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ABSTRACT

Researchers in transactional memory (TM) have proposed pesting as a methodology for increasing
the concurrency of transactional programs. The idea is org “low-level” memory operations of an
open-nested transaction when detecting conflicts for itemaransaction, and instead perform abstract
concurrency control for the “high-level” operation thatthested transaction represents. To support this
methodology, TM systems use an open-nested commit mechdh& commits all changes performed by
an open-nested transaction directly to memory, therebigegplow-level conflicts. Unfortunately, because
the TM runtime is unaware of the different levels of memonganstrained use of open-nested commits can
lead to anomalous program behavior.

We describe the framework ofvnership-aware transactional memowyhich incorporates the notion of
modules into the TM system and requires that transactiotislata be associated with spectfignsactional
modulesor Xmodules. We propose a n@wnership-aware commit mechanisra hybrid between an open-
nested and closed-nested commit which commits a piece afdif¢rently depending on which Xmodule
owns the data. Moreover, we provide a set of precise congtrai interactions and sharing of data among
the Xmodules based on familiar notions of abstraction. Maearship-aware commit mechanism and these
restrictions on Xmodules allow us to prove that ownershipr@ TM has clean memory-level semantics. In
particular, it guaranteeserializability by modulesan adaptation of the definition of multilevel serializ#iil
from database systems. In addition, we describe how a proges can specify Xmodules and ownership in
a Java-like language. Our type system can enforce most cbiigraints required by ownership-aware TM
statically, and can enforce the remaining constraints ahycelly. Finally, we prove that if transactions in
the process of aborting obey restrictions on their memooypiint, then ownership-aware TM is free from
semantic deadlock

1. INTRODUCTION

Transactional memory (TM) [6] is meant to simplify concumcg control in parallel programming by
providing a transactional interface for accessing memnthg/programmer simply encloses the critical region
inside anatomic block, and the TM system ensures that this section of codeuge® atomically. A TM
system enforces atomicity by tracking the memory locatitias each transaction accesses (useayl sets
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and write set$, finding transaction conflicts, and aborting transactitret conflict. TM guarantees that
transactions areerializable[12]; that is, transactions affect global memory as if theyrevexecuted one at
a time in some order, even if in reality, several executecooently.

When using TM, one issue that programmers must deal witleis¢imantics ofiested transactiondf a
transactiory is closed neste{B] inside transactiorX, for the purpose of detecting conflicts, the TM system
considers any memory locations accessed tas conceptually also being accessed by its paXerthus,
uponY’s commit, the TM system mergé&&s read and write sets into the read and write set&.0fM with
closed-nested transactions guarantees that transaetierserializable at the level of memory. Researchers
have observed, however, that closed nesting might unredgs®strict concurrency in programs because it
does not allow two “high-level” transactions to ignore cartél due to accesses to shared “low-level” memory
done by nested transactions.

Researchers have proposed the methodologpeh-nested transactiorts increase concurrency in trans-
actional programs by carefully breaking serializabilityttee memory level. The open-nesting methodology
incorporates thepen-nested commit mechanisfn, 10]. When an open-nested transactio(nested inside
transactionX) commits,Y’s changes are committed to memory arid read and write sets are discarded.
Thus, the TM system no longer detects conflicts Wittdue to memory accessed Wy In this methodology,
the programmer considek§s internal memory operations to be at a “lower level” thanthus X should
not care about the memory accessedrbyhen checking for conflicts. Instead,must acquire aabstract
lock based on the high-level operation tiYatepresents and propagate this locktaso that the TM system
can perform concurrency control at an abstract level. Afe¥,aborts, it may need to executempensating
actionsto undo the effect of its committed open-nested subtraizga¢t Moss in [9] illustrates use of open
nesting with an application that uses a B-tree. Ni et al. fiedcribe a software TM system that supports the
open-nesting methodology.

An unconstrained use of the open-nested commit mechanistead to anomalous program behavior that
can be tricky to reason about [2]. We believe that one reasotihé apparent complexity of open nesting is
that the mechanism and the methodology make different gatsams about memory. Consider a transaction
Y open nested inside transacti®n The open-nesting methodology requires thagnore the “lower-level”
memory conflicts generated b, while the open-nested commit mechanism will ignatethe memory
operations insidé&’. SayY accesses two memory locatiofAsand ¢,, and X does not care about changes
made tof,, but does care aboudf. The TM system can not distinguish between these two acsesse will
commit both in an open-nested manner, leading to anomaleheyvior.

ResearcherBavedemonstrated specific examples [4, 11] that safely use am-opsted commit mech-
anism. These examples work, however, because the innem)(t@sactions never write to any data that
is accessed by the outer transactions. Moreover, since thesnples require only two levels of nesting, it
is not obvious how one can correctly use open-nested conimmégprogram with more than two levels of
abstraction. The literature on TM offers relatively lititethe way of formal programming guidelines which
one can follow to haverovableguarantees of safety when using open-nested commits.

Contributions

In this paper, we bridge the gap between memory-level méstmsnfor open nesting and the high-level
view by explicitly integrating the notions dfansactional moduleéXmodules) andwnershipinto the TM
system. We believe thewnership-aware TM systerallows the programmer to safely use the methodology
of open nesting, because the runtime’s behavior more gloséects the programmer’s intent. In addition,
the structure imposed by ownership allows a language artanerrio enforce properties needed to provide
provable guarantees of “safety” to the programmer. Moreifipally, the contributions of this paper are as
follows:

1. We suggest a concrete set of guidelines for sharing ofatatanteractions between Xmodules.



2. We describe how the Xmodules and ownership can be speitifeedava-like language and propose a type
system that enforces most of the above-mentioned guideilimine programs written using this language
extension.

3. We formally describe the operational model for ownersivi@re TM, called th®©AT model, which uses
a newownership-aware commit mechanisrithe ownership-aware commit mechanism is a compromise
between an open-nested and a closed-nested commit; whersadtiorill commits, a change to memory
location ¢ is committed globally if¢ belongs to the module of; otherwise, the read or write tb
is propagated td’s parent transaction. Unlike an ordinary open-nested cirihe ownership-aware
commit treats memory locations differently depending onciwhKmodule owns the location. Note that
the ownership-aware commit is still a mechanism; programmeust still use it in combination with
abstract locks and compensating actions to implement them&ihodology.

4. We prove that if a program follows the proposed guidelfioeXmodules, then th©AT model guarantees
serializability by modules, which is a generalization otriglizability by levels” used in database
transactions. Ownership-aware commit is the same as og&ireh commit if no module ever accesses
data belonging to other modules. Thus, one corollary of baotem is that open-nested transactions
are serializable when modules do not share data. This aigarnexplains why researchers [4, 11] have
found it natural to use open-nested transactions in thenabs# sharing, in spite of the apparent semantic
pitfalls.

5. We prove that under certain restricted conditions, a edatjpn executing under tf@AT model can not
enter a semantic deadlock.

In later sections, we distinguish between the variationsasted transactions as follows. We say that a
transactiorY is vanilla open nestedvhen referring to a TM system which performs the open-nestaamit
of Y. We say thaly is safe nestedvhen referring to the ownership-aware TM system which perfothe
ownership-aware commit of. Finally, we say that a transactiohis an open-nested transaction when we
are referring to the abstract methodology, rather than tcpiar implementation with a specific commit
mechanism.

Outline

The paper is organized as follows. In Section 2 we presentvarnview of ownership-aware TM and
highlight key features using an example application. $ac3 describes language constructs for specifying
Xmodules and ownership. In Section 4, we review the trarmszeit computation framework [2], and extend
this framework to formally incorporate Xmodules and owh@grsSection 5 describes tl@AT model, and
Section 6 gives a formal definition of serializability by mubels, and a proof-sketch that t@AT model
guarantees this definition. Section 7 provides conditiondeu which theOAT model does not exhibit
semantic deadlocks. Section 8 concludes with a discus$isonoe related work.

2. OWNERSHIP-AWARE TRANSACTIONS

In this section, we give an overview of ownership-aware TM.rifiotivate the need for the concept of
ownership in TM, we first present an example application Whitight benefit from open nesting. We
then introduce the notion of an Xmodule and informally ekpldne programming guidelines when using
Xmodules. Finally, we highlight some of the key differentetween ownership-aware TM and a TM with
vanilla open nesting. In this section, we present the ineidescriptions of the concepts in ownership-aware
TM; we defer formal definitions until later sections.



Example Application

We describe an example application for which one might usnemsted transactions. This example is
similar to the one in [9], but it includes data sharing betwaested transactions and their parents, and has
more than two levels of nesting.

Since the open-nesting methodology is designed progranmsve multiple levels of abstraction, we
choose a modular application. Consider a user applicatlinhaconcurrently accesses a database of many
individuals’ book collections. The database stores recora@ binary search tree, keyed by name. Each node
in the binary search tree corresponds to a person, and stbsesf books in his/her collection. The database
supports queries by name, as well as updates that add a nswnpera new book to a person’s collection.
The database also maintains a private hashmap, keyed bytilleoko support a reverse query; given a
book title, it returns a list of people who own the book. Fipnalhe user application wants the database to
log changes on disk for recoverability. Whenever the da@l@updated, it inserts metadata into the buffer
of a logger to record the change that just took place. Pexadigi the user application is able to request a
checkpoint operation which flushes the buffer to disk.

This application is modular, with five natural modules — trseuapplication serApp ), the database
(DB), the binary search tre8%T), the hashtableHashtable ), and the loggeriogger ). TheUserApp module
calls methods from th®B module when it wants to insert into the database, or quend#tabase. The
database in turn maintains internal metadata and calBShenodule and thélashtable module to answer
queries and insert data. Both user application and the asgaiay call methods from tthegger module.

If the modules use open-nested transactions, a TM systelmvaitilla open-nested commits can result
in non-intuitive outcomes. Consider the example wherersstetional method from theUserApp module
tries to insert a book into the database, and the insert is an open-nested tranmsaldthe methodA (which
corresponds to transactiof) calls an insert method in thBB module and passds (the Book object) to
be inserted. This insert method generates an open-neateshttionY. Supposer writes to some field of
the bookb (memory location/1), and also writes some internal database metadata (lacgtjo After a
vanilla open-nested commit of, the modifications to botld; and ¢, become visible globally. Assuming
the UserApp does not care about the internal state of the database, ¢tngnthe internal state of theB
(¢2) is a desirable effect of open nesting; this commit increasacurrency, because other transactions can
potentially modify the database in parallel wkhwithout generating a conflict. ThéserApp does, however,
care about changes to the bdgkhus, the commit of; breaks the atomicity of transactiof A transaction
Z in parallel with transactiofX can access this locatioil afterY commits, before the outer transacti®n
commits? To increase concurrency, we want the method fEBto commit changes to its own internal data;
we do not, however, want it to commit the data tbsg¢rApp cares about.

To enforce this kind of restriction, we need some notionwhership of dataif the TM system is aware
of the fact that the book object “belongs” to thiserApp , then it can decide not to comnbBs change to
the book object globally. For this purpose, we introducertbigon oftransactional modulesor Xmodules.
When a programmer explicitly defines Xmodules and specifiesotvnership of data, the TM system can
make the correct judgement about which data to commit gipbal

Xmodules and the Ownership-Aware Commit Mechanism

The ownership-aware TM system requires that programs lanagd into Xmodules. Intuitively, an Xmod-
ule M is as a stand-alone entity that contains data and traneattieethods; an Xmodule owns data that it
privately manages, and uses its methods to provide pubteces to other modules. During program exe-
cution, a call to a method from XmodulM generates a transaction instance (eg. If this method in turn
calls another method from an Xmodwg an additional transaction, safe nested insid¥, is created only

if M # N. Therefore, defining an Xmodule automatically specifies-sested transactions.

I Note that abstract locks [9] do not address this problemtrabslocks are meant to disallow other transactions froticimy the
fact that the book was inserted into thB They do not usually protect the individual fields of the bablect itself.



In the ownership-aware TM system, every memory locationwsexl by exactly one Xmodule. If a
memory locatior? is in a transactiorn’s read or write set, the ownership-aware commit of a traimac
T commits this access globally only Tf is generated by the same Xmodule that oWnm this case, we
say thatT is “responsible” for that access to Otherwise, the read or write tbis propagated up to the
read or write set off 's parent transaction; that is, the TM system behaves agthbwas a closed-nested
transaction with respect to locatidn

For ownership-aware TM to behave “nicely”, we must restifteractions between Xmodules. For
example, in the TM system, some transaction must be “reggengor committing every memory access.
Similarly, the TM system should guarantee some form of Beaiaility. If Xmodules could arbitrarily call
methods from or access memory owned by other Xmodules, ftese two properties might not be satisfied.

Rules for Xmodules

Ownership-aware TM uses Xmodules to control both the siracdf nested transactions, and the sharing
of data between Xmodules (i.e., to limit which memory logas a transaction instance can access). In our
system, Xmodules are arranged as@dule treg denoted a®. In D, an XmoduleN is a child ofM if N is
“encapsulated byM. The root ofD is a special Xmodule calledorld . Each Xmodule is assigned atd

by visiting the nodes of) in a left-to-right depth-first search order, and assignutg)in increasing order,
starting withxid(world ) = 0. Thereforeworld has the minimunxid, and “lower-level” Xmodules have
largerxid numbers.

DeFINITION 1. We impose two rules on Xmodules based on the module tree:

1. Rule 1. A method of an Xmodule M can access a memory locdtairectly only if is either owned by
M or an ancestor of M in the module tree. This rule means thaarmrestor Xmodule N of M may pass
data down to a method belonging to M, but a transaction frondue M can not directly access any
“lower-level” memory.

2. Rule 2 A method from M can call a method from N only if N is the childsofme ancestor of M, and
xid(N) > xid(M) (i.e., if N is “to the right” of M in the module tree). This rukequires that an Xmodule
can call methods of some (but not all) lower-level Xmodailes.

The intuition behind these rules is as follows. Xmodulesehawethods to provide services to other
higher-level Xmodules, and Xmodules maintain their owradatorder to provide these services. Therefore,
a higher-level Xmodule can pass its data to a lower-level duh® and ask for services. A higher-level
Xmodule should not directly access the internal data beéhgnp a lower-level Xmodule.

If Xmodules satisfy Rules 1 and 2, TM can have a well-definedienship-aware commit mechanism;
some transaction is always “responsible” for every memamess (proved in Section 5). In addition,
these rules and the ownership-aware commit mechanism rgaarghat transactions satisfy the property
of “serializability by modules” (proved in Section 6).

One potential limitation of ownership-aware TM is that sofogclic dependencies” between Xmodules
are prohibited. The ability to define one module as being et level than another is fundamental to the
open-nesting methodology. Thus, our formalism requiras Ximodules be partially ordered; if an Xmodule
M can call XmoduleN, then conceptually is at a higher level thaN (i.e.,xid(M) < xid(N)), and thus
N can not callM. If two components of the program call each other, then, eptually, neither of these
components is at a higher-level than the other, and we wegjdire that these two components be combined
into the same Xmodule.

2 An Xmodule can, in fact, call methods within its own Xmodutdrmm its ancestor Xmodules, but we model these calls aiffdy.
We explain these cases condition at the end of this section.
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Figure 1. A module treeD for the program described in Section 2. Thii's are assigned according to a
left-to-right depth-first tree walk, numbering Xmodulesriareasing order, starting wittid (world ) = 0.

Xmodules in the Example Application

Consider a Java implementation of the example applicatestribed earlier. It may have the following
classesUserApp as the top-level application that manages the book catlestPerson andBook as the
abstractions representing book owners and bdol&r the databas&STandHashmap for the binary search
tree and hashmap maintained by the databasd,agadr for logging the metadata to disk. In addition, there
are some other auxiliary classes: tree nB8&Node for the BST, Bucket in the Hashmap, andBuffer used
by thelogger .

For ownership-aware TM, not all of a program’s classes aranint® be Xmodules; some classes only
wrap data. In our example, we identified five Xmodulé&iserApp , DB BST, Hashmap, andLogger ; these
classes are stand-alone entities which have encapsuki@drt methods. Classes sucBak andPerson ,
on the other hand, are data types used$myApp . Similarly, classes likBSTNode andBucket are data types
used byBST andHashmap to maintain their internal state.

We organize the Xmodules of the application into the modube tshown in Figure 1UserApp is
encapsulated byorld , DBandLogger are encapsulated unddserApp ; BSTandHashmap are encapsulated
underDB. By dividing Xmodules this way, the ownership of data fallg aaturally, i.e., an Xmodule owns
certain pieces of data if the data is encapsulated under tined¥le. For example, the instancesPefson
or Book are owned byJserApp because they should only be accessed by eitbeApp or its descendants.

Let us consider the implications of Definition 1 for the exdenue to Rule 1, all oDB BST, Hashmap,
andLogger can directly access data ownedUWserApp , but theUserApp can not directly access data owned
by any of the other Xmodules. This rule corresponds to stahsiaftware-engineering rules for abstraction;
the “high-level” XmoduleUserApp should be able to pass its data down, allowing lower-levebdules to
access that data directly, buserApp itself should not be able to directly access data owned beildevel
Xmodules. Due to Rule 2, tHdserApp may invoke methods fromB, DBmay invoke methods froBSTand
Hashmap, and every other Xmodule may invoke methods filamgger . Thus, Rule 2 allows all the operations
required by the example application. As expected,UberApp can call theinsert andsearch methods
from the DB and can even pass its data to Dfor insertion. More importantly, notice the relationship
betweerBST andLogger . TheBST Xmodule can call methods froirogger , but theBST can not pass data it
owns directly into theLogger . It can, however, pass data owned by tiserApp to the logger, which is all
this application requires.

Advantage of Ownership-Aware Transactions

One of the major problems with vanilla open nesting is thatedransactions can see inconsistent data. Say
a transactiorY is open nested inside transacti®nLet vy be the initial value of locatiod, and suppos¥
writes valuev; to location? and then commits. Now a transactignn parallel withX can read this location

£, write valuev, to ¢, and commit, all befor&X commits. ThereforeX can now read this locatiohand see



the valuev,, which is neither the initial value, (the value o whenX started), nok; which was written by
X’s inner transactionyY. This behavior might seem counterintuitive.

Now consider the same example for ownership-aware transactSayX is generated by a method
of XmoduleM andY is generated by a method of Xmodu\e If N owns/, X can not accessg, since
xid(M) < xid(N) (by Definition 1, Rule 2), and no transaction from a higherlenodule can access data
owned by a lower-level module (by Definition 1, Rule 1). Thit® problem does not arise. N does not
own/, the ownership-aware commit ¥fwill not commit the changes tbglobally and/ will be propagated
to X’s write set. Therefore, iZ tries to accesg beforeX commits, the TM system will detect a conflict.
ThusX can not see an inconsistent value f0r

Callbacks

At first glance, the assumptions we have made regarding methioXmodules seem somewhat restrictive.
In the description thus far, we prohibit an Xmodidiefrom calling another transactional method friMror a
proper ancestor d¥l. In particular, it appears as though our model disallowkaaks. Our model, however,
does permit both these cases; we simply model these cdbseatifly.

If a methodX from XmoduleM calls another method from an ancestor Xmodul, this new call does
not generate a new safe-nested transaction instanceadpn$gtis subsumed iX using flat (or closed) nesting.
Recall that Rule 1 in Definition 1 allowX to access data belonging kbor any of its ancestors directly.
Therefore, we can treat any data access by a flat (or clossthchransactiolY as being accessed by
directly, provided thal and its nested transactions access only memory belongihgaioN’s ancestors.
We say thal is aproper callbackmethod for XmoduleN if its nested calls are all proper callback methods
belonging to Xmodules which are ancestordNoin our formal model in Section 4, we assume that we only
have proper callbacks and model them as direct memory as;esfowing us to ignore them in the formal
definitions.

Closed-Nested Transactions

In our model, every method call that crosses an Xmodule bamyndutomatically generates a safe-nested
transaction. Ownership-aware TM can effectively provittssed-nested transactions, however, with appro-
priate specifications of ownership. If an XmodWNeowns no memory, but only operates on memory be-
longing to its proper ancestors, then transactionsiafill effectively be closed nested. In the limit, if the
programmer specifies that all memory is owned bytbikd  Xmodule, then all changes in any transaction’s
read or write set are propagated upwards; thus all owneeshgve commits behave exactly as closed-nested
commits.

3. OWNERSHIP TYPES FOR Xmodules

When using ownership-aware transactions, the Xmoduleslatadownership in a program must be specified
for two reasons. First, the ownership-aware commit meshaiepends on these concepts. Second, we can
guarantee some notion of serializability only if a prograas IKmodules which conform to the rules in
Definition 1. In this section, we describe language congtrand a type system that can be used to specify
Xmodules and ownership in a Java-like language. Our typtesys— the OAT type system— statically
enforces some of the restrictions described in Definition 1.

The OAT type system extends the ownership types of Boyapati et jawfiich is described first in this
section. We then describe extensions to this type systemftooe some of the restrictions in Definition 1.
Next, we present code for parts of the example applicatiaeritlzed in Section 2. Finally, we discuss some
restrictions required by Definition 1 which tEAT type system does not enforce statically. The type system’s
annotations, however, enable dynamic checks for theséctisis.

3For simplicity, we have described the case whéis directly nested insidX. The case wher¥ is more deeply open nested inside
X behaves in a similar fashion.



Boyapati et al.'s Parametric Ownership Type System

The type system of Boyapati et al. provides a mechanism fecigpng ownership of objects. The type
system enforces the properties stated in Lemma 1.

LEMMA 1. The type system in [3] enforces the following properties:

1. Every object has a unique owner.

2. The owner can be either another objectwanr | d.

3. The ownership relation forms awnership tregof objects) rooted anor | d.

4. The owner of an object does not change over time.

5. An object a can access another object b directly only ibliser is either a, or one of a's proper ancestors
in the ownership tree.

Boyapati et al.'s type system requires ownership annatstio class definitions and type declarations to
guarantee Lemma 1. Every class tyffehas a set of associated ownership tags, dentitédi, fo, ... fy).
The first formalf; denotes the owner of the current instance of the object tfii€. object). The remaining
formals fp, f3,... f, are additional tags which can be used to instantiate andudeother objects within
the class definition. The formals get assigned with actualersoy,0,,...0, when an objecta of type
T1 is instantiated. By parameterizing class and method deabdas with ownership tags, the type system
of [3] permits owner polymorphism. Thus, one can define asctge (e.g. a generic hash table) once, but
instantiate multiple instances of that class with differ@nners in different parts of the program.

The type system enforces the properties in Lemma 1 by peirigrthe following checks:

1. Within the class definition of typ&l, only the tagq f1, fo,... fo} U{this ,world } are visible. Thehis
ownership tag represents the object itself.

2. Within a class definition, a variable with type T2(f,,...) can be assigned to a variatie with type
T1(fy,...) ifand only if T2 is a subtype o1 and f; = f,.

3. If an objecta’s tags are instantiated to lmg, 0,,...0, Whena is created, then in the ownership treg,
must be a descendant@f Vi € 2..n, (denoted byo; < o; henceforth).

It is shown in [3] that these type checks guarantee the ptiepesf Lemma 1.

In some cases, to enable the type system to perform checlalB/dbe programmer may need to specify
a where clause in a class declaration. For example, suppose the dédaration of typd1l has formal
tags(fy, fa, f3), and insideT1’s definition, some typ&2 object is instantiated with ownership tags, f3).
The type system can not determine whether or 30K f3. To resolve this ambiguity, the programmer
must specifywhere ( f, <= f3) at the class declaration of tygé. When an instance of typg object is
instantiated, the type system then checks thawtieee clause is satisfied.

The OAT Type System

The ownership tree described in [3] exhibits some of the ganoerties as the module tree we described in
Section 2; however, the type system and ownership schen8 @b[not enforce two major requirements of
our system.

¢ In [3], any object can own other objects. Our rules, howexeqguire that only Xmodules own other
objects.

¢ In [3], an object can call any of its ancestor’s siblings. @ues (namely Definition 1), however, dictate
that an XmoduléM can only call its ancestor’s siblings to the right.

With these requirements in mind, we extend Boyapati etglde system to create ti@AT type system.
The extensions to handle the first requirement are straighdird. The OAT type system explicitly
distinguishes objects and Xmodules by requiring that Xnkexlextend from a speci&imodule class. The



OAT type system only allows classes that ext&nudule to usethis as an ownership tag. In the context of
the Boyapati et al.'s ownership tree, this restriction teea tree where all the internal nodes are Xmodules
and all leaves are non-Xmodule objects. If we ignore anyrardposed on the children of an Xmodule, for
ownership-aware TM, the module tree (as described in Sedlidgs essentially the ownership tree with all
non-Xmodule objects removed.

The second requirement is more complicated to enforcet, Miesextend each owner instang¢o have
two fields:name represented byg. name andindex, represented by.index The name field is conceptually
the same as an ownership instance in the type system of [8]index field is added to help the compiler
to infer ordering between children of the same Xmodule inrtteglule tree. Th®OAT type system allows
the programmer to pasisis|i] as the ownership tag (i.e., with an ind@xnstead ofthis . Similarly, one
can useworldli]  as an ownership tag. Indices enable the type system to inferdering between two
sibling XmodulesM andN; for instance, if an Xmodulé instantiatedM andN with ownersthis|i] and
this[i+l]  , respectively, theiM appears to the left dfl in the module tree.

Finally, for technical reasons, t@AT system prohibits all Xmoduled from declaring primitive fields.
If M had primitive fields, then by Boyapati et al.'s type systehese fields are owned by tié's parent.
Since this property seems counter-intuitive, we opted galltiw primitive fields for Xmodules.

In summary, th@AT type system performs these checks:

1. Within the class definition of typ€l, only the tagg f1, f2,... fa} U {this ,world } are visible.

2. In a class declaration, a variabte with type T2(f,,...) can be assigned to a variabtg with type
T1(fy,...) if and only if T2 andT1 have the same type and all the formals match in name. In addifi
the indices are specified for the tags, then they must match.

3. For a typel(os,0z,...0n), we must have, for all € {2,...n}, eithero;. name< ;. nameor 0;. name=
o0;.nameando;.index< o;.index(if both indices are knowrt).

4. The ownership tathis can only be used within the definition of a class that extetmisdule .
5. Xmodule objects can not have primitive-type fields.

The first three checks are analogous to the checks in Boyetpeltis type system. The last two checks are
added to enforce the additional requirements of Xmodules.

TheOAT type system supportghere clauses of the forrwhere ( fi < fj) ; whenf; andf; are instantiated
with o; andoj, the type system ensures that eitbhename< o0;. name or ¢;. name= 0;. nameando;. index<
0;.index The detailed type rules for tHeAT type system are described in [1].

Example Application using théDAT Type System

Figure 2 illustrates how one can specify Xmodules and ovingnssing ownership types. The programmer
specifies an Xmodule by creating a class which extends fropeeaia Xmodule class. TheDB class has
three formal owner tags ébO which is the owner of th®B Xmodule instancelogO which is the owner
of the Logger Xmodule instance that thBB Xmodule will use, andlataO which is the owner of the user
data being stored in the database. When an instaridgeofpp initializes Xmodules in lines 5-6, it declares
itself as the owner of theogger , the DB, and the user data being passed DB The indices orhis are
declaring the ordering of Xmodules in the module tree, ite2 user data is lower-level than tbegger , and
theLogger is lower level than th®B lines 11-13 illustrate how thgBclass can initialize its Xmodules and
propagate the formal owner tags (ilegO anddataO ) down.

Note that in order for this code to type check, Digclass must decladegO < dataO using thewhere
clause in line 10, otherwise the type check would fail at lide due to ambiguity of their relation in the
module tree. Thavhere clause in line 10 is checked whenever an instandgBa$ created, i.e. at line 6.

41n the ownership tree, for any Xmodulé, the OAT type system implicitly assigns non-Xmodule childrervbhigher indices than
the Xmodule children oM, unless the user specifies otherwise.



1  public class UserApp<appO> extends Xmodule {

2 private Logger<this[1], this[2]> logger;

3 private DB<this[0], this[1], this[2]> db;

4 pL'Jll'Z)“C UserApp() {

5 logger = new Logger<this[1], this[2]>();

6 db = new DB<this[0], this[1], this[2]>(logger);
7 }

8 }

9  public class DB<dbO, logO, dataO>

10 extends Xmodule where (logO < dataO) {
11 private Logger<logO, dataO> logger;

12 private BST<this[0], logO, dataO> bst;

13 private Hashmap<this[1], logO, dataO> hashmap;
14 public DB(Logger<logO, dataO> logger) {

15 this.logger = logger;

Figure 2. Specifying Xmodules and ownership for the example apptinadescribed in Section 2.

The OAT Type System’s Guarantees

The following lemma about th®AT type system can be proved in a reasonably straightforwanthera
using Lemma 1.

LEMMA 2. The OAT type system guarantees the following properties.

1. An Xmodule M can access a (non-Xmodule) object b with @hietag @ only if M < op. name.
2. An Xmodule M can call a method in another Xmodule N with owReonly if one of the following is
true:
(@) M = oy.name (i.e. M owns N);
(b) The least common ancestor of M and N in the module treg.isaone.
(c) N> M (i.e. N is an ancestor of M).

Lemma 2 does not, however, guarantee all the properties wefrean Xmodules (i.e., Definition 1). In
particular, Lemma 2 does not consider any ordering of gib¥imodules. Th®©AT type system can, however,
provide stronger guarantees for a program which satisfies$ wé call thaunique owner indiceassumption:
for all XmodulesM, all children ofM in the module tree are instantiated with ownership tags witique
indices that can be statically determined. For such a pnogitze type system can order the children of every
XmoduleM from smallest to largest index, and assign thd to each Xmodule as described in Section 2.
Then, the following result holds:

THEOREM 3. For a program with unique owner indices, in addition to LemBahe OAT type system
guarantees that if the least common ancestor of XmodulesdvNaim the module tree isyoname, then M
can call a method in N only £id(M) < xid(N).

PROOF

We prove (by contradiction) that if least common ancestavi@ndN in the module tree isy. name and
xid(M) > xid(N), thenM can not have a formal tag with valog. Therefore, it can not declare a type with
owner tagoy, and can not acce$s.

LetL be the least common ancestomdf SinceL = oy. name we know that_ is N’'s parent. LeQ be the
ancestor oM which isN’s sibling, and lebg beQ's ownership tag (i.e., the tag with whiis instantiated).



sible?

SinceN andQ have the same parent (il) in the module tree, we haw@ . name= 0g.name= L. Since
xid(M) > xid(N), M is to the right ofN in the ownership tree. Therefor®, which is an ancestor dil, is
to the right ofN in the ownership tree. Therefore, we ha¢gindex> oy.index

Assume for contradiction thdll does havey as one of its tags. Using Lemma 1, one can show that the
only way forM to receive tagy is if Q also has a formal tag with valug. Thus,Q’s first formal owner tag
has valueog and another one of its formals has vabie

Let Py = Q, and consider the chain of Xmodule instantiations where dmeP, instantiated?_1. P, has
to instantiateQ (which is the same a&)) using its formal ownership tagjsf;}, f&,...}, where 1 has value
0g and f! has valueoy. (We must havef? as the first formal, sinceq is the owner ofQ. Without loss of
generality, we can havq} be the second formal since the type system does not care tigootdering of
formal tags after the first one.)

Sinceon.name= 0g.name= L, this chain of instantiations must lead backlLtosince that is the only
Xmodule that can create ownership tags with valagsandog in its class definition (using the keyword
this ). % Let P = L. For the class declaration of each of the XmoduRefor 1 < i < k, the following must
be true.

¢ P must have formali‘,1 and ft‘), with valuesog andoy, respectively, an® must pass these formals into
the instantiation oP_;.

* In the type definition of’s class,R must have the constrairigl < ft‘) on its formal tags (either because
f4 is the owner tag, or throughvehere clause that enforcefy, < f}.

The first condition must hold for us to be able to pass bmthand og down to Py = Q. The second
condition is true for the Xmodules by induction. In the baasesP; must know thatf} < fZ; otherwise, the
type system will throw an error when it tries to instantiBe= Q with owner f}. Then, inductivelyP, must
know f} < f! to be able to instantiatg ;.

Finally, P_1 is instantiated in the class file corrspondingc= L. In this declaration, the formal with
valueog is instantiated withhis [x]. Similarly, fX with valueoy is instantiated witfthis [y]. Since the class
definition of P type checks, we must haig < fl')‘. This check contradicts our original assumption thaty
however, since ik >y our type check should fail. Therefore, we must hageindex< oy.index

(]

Theorem 3 only modifies the Condition 2b of Lemma 2. Therefbemmma 2 along with Theorem 3
imposes restrictions on every Xmodwe which are only slightly weaker than the restrictions regdiby
Definition 1. Condition 1 in Lemma 2 corresponds to Rule 1 ofiligon 1. Conditions 2a and 2b are the
cases permitted by Rule 2. Condition 2c, however, corredpomthe special case of callbacks or calling a
method from the same Xmodule, which is not permitted by Dédimil. This case is modeled differently, as
we explained in Section 2.

The OAT type system is a best-effort type system to check for theéicdens required by Definition 1. The
OAT type system can not fully guarantee, however, that a tyjeekad program does not violate Definition 1.
Specifically, theOAT type system can not always detect the following violatiotaically. First, if the
program does not have unique owner indices, thanay instantiate botivi andN with the same index.
Then, by Lemma 2M andN, can call each other's methods, and we can get cyclic deperedebetween
Xmodules® Second, the program may perform improper callbacks. Saythaddrom M calls back to
methodB from L. An improper callbaclB can call a method di, even though the type system knows that
M is to the right ofN. In both cases, the type system allows a program with cydjpeddency between
Xmodules to pass the type checks, which is not allowed by Diefinl.

®Note thatL could be theworld Xmodule, in which case botby andog were created in thenain function using theworld
keyword.

6Since all non-Xmodule objects are implicitly assigned kigindices than their Xmodule siblings, these non-Xmodbijects can
not introduce cyclic dependencies between Xmodules.



To have an ownership-aware TM which guarantees exactly Defirl, one needs to impose additional
dynamic checks. The runtime system can use the ownerstspgddmiild a module tree during runtime, and
use this module tree to perform dynamic checks to verify ¢élvaty Xmodule has unique owner indices and
contains only proper callbacks. The runtime system can iddothdynamically inferring indices according
to which Xmodule calls which other Xmodule, and reportingearor if there is any circular calling.

4. COMPUTATIONS WITH Xmodules

In this section, we formally define the structure of tranismetl programs with Xmodules. This section

converts the informal explanation from Section 2 into a fakrmodel that we later use to prove properties
of ownership-aware TM. First, we briefly review the trangawl computation framework described in [2].

We then add Xmodules and ownership to this framework, andgedhe formal statement of Definition 1.

Transactional Computations

In the framework from [2], the execution of a program is medelising a “computation tree” that
summarizes the information about both the control strectfr a program and the nesting structure of
transactions, and an “observer functio®’ which characterizes the behavior of memory operations. A
program execution is assumed to generaraee (C,P).

A computation treeC is defined as an ordered tree with two types of nod@esmory-operation nodes
memOps(C) as leaves andontrol nodesspNodes(() as internal nodes. A memory operatiosatisfies the
read predicateR(v, ¢) if v reads from locatior, while v satisfies thevrite predicateW (v, ¢) if v writes to/.
Control nodes are eithes (series) orP (parallel) nodes. Conceptually, the children of &node must be
executed serially, from left to right, while the children®hode can be executed in parallel. So8modes
are labeled as transactions; defizetions(C) as the set of these nodes.

Instead of specifying the value that an operation reads ibeswio a memory locatioh, we abstract away
the values by using aobserver function®. For a memory operation that accesses a memory locatin
the noded(v) is defined to be the operation that wrote the valué thiatv sees.

We define several structural notations on the computatesdr Denote theoot of C asroot(C). For
any tree nodeX, let ances(X) denote the set of aK’s ancestors (including itself) in C. Similarly, let
desc(X) denote the set of aK’s descendants, including itself. Denote the set of proper ancestors of
X by pAnces(X). For any tree nod&, we define tharansactional parentof X, denotedxparent(X),
as parent(X) if parent(X) € xactions((), Or xparent(parent(X)) if parent(X) ¢ xactions(C).
Define thetransactional ancestorof X as xAnces(X) = ances(X) Nxactions(C). Denote theleast
common ancestorf two nodesX;, X, € C by LCA(Xz,Xz). Define xLCA(Xy,X2) asZ = LCA(Xy, Xp) if
Z € xactions((C), and axparent(Z) otherwise.

A computation can also be represented as a computation ttagtédl acyclic graph). Given a treg the
dagG(C) = (V(C),E(C)) corresponding to the tree is constructed recursively. JEvgernal nodeX in the
tree appears as two vertices in the dag. Between these ttiwessthe children oK are connected in series
if X is anSnode, and are connected in paralleKifis aP node. Figure 3 show a computation tree and its
corresponding computation dag.

Classical theories on serializability refer to a particidaecution order for a program ashastory [12].

In our framework, a history corresponds to a topological Saf the computation daG(C). We define our
models of TM using these sorts. Reordering a history to preduserial history is equivalent to choosing
a different topological sors’ of G(C) which has all transactions appearing contiguously, butkvis still
“consistent” with the observer function associated with

"It is possible to statically check for unique owner indicgsithposing additional restrictions on the program. We ophexvever,
to describe a more flexible programming model with weakdicsgmarantees.
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Figure 3. A sample (a) computation trge¢ and (b) its corresponding d&s| ().

Xmodules and Computation Tree

As mentioned in Section 2, in this paper, we consider progrdrat contain Xmodules. In our theoretical
framework, we consider traces generated by a program whiclganized into a set of Xmodules. Each
XmoduleM € A’ has some number of methods and a set of memory locationsassbwith it.

We patrtition the set of all memory locations into sets of memory owned by each Xmodule. Let
modMemory(M) C £ denote the set of memory locations owned\byFor a locatiory € modMemory(M),
we say thabwner(¢) = M. When a method of Xmodulé is called by a method from a different Xmodule,
a safe-nested transactidris generated.We use the notatiorMod(T) = M to associate the instandewith
the XmoduleM. We also define the instances associated iiths

modXactions(M) ={T € xactions((C) : xMod(T)=M}.

As mentioned in Section 2, Xmodules of a program are arramgethe module tree, denoted Y.
Each Xmodule is assigned atid according to a left-to-right depth-first tree walk, with tteet of D being
world with xid = 0. Denote the parent of XmoduM in D asmodParent(M), and the ancestors of
asmodAnces(M) (includeM itself). Similarly, letmodDesc(M) be the set oM’s descendants. We say that
xMod(root((C)) = world , i.e., the root of the computation tree is a transaction @assd with theworld
Xmodule.

We use the module tre® to restrict the sharing of data between Xmodules and to lingitvisibility of
Xmodule methods according to the rules given in Definition 2.

DEFINITION 2 (Formal Restatement of Definition 1) program with a module tre® should generate
only traces(C, ®) which satisfy the following rules:

1. For any memory operation v which accesses a memory locétiet T = xparent(Vv). Thenowner(¢) €
modAnces(xMod(T)).

2. Let XY € xactions(() be transaction instances such theMod(X) = M and xMod(Y) = N. We can
have X= xparent(Y) only ifmodParent(N) € modAnces(M), andxid(M) < xid(N).

5. THE OAT MODEL

In this section, we describe tH@AT model, an abstract execution model for TM with ownership and
Xmodules. The novel feature of tliBAT model is that it uses the structure of Xmodules to provideraroi

8 As we explained in Section 2, callbacks are handled difiéyen



mechanism which can be viewed as a hybrid of closed and opgtegh commits. ThOAT model presents
an operational semantics for TM, and is not intended to des@n actual implementation, although these
semantics can be used to guide an implementation.

Overview

The TM system is modeled as a nondeterministic state mactithetwo components: @rogram and a
runtime systemThe runtime system, which we call ti@AT model, dynamically constructs and traverses
a computation tre€ as it executes instructions generated by the program OAlemodel maintains a set
of readynodes, denoted hyeady(C) C nodes(C), and at every step, tt@AT model nondeterministically
chooses one of these ready nodes ready(C) to issue the next instruction. The program then issues one
of the following instructions (whose precondition is séid) on X’s behalf: fork , join , xbegin , xend,
xabort , read , orwrite . For shorthand, we sometimes say thassues an instruction.

The OAT model describes a sequential semantics, that is, we assguwaveratime step, a program issues
a single instruction. The parallelism in this model arigesthe fact that at a particular time, several nodes
can be ready, and the runtime nondeterministically choa$ish node to issue an instruction.

In the rest of this section, we give a detailed descriptiothefOAT model. First, we describe the state
information maintained by th©AT model and define the notation we use to refer to this statarBleeve
describe how th©AT model constructs and traverses the computation tree agdgtiets are issued. Then,
we describe how th®AT model handles memory operations (iread andwrite ), conflict detection, and
transaction commits, and transaction aborts.

5.1 State Information and Notation

As the OAT model executes instructions, it dynamically constructs cdbmputation tree”. For each of
the sets defined in Section 4 (e.gades(C), spNodes((), memOps(C), xactions((), etc.), we define
corresponding time-dependent versions of these sets byimglthem with an additional time argument. For
example, we define the sebdes(t, C) denotes the set of nodes in the computation tree afiere steps
have passed. The generalized sets from Section 4 are maalpincreasing, i.e., once an element is added
to the set, it is never removed at a later tim8ometimes for shorthand, we omit the time argument when it
is clear that we are referring to a particular fixed titne

At any timet, each internal nodé € spNodes(t, C) has astatusfield status|[A]. These status fields
change with time. IA € xactions(t, (), i.e.,Ais a transaction, thesttatus[A] can be one of€OMMITTED
ABORTEDPENDING or PENDINGABORT Otherwise A € spNodes(t, C) — xactions(t, () is either a P-node
or a nontransactional S-node; in this caseatus[A] can either b&VORKINGr SYNCHEDWe define several
abstract sets for the tree based on this status field. Thesfssts partition thespNodes(t, C), the set of
internal nodes of the computation tree. The last 4 sets @aregtransactions and nodes as being either
active or complete.

. pending(t,C) = {X € xactions(t,C) : status[Z] = PENDING (Pending transactions).

. pendingAbort(t,C) = {X € xactions(t,C) : status|[Z] = PENDINGABORT (Aborting transactions).
. committed(t,C) = {X € xactions(t,() : status[Z] = COMMITTED (Committed transactions).

. aborted(t,C) = {X € xactions(t,C) : status|[Z] = ABORTED (Aborted transactions).
.working(t,C) = {Z € spNodes(t, C) — xactions(t,C) : status[Z] = WORKING (Working nodes).

)
. synched(t, C) = {Z € spNodes(t, C) —xactions(t,C) : status[Z] = SYNCHED (Synched nodes).
.activeX(t, C) = pending(t, C) UpendingAbort(t, C) (Active transactions).
.activeN(t,C) = activeX(t, C) Uworking(t, C). (Active nodes).
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. doneX(t, C) = committed(t, C) Uaborted(t, C) (Complete transactions).



10. doneN(t, C) = doneX(t, C) Usynched(t, C) (Complete nodes).

The OAT model maintains a set eéady S-nodes, denoted asady(t, C). We discuss the properties of
ready nodes later, in Section 5.2. Note thatdy(t, C), and the sets defined above which are subsets of
activeN(t, C) are not monotonic, because completing nodes removes efefnem these sets.

For the purposes of detecting conflicts, at any tinfer any active transaction, i.e., T € activeX(t, (),
the OAT model maintains aead se®(t,T) and awrite setw(t, T) for T. The read sek(t, T) is a set of pairs
(¢,v), wherel € L is a memory location ande memOps(t, C) is a memory operation that reads frémVe
definew(t,T) similarly. We represent main memory as the read set/writefssoot(C). At timet =0, we
assume (0,root(C)) andw(0,root(()) initially contain a pair(¢, L) for all locations? € L.

In addition to the basic read and write sets, we also defindule read seandmodule write sefor all
transactiond € activeX(t,C). Module read set is defined as

modR(t,T) ={(¢,v) €R(t,T) : owner({)=xMod(T)}.

In other wordsmodR(t, T) is the subset ok(t, T) that accesses memory owned by XmodulexMod(T).
Similarly, we define thenodule write sets

modW(t,T)={(¢,v) €W(t,T) : owner({)=xMod(T)}.

The OAT model maintains two invariants a&it,T) andw(t,T). First,W(t,T) C R(t, T) for every transac-
tion T € xactions(t, C), i.e., a write also counts as a read. Secat,T ) andw(t, T) each contain at most
one pair(¢,v) for any location/. Thus, we use the shorthadd: R(t,T) to mean that there exists a node
such that(¢,u) € R(t, T), and similarly forw(t, T). We also overload the union operator: at some tijran
operationR(T) < R(T)U{(¢,u)} means we construai(t + 1, T) by

Rt+1,T)={(6,u)}U(RET)—{((,U) €R(ET)}).
In other words, we ad¢¢,u) toR(T), replacing any/,u’) € R(t, T) that existed previously.

5.2 Constructing the Computation Tree

In the OAT model, the runtime constructs the computation tree in agéiffarward fashion as instructions
are issued. For completeness, however, we give a detaitexdijpkton of this construction.

Initially, at timet = 0, we begin with only the root node in the tree, irndes(0, C) = xactions(0,(C) =
{root(C)}. This root node also begins as ready, iready(0,C) = {root(()}. Throughout the computa-
tion, the status of the root node of the tree is alwWlySDING

A new internal node is created if tt@AT model picks ready nod¥ and X issues dork or xbegin
instruction. IfX issues dork , then the runtime creates a P-nd@las a child ofX, and two S-nodeS$; and
S as children ofP, all with statusWORKINGThefork also removeX from ready(C) and addsS; and$,
toready(C). If X issues anmbegin , then the runtime creates a new transaconxactions(() as a child
of X, with status[Y] = PENDING removesX from ready((C), and add¥ to ready(C).

The OAT model completes a nontransactional S-ndde ready(t, C) — xactions(t,C) (which must
have status[Z] = WORKING by having Z issue ajoin instruction. Thejoin instruction first changes
status[Z] to SYNCHEDIn the tree, sincearent(Z) is always a P-nodeZ has exactly one sibling. [¥
is the first child ofparent(Z) to be SYNCHEDthe OAT model removeg from ready(C). OtherwiseZ is
the last child ofparent(Z) to beSYNCHEDPand theOAT model remove& andparent(Z) from ready(C),
changes the status of bafhandparent(Z) to SYNCHEDand addgarent(parent(Z)) to ready(C).

The OAT model can complete a transacti®ne ready(t, C) by having it issue either axend or xabort
instruction. If status[X] = PENDING then X can issue arxend to changestatus[X] to COMMITTED
Otherwise,status|[X] = PENDINGABORT andX can issue amabort to change its status ®WBORTEDFor



bothxend andxabort , theOAT model removeX from ready(() and addparent(X) back intoready(C).
Thexend instruction also performs an ownership-aware commit amehghs read sets and write sets, which
we describe later in Section 5.4.

Finally, a ready nodX issues aead andwrite instruction, if the instruction does not generate a conflict
it adds a memory operation nogld¢o memOps(t, C), with v as a child ofX. If the instruction would create
a conflict, the runtime may change the status of BEMDINGtransactionT to PENDINGABORTto make
progress in resolving the conflict. For shorthand, we refethe status change of a transactibrfrom
PENDINGto PENDINGABORTas asigabort  of T.

This construction of the tree guarantees a few properties.

First, the sequence of instructiogs generated by th@®©AT model is a valid topological sort of the
computation da@s(C). Second, th®©AT model generates a tree of a canonical form, where the roa nod
of the tree is a transaction, all transactions are S-nodé®aery P-node has exactly two nontransactional
S-node children. This canonical form is imposed for corseoé of description; it is not important for any
theoretical results. Finally, tHeAT model maintains the invariant the active nodes form a tréb,the ready
nodes at the leaves. This property is important for the comess of th€OAT model.

5.3 Memory Operations and Conflict Detection

The OAT model performs eager conflict detection; before perfornaimgemory operation that would create
a newv € memOps((C), the OAT model first checks whether creatingvould cause a conflict, according to
Definition 3.

DEFINITION 3. Suppose at time t, the OAT model issuasead or wr i t e instruction that potentially
creates a memory operation node v. We say that v generatesnaory conflictif there exists a location
¢ € L and an active transactionyE activeX(t, C) such that

1. Ty & xAnces(v), and
2. either Rv,£) A ((£,u) € W(t,Ty)), or W(v,£) A ((¢,u) € R(t, Ty)).

If a potential memory operationwould generate a conflict, then the memory operatidoes not occur;
instead, asigabort  of some transaction may occur. We describe the mechanisabfots in Section 5.5.
Otherwisey does not generate a conflict and observes the Vdiwen R(Y), whereY is the closest ancestor
of vwith £ in its readset (i.e(¢,u) € R(Y) and®(v) = u). Theread also add¥ to X’s readset. A successful
write  operationv sets the observer functigh(v) in the same way asraad . Thewrite adds(4,v) to both
R(X) andw(X).

5.4 Ownership-Aware Transaction Commit

The ownership-aware commit mechanisemployed by théOAT model contains elements of both closed-
nested and open-nested commitsPENDINGtransactionY issues arxend instruction to commity into
X = xparent(Y). Thisxend commits locations from its read and write sets which are amexMod(Y)
in an open-nested fashion to the root of the tree, while itroitslocations owned by other Xmodules in a
closed-nested fashion, merging those reads and writeXiat@ad and write sets.

We can describe th®AT model’s commit mechanism more formally in terms of moduledsets and
writesets. Suppose at timeY € xactions(t, C) with status[Y] = PENDINGissues arxend . This xend
changes readsets and writesets as follows.

R(root(C)) « R(root(C))UmodR(Y)
R(xparent(Y)) <« R(xparent(Y))U (R(Y)—modR(Y))

Wroot(C)) <« Wroot((C))UmodW(Y)
Wxparent(Y)) <« Wxparent(Y))U (W(Y)—modW(Y))



Unique Committer Property

Definition 2 guarantees certain properties of the comprtdtiee which are essential to the ownership-aware
commit mechanism. Theorem 5 proves that every memory dpetaas one and only one transaction that is
responsible for committing the memory operation. The pajdhe theorem requires the following lemma.

LEMMA 4. Given acomputation tre€, forany T€ xactions(C), let S = {xMod(T’) : T’ € xAnces(T)}.
ThenmodAnces(xMod(T)) C Sy.

PROOF We prove this fact by induction on the nesting depth of @atiensT in the computation tree. In
the base case, the top-level transacflos: root((), andxMod(root(C)) = world . Thus, the fact holds
trivially. For the inductive step, assume thidAnces(xMod(T)) C Sy holds for any transactiom at depth
d. We show that the fact holds for aily € xactions((C) at depthd + 1.

For any suchl*, we knowT = xparent(T*) is at depthd. Then, by Rule 2 of Definition 2, we have
modParent(xMod(T*)) € modAnces(xMod(T)). Thus, modAnces(xMod(T*)) C modAnces(xMod(T)) U
{xMod(T*)}. By construction of the se&, we haveSr- = Sy U {xMod(T*)}. Therefore, using the inductive
hypothesis, we haveodAnces(xMod(T*)) C Sy-. L

THEOREM 5. If a memory operation v accesses a memory locatjdhen there exists a unique transaction
T* € xAnces(V), such that

1. owner(¢) = xMod(T"*), and
2. For all transactions Xe pAnces(T*) Nxactions((), X can not directly access locatiah

This transaction T is thecommitterof memory operation v, denotedmmitter(v).

PrROOF This result follows from the properties of the module treel @omputation tree stated in Defini-
tion 2.

Let T = xparent(v). First, by Definition 2, Rule 1, we knowwner(¢) € modAnces(xMod(T)). We
know modAnces(xMod(T)) C Sy by Lemma 4. Thus, there exists some transacliore xAnces(T) such
thatowner(¢) = xMod(T*). We can use Rule 2 to show that thiéis unique. LetX; be the chain of ancestor
transactions oT, i.e., letXo = T, and letX; = xparent(X;_1), up until Xy = root(C). By Rule 2, we know
xid(xMod(Xj)) < xid(xMod(Xi_1)), that is, thexids strictly decrease walking up the tree fram Thus,
there can only be one ancestor transactiorof T with xid(xMod(T*)) = xid(owner(¢)).

To check the second condition of Theorem 5, consider #ng pAnces(T*) Nxactions(C). By
Rule 1,X can access$ directly only if owner(¢) € modAnces(xMod(X)) implying thatxid(owner(¢)) <
xid(xMod(X)). But we know thabwner(¢) = xMod(T*) andxid(xMod(T")) > xid(xMod(X)). O

Intuitively, T* = committer(Vv) is the transaction which “belongs” to the same Xmodule asdbation
£ whichv accesses, and is “responsible” for committing memory and making it visible to the world. The
second condition of Theorem 5 states that no ancestor tdmsaf T* in the call stack can ever directly
accesy; thus, it is “safe” forT* to commit/.

5.5 Transaction Abort

When theOAT model detects a conflict, it aborts one of the conflicting geantions by changing its status
from PENDINGto PENDINGABORT In the OAT model, a transactioX might not abort immediately; instead,
it might continue to issue more instructions after its stdtas changed 8ENDINGABORT Later, it will be
useful to refer to the set of operations a transackdasues while its status BENDINGABORT

DEFINITION 4. The set of operations issued by X or descendants of X aftetus[X] changes to
PENDI NG ABORT are called X'sabort actions This set is denoted yportactions(X).

The PENDINGABORT status allowsX to compensate for the safe-nested transactions that may hav
committed; if transactiolY is nested insid&, then the abort actions &f contain the compensating action



of Y. Eventually aPENDINGABORTtransaction issues afend instruction, which changes its status from
PENDINGABORTto ABORTED

If a potential memory operation generates a conflict witly, andT,’s status iSPENDING then theOAT
model can nondeterministically choose to abort eittyerrent(v), or Ty. In the latter casey waits for T, to
finish aborting (i.e., change its statusA®ORTEDbefore continuing. If,’s status iPENDINGABORT thenv
just waits forTy, to finish aborting before trying to issuead orwrite again.

This operational model uses the same conflict detectionritigo as TM with ordinary closed-nested
transactions does; the only subtleties are ¥t&#n generate a conflict withRENDINGABORTiransactionl,
and that transactions no longer abort instantaneouslyusedaey have abort actions. Some restrictions on
the abort actions of a transaction may be necessary to agaidlatk, as we describe later in Section 7.

6. SERIALIZABILITY BY MODULES

In this section, we defingerializability by modulesa definition inspired by the database notion of multilevel
serializability (e.g., as described in [13]). First, wedhdze the definition of serializability in the transactibna
computation framework, as given in [2]. Next, we incorperatmodules into this definition and define
serializability by modules. We then prove that tBAT model guarantees serializability by modules. Finally,
we discuss the relationship between the definition of seaiaility by modules, and the notion of abstract
serializability for the methodology of open nesting.

6.1 Transactional Computations and Serializability

In [2], serializability for a transactional computation tivicomputation tree” was defined in terms of
topological sortss of the computation dag(C). Informally, a trace(C,®) is serializable if there exists
a topological sort orders of G(C) such thats$ is “sequentially consistent with respect @', and alll
transactions appear contiguous in the orglein this section, we give more precise, formal definitions of
this concept.

Content Sets

We first describe some notation needed to formally desceializability by modules. All definitions in
this section are posteriori i.e., they are defined on the computation tree after therpmodhas finished
executing.

We define “content” sets for every transactidrby partitioningmemOps(T) (all the memory operations
enclosed insiderl including those belonging to its nested transactions) thtee setsicContent(T),
oContent(T) andaContent(T). For anyu € memOps(T), we define the content sets based on the final
status of transactions ifi that one visits when walking up the tree franto T.

DEFINITION 5. For any transaction T and memory operation u, define thesgistent(T), oContent(T),
andaContent(T) according theContentType(u, T ) procedure:

ContentType(u,T) > For any uc memOps(T)

X < xparent(U)

while (X #T)
if (X is ABORTED) return u € aContent(T)
if (X = committer(u)) return u € oContent(T)
X« xparent(X)

return u € cContent(T)

oA WN P

Recall that in theOAT model, the safe-nested commit ®f commits some memory operations in
an open-nested fashion, ot (), and some operations in a closed-nested fashioxptaent(T).
Informally, oContent(T) is the set of memory operations that are committed in an “opeamner byT’s
subtransactions. SimilarlgContent(T) is the set of operations that are discarded due to the absdnoé



subtransaction i 's subtree. FinallycContent(T) is the set of operations that are neither committed in an
“open” manner, nor aborted.

Sequential Consistency with Transactions

For computations with transactions, we can modify the @asstion of sequential consistency to account
for transactions which abort. Transactional semantidsitichat memory operations belonging to an aborted
transactionl should not be observed by (i.e., diedenfrom) memory operations outside of

DEFINITION 6. For u € memOps(C),v € V(C), let X = xLCA(u,v). We say that u ihidden from v if
u € aContent(X).

Our definition of serializability by modules requires thatutations satisfy some notion of sequential
consistency, generalized for the setting of TM.

DEFINITION 7. Consider a trace(C,®) and a topological sorts of G(C). For all v € memOps(C) such
that R\v,¢) VW(v,¢), the transactional last writerof v according toS, denotedXs(v), is the unique
u € memOps(C) U {_L} that satisfies four conditions:

1. W(u,?),

2.Uu<gV,

3. =(uHv), and

4. YWW(W,£) A (U<sW<gV))=WHvV.

DEFINITION 8. A trace (C,®) is sequentially consistentf there exists a topological sotf such that
@ = X;. We say thaf is sequentially consistent with respect @®@.

In other words, the transactional last writer of a memoryratien u which accesses locatiofy is the
last writev to location? in the orders, except we skip over writes which are hidden from (i.e., aborted
with respect tolu. Intuitively, Definition 8 requires that there exists anard explaining all the memory
operations of the computation.

Serializability
DEFINITION 9. Atrace(C,®) is serializableif there exists a topological sos that satisfies two conditions:

1. ® = X, (S is sequentially consistent with respectd, and
2. YT € xactions(C) andVv eV ((), we havexbegin(T) <s Vv < xend(T) implies ve V(T)).

Ordinary serializability can be thought of as a strengthgrof sequential consistency which also requires
that the orders both explains all memory operations, and also has all tcdioses appearing contiguous.

6.2 Defining Serializability by Modules

In [2], a trace(C,®) was said to beserializableif there exists a topological sogt of G(C) such thats is
sequentially consistent with respectd®p and all transactions appear contiguous irSerializability in this
context can be thought of as a sequential consistency mu®tjuirement that transactions are atomic. This
definition of serializability is the “correct definition” fdlat or closed-nested transactions. This definition
of serializability is too strong, however, for ownershipaae transactions. A TM system that enforces this
definition of serializability can not ignore lower-level mery accesses when detecting conflicts for higher-
level transactions.

Instead, we describe a definition of serializability by mleduwhich checks for correctness of one
Xmodule at a time. Given a tradg”, @), for each Xmodule M, we transform the treginto a new tree
mTree(C,M). The treemTree(C,M) is constructed in such a way as to ignore memory operations of
Xmodules which are lower-level than, and also to ignore all operations which are hidden fronstaations



of M. For each Xmodule M, we check that the transactiond af the tracgmTree(C,M), ®) is serializable.
If the check holds for all Xmodules, then tra@g, @) is said to be serializable by modules.
Definition 10 formalizes the construction wfree(C,M).

DEFINITION 10. For any computation tre€’, letmTree(C,M) be the result of modifying as follows:

1. For all memory operations & memOps(() with u accessing, if owner(¢) = N for somexid(N) >
xid(M), convert u into a nop.
2. For all transactions Te modXactions(M), convert all ue aContent(T) into nops.

The intuition behind Condition 1 of Definition 10 is the foNang. When looking at Xmodul&, we throw
away memory operations belonging to a lower-level XmodNilsince by Theorem 5, transactionshdfcan
never directly access the same memory as those operatigwayarin Condition 2, we ignore the content of
any aborted transactions nested inside transactiolg tfose transactions might access the same memory
locations as operations which we did not turn into nops, basé operations are aborted with respect to
transactions oM.

Lemma 6 argues that if a tra¢e’, ®) is sequentially consistent, th¢mTree(C,M),®) is a valid trace;
an operatioru that remains in the trace never attempts to observe a valoedd(u) which was turned into
a nop due to Definition 10. In addition, the transformed tia@dso sequentially consistent.

LEMMA 6. Let(C,®) be any sequentially consistent trace. Then for any Xmodulattee(C,M),®) is a
valid trace. In other words, if & memOps(mTree(C,M)), then®(u) € memOps(mTree(C,M)). Furthermore,
any S which is sequentially consistent with respecttin (C,®) is also sequentially consistent with respect
to ®in (mTree(C,M),P).

PROOF In the new treenTree(C,M), pick anyu € memOps(mTree(C,M)) which remains. Assume for
contradiction that = ®(u) was turned into a nop in one of Steps 1 and 2.

If vwas turned into a nop in Step 1 of Definition 10, then we knowabisev accessed a memory location
¢ wherexid(owner(¢)) > xid(M). Sinceu must access the same locatigm must also be converted into a
nop.

If vwas turned into a nop in Step 2 of Definition 10, thenaContent(T) for somexMod(T) = M. Then
we can show that eithetHu, or u should have also been turned into a nop. Xet xLCA(v,u). SinceX and
T are both ancestors of eitherX is an ancestor of or T is a proper ancestor .

1. First, supposq is a proper ancestor of. Consider the path of transactiols, Y1, ... Yk, whereYy =
xparent(V), xparent(Y;) = Yi;1, and xparent(Yy) = T. Sincev € aContent(T), for someY; for
0 < j < k must havestatus|Yj] = ABORTED SinceT is a proper ancestor of, X = Yy for somex
satisfying 0< x < k.
(a) If status[Yj] = ABORTEDfor any j satisfying 0< j < X, then we know € aContent(X), and thus
VvHu. Since we assumef”, ®) is sequentially consistent art(v) = u, by Definition 7, we know
—VvHu, leading to a contradiction.

(b) If Y; is ABORTEDfor any j satisfying x < j <k, then status[Y;] = ABORTEDimplies thatu &
aContent(X), and thus,u should have been turned into a nop, contradicting the aigsetup of
the statement.

2. Next, consider the case whetés an ancestor of . Sincev € aContent(T), we havev € aContent(X).
Therefore, this case is analogous to Case la above.



Finally, if ® is the transactional last writer accordingdor (C,®), it is still the transactional last writer
for (mTree(C,M),®) because the memory operations which are not turned into mrgopain in the same
relative order. Thus, the last condition is satisfied. U

Note that Lemma @&lepends orthe restrictions on Xmodules described in Definition 2. \&fiiththis
structure of modules and ownership, the construction ofritefn 10 is not guaranteed to generate a valid
trace.

Finally, we can define serializability by modules.

DEFINITION 11.A trace (C,®) is serializable by module§ it is sequentially consistent, and if for all
Xmodules M inD, there exists a topological soft of Gy = mTree(C,M) such that:

1. S is sequentially consistent with respectdpand
2. For the tree(iy, VT € modXactions(M) andWv eV (Gu), if we havexbegin(T) <V <s xend(T), then
veV(T).

Informally, a tracg(C, @) is serializable by modules if it is sequentially consistamd if for every Xmodule
M, there exists a sequentially consistent orgiéor the trace(mTree(C,M),®) such that all transactions of
M are contiguous ii.

6.3 OAT Model Guarantees Serializability by Modules

In this section, we show that th®AT model described in Section 5 generates tra@égp) that are
serializable by modules, i.e., that satisfy Definition 1heTproof of this fact consists of three steps. First,
we generalize the notion of “prefix race-freedom” descriing@], to computations with Xmodules. Second,
we prove that th®©AT model guarantees that a program execution is prefix raeeffiaally, we argue that
any trace which is prefix race-free is also serializable byuhes.

Defining Prefix Race-Freedom

First, we define prefix races. These definitions are essigriiied same as those in [2], except adapted for a
system with an ownership-aware commit mechanism instead open-nested commit mechanism.

DEFINITION 12. For any execution orders, for any transaction Te xactions(C), consider any ¥
memOps(T) such thatxbegin(T) <5 vV <s xend(T). We say there exists prefix race between T and v
if there exists a memory operationawcContent(T) s.t., w<s v, =(vHwW), v and w both access and one
of vy w writes to/.

DEFINITION 13. A trace (C,®) is prefix race-freeiff exists a topological sorfs of G(C) satisfying two
conditions:

1. ® = X (S is sequentially consistent with respectd, and
2.YveV(C)andVT € xactions(() there is no prefix race betweenvand T.

S is called aprefix race-free sorof the trace.

Properties of theOAT Model

Second, we prove several invariants tl#T model preserves, and then use these invariants to prove that
the OAT model generates only tracés, ®) which are prefix race-free.

The sequence of instructions that tB&T model issues naturally generates a topological Sast the
computation dads(C): thefork andxbegin instructions correspond to the begin nodes of a parallel or
series blocks in the dag, than , xend, andxabort instructions correspond to end nodes of parallel or
series blocks, and thread orwrite  instructions correspond to memory operation nodesnemOps(C).

THEOREM 7. Suppose the OAT model generates a traCeP) and an execution ordes. Then,® = X,
i.e., S is sequentially consistent with respectdo



PrROOF This result is reasonably intuitive, but the proof is tediand somewhat complicated. We defer
the details of this proof to Appendix A. L]

Next, we describe an invariant on readsets and writesetstiekaOAT model maintains. Informally,
Lemma 8 states that, if a memory operatiothat reads (writes) locatiofis in thecContent (T) for some
transactionT, then/ belongs to the read set (write set) of some active transaatiderT’s subtree between
the time when the memory operation is performed and the tilmewi ends.

LEMMA 8. Suppose the OAT model generates a tf@eapP) with an execution ordes. For any transaction
T, consider a memory operation &l cContent(T) which accesses memory locatiénat step §. Let
t; be step wherxend(T) or xabort(T) happens. At any time t such that< t < t; there exists some
T’ € xDesc(T)NactiveX(t,C) (i.e., T is an active transactional descendant of T) such that

1. If R(u,¢), then? e R(t, T).
2. IfW(u,?), thenl e W(t,T').

PROOF Let X1,Xy,... Xk be the chain of transactions fromparent(u) up to, but not includingr, i.e.,
X1 = xparent(u), X; = xparent(X;_1), andxparent(Xx) = T. Since we assume thatc cContent(T)
and sinceT completes at times, for every j such that 1< j <k, there exists a unique tinte (satisfying
to <tj < tf) when anxend changesstatus[X;] from PENDINGto COMMITTED otherwise, we would have
u € aContent(T).

Also, by Theorem 5 and Definition 5, we knoysmmitter(u) € xAnces(T), i.e., none of thej’s will
commit location? in an open-nested fashion to the world; otherwise, we woal@h € oContent(T).

First, supposeR(u, /). At time tj, when the memory operatiamcompletes,(/,u) is added taR(X;). In
general, at timgj, the ownership-aware commit mechanism, as described io8€es.4, will propagate
¢ from R(X;) to R(Xj;+1). Therefore, for any time in the intervallt;_1,t;), we know/ € R(t,Xj), i.e., for
Lemma 8,T’ = X;. Similarly, for any timet in the intervalty,t;), we havel € R(t,T), i.e., we choose
T=T.

The case wher@/(u,/) is completely analogous to the caseRgfi, ¢), except we have bothe R(t, T)
and/ e w(t,T'). O

Angelina: Check this.

We use Theorem 7 and Lemma 8 to prove that®®d model generates traces which are prefix race-free.

THEOREM 9. Suppose the OAT model generates a tra€eP) with an execution ordels. Thens is an
prefix race-free sort ofC, ®).

PROOF

For the first condition of Definition 13, we know by Theorem atttheOAT model generates an ordé&r
which is sequentially consistent with respectio

To check the second condition, assume for contradictionviieshave an ordes generated by th©AT
model, but there exists a prefix race between a transattemd a memory operationZ memOps(T). Letw
be the memory operation from Definition 12, i.&.& cContent(T), W <s V <s xendT, ~(VHW), w andv
access the same locatiénwith one of the accesses being a write. t,endt, be the time steps in which
operationsy andv occurred, respectively, and fehqt be the time at which eithetend(T) or xabort(T)
occurs (i.e., eithel commits or aborts). We argue that at titgethe memory operation should not have
succeeded because it generated a conflict.

There are three cases foandw. First suppos&V(v,¢) andR(w, /). Sincet,, < t, < teng7, by Lemma 8,
at timety, ¢ is in the writeset of some active transactibhe desc(T). Sincev ¢ memOps(T), we know
T & ances(v). Thus, sinceT’ is a descendant of, we haveT’ ¢ ances(v). SinceT’ ¢ ances(Vv), by
Definition 3, at timet,, v generates a conflict witfi’. The other two cases, wheR{v,¢) AW (w,¢) or
W(v,£) AW(w,¢), are analogous.

(]



Prefix Race-Freedom Implies Serializability by Modules
Finally, we show that a tracg”, @) which is prefix race-free is also serializable by modules.

THEOREM 10. Any trace(C, ®) which is prefix race-free is also serializable by modules.

PROOF

First, by Definition 10 and Lemma 6, it is easy to see that ayprefie free sor§ of a trace(C, ®) is also
prefix-race free of the sofhTree(C,M),®) for any XmoduleM. Now we shall argue that for any Xmodule
M, we can transforng into Sy such that all transactions #actions(M) appear contiguous iSy.

Consider a prefix-race free softof (mTree(C,M),®) which hask nodesv which violate the second
condition of Definition 11. We show how to construct a new orglewhich is still a prefix race-free sort of
(mTree(C,M),®), but which has onlk — 1 violations.

We reduce the number of violations according to the follaypnocedure:

1. Of all transaction§ € modXactions(M) such that there exists an operatiwsuch thatkbegin(T) <s
v <s xend(T) andv ¢V (T), choose thd = T* which has the latestend(T) in the orders.

2. InT*, pick the firstv € V (T*) which causes a violation.
3. Create a new so’ by movingv to be immediately beforgbegin(T*).

In order to argue thaf’ is still a prefix race-free sort dhTree(C,M),®), we need to show that moving
v does not generate any new prefix races, and does not create § sdich is no longer sequentially
consistent with respect @ (i.e., that® is still the transactional last writer according£6. There are three
casesy can be a memory operation, abegin(T’), or anxend(T’).

1. Suppose is a memory operation which accesses locafidror all operationsv such thakbegin(T) <s
W <5 V, we argue thatv can not access the same locatibanless bothw andv read from/. Since we
chosev to be the first memory operation such thaegin(T) <5 vV <s xend(T) such thav ¢ V(T), we
knoww € V(T ). We know by construction afTree(C,M), thatw € cContent(T) (if W€ oContent(T)
orw € aContent(T), then steps 1 or 2, respectively, in Definition 10 will twminto a nop). Therefore,
by Definition 12, unlessv andv both read fron¥, v has a prefix race witl, contradicting the fact that
S is a prefix race-free sort of the trace. Thus, moving be beforexbegin(T) can not generate any
new prefix races or change the transactional last writerrfgmaemory operation, ang!’ is still a prefix
race-free sort of the trace.

2. Next, suppos& = xbegin(T’). Moving xbegin(T’) can not generate any new prefix races viith
because the only memory operationswvhich satisfy xbegin(T) <5 U <s xbegin(T’) satisfy u ¢
cContent(T’). Also, movingxbegin(T’) does not change the transactional last writer for any node
because the move preserves the relative order of all menmegations. Therefore§’ is still a prefix
race-free sort.

3. Finally, supposes = xend(T’). By moving xend(T’) to be beforexbegin(T), we can only lose
prefix races withT’ that already existed s because we are moving nodes out of the interval
[xbegin(T’),xend(T’)]. Also, as withxbegin(T’), movingxend(T’) does not change any transaction
last writers. Therefore§’ is still a prefix race-free sort of the trace.

Since we can eliminate violations of the second conditioR&finition 11 one at a time, we can construct
a sort$u which satisfies serializability by modules by eliminatirigvéolations. U]

Finally, we can prove th®AT model guarantees serializability by modules by puttingpitevious results
together.

THEOREM 11. Any trace(C, ®) generated by the OAT model is serializable by modules.



PROOF By Theorem 9, theOAT model generates only trace”, ®) which are prefix race-free. By
Theorem 6.3, any tradg”, @) which is prefix race-free is serializable by modules. L]

6.4 Abstract Serializability

By Theorem 11, th®©AT model guarantees serializability by modules. We now rdlatedefinition to the
notion of abstract serializabilityused in multilevel database systems [13]. As we mentionégseittion 1,
the ownership-aware commit mechanism is a part of a metbhggolvhich includes abstract locks and
compensating actions. In this section we argue @&t model provides enough flexibility to accommodate
abstract locks and compensating actions. In addition, ifognam is “properly locked and compensated,”
then serializability by modules guarantees abstract |simlity.

The definition of abstract serializability in [13] assumkattthe program is divided into levels, and that
a transaction at level can only call a transaction at level- 1.9 In addition, transactions at a particular
level have predefined commutativity rules, i.e., some tatisns of the same Xmodule can commute with
each other and some can not. The transactions at the lowest($ayKk) are naturally serializable; call
this schedulezy. Given a serializable schedulg; of leveld + 1 transactions, the schedule is said to be
serializable at levadlif all transactions inz;, 1 can be reordered, obeying all commutativity rules, to ob#ai
serializable ordeg; for leveld transactions. The original schedule is said to be absgraetializable if it is
serializable for all levels.

These commutativity rules might be specified using absti@its [11]: if two transactions can not
commute, then they grab the same abstract lock in a conflictianner. In the application described in
Section 2, for instance, transactions callingert andremove on theBST using the same key do not
commute and should grab the same write lock. Although atistoaks are not explicitty modeled in the
OAT model, we can model transactions acquiring the same abkickas transactions writing to a common
memory locatior?.'° Locks associated with an Xmoduld are owned byrodParent(M). A moduleM is
said to beproperly lockedf the following is true for all transaction&;, T, with xMod(T1) = xMod(T,) = M: if
T; andT, do not commute, then they access sdtdenodMemory(modParent(M)) in a conflicting manner.

If all transactions are properly locked, then serializgbiby modules implies abstract serializability (as
defined above) in the special case when the module tree isim @lea, each non-leaf module has exactly
one child). LetS; be the sortS in Definition 11 for XmoduleM with xid(M) = i. This S corresponds t@;
in the definition of abstract serializability.

In the general case for ownership-aware TM, however, by RdEDefinition 1, we know a transaction
at leveli might call transactions from multiple levels> i, not justx =i + 1. Thus, we must change the
definition of abstract serializability slightly; insteaflreordering justZ; .1 while serializing transactions at
leveld, we have to potentially reordegy for all x where transactions at levetan call transactions at level
X. Even in this case, if every module is properly locked (by shene definition as above), one can show
serializability by modules guarantees abstract seriailina

The methodology of open nesting often requires the noti@moofpensating actions or inverse actions. For
instance, in 8ST, the inverse oisert isremove with the same key. When a transactibraborts, all the
changes made by its subtransactions must be inverted. Agjtiough theDAT model does not explicitly
model compensating actions, it allows an aborting traimaatith statusPENDINGABORTto perform an
arbitrary but finite number of operations before changing status toABORTED Therefore, an aborting
transaction can compensate for all its aborted subtransact

9We assume level number increases as you go from a higherttesdbwer-level to be consistent with our numberingzeé. In
the literature (e.g. [13]), levels typically go in the opjteslirection.
10More complicated locks can be modeled by generalizing tfiieitlen of conflict.



7. DEADLOCK FREEDOM

In this section, we argue that ti@AT model described in Section 5 can never enter a “semantidadd

if we impose suitable restrictions on the memory accessed trgnsaction’s abort actions. In particular,
an abort action generated by transactiorirom xMod(T) should read (write) from a memory locatidn
belonging tanodAnces(xMod(T)) only if £ is already inR(T) (W(T)). Under these conditions, we show that
the OAT model can always “finish” reasonable computations.

An ordinary TM without open nesting and with eager conflidiedtion never enters a semantic deadlock
because it is always possible to finish aborting a trangadiiovithout generating additional conflicts; a
scheduler in the TM runtime can abort all transactions, &ed tomplete the computation by running the
remaining transactions serially. Using t8AT model, however, a TM system can enter a semantic deadlock
because it can enter a state in which it is impossible to fiaksbrting two parallel transactiorig and T,
which both have statUBENDINGABORT If T;'s abort action generates a memory operatiavhich conflicts
with Ty, thenu will wait for T to finish aborting (i.e., when the status BfbecomesABORTER Similarly,
T,’s abort action can generate an operatiamhich conflicts withT; and waits forT; to finish aborting. Thus
Ty andT, can both wait on each other, and neither transaction will aish aborting.

Defining Semantic Deadlock

Intuitively, we want to say that th®AT model exhibits a semantic deadlock if it causes the TM system
to enter a state in which it is impossible to “finish” a compiagia because of transaction conflicts. A
computation might not finish for other reasons, such as anit@floop or livelock. This section defines
semantic deadlock precisely and distinguishes it fromalmtiser reasons for noncompletion.

Recall that our abstract model has two entities: the progaath a generic operational modglrepresent-
ing the runtime system. At any tintegiven a ready nod¥ € ready((C), the program chooses an instruction
and hasX issue the instruction. If the program issues an infinite nemalbinstructions, therf can not com-
plete the program no matter what it does. To eliminate progravhich have infinite loops, we only consider
bounded programs

DEFINITION 14.We say that a program isoundedfor an operational modelf if any computation tree
that ¥ generates for that program is of a finite depth, and theretgxsfinite number K such that at any
time t, every node B nodes(t, C) has at most K children with statiBENDI NGor COMM TTED.

Even if the program is bounded, it might run forever ifivielocks We use the notion of acheduleto
distinguish livelocks from semantic deadlocks.

DEFINITION 15. A schedulel" on some time intervalo,t;] is the sequence of nondeterministic choices
made by an operational model in the interval.

An operational modef makes two types of nondeterministic choices. First, at engt, # nondeterminis-
tically chooses which ready nodec ready(C) executes an instruction. This choice models nondeterminis
in the program due to interleaving of the parallel execwi®@econd, while performing a memory operation
which generates a conflict with transactibn# nondeterministically chooses to abort eithgarent(u) or
T. This nondeterministic choice models the contention manafithe TM runtime. A program may livelock
if F repeatedly makes “bad” scheduling choices.

Intuitively, an operational model deadlocks if it allowdaunded computatioto reach a state where
schedulecan complete the computation after this point.

DEFINITION 16. Consider anf executing a bounded computation. We say fhafoes not exhibit aeman-

tic deadlockif for all finite sequences of instructions that¥ can issue that generates some intermediate
computation treey, there exists a finite scheduleon [to,t;] such that# brings the computation tree to a
rest state(y, i.e.,ready((1) = {root((1)}-



This definition is sufficient, since once the computatiom tiseat the rest state, and only the root node is
ready,F can execute each transaction serially and complete thedaiign.

Restrictions to Avoid Semantic Deadlock

The generaDAT model described in Section 5 exhibits semantic deadlocauserit may enter a state where
two parallel aborting transactiofig andT, keep each other from completing their aborts. For a restfiset
of programs, where BENDINGABORTtransactionil never accesses new memory belonging to Xmodules at
xMod(T)’s level or higher, however, we can show AT model is free of semantic deadlock.

More formally, for all transaction¥, we restrict the memory footprint afbortactions(T).

DEFINITION 17.An execution (represented by a computation tt@ehas abort actions with limited
footprint if the following condition is true for all transactions & aborted((). At time t, if a memory
operation ve abortactions(T) accesses locatiohand owner(¢) € modAnces(xMod(T)), then (1) if v is
aread, thery ¢ R(T), and (2) if v is a write therf € W(T).

Intuitively, Definition 17 requires that once a transacfios status becoma@2ENDINGABORT any memory
operationv which T or a nested transaction insideperforms to finish aborting can not read from (write
to) any location/ which is owned by any Xmodules which are ancestorgMfd(T) (including xMod(T)
itself), unles¥ is already in the read (or write set) of

First, we show that the properties of Xmodules from Theoréamcdombination with the ownership-aware
commit mechanism imply that transaction read sets and seite exhibit nice properties. In particular, we
have Corollary 12, which states that a locatibnan appear in the read set of a transacfioanly if T's
Xmodule is a descendant ofner(¢) in the module treeD.

COROLLARY 12. For any transaction T i¥ € R(T ), thenxMod(T ) € modDesc(owner()).

PrRooOFE Follows from Definition 1 and Theorem 5, and induction on h¥ecation? can propagate into
readsets and writsets using the ownership-aware commttanéesm. L]

If all abort actions have a limited footprint, we can showt thigerations of an abort action of an Xmodule
M can only generate conflicts with a “lower-level” Xmodule.

LEMMA 13. Suppose the OAT model generates an execution where abmmsatiave limited footprint.
For any transaction T, consider a potential memory operatos abortactions(T). If v conflicts with
transaction T, thenxid(xMod(T’)) > xid(xMod(T)).

PROOF Supposev € abortactions(T) accesses a memory locatighwith owner(¢) = M. Since
abortactions(T) C memOps(T), by the properties of Xmodules given in Definition 2, we kniatteither
M € modAnces(xMod(T)), orxid(M) > xid(xMod(T)). If M € modAnces(xMod(T)), then by Definition 17,
T already had in its read or write set. Therefore, using Definitionv&an not generate a conflict witff
because theil would already have had a conflict will beforev occurred, contradicting the eager conflict
detection of theéDAT model.

Thus, we haveid(M) > xid(xMod(T)). If v conflicts with some other transactidt, thenT’ has/ in its
read or write set. Therefore, from Corollary kod(T’) € modDesc(M). Thus, we haveid(xMod(T’)) >
xid(M) > xid(xMod(T)). O

THEOREM 14. In the case where aborted actions have limited footpring @AT model is free from
semantic deadlock.

PROOF Let (j be the computation tree after any finite sequendg wfstructions. We describe a schedule
I which finishes aborting all transactions in the computatignexecuting abort actions and transactions
serially.

Without loss of generality, assume that at tigpestatus|[T| = PENDINGABORTfor all active transactions
T. Otherwise, the first phase of the schedulis to make this status change for all active transactions



For a module treeD with k = || Xmodules (including thavorld ), we construct a schedule with k
phases, numberdd-1,k—2,...1, 0. The invariant we maintain is that immediately before pghawe bring
the computation tree into a stafd) which has no active transaction instangesith xid(xMod(T)) > i, i.e.,
no instanced from Xmodules withxid larger thari. During phasé, we finish aborting all active transaction
instancesl’ with xid(xMod(T)) =i. By Lemma 13, any abort action forflg wherexid(xMod(T)) =i, can
only conflict with a transaction instand€ from a lower-level Xmodule, whergid(xMod(T’)) > i. Since
the scheduld” executes serially, and since by the inductive hypothesihiave already finished all active
transaction instances from lower levels, phasen finish without generating any conflicts. L]

Restrictions on compensating actions

If transactionsYy,Y>,...Y; are nested inside transactiof and X aborts, typically abort actions of
simply consists of compensating actions ¥arY»,...Y;. Thus, restrictions on abort actions translate in a
straightforward manner to restrictions on compensatinm@&: a compensating action for a transactibn
(which is part of the abort action of), should not read (write) any memory ownedddpd(X) or its ancestor
Xmodules unless the memory location is alreadyXia read (write) set. Assuming locks are modeled as
accesses to memory locations, the same restriction appleEsning, a compensating action can not acquire
new locks that were not already acquired by the transactisrcompensating for.

8. CONCLUSIONS

In this paper, we describe ownership-aware transactiohshwprovide a disciplined methodology for open
nesting while guaranteeing abstract serializability. His tsection, we describe two other approaches for
improving open-nested transactions, and distinguish tlhem ownership-aware transactions.

In [11], Ni, et al. propose using apen _atomic class to specify open-nested transactions in a Java-like
language with transactions. Since the private fields of a@cblwith anopen _atomic class type can not be
directly accessed outside of that class, one can think afpiére_atomic  class as defining an Xmodule. This
mapping is not exact, however, because neither the langua@® system restrict exactly what memory
can be passed into a method of@en _atomic class, and the TM system performs a vanilla open-nested
commit for a nested transaction, not a safe-nested comihits,Tit is unclear what exact guarantees are
provided with respect to serializability and/or deadlosefdom.

Herlihy and Koskinen in [5] describe a technique of transaetl boosting which allows transactions to
call methods from a nontransactional modMeRoughly, as long a¥! is linearizable and its methods have
well-defined inverses, the authors show that the execuppears to be “abstractly serializable.” Boosting
does not, however, address the cases when the lower-levalilend! writes to memory owned by the
enclosing higher-level module, or when programs have ni@e two levels of modules.
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A. THE OAT MODEL AND SEQUENTIAL CONSISTENCY

This appendix contains the details of the proof of Theoreihtfie OAT model generates a trac€, ®) and
a topological sort ordes, thenS satisfies Definition 8, i.e§ is sequentially consistent with respectdo

In this appendix, we first define some useful notation for twop Next, we prove that th©AT model
preserves several invariants about memory operatiorngsetgand write sets. Finally, we use these invariants
to prove Theorem 7.

A.1 Notation

We define some notation that is useful later for stating dferal invariants of th@®©AT model.
For any subse$ of nodes in the computation trgg i.e.,SC nodes((), define

® low(S) = {X €S : pDesc(X)NS=0}.

® high(S) = {X €S : pAnces(X)NS=0}.

Intuitively, 1ow(S) represents the nodes$tlosest to the leaves of the tree. Similatlygh(S) represents the
nodes inSclosest to the root of the tree. In cases where th& &guaranteed to fall along one root-to-leaf
path in the tree, we definewest(S) as the only elemerX € low(S). Similarly, we definenighest(S) as

the only element imigh(S).
We also define two time-dependent sets of transactions.

e Thereader setreaders(t,/) = {T € activeX(t,C) : L € R(t,T)}.
e Thewriter set writers(t,/) = {T € activeX(t,C): £ € W(t,T)}.
Said differently,readers(t,¢) is the set of active transactions at tilmevhich have locatior? in their read

set. Similarlywriters(t,/) is the set of active transactions at titneith ¢ € W(T).
Next, we generalize the content sets from Definition 5 andhdefiset of dynamic content sets.

DEFINITION 18. At any time t, for any transaction € xactions(t,) and a memory operation @
memOps(t, C), define the setsContent(t,T), oContent(t,T), aContent(t,T), and vContent(t,T) ac-
cording theContentType(t,u, T) procedure:

ContentType(t,u,T) > For any ue memOps(t, T)
X < xparent(U)
while (X #T)
if X € activeX(t, (), return u € vContent(t,T)
) return u € aContent(t,T)

if (X =committer(u)) returnu& oContent(t,T)
X« xparent(X)

1
2
3
4 if X € aborted(t,C
5
6
7 returnu e cContent(t,T)

The difference between Definition 18 and the previous staienim Definition 5 is that for dynamic content
sets, if we encounter BENDINGor PENDINGABORTtransaction when walking up the tree from a memory
operationu to a transactio, we placeu in theactive contendf T, i.e.,u € vContent(t, T). If a transaction

T completes at timé*, it is not hard to see that the dynamic classificatiententType(t,u, T) gives the
same answer as the static classificaioatentType(u, T) for all timest > t*.

A.2 OAT Model Invariants

Because th®AT model performs eager conflict detection according to Dé&fimi8, it is not hard to prove
the following invariant about the readers and writers to i@aar memory locatior.

THEOREM 15. At all times t, for all memory locationé< £, the OAT maintains the following invariants
on the setseaders(/) andwriters({):



1. Forall /€ L, |low(writers(t,{))| =1, i.e.,lowest(writers(t,()) exists.
2. Forany Te readers(t, /), eitherlowest(writers(t,/)) € desc(T) or T € desc(lowest(writers(t,/))).

PROOF The proof is by induction on the instructions that h&T model issues.

In the base case, for all locatioAs £, we begin withreaders(0,/) = writers(0,/) = {root((C)}, and
no other nodes in the computation tri€exceptroot(C). Thus, Invariants 1 and 2 are satisfied.

In the inductive step, suppose at tilne 1, Invariants 1 and 2 are satisfiedread orwrite instruction at
timet can not break the invariants without causing a conflict atingrto Definition 3. Therefore, successful
read andwrite operations preserve the invariant. An unsuccessédl orwrite operation can only trigger
thesigabort  of transactions, which does not affect either invariant.

An xend instruction that commits a transactidrcan only add the transacticparent(T ) to readers(¢)
orwriters(¢). Sincexparent(T) is an ancestor of, it can not break either of the two invariants.

The remaining instructions preserve Invariants 1 and 2attyv A fork or join instruction at timet
preserves the invariants because they do not change thetisetteansactions or any transaction read sets
or write sets. Arxbegin preserves the invariants because it creates new transactiwith empty read sets
and write sets. Theabort instruction preserves the invariants because it can ontpve transactions from
readers(t,/) orw(t,?). L

The following invariant shows that, informally, the readssef transactions act as caches for pafrsi)
stored in write sets.

LEMMA 16. Atany timet, for any E readers(t, /), suppos€/,u) €R(t,T). Let T = lowest(xAnces(T)N
writers(t,/)). Then({,u) e W(t,T).

PROOE The proof is by induction on the instructions issued by @&T model. In the base case, we
know for all memory locationd € L,, we start withreaders(0,/) = writers(0,{) = {root(()} and
R(root(C)) =W(root(()). SinceT’ =T =root(C), Lemma 16 is satisfied in the base case.

For the inductive step, assume the lemma is satisfied atttinle We show after ang-nodeX issues an
instruction at time, the lemma is still satisfied.

For anyT € xactions(t — 1, (), after afork , join , or xbegin instruction in steg, we haveR(t,T) =
R(t—1,T)andw(t,T) =w(t—1,T). Thus, the lemma is satisfied after these instructionsxb&gin which
creates a new transactiohat time stef starts withR(t,X) =W(t, X) = 0; thus, the lemma is satisfied.

Next, consider arabort issued byX € xactions(t—1, ). Suppose, before thabort of X there exists
a transactiom € readers(t —1,¢) with (/,u) e R(t—1,T). Let T' = lowest(xAnces(T) Nwriters(t —
1,¢)). Then before theabort, (4,u) € W(t —1,T'). Assume for contradiction after thabort of X, that
there exists some transactidne xactions(t, C) such that the invariant no longer holds fbri.e., we no
longer haveg¢,u) € W(t, T’). Since arxabort does not change the contents of any transaction’s writdset,
removesX from writers(?), the only way to violate the invariant is X = T’. Consider two cases: either
X=T' =T,orX=T'#T.In the first case, we can not violate the invariantTdoecausd is aborted and
removed fromreaders(¥). In the second case, we must hdve pDesc(X). But then, before theabort
we haveT € pDesc(X)NactiveN(t —1,C) andX € ready(t — 1, C), contradicting the property that the
ready nodes are the leaves of tree of active nodes. Thusglibe must preserve the invariant.

A successfuread operationv observes the value from the closest transactional ancistehich has
location ¢ in its read set. The only transaction whose read set chasggsarent(v). The invariant is
preserved becausgnces(xparent(V)) 2 xAnces(X), and since theead does not change any write sets.

A successfulvrite  operationv only changes the write set @parent(v); thiswrite  can not break the
invariant without generating a conflict.

Finally, suppose at timg a ready nod& issues amend . Consider two cases:

1. X # owner(¢). The only transactiolY which has its read set or write set change afterxtnd (i.e., for
which we could have(t,Y) ZR(t—1,Y) orw(t,Y) #W(t—1,Y)) isY = xparent(X). Thexend merges



X’s read and write sets infé's read and write sets, respectively; using Theorem 15 streaghtforward
to show that the invariant is preserved ¥ar

For all other transaction$ € readers(t,¢) with T # Y, since the read set or write set ©for any
transaction irkAnces(T) remains the same, the invariant is still preservedrfor

2. Suppos&X = owner(¢). Then, the only transaction whose read set or write set camgehisY = root(C).
But the only way to break the invariant isXf commits a pair¢,v) from w(t — 1, X) to root(C), which
corrupts the versio¢,u) € R(t — 1, T), for some transactiom parallel toX. But then, we would violate
Theorem 15, and should have had a conflict earlier.

Since all possible choices for acti&r- 1 preserve the invariant, the lemma holds by induction. [
Theorem 17 characterizes when a transaction should hawatolo in its write set.

THEOREM 17. Atany time t, consider any transactiondactiveX(t, C) and any memory locatioAsuch
that xid(owner(¢)) < xMod(T). Let S(t) = {u € memOps(t,C) : W(u,¢)}. Exactly one of the following
cases holds:

1. T=root(C), (¢, L) € W(t,T), and two conditions are satisfied:
(@) cContent(t, T)NS =0.
(b) For all ve S(t), we have & aContent(t,T) UvContent(t,T).
2. There exists at¢,u) € W(t, T) which happens at timg,tand two conditions are satisfied:
(a) ue cContent(t,T)NS(t)
(b) For any operation v (S(t) —{u}) which happens at timg,twhere { <t, <t, we have w
aContent(t,T) UvContent(t,T).
3. We have € W(t, T), andcContent(t,T)NS(t) = 0.

PROOF
This theorem can be proved by a straighforward, albeit tegjimduction on time.
Note that because we assumiai(owner(¢)) < xMod(T), $(t) NoContent(t,T) = 0, i.e., the theorem
is only concerned with memory locatioisvhich belong toT’s open content. Because of the properties of
ownership and Xmodules, any locatiémith xid(owner(¢)) > xMod(T) can never propagate infds write
set anyway. L]

The intution for Theorem 17 lies mostly in Case 2; if at titreepair (¢, u) is the write set of a transaction
T, thenu is the last write to/ in T's subtree which is “committed with respect td”. Any v which
writes to ¢ aftert, (the timeu occurs) must belong t@’s subtree; otherwise, there would have been a
conflict. Furthermore, any which happens aftey, must still be aborted or pending with respecfltdi.e.,

V€ aContent(t, T) UvContent(t, T)); otherwisey should replacel in T's write set.

Case 3 says the write setbfdoes not contain a locatiatif no memory operation iff 's subtree commits

{10 T. Case 1 of Theorem 17 handles the special case of the root.

A.3 Proof of Sequential Consistency

Finally, we can use the invariants from Lemma 16 and Theoréno prove Theorem 7.
PROOF. [Theorem 7]

The first condition and second conditions are true by coastm, since theDAT model can only set
®(v) =uif u<gv,W(u,¢) andR(v,¢) VW(v, ).

To check the third and fourth conditions, we require somasebuppose at timg, memory operation
v happens and th®AT model setsb(v) = u. Let A = lowest(readers(t,/) Nances(v)). Because the
OAT model setsP(v) = u, we must haveg/,u) € R(t,A). Let T = lowest(xAnces(A)Nwriters(t,?)). By
Lemma 16, we know/,u) € W(t,T). By Theorem 17, sincé/,u) € W(t, T), we knowu € cContent(t,T).
Let X = xLCA(u,v). We must havd € ances(X); otherwise, we could not hal, v} C mem0Ops(t, T).



Sinceu € cContent(t,T), we knowu € cContent(t,X)UoContent(t,X). Therefore, we have (uHv),
satisfying the third condition.

To check the fourth condition, assume for contradictiort thare exists av such thatw(w,¢), and
u<gsw<g V. Lett, be the time thav happens. Then, sinc@(v) = u, we knowu € W(ty,T). Therefore,
by Theorem 17 we know € memOps(ty, T), W € aContent(ty, T) UvContent(ty, T).

LetY = xLCA(W,V). Sincew € memOps(ty, T), we knowT € ances(Y). Consider the two cases for

1. Supposev € aContent(ty, T). SinceT € ances(Y), we knoww € cContent(ty,Y)UaContent(ty,Y).

We can show by contradiction that we must havec aContent(t,,Y). If Y = T, then we already
know w € aContent(ty,Y). Otherwise, assumé < pAnces(Y). If we hadw € cContent(ty,Y), then

by Theorem 17, we must havé,y) € W(t,,Y). This statement contradicts the fact tRsT model found

(¢,u) from transactior, since a closer transactidhhad/ in its read set.

But then, sincav € aContent(ty,Y), we havewHv.
2. Supposev € vContent(ty, T):

Then, we knoww € cContent(ty,Y) U vContent(t,,Y). As in the previous case, we can shawwZ
cContent(ty,Y).

If we vContent(ty,Y), then there exists some transactiba activeX(ty,Y)—{Y} such that € w(ty,Z).

Sincew € memOps(ty,Z), we can strengthen this condition Zoc activeX(ty,LCA(W,V)) — {LCA(W,V)}.
This statement leads to a contradiction, however, becaus#(t,,Z) must conflict withv.

More formally, by Invariant 2 of Theorem 15, any new read afien v at timet, must satisfyv ¢
desc(low(writers(ty,?))) (i.e.,vis a descendant of the base of the spinefoAt timet,, however, we
must havelow(writers(ty,/)) € desc(Z).

O



B. RULES FOR TYPE CHECKING

This appendix contains the type rules for BAT type system. The syntax for the type system is shown
below. Within the syntax, we do not differenciate classed #ie Xmodule types from the classes that are
not. The additional restrictions that apply to the Xmoduyigets are specified as one of the type rules.

For simplicity, in our type system, we make the following wsgtions. First, each class has only one
constructor (specified by the terimit), and that all fields are initialized properly after the callthe
constructor. Second, all field names (whether inheritedemtaded) are distinct. Third, the call tuper
is explicit. Fourth, an index is always specified when the emship tagsvorld andthis are used. Fifth, the
class name®bject andXmodule are special and assumed to be properly defined by the systeatlyFthe
explicit use of upcast and downcast are not allowed, asfspéan the abstract syntax.

P = defr; e
defn = class cDecl extends cDecl where constr { field"; init; meth }
cDecl = cn(formal™) | Object(formal) | Xmodule(formal)
constr = formal < formal | formal = formal | formal # formal
field = t fd
init = cn(formal™)(parani) { super{formal™)(e); this.fd=¢€* }
meth = t mn{formal*)(parani’) where constr'{ e }
param = t X
owner = world[i] | formal | this]i]
formal = f
t = int| ct
ct = cn{owner")
e = new ct(€") | x| x=e | let (param=¢g) in {e} | xfd | xfd=e | xmnlowner)(€e")
cn = aclass name that is n@ibject nor Xmodule
mn = a method name that is not a constructor
fd = afield name
X,y = avariable name
f,g = anowner formal

i,j = anintliteral

For the constraints on ownersopist), the notationk is used as defined in Section 3: Assumingnd f,
are instantiated with, ando,, f; < f, specifies that eithar;. name~< 0,. name or 0;. name= 0,. nameand
01.index< 0p.index Similarly, f; = f, specifies thab;. name= 0,. nameando;.index= 0,.index On the
other handf; # f, specifies that eithex;. name# 0,. name or 0;. name= 0,. nameando; . index=£ 0,. index

In the type system, we use a few predicates. Before we defmeribdicates, we first define some
notations:

Henceforth, for brevity, we use the notatienn place of the keyworéxtends (i.e. AextendsB is written
asA<1B). We also use the notation between class names as the reflexive and transitive clasdueed by



the < relation. Note that thed is not the same as subtyping (denotedals becausea only considers the
static relation defined by thextends keyword, and does not account for the ownership tags.

In addition, we defindield €4 cn(...) to mean that classn(...) declaredfield, field €; cn(...) to mean
that clasn(...) inheritsfield, andfield € cn(...) to mean that eithefield €4 cn(...) or fieldg; cn(...). We
use these notations féd (field name) meth(method), andnn (method name) similarly.

Now we define the predicates.

| Predicate | Meaning \
ClassOnce(P) No class is declared twice i

ven,cn' in P, cn# cnf
FieldsOnce(P) | No class contains two fields with the same name

vet vfd,fd € ct in P, fd # fd’
MethodsOnce(P) No class declares two methods with the same name

vet Vmnmn €4 ¢t in P, mn# mr
WFClasses(P) | There are no cycles in the class hierarchy; i.e.ghelation is antisymmetric
ven,en' in P,cn<cn A e <lcn = cn=cn

Our typing judgment has the forn®; ' - e:t, whereP is the program being checked to provide
information about class definitionE;is the typing environment, providing mappings from a vaeatame
to its static type for the free variablesénfinally, t is the static type oé.

The typing environmenk is defined as

Fr:=0| I x:t| I, f:owner| I', constr

Thatis, the typing environtmeftcontains the types of variables, the owner parameters arabtistraints
among owners. When checking for well-formness of the tygingronment, we assume the new entries are
checking in the order listed, from left to right.

The typing system uses the following judgments.

| Judgment | Meaning \
FP:t programP yields typet
P F defn defnis a well-formed class
P cn(fyn) < cn{(gik) | class cn(fi ) extends class cn'(gy k)
P F cn<cnf cn' is an ancestor afnin the graph defined by thextends keyword
P+ fieldeqcn(...) classen(...) declaredield
P + fieldgien(...) classcn(...) inheritsfield
P+ fieldecn(...) classcn(...) declares / inherit§eld
Pk initecn(...) classcn(...) declaresnit
P = metheqgcen(...) classcn(...) declaresneth
P + methe;cn(...) classcn(...) inheritsmeth
P + methecn(...) classcn(...) declares / inheritsneth
P, I - field fieldis a well-formed field
P;: ' = meth methis a well-formed method
P; I - wf typing environment is well-formed
P, T Ft t is a well-formed type
P, I' - constr constraintconstris satisfied
P; I Fowner O 0 is an owner
P;T F e:t expressiore has type
Pr-t<:t t is a subtype of’

In the type rules, we also use the following auxiliary rules:



| The Extends Relatign
P I class cn(fy n) extends cr(gy.m) - ..
P cn(fyn) < cn(gym)

P F cen(fin) < cn(ge.m) PFcn<ecen PFocn <cn”

PFcn<ecn PFcn<ecen PFcn<ecen!
Type Lookup

type() = ()

type(t x) = t

typgt fd) = t

typety xq, to, X2, ... ) = fg, ta, ...

type(t mn(gy ) (parant){ ... }) = t — (k) — type(parant)

Field Lookup

P I classcn(fy ) ... {... field ...}
P I field €4 cn(fi n)

P I field €4 cn(fi n) V P F field € cn(fy )
P I field € cn(fy n)

Init Lookup

Pk classcen(fyn) ... {...0nit ... }
P init € cn(fy )

Method Lookuﬂ>

P classcn(fi ) ... {... meth... }
P+ meth €q cn(fy n)

P F meth g4 cn(fy n) V P = methg; cn(fy )

P + field € cn(gy.m)
P cn(fyn) < cnl{og m)

P I field [01/01]..[0m/Om] €i cn{fy n)

P F methe cn(grm)
P cn(fyn) < cn{op m)

P - meth[o1/g1]..[0m/Om] €i cn(f1 )

P+ meth e cn(fy n)

P F cn{fin) < cn (o m)
P F meth €4 cn(f1 )
P F meth £ cn(gim)

OverrideOK cn(fy n), cn' (01 m), meth)

P+ cn(fyn) < cr(01.m)
P - meth cq cn(fy )
P+ meth e crl(gym)

typgmeth = typegmeth)[o1/g1]..[0m/dm]

]
OverrideOK cn(fy n), cn' (01 m), meth)



We present the type rules next.

[PROG

WFClasse&) ClassOncéP) FieldsOncéP) MethodsOncgP)
P=defn ,; e P+ defn P;0F e:t

FP:t

[CLASS

P cn A Xmodule
= fyon:owner f; < fj, const’, this:cn(fy )
P, T = wf P, I+ cn/(fy, oY) P; I I field P; I init P; I = meth
OverrideOK cn(fy ), cn'(f, 0*), meth )

P I class cn(fy n) extends cr(fi, 0*) where constr { field; init; meth }

[XMODULE CLASS]

P F cn < Xmodule
= fin:owner, f; < f;, constr, this:cn(fy ), this:owner, this[i] < f;
P: I + wf P, I + cn/(fy, 0%) P; [ I field P: I + init P: T - meth
type field, ) # int OverrideOK cn(fy ), cr/(f;, 0*), meth )

P I class cn(fy n) extends cr(fy, 0*) where constr { field; init; metH }

|P; T I field| [P; T F init]
[FIELD] [INIT]

P F cn{fyin) < cn{f1,00 m)
"=r, paranf P, I - wf P, "  this.fd; = €;
Pr k-t Pk init(grm)(t % ') € el{gem) P T F &:t [f1/01][02/02]..[Om/Om]
P; T F tfd P; T F cn(fy ) (parant) { super(fi, op.m)(g '€3%);  thisfd=e*}

P: I - meth

[METHOD]

r¢=f,,:owner constt  P; ¢+ wf
M =r,rcpaant P, Fwl  PT'Fe:t
P; I + t mn(fy_,)(parani) where constr {e}




[ENV O] [ENV X] [ENV OWNER|

P; T Ft X £ Dom() P, I - wf f £Dom() P; I + wf
P; 0 Fwf P, ', x:t - wf P; I, f:ownert wf

[ENV CONSTR

constr=(0<0) V (0=0) V (0#£0)
P,T -wf P T Fownero, o I'=T, constr
Axy (P T = x<y) A (P T" F y<Xx)
Axy P, T Ex<y) A (P T F x=Yy) Axy P T Ex=y) A (P T" F x#Y)
P; I', constr - wf

[TYPEINT] [TYPEOBJECT  [TYPE XMODULE]

P; I' Fowner 0 P; I Fowner 0
P, +int P; T F Object(o) P; I = Xmodule(o)

[TYPE CT|

P I class cn(fy n) ... where constr ...
P; I Fowner O; P,ITFoi<o P; ' F constr[oy/f1]..[0n/ fn]

P; I F cn(oyn)

|P; T~ constr|
[CONSTR ENV [< WORLD 1] [< WORLD I1] [< THIS]
P; T Fowner 0 <]

r=r’, constr "’ P; T - 0+# world i<j P; I Fowner this

P; I + constr P; I Fo<world[i] P; T F world[i] <world[j]  P; I I this]i] < this][j]
[< TRANS] [= WORLD)] (= THIS] [= TRANS]
PPr-o<o i=j P Fo=0
P, ox<o3 =] P; I' Fowner this P, - ox=03
P;ITFo<oz P;IF word[i] =world[j] P; T F this[i]=this[j] P;T F 0o1=03



[= REFL [ WORLD)] £ THIS)

P; I Fowner 0
P; I + oz world i £ j
P; I' - 0 this i # ] P: I Fowner this

[ WORLD)]

P; I Fowner this[i]

P,F'+-o0o=o0 P; I + world[i] # world(j] P; ' | this[i] # this]j]

[SUBSTITUTION [RELATION]
P,IlT-o=0
P; I + constr P, THFo<o

P; I I constrjo;/o;] P, T - 01 # 0,

‘P; E Fownero‘
[OWNER WORLD [OWNER FORMAL] [OWNER THIS

r=r’, f:owner " I =TI, this:owner I’

P; I' Fowner world(i] P; I Fowner f P; I Fowner this[i]

[EXP TYPE  [EXP SUB [EXP NEW,

P; T F cn{oyn)
init = cn(fy ) (G x '€ {0}

P; I I this[i] # world

[EXP VAR]

P,EF e:t P F init € cn(fyn)

P,E Ft PE Rt <t P; I+ &:t[o1/f1]..[on/ fi] r=r,x:tr’
P, EF et P, EF et P; T - newcn(on)(g '€ %) :cn(og ) P T x:t
[EXP VAR ASSIGN  [EXP LET] [EXP REHR

P; T F x:t param=t’ x Pr+é:t P; I x:cn{ogn)

P, T et P; ', param - wf P; ', param - e:t PF (t fd) € cn(fin)
P, x=e:t P; E I let (param=¢€)in{e}: t P; I xfd:t[o1/f1]..[on/ fn]
[EXP REF ASSIGN [EXP INVOKE]

P; I F x:cn(ogn) P tmn(fy.q) o)t yi'S"") where constr ... € cn(fy k)
P+ (t fd) € cn(fin) P, I F x:cn(og k) P; T F g :ti[01/f1]..[on/ fr]
P; T F e:tog/f1]..[on/ fn] P; I + constr[og;1/ fii1].-[On/ fn)

P; I F xfd = e:t[og/f1]..[on/ fn] P, T = Xmn(O(ks1).n)(€1.h) i t [01/ f1]..[0n/ ]



‘P;F Ft<: t"

[SUBTYPE [SUBTYPE TRANS [SUBTYPE REFI
P; I + cn{ogn) Prt<t
P cn(fLn) < cn(f*) P,r-t<t P, Tt
P; I + cn(ogn) <: e {fT)[oy/f1]..[on/fa] P;T Ft<:t’ Pl Ht<t



