definition 8, i.e.,S is sequentially consistent with respect toΦ.

In this appendix, we first define some useful notation for the proof. Next, we prove that theOAT model
preserves several invariants about memory operations, read set, and write sets. Finally, we use these invariants
to prove Theorem 7.

A.1 Notation

We define some notation that is useful later for stating operational invariants of theOAT model.
For any subsetSof nodes in the computation treeC , i.e.,S⊆ nodes(C), define

• low(S) = {X ∈ S : pDesc(X)∩S= /0}.
• high(S) = {X ∈ S : pAnces(X)∩S= /0}.

Intuitively, low(S) represents the nodes inSclosest to the leaves of the tree. Similarly,high(S) represents the
nodes inSclosest to the root of the tree. In cases where the setS is guaranteed to fall along one root-to-leaf
path in the tree, we definelowest(S) as the only elementX ∈ low(S). Similarly, we definehighest(S) as
the only element inhigh(S).

We also define two time-dependent sets of transactions.

• Thereader setreaders(t, ℓ) = {T ∈ activeX(t,C) : ℓ ∈ R(t,T)}.

• Thewriter set, writers(t, ℓ) = {T ∈ activeX(t,C) : ℓ ∈ W(t,T)}.

Said differently,readers(t, ℓ) is the set of active transactions at timet which have locationℓ in their read
set. Similarly,writers(t, ℓ) is the set of active transactions at timet with ℓ ∈ W(T).

Next, we generalize the content sets from Definition 5 and define a set of dynamic content sets.

DEFINITION 18. At any time t, for any transaction T∈ xactions(t,C) and a memory operation u∈
memOps(t,C), define the setscContent(t,T), oContent(t,T), aContent(t,T), and vContent(t,T) ac-
cording theContentType(t,u,T) procedure:

ContentType(t,u,T) � For any u∈ memOps(t,T)
1 X← xparent(u)
2 while (X 6= T)
3 if X ∈ activeX(t,C), return u∈ vContent(t,T)
4 if X ∈ aborted(t,C), return u∈ aContent(t,T)
5 if (X = committer(u)) return u∈ oContent(t,T)
6 X← xparent(X)
7 return u∈ cContent(t,T)

The difference between Definition 18 and the previous statement in Definition 5 is that for dynamic content
sets, if we encounter aPENDINGor PENDINGABORTtransaction when walking up the tree from a memory
operationu to a transactionT, we placeu in theactive contentof T, i.e.,u∈ vContent(t,T). If a transaction
T completes at timet∗, it is not hard to see that the dynamic classificationContentType(t,u,T) gives the
same answer as the static classificationContentType(u,T) for all timest ≥ t∗.

A.2 OAT Model Invariants

Because theOAT model performs eager conflict detection according to Definition 3, it is not hard to prove
the following invariant about the readers and writers to a particular memory locationℓ.

THEOREM 15. At all times t, for all memory locationsℓ ∈ L , the OAT maintains the following invariants
on the setsreaders(ℓ) andwriters(ℓ):

1. For all ℓ ∈ L , |low(writers(t, ℓ))|= 1, i.e.,lowest(writers(t, ℓ)) exists.
2. For any T∈ readers(t, ℓ), eitherlowest(writers(t, ℓ))∈ desc(T) or T ∈ desc(lowest(writers(t, ℓ))).

PROOF. The proof is by induction on the instructions that theOAT model issues.
In the base case, for all locationsℓ∈ L , we begin withreaders(0, ℓ) = writers(0, ℓ) = {root(C)}, and

no other nodes in the computation treeC exceptroot(C). Thus, Invariants 1 and 2 are satisfied.
In the inductive step, suppose at timet−1, Invariants 1 and 2 are satisfied. Aread or write instruction at

time t can not break the invariants without causing a conflict according to Definition 3. Therefore, successful
read andwrite operations preserve the invariant. An unsuccessfulread or write operation can only trigger
thesigabort of transactions, which does not affect either invariant.

An xend instruction that commits a transactionT can only add the transactionxparent(T) toreaders(ℓ)
or writers(ℓ). Sincexparent(T) is an ancestor ofT, it can not break either of the two invariants.

The remaining instructions preserve Invariants 1 and 2 trivially. A fork or join instruction at timet
preserves the invariants because they do not change the set active transactions or any transaction read sets
or write sets. Anxbegin preserves the invariants because it creates new transactionsT with empty read sets
and write sets. Thexabort instruction preserves the invariants because it can only remove transactions from
readers(t, ℓ) or W(t, ℓ).

The following invariant shows that, informally, the read sets of transactions act as caches for pairs(ℓ,u)
stored in write sets.

L EMMA 16. At any time t, for any T∈ readers(t, ℓ), suppose(ℓ,u)∈ R(t,T). Let T′= lowest(xAnces(T)∩
writers(t, ℓ)). Then(ℓ,u) ∈ W(t,T ′).

PROOF. The proof is by induction on the instructions issued by theOAT model. In the base case, we
know for all memory locationsℓ ∈ L ,, we start withreaders(0, ℓ) = writers(0, ℓ) = {root(C)} and
R(root(C)) = W(root(C)). SinceT ′ = T = root(C), Lemma 16 is satisfied in the base case.

For the inductive step, assume the lemma is satisfied at timet−1. We show after anyS-nodeX issues an
instruction at timet, the lemma is still satisfied.

For anyT ∈ xactions(t−1,C), after afork , join , or xbegin instruction in stept, we haveR(t,T) =
R(t−1,T) andW(t,T) = W(t−1,T). Thus, the lemma is satisfied after these instructions. Anxbegin which
creates a new transactionX at time stept starts withR(t,X) = W(t,X) = /0; thus, the lemma is satisfied.

Next, consider anxabort issued byX ∈ xactions(t−1,C). Suppose, before thexabort of X there exists
a transactionT ∈ readers(t−1, ℓ) with (ℓ,u) ∈ R(t−1,T). Let T ′ = lowest(xAnces(T)∩ writers(t−
1, ℓ)). Then before thexabort, (ℓ,u) ∈ W(t− 1,T ′). Assume for contradiction after thexabort of X, that
there exists some transactionT ∈ xactions(t,C) such that the invariant no longer holds forT, i.e., we no
longer have(ℓ,u) ∈ W(t,T ′). Since anxabort does not change the contents of any transaction’s write set,but
removesX from writers(ℓ), the only way to violate the invariant is ifX = T ′. Consider two cases: either
X = T ′ = T, or X = T ′ 6= T. In the first case, we can not violate the invariant forT becauseT is aborted and
removed fromreaders(ℓ). In the second case, we must haveT ∈ pDesc(X). But then, before thexabort ,
we haveT ∈ pDesc(X)∩ activeN(t − 1,C) andX ∈ ready(t − 1,C), contradicting the property that the
ready nodes are the leaves of tree of active nodes. Thus, thexabort must preserve the invariant.

A successfulread operationv observes the value from the closest transactional ancestorX which has
location ℓ in its read set. The only transaction whose read set changes is xparent(v). The invariant is
preserved becausexAnces(xparent(v)) ⊇ xAnces(X), and since theread does not change any write sets.

A successfulwrite operationv only changes the write set ofxparent(v); this write can not break the
invariant without generating a conflict.

Finally, suppose at timet, a ready nodeX issues anxend . Consider two cases:

1. X 6= owner(ℓ). The only transactionY which has its read set or write set change after thexend (i.e., for
which we could haveR(t,Y) 6= R(t−1,Y) or W(t,Y) 6= W(t−1,Y)) isY = xparent(X). Thexend merges

X’s read and write sets intoY’s read and write sets, respectively; using Theorem 15, it isstraightforward
to show that the invariant is preserved forY.

For all other transactionsT ∈ readers(t, ℓ) with T 6= Y, since the read set or write set ofT or any
transaction inxAnces(T) remains the same, the invariant is still preserved forT.

2. SupposeX = owner(ℓ). Then, the only transaction whose read set or write set can change isY = root(C).
But the only way to break the invariant is ifX commits a pair(ℓ,v) from W(t−1,X) to root(C), which
corrupts the version(ℓ,u) ∈ R(t−1,T), for some transactionT parallel toX. But then, we would violate
Theorem 15, and should have had a conflict earlier.

Since all possible choices for actionk+1 preserve the invariant, the lemma holds by induction.

Theorem 17 characterizes when a transaction should have a location in its write set.

THEOREM 17. At any time t, consider any transaction T∈ activeX(t,C) and any memory locationℓ such
that xid(owner(ℓ)) ≤ xMod(T). Let Sℓ(t) = {u∈ memOps(t,C) : W(u, ℓ)}. Exactly one of the following
cases holds:

1. T = root(C), (ℓ,⊥) ∈ W(t,T), and two conditions are satisfied:
(a) cContent(t,T)∩Sℓ = /0.
(b) For all v∈ Sℓ(t), we have v∈ aContent(t,T)∪vContent(t,T).

2. There exists an(ℓ,u) ∈ W(t,T) which happens at time tu, and two conditions are satisfied:
(a) u∈ cContent(t,T)∩Sℓ(t)
(b) For any operation v∈ (Sℓ(t)−{u}) which happens at time tv, where tu < tv ≤ t, we have v∈

aContent(t,T)∪vContent(t,T).
3. We haveℓ 6∈ W(t,T), andcContent(t,T)∩Sℓ(t) = /0.

PROOF.
This theorem can be proved by a straighforward, albeit tedious, induction on time.
Note that because we assumexid(owner(ℓ)) ≤ xMod(T), Sℓ(t)∩ oContent(t,T) = /0, i.e., the theorem

is only concerned with memory locationsℓ which belong toT ’s open content. Because of the properties of
ownership and Xmodules, any locationℓ with xid(owner(ℓ)) > xMod(T) can never propagate intoT ’s write
set anyway.

The intution for Theorem 17 lies mostly in Case 2; if at timet a pair(ℓ,u) is the write set of a transaction
T, then u is the last write toℓ in T ’s subtree which is “committed with respect to”T. Any v which
writes to ℓ after tu (the timeu occurs) must belong toT ’s subtree; otherwise, there would have been a
conflict. Furthermore, anyv which happens aftertu must still be aborted or pending with respect toT (i.e.,
v∈ aContent(t,T)∪vContent(t,T)); otherwise,v should replaceu in T ’s write set.

Case 3 says the write set ofT does not contain a locationℓ if no memory operation inT ’s subtree commits
ℓ to T. Case 1 of Theorem 17 handles the special case of the root.ver.

A.3 Proof of Sequential Consistency

Finally, we can use the invariants from Lemma 16 and Theorem 17 to prove Theorem 7.
PROOF. [Theorem 7]

The first condition and second conditions are true by construction, since theOAT model can only set
Φ(v) = u if u <S v, W(u, ℓ) andR(v, ℓ)∨W(v, ℓ).

To check the third and fourth conditions, we require some setup. Suppose at timetv, memory operation
v happens and theOAT model setsΦ(v) = u. Let A = lowest(readers(t, ℓ)∩ ances(v)). Because the
OAT model setsΦ(v) = u, we must have(ℓ,u) ∈ R(t,A). Let T = lowest(xAnces(A)∩writers(t, ℓ)). By
Lemma 16, we know(ℓ,u) ∈ W(t,T). By Theorem 17, since(ℓ,u) ∈ W(t,T), we knowu∈ cContent(t,T).
Let X = xLCA(u,v). We must haveT ∈ ances(X); otherwise, we could not have{u,v} ⊆ memOps(t,T).

Sinceu∈ cContent(t,T), we knowu∈ cContent(t,X)∪oContent(t,X). Therefore, we have¬(uHv),
satisfying the third condition.

To check the fourth condition, assume for contradiction that there exists aw such thatW(w, ℓ), and
u <S w <S v. Let tv be the time thatv happens. Then, sinceΦ(v) = u, we knowu ∈ W(tv,T). Therefore,
by Theorem 17 we knoww∈ memOps(tv,T), w∈ aContent(tv,T)∪vContent(tv,T).

LetY = xLCA(w,v). Sincew∈ memOps(tv,T), we knowT ∈ ances(Y). Consider the two cases forw:

1. Supposew∈ aContent(tv,T). SinceT ∈ ances(Y), we knoww∈ cContent(tv,Y)∪aContent(tv,Y).

We can show by contradiction that we must havew ∈ aContent(tv,Y). If Y = T, then we already
know w ∈ aContent(tv,Y). Otherwise, assumeT ∈ pAnces(Y). If we hadw ∈ cContent(tv,Y), then
by Theorem 17, we must have(ℓ,y) ∈ W(tv,Y). This statement contradicts the fact thatOAT model found
(ℓ,u) from transactionT, since a closer transactionY hadℓ in its read set.

But then, sincew∈ aContent(tv,Y), we havewHv.

2. Supposew∈ vContent(tv,T):

Then, we knoww ∈ cContent(tv,Y)∪ vContent(tv,Y). As in the previous case, we can showw 6∈
cContent(tv,Y).

If w∈ vContent(tv,Y), then there exists some transactionZ∈ activeX(tv,Y)−{Y} such thatℓ∈ W(tv,Z).

Sincew∈ memOps(tv,Z), we can strengthen this condition toZ ∈ activeX(tv,LCA(w,v))−{LCA(w,v)}.
This statement leads to a contradiction, however, becausew∈ W(tv,Z) must conflict withv.

More formally, by Invariant 2 of Theorem 15, any new read operation v at time tv must satisfyv ∈
desc(low(writers(tv, ℓ))) (i.e.,v is a descendant of the base of the spine forℓ). At time tv, however, we
must havelow(writers(tv, ℓ)) ∈ desc(Z).

B. RULES FOR TYPE CHECKING

This appendix contains the type rules for theOAT type system. The syntax for the type system is shown
below. Within the syntax, we do not differenciate classes that are Xmodule types from the classes that are
not. The additional restrictions that apply to the Xmodule types are specified as one of the type rules.

For simplicity, in our type system, we make the following assumptions. First, each class has only one
constructor (specified by the terminit), and that all fields are initialized properly after the callto the
constructor. Second, all field names (whether inherited or declared) are distinct. Third, the call tosuper
is explicit. Fourth, an index is always specified when the ownership tagsworld and this are used. Fifth, the
class namesObject andXmodule are special and assumed to be properly defined by the system. Finally, the
explicit use of upcast and downcast are not allowed, as specified in the abstract syntax.

P = defn∗; e

defn = class cDecl extends cDecl where constr∗ { field∗; init; meth∗ }

cDecl = cn〈formal+〉 | Object〈formal〉 | Xmodule〈formal〉

constr = formal < formal | formal = formal | formal 6= formal

field = t fd

init = cn〈formal+〉(param∗) { super〈formal+〉(e∗); this.fd = e;∗ }

meth = t mn〈formal∗〉(param∗) where constr∗{ e}

param = t x

owner = world[i] | formal | this[i]

formal = f

t = int | ct

ct = cn〈owner+〉

e = new ct(e∗) | x | x = e | let (param= e) in { e} | x.fd | x.fd = e | x.mn〈owner+〉(e∗)

cn = a class name that is notObject nor Xmodule

mn = a method name that is not a constructor

f d = a field name

x,y = a variable name

f ,g = an owner formal

i, j = an int literal

For the constraints on owners (constr), the notation< is used as defined in Section 3: Assumingf1 and f2
are instantiated witho1 ando2, f1 < f2 specifies that eithero1.name≺ o2.name, or o1.name= o2.nameand
o1. index< o2. index. Similarly, f1 = f2 specifies thato1.name= o2.nameando1. index= o2. index. On the
other hand,f1 6= f2 specifies that eithero1.name6= o2.name, oro1.name= o2.nameando1. index6= o2. index.

In the type system, we use a few predicates. Before we define the predicates, we first define some
notations:

Henceforth, for brevity, we use the notation� in place of the keywordextends (i.e.A extendsB is written
asA�B). We also use the notation� between class names as the reflexive and transitive closure induced by

the� relation. Note that the� is not the same as subtyping (denoted as<:), because� only considers the
static relation defined by theextends keyword, and does not account for the ownership tags.

In addition, we definefield∈d cn〈. . .〉 to mean that classcn〈. . .〉 declaresfield, field∈i cn〈. . .〉 to mean
that classcn〈. . .〉 inheritsfield, andfield∈ cn〈. . .〉 to mean that eitherfield∈d cn〈. . .〉 or field∈i cn〈. . .〉. We
use these notations forfd (field name),meth(method), andmn(method name) similarly.

Now we define the predicates.

Predicate Meaning

ClassOnce(P) No class is declared twice inP
∀cn,cn′ in P, cn 6= cn′

FieldsOnce(P) No class contains two fields with the same name
∀ct ∀fd, fd′ ∈ ct in P, fd 6= fd′

MethodsOnce(P) No class declares two methods with the same name
∀ct ∀mn,mn′ ∈d ct in P, mn 6= mn′

WFClasses(P) There are no cycles in the class hierarchy; i.e. the� relation is antisymmetric
∀cn,cn′ in P, cn�cn′∧ cn′�cn =⇒ cn= cn′

Our typing judgment has the form:P; Γ ⊢ e : t, whereP is the program being checked to provide
information about class definitions;Γ is the typing environment, providing mappings from a variable name
to its static type for the free variables ine; finally, t is the static type ofe.

The typing environmentΓ is defined as

Γ ::= /0 | Γ, x : t | Γ, f : owner | Γ, constr

That is, the typing environtmentΓ contains the types of variables, the owner parameters and the constraints
among owners. When checking for well-formness of the typingenvironment, we assume the new entries are
checking in the order listed, from left to right.

The typing system uses the following judgments.

Judgment Meaning

⊢ P : t programP yields typet
P ⊢ defn defnis a well-formed class
P ⊢ cn〈 f1..n〉� cn′〈g1..k〉 class cn〈 f1..n〉 extends class cn′〈g1..k〉
P ⊢ cn� cn′ cn′ is an ancestor ofcn in the graph defined by theextends keyword
P ⊢ field∈d cn〈. . .〉 classcn〈. . .〉 declaresfield
P ⊢ field∈i cn〈. . .〉 classcn〈. . .〉 inheritsfield
P ⊢ field∈ cn〈. . .〉 classcn〈. . .〉 declares / inheritsfield
P ⊢ init ∈ cn〈. . .〉 classcn〈. . .〉 declaresinit
P ⊢ meth∈d cn〈. . .〉 classcn〈. . .〉 declaresmeth
P ⊢ meth∈i cn〈. . .〉 classcn〈. . .〉 inheritsmeth
P ⊢ meth∈ cn〈. . .〉 classcn〈. . .〉 declares / inheritsmeth
P; Γ ⊢ field field is a well-formed field
P; Γ ⊢ meth methis a well-formed method
P; Γ ⊢ wf typing environmentΓ is well-formed
P; Γ ⊢ t t is a well-formed type
P; Γ ⊢ constr constraintconstris satisfied
P; Γ ⊢owner o o is an owner
P; Γ ⊢ e : t expressionehas typet
P; Γ ⊢ t <: t ′ t is a subtype oft ′

In the type rules, we also use the following auxiliary rules:

The Extends Relation

P ⊢ class cn〈 f1..n〉 extends cn′〈g1..m〉 . . .

P ⊢ cn〈 f1..n〉 � cn′〈g1..m〉

P ⊢ cn � cn

P ⊢ cn〈 f1..n〉 � cn′〈g1..m〉

P ⊢ cn � cn′
P ⊢ cn � cn′ P ⊢ cn′ � cn′′

P ⊢ cn � cn′′

Type Lookup

type() = ()
type(t x) = t
type(t fd) = t
type(t1 x1, t2, x2, . . .) = t1, t2, . . .
type(t mn〈g1..k〉(param∗){ . . . }) = t → 〈g1..k〉 → type(param∗)

Field Lookup

P ⊢ class cn〈 f1..n〉 . . . { . . . field . . . }

P ⊢ field ∈d cn〈 f1..n〉

P ⊢ field ∈ cn′〈g1..m〉
P ⊢ cn〈 f1..n〉� cn′〈o1..m〉

P ⊢ field [o1/g1]..[om/gm] ∈i cn〈 f1..n〉

P ⊢ field ∈d cn〈 f1..n〉 ∨ P ⊢ field ∈i cn〈 f1..n〉

P ⊢ field ∈ cn〈 f1..n〉

Init Lookup

P ⊢ class cn〈 f1..n〉 . . . { . . . init . . . }

P ⊢ init ∈ cn〈 f1..n〉

Method Lookup

P ⊢ class cn〈 f1..n〉 . . . { . . . meth . . . }

P ⊢ meth∈d cn〈 f1..n〉

P ⊢ meth∈ cn′〈g1..m〉
P ⊢ cn〈 f1..n〉� cn′〈o1..m〉

P ⊢ meth[o1/g1]..[om/gm] ∈i cn〈 f1..n〉

P ⊢ meth∈d cn〈 f1..n〉 ∨ P ⊢ meth∈i cn〈 f1..n〉

P ⊢ meth∈ cn〈 f1..n〉

Override Ok

P ⊢ cn〈 f1..n〉 � cn′〈o1..m〉
P ⊢ meth∈d cn〈 f1..n〉
P ⊢ meth 6 ∈ cn′〈g1..m〉

OverrideOk(cn〈 f1..n〉, cn′〈o1..m〉, meth)

P ⊢ cn〈 f1..n〉 � cn′〈o1..m〉
P ⊢ meth∈d cn〈 f1..n〉
P ⊢ meth′ ∈ cn′〈g1..m〉

type(meth) = type(meth′)[o1/g1]..[om/gm]

OverrideOk(cn〈 f1..n〉, cn′〈o1..m〉, meth)

We present the type rules next.

⊢ P : t
[PROG]

WFClasses(P) ClassOnce(P) FieldsOnce(P) MethodsOnce(P)
P = defn1..n; e P ⊢ defni P; /0 ⊢ e : t

⊢ P : t

P ⊢ defn

[CLASS]

P ⊢ cn 6� Xmodule
Γ = f1..n : owner, f1 < fi , constr∗, this : cn〈 f1..n〉

P; Γ ⊢ wf P; Γ ⊢ cn′〈 f1, o∗〉 P; Γ ⊢ fieldi P; Γ ⊢ init P; Γ ⊢ methi
OverrideOk(cn〈 f1..n〉, cn′〈 f1, o∗〉, methi)

P ⊢ class cn〈 f1..n〉 extends cn′〈 f1, o∗〉 where constr∗ { field∗; init; meth∗ }

[XMODULE CLASS]

P ⊢ cn � Xmodule
Γ = f1..n : owner, f1 < fi, constr∗, this : cn〈 f1..n〉, this : owner, this[i] < f1

P; Γ ⊢ wf P; Γ ⊢ cn′〈 f1, o∗〉 P; Γ ⊢ fieldi P; Γ ⊢ init P; Γ ⊢ methi
type(fieldi) 6= int OverrideOk(cn〈 f1..n〉, cn′〈 f1, o∗〉, methi)

P ⊢ class cn〈 f1..n〉 extends cn′〈 f1, o∗〉 where constr∗ { field∗; init; meth∗ }

P; Γ ⊢ field P; Γ ⊢ init

[FIELD] [INIT]

P; Γ ⊢ t

P; Γ ⊢ t fd

P ⊢ cn〈 f1..n〉� cn′〈 f1,o2..m〉
Γ′ = Γ, param∗ P; Γ′ ⊢ wf P; Γ′ ⊢ this.fd j = ej

P ⊢ init〈g1..m〉(ti xi
i∈1..k) ∈ cn′〈g1..m〉 P; Γ′ ⊢ ei : ti [f1/g1][o2/g2]..[om/gm]

P; Γ ⊢ cn〈 f1..n〉(param∗) { super〈 f1, o2..m〉(ei
i∈1..k); this.fd = e;∗ }

P; Γ ⊢ meth

[METHOD]

Γc = f1..n : owner, constr∗ P; Γc ⊢ wf
Γ′ = Γ, Γc, param∗ P; Γ′ ⊢ wf P; Γ′ ⊢ e : t

P; Γ ⊢ t mn〈 f1..n〉(param∗) where constr∗ {e}

P; Γ ⊢ w f

[ENV /0] [ENV X] [ENV OWNER]

P; /0 ⊢ wf

P; Γ ⊢ t x 6 ∈ Dom(Γ) P; Γ ⊢ wf

P; Γ, x : t ⊢ wf

f 6 ∈Dom(Γ) P; Γ ⊢ wf

P; Γ, f : owner ⊢ wf

[ENV CONSTR]

constr= (o < o′) ∨ (o = o′) ∨ (o 6= o′)
P; Γ ⊢ wf P; Γ ⊢owner o, o′ Γ′ = Γ, constr

6 ∃ x,y (P; Γ′ ⊢ x < y) ∧ (P; Γ′ ⊢ y < x)
6 ∃ x,y (P; Γ′ ⊢ x < y) ∧ (P; Γ′ ⊢ x = y) 6 ∃ x,y (P; Γ′ ⊢ x = y) ∧ (P; Γ′ ⊢ x 6= y)

P; Γ, constr ⊢ w f

P; Γ ⊢ t

[TYPE INT] [TYPE OBJECT] [TYPE XMODULE]

P; Γ ⊢ int

P; Γ ⊢owner o

P; Γ ⊢ Object〈o〉

P; Γ ⊢owner o

P; Γ ⊢ Xmodule〈o〉

[TYPE CT]

P ⊢ class cn〈 f1..n〉 . . . where constr∗ . . .
P; Γ ⊢owner oi P; Γ ⊢ o1 < oi P; Γ ⊢ constr[o1/ f1]..[on/ fn]

P; Γ ⊢ cn〈o1..n〉

P; Γ ⊢ constr

[CONSTR ENV] [< WORLD I] [< WORLD II] [< THIS]

Γ = Γ′, constr, Γ′′

P; Γ ⊢ constr

P; Γ ⊢owner o
P; Γ ⊢ o 6= world

P; Γ ⊢ o < world[i]

i < j

P; Γ ⊢ world[i] < world[j]

i < j
P; Γ ⊢owner this

P; Γ ⊢ this[i] < this[j]

[< TRANS] [= WORLD] [= THIS] [= TRANS]

P; Γ ⊢ o1 < o2

P; Γ ⊢ o2 < o3

P; Γ ⊢ o1 < o3

i = j

P; Γ ⊢ world[i] = world[j]

i = j
P; Γ ⊢owner this

P; Γ ⊢ this[i] = this[j]

P; Γ ⊢ o1 = o2

P; Γ ⊢ o2 = o3

P; Γ ⊢ o1 = o3

[= REFL] [6= WORLD] [6= THIS] [6= WORLD]

P; Γ ⊢owner o
P; Γ ⊢ o 6= world
P; Γ ⊢ o 6= this

P; Γ ⊢ o = o

i 6= j

P; Γ ⊢ world[i] 6= world[j]

i 6= j
P; Γ ⊢owner this

P; Γ ⊢ this[i] 6= this[j]

P; Γ ⊢owner this[i]

P; Γ ⊢ this[i] 6= world

[SUBSTITUTION] [RELATION]

P; Γ ⊢ o1 = o2

P; Γ ⊢ constr

P; Γ ⊢ constr[o1/o2]

P; Γ ⊢ o1 < o2

P; Γ ⊢ o1 6= o2

P; E ⊢ownero

[OWNER WORLD] [OWNER FORMAL] [OWNER THIS]

P; Γ ⊢owner world[i]

Γ = Γ′, f : owner, Γ′′

P; Γ ⊢owner f

Γ = Γ′, this : owner, Γ′′

P; Γ ⊢owner this[i]

P; E ⊢ e : t

[EXP TYPE] [EXP SUB] [EXP NEW] [EXP VAR]

P; E ⊢ t

P; E ⊢ e : t

P; E ⊢ e : t ′

P; E ⊢ t ′ <: t

P; E ⊢ e : t

P; Γ ⊢ cn〈o1..n〉

init = cn〈 f1..n〉(ti xi
i∈1..k) { . . . }

P ⊢ init ∈ cn〈 f1..n〉
P; Γ ⊢ ei : ti [o1/ f1]..[on/ fn]

P; Γ ⊢ new cn〈o1..n〉(ei
i ∈ 1..k) : cn〈o1..n〉

Γ = Γ′, x : t, Γ′′

P; Γ ⊢ x : t

[EXP VAR ASSIGN] [EXP LET] [EXP REF]

P; Γ ⊢ x : t
P; Γ ⊢ e : t

P; Γ ⊢ x = e : t

param= t ′ x P; Γ ⊢ e′ : t ′

P; Γ, param ⊢ wf P; Γ, param ⊢ e : t

P; E ⊢ let (param= e′) in { e} : t

P; Γ ⊢ x : cn〈o1..n〉
P ⊢ (t fd) ∈ cn〈 f1..n〉

P; Γ ⊢ x.fd : t [o1/ f1]..[on/ fn]

[EXP REF ASSIGN] [EXP INVOKE]

P; Γ ⊢ x : cn〈o1..n〉
P ⊢ (t fd) ∈ cn〈 f1..n〉

P; Γ ⊢ e : t [o1/ f1]..[on/ fn]

P; Γ ⊢ x.fd = e : t [o1/ f1]..[on/ fn]

P ⊢ t mn〈 f(k+1)..n〉(ti yi
i∈1..h) where constr∗ . . . ∈ cn〈 f1..k〉

P; Γ ⊢ x : cn〈o1..k〉 P; Γ ⊢ ei : ti [o1/ f1]..[on/ fn]
P; Γ ⊢ constr[ok+1/ fk+1]..[on/ fn]

P; Γ ⊢ x.mn〈o(k+1)..n〉(e1..h) : t [o1/ f1]..[on/ fn]

P; Γ ⊢ t <: t ′

[SUBTYPE] [SUBTYPE TRANS] [SUBTYPE REFL]

P; Γ ⊢ cn〈o1..n〉
P ⊢ cn〈 f1..n〉 � cn′〈 f +〉

P; Γ ⊢ cn〈o1..n〉<: cn′〈 f +〉[o1/ f1]..[on/ fn]

P; Γ ⊢ t <: t ′

P; Γ ⊢ t ′ <: t ′′

P; Γ ⊢ t <: t ′′
P; Γ ⊢ t

P; Γ ⊢ t <: t

