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ABSTRACT

Graph processing algorithms are currently bo�lenecked by the

limited bandwidth and long latency of main memory accesses. On-

chip caches are of li�le help when processing large graphs because

their irregular structure leads to seemingly random memory refer-

ences. However, most real-world graphs o�er signi�cant potential

locality—it is just hard to predict ahead of time. In practice, graphs

have well-connected regions where relatively few vertices share

edges with many common neighbors. If these vertices were pro-

cessed together, graph algorithms would enjoy signi�cant reuse.

But �nding this cache-friendly schedule is hard from the processor

side, which is oblivious to cache contents.

Our insight is that the cache knows exactly which vertices are

cached at any given time, so it is in an ideal position to �nd a schedule

that maximizes locality. We present our ongoing work on Cache-

Guided Scheduling (CGS), a technique that exploits this insight by

adding a specialized engine to the last-level cache that dynamically

�nds a schedule that minimizes cache misses.

We present a limit study of CGS through two idealized implemen-

tations. �is limit study reveals CGS’s large potential: CGS reduces

memory accesses by 5.8× gmean on a set of large graphs. �ough

promising, CGS would incur high overheads if implemented this

way. We discuss several paths towards a practical implementation.

1 INTRODUCTION

Graph analytics is an increasingly important workload domain.

While graph algorithms are diverse, most have a common char-

acteristic: they are dominated by expensive main memory ac-

cesses. �ree factors conspire to make graph algorithms memory-

dominated. First, these algorithms have low compute-to-communi-

cation ratio, as they execute very few instructions (usually less than

10) for each vertex and edge they process. Second, they su�er from

poor temporal locality, as the irregular structure of graphs results

in seemingly random accesses that are hard to predict ahead of

time. �ird, they su�er from poor spatial locality, as they perform

many sparse accesses to small (e.g., 4 or 8-byte) objects.

Much e�ort in graph-analytics architectures has focused on spe-

cialized processing elements that make compute more e�cient [7,

15, 32–34]. While these systems may be bene�cial on small graphs

that can �t in on-chip storage, on large graphs, main memory ac-

cesses dominate performance and energy consumption even on

power-hungry general-purpose processors [11, 40]. Amdahl’s Law

thus demands that we focus our e�orts on the memory system.

�e conventional wisdom has been that graph algorithms have

essentially random accesses [5, 17, 24]. �is misconception par-

tially stems from limited evaluations that use synthetic, randomly-

generated graphs. However, a more detailed analysis reveals that

real-world graphs have abundant structure. Speci�cally, many real-

world graphs have power-law degree distributions where a few

vertices are much more popular, and accessed more frequently than

others [3]. �ey also have strong community structure correspond-

ing to communities that exist in some meaningful sense in the

real world [21]. Graph algorithms thus have abundant locality [4]

which, although irregular and di�cult to predict, can be exploited.

Most graph processing frameworks use various preprocessing

techniques to exploit the structure available in real-world graphs [42,

44]. Preprocessing techniques change the order inwhich the graph’s

vertices and edges are stored in memory. Although preprocessing

improves locality, it is very expensive. It o�en takes much longer

than the graph algorithm itself, making it impractical for many im-

portant scenarios, such as dynamically-updated graphs and graph-

processing pipelines where a graph is operated on only once and

discarded.

�e key idea of this paper is to exploit the cache hierarchy to �nd

a graph traversal schedule that results in high locality. �e cache

has plentiful information about what data it has currently cached

and can guide the schedule to yield be�er locality. Speci�cally,

for most graph algorithms, a vertex is cheap to process when its

neighbors are cached, and expensive when its neighbors are not.

Hence, scheduling vertices based on what data is in the cache can

signi�cantly improve locality. Moreover, as fetching data from

memory consumes much more energy than processing it, there is

an opportunity to reduce overall system energy by spending more

energy in the processor to be�er schedule memory references.

We demonstrate the potential of this approach, which we call

Cache-Guided Scheduling (CGS), through two idealized schemes

that perform scheduling at the granularity of individual vertices

and edges. By decoupling the scheduling algorithm from the asso-

ciated overheads, these schemes reveal insights about the tradeo�s

of CGS and help us analyze its potential bene�ts. On a set of large

real-world graphs, these schemes show up to 5.8× fewer main mem-

ory accesses than a locality-agnostic baseline and closely match or

outperform state-of-the-art preprocessing techniques. Moreover,

our evaluation shows that CGS can be combined with preprocess-

ing to further improve locality. Finally, we present a preliminary

hardware design to accelerate the core so�ware routines needed

by CGS, discuss the limitations of the current design, and sketch

potential ways to sidestep these limitations.

2 BACKGROUND AND MOTIVATION

In this section, we motivate the bene�ts of Cache-Guided Sched-

uling and discuss the limitations of previous work. We provide

background on so�ware graph processing frameworks (Sec. 2.1)

and discuss the impact of scheduling on locality (Sec. 2.2). We

show that preprocessing techniques, although bene�cial to locality,



are very expensive, making them impractical in many important

scenarios (Sec. 2.3). Finally, we discuss how previous work on graph-

processing architectures fails to alleviate the memory bo�leneck of

graph processing (Sec. 2.4).

2.1 So�ware Graph Processing Frameworks

Graphs are a natural abstraction to represent and analyze many

kinds of information, such as social network interactions, web

page links, road networks, and user ratings in online services [16,

35]. With ever-increasing datasets, there is a growing interest in

so�ware graph processing frameworks that improve programmer

productivity while achieving good performance and scalability.

Prior work has proposed abstractions and runtimes for graph

processing on both shared-memory multicores [20, 31, 37, 41, 42]

and distributed systems [13, 14, 23, 25, 29, 38]. Shared-memory

graph processing has become very a�ractive because the limited

network bandwidth of distributed systems makes distributed graph

processing very ine�cient [27], and increasing main memory ca-

pacities have made it possible to �t most large real-world graphs

on a single machine [41].

Most graph frameworks provide a simple interface that lets appli-

cation programmers specify algorithm-speci�c logic for performing

operations on graph vertices and edges. �e runtime is then respon-

sible for scheduling these operations as de�ned by the execution

model. Many graph frameworks use a Bulk Synchronous Parallel

(BSP) [43] model, where the execution is divided into iterations sep-

arated by barriers and updates to algorithm-speci�c data are made

visible only at the end of each iteration. �e runtime manages a set

of active vertices in each iteration and performs application-speci�c

operations on them, until there are no more active vertices or a

termination condition (e.g., a number of iterations) is reached.

2.2 Impact of Scheduling on Locality

Many graph algorithms are unordered and the runtime has com-

plete freedom on how to schedule the processing of active vertices

in each iteration. �e schedule does not a�ect the correctness of

the algorithm, but it has a large impact on locality. All-active algo-

rithms, in which all vertices are processed in each iteration, give

more opportunities to perform locality-aware scheduling. Many im-

portant algorithms like PageRank, Collaborative Filtering, and

Label Propagation are all-active algorithms. Algorithms where

only a subset of vertices are active on each iteration, like BFS, o�er

reduced opportunities to improve locality.

State-of-the-art graph processing frameworks like Ligra [41] and

GraphMat [42] follow a vertex-ordered schedule, a simple technique

that achieves spatial locality in accesses to edges but results in

hard-to-cache accesses to vertices. Before analyzing the tradeo�s

of vertex-ordered scheduling, we �rst describe the format in which

graphs are stored in memory (see Fig. 1).

Assuming the graph has V vertices and E directed edges, there

is a destination array of E elements and an o�set array of V + 1

elements. �e destination array stores the destination vertex id of

each directed edge in the graph, a�er sorting the edges by their

source vertex. For each vertex, the o�set array stores the o�set

of its �rst edge in the destination array. �e last element of the

o�set array is set to V, the number of vertices. Application-speci�c

data, one element for each vertex, is stored in a separate array. For

example, in PageRank, vertex data stores the score of each vertex.

�is format, known as Compressed Sparse Row (CSR), is used by

many graph processing frameworks [41, 42] since it is simple and

space-e�cient. CGS can be used with other formats that provide

fast lookup of a vertex’s neighbors, such as adjacency matrices.
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Figure 1: Graph storage format. �e destination array stores

the destination vertex id of each edge, and the o�set array

stores the o�set of the �rst edge of each vertex. Application-

speci�c vertex data is stored in a separate array.

Real-world graphs o�en have tens or even hundreds of edges per

vertex, so the edge list is much larger than the vertex data. A vertex-

ordered schedule simply processes the active vertices in order of

vertex id, and processes all the edges of each vertex consecutively.

Processing an edge usually involves accessing the vertex data of

both the source (active) vertex and the destination vertex.

�is vertex-ordered schedule results in sequential accesses to

the large edge list, which yield good spatial locality and can be

prefetched well. However, it causes seemingly random accesses

to vertex data, as shown in the top half of Fig. 2. If vertex data

does not �t in on-chip caches, as is the case for all but the smallest

real-world graphs, this will cause many expensive accesses to main

memory.
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Figure 2: E�ect of vertex processing order on locality in ac-

cesses to di�erent data structures.

On the graphs we evaluate, accesses to vertex data account for

about 90% of total main memory accesses. While latency-hiding

techniques such as hardware prefetching [2, 45] can reduce the im-

pact of these accesses on performance, system energy is dominated

by main memory accesses. Fig. 3 shows the energy breakdown of

PageRank on several large graphs using vertex-ordered scheduling

(see Sec. 4.1 for methodology). On average, 51% of energy is spent
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Figure 3: Energy breakdown of PageRank on a system with

lean out-of-order (Silvermont-like) cores.

on main memory accesses, and this fraction increases to 57% for

larger graphs (web) with 100 million vertices.

CGS improves locality in accesses to vertex data by scheduling

vertices in an order that exploits the graph’s structure. Since ver-

tices are not processed sequentially, this loses some spatial locality

in accesses to the edge list (bo�om half of Fig. 2). �e access to

the �rst edge always touches a new cache line, but accesses to the

remaining edges still have spatial locality. Since many real-world

graphs have high average degree (more than 10 edges per vertex

for the graphs we evaluate), the overall loss of spatial locality is not

signi�cant and is o�set by the much higher locality we can achieve

on accesses to vertex data.

2.3 Graph Preprocessing

Prior work on improving locality in graph algorithms has focused

on graph preprocessing techniques. �ese techniques change the

graph layout (i.e., the order in which vertices and edges are stored

in memory) to improve locality. Some of these techniques are

designed to work well with a vertex-ordered schedule, while others

also require a di�erent scheduling strategy.

Although preprocessing e�ectively improves temporal and spa-

tial locality, it is very expensive. It requires doing multiple passes

over the entire graph and changing the graph layout to get these

bene�ts. As a result, preprocessing o�en takes longer than the

graph algorithm itself.

Fig. 4 illustrates this tradeo� for PageRank. We evaluate two

representative preprocessing techniques:

(1) Graph Slicing [15, 42], which partitions the graph into mul-

tiple sub-graphs that �t in the cache, improving temporal

locality.

(2) GOrder [44], which reorders the vertices inmemory through

a novel heuristic that is shown to outperform others like

sorting vertices by degree, sorting by breadth-�rst or depth-

�rst traversal order of the graph, etc.

Fig. 4 shows the breakdown of execution time for the preprocessing

step and the algorithm itself on several large graphs. We run 20

iterations of single-threaded PageRank on an Intel Xeon E5-2658 v3

(Haswell) processor running at 2.2 GHz with 30MB of last-level

cache.

Fig. 4 shows that, although preprocessing signi�cantly reduces

PageRank’s runtime (by up to 3×), end-to-end runtime is dominated
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Figure 4: �e bene�ts and overheads of various preprocess-

ing techniques: Baseline (B) with no preprocessing, Slicing

(S), and GOrder (G).

by preprocessing, which o�en takes an order of magnitude more

time than the algorithm. In all cases, baseline execution time with

no preprocessing is be�er than the best preprocessing technique

when overhead is considered. Furthermore, preprocessing overhead

is magni�ed for faster algorithms like Breadth-First Search that

only need to traverse the graph once.

Prior work in this area ignores preprocessing overheads because,

it argues, graphs can be reused across many algorithms. But in

many real-world situations this is not the case: the graph changes

over time or is produced by another algorithm, and is used once

or at most a few times [26]. �erefore, while the e�ectiveness of

preprocessing shows that there is abundant structure in graphs, the

overheads of preprocessing are unacceptable.

2.4 Accelerators for Graph Analytics

Recentwork [7, 15, 32–34] has proposed specialized graph-processing

accelerators that use both compute and memory system specializa-

tion to achieve large performance and energy e�ciency gains.

On the compute side, the proposed accelerators observe that

graph algorithms use simple vertex and operations that are simi-

lar across many algorithms. Hence, they use specialized pipelines

to perform these operations cheaply, and either leverage recon-

�gurable logic or introduce limited programmability to support

multiple algorithms.

While specialized graph-processing engines are e�ective on

small graphs that �t on chip, their e�ectiveness is limited on large

graphs, where main memory accesses dominate performance and

energy even with general-purpose cores. Fig. 5 demonstrates this

by showing the impact of core con�guration on system energy, both

with and without preprocessing. Compared to lean out-of-order

cores, wide out-of-order (Nehalem-like) cores increase compute en-

ergy but barely help performance, because the system is bandwidth-

bound. Specialized pipelines reduce compute energy signi�cantly,

by more than 10× [15]. While this improves system energy, it in-

creases the relative importance of main memory accesses, which

now become the main cost. Preprocessing techniques (shown on

the right of Fig. 5) improve locality and reduce memory energy,

but even then, memory accesses dominate energy consumption

3
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Figure 5: Energy breakdown of PageRank on various core con-

�gurations, without and with GOrder preprocessing, aver-

aged across all graph inputs.

when specialized compute engines are used. Hence, we focus on

techniques to use the memory system be�er.

Prior work that specializes the memory system for graph pro-

cessing follows two broad techniques. First, such designs o�en

tune the memory hierarchy to the needs of graph applications, e.g.,

by using separate scratchpads to hold vertex and edge data and

matching their word sizes to the object sizes [34], or by adding a

large on-chip eDRAM scratchpad to hold larger graphs [15] than

is possible with SRAM. Second, prior work has proposed near-data

processing designs [1, 12, 30] that execute most graph-processing

operations in logic close to main memory, reducing the cost of

memory accesses.

Cache-Guided Scheduling complements this prior work by lever-

aging caches to dynamically �nd a schedule that makes be�er use of

limited on-chip capacity. Although we describe CGS in the context

of a general-purpose system with lean cores, we expect it to be

even more bene�cial with specialized processors.

3 CGS DESIGN

In this section, we sketch CGS’s hardware support and hardware-

so�ware interface. Note that this is just an implementation sketch

and not the �nal design, which will require a more comprehensive

study of design alternatives and overheads. We then discuss the

two idealized schemes that let us study the potential of CGS.

3.1 Hardware Support

Graph processing is memory-bound, so it is possible to spend extra

instructions to perform locality-aware scheduling without hurting

end-to-end performance. However, implementing CGS completely

in so�ware would incur prohibitive overheads. Hence, we propose

simple hardware support to accelerate CGS.

Cache engine: As shown in Fig. 6, we add a programmable cache

engine at the last-level cache that is responsible for monitoring

cache contents and �nding a cache-friendly schedule.

We envision a simple, specialized core in the style of MAGIC [19]

or Typhoon [36] that can inspect the cache’s contents and react

to events like cache line insertions and evictions. Although we

propose using the cache engine to enable cache-friendly graph

analytics, it could be used to accelerate other functions.

Shared 
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Cache Engine 

Loads 

Event 

Notifs. 
Tasks 

Probes 

Core with 

private caches 

Main 

Memory 
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Figure 6: Key hardware components of CGS. �e cache en-

gine is a simple core that monitors cache contents and re-

acts to insertion and eviction events to �nd a cache-friendly

schedule. �emain processor, which is general-purpose, en-

queues and dequeues tasks from the cache engine.

�eprimary function of the cache engine is to maintain aworklist

of tasks to feed to cores. A task consists of processing a set of active

vertices or edges in the graph. �eworklist ranks the available tasks

by assigning each task a score that indicates how bene�cial it is to

execute. For example, when the task involves processing a vertex,

the score could be how many of its neighbors are currently cached.

We call the metric used to compute task scores the scoring metric.

�e cache engine sends the tasks with the highest scores to cores

for processing. We assume small hardware task queues between

the cache engine and the cores, similar to Active Messages [10] or

Carbon [18].

In our current, idealized implementation of CGS, the worklist

stores all active vertices and edges, which is expensive. Sec. 5

discusses potential strategies to use a small worklist while retaining

most of the bene�ts of an unbounded worklist. We envision a

design where the cache engine adaptively expands the worklist

by exploring the graph and bringing in graph vertices when the

worklist size falls below a certain threshold.

�e scoring metrics that we use require simple integer arithmetic

operations. Hence, this core only needs simple functional units

and we expect its area footprint to be a small fraction of the multi-

megabyte last-level caches in current processors. To compute these

scores, the cache engine uses two interfaces to the last-level cache:

probes and cache event noti�cations, which we detail below.

Probes: �e cache engine routinely checks whether an address is

present in the last-level cache. A probe is simply a cache tag lookup

that has no side e�ects: no main memory accesses are triggered

if the address is not cached, and cache replacement state is not

updated if the line is cached. Probe operations can reuse existing

tag ports, since last-level caches are multi-banked and have plentiful

tag array bandwidth.

�e cache engine uses probes to rank tasks, e.g., by checking the

neighbors of a vertex to see how many are present in the cache.

Cache event noti�cations: As so�ware executes tasks, the cache’s

contents keep changing as new data is brought into the cache and

old data is evicted. To keep the worklist’s scores up-to-date, the

4



cache engine is noti�ed of evictions and insertions. A noti�cation

consists of a line address and an event type.

�e cache engine maintains metadata about which tasks in the

worklist are waiting on a particular cache line and, on a noti�cation,

queries this metadata to see whether any score needs to be updated.

For example, when the worklist consists of active vertices, the cache

engine maintains an auxiliary hash table of neighbors that are not

yet in the cache. On each insertion, the cache engine queries the

hash table to �nd whether any task scores should be updated. To

maintain this metadata, the cache engine may perform additional

memory accesses to the graph (e.g., in our example, to fetch the

edge list of each vertex it inserts into the worklist). �us the tradeo�

is between the extra memory accesses to the graph and keeping

the scores accurate in order to improve the locality of accesses to

vertex data.

Overheads and idealizations: �e main overheads of this de-

sign are (1) the additional processing performed by the engine to

build the worklist and keep task scores updated, and (2) the space

overheads of the worklist and the auxiliary metadata, which will

take some of the available cache capacity. In our limit study, we

ignore both these overheads, which allows us to study the potential

bene�ts of CGS. �ough we have not modeled these overheads in

detail, given experimental data we expect them to be signi�cant.

�erefore, in Sec. 5 we discuss some potential strategies to reduce

them. We now describe two variants of CGS and evaluate them in

Sec. 4 with these idealizations.

3.2 Cache-Guided Scheduling of Vertices (CGS-V)

In CGS-V, each task processes one active vertex in the graph. At

the beginning of an iteration, all active vertices are inserted into the

worklist. Tasks are then dequeued from the worklist and processed

until the worklist is empty. Processing a task involves sequentially

processing all the edges with the vertex as the source.

Choosing the right scoring metric to rank tasks in the worklist

can have a signi�cant impact on the performance of CGS-V. Empiri-

cally, we have found that ranking vertices by hit ratio (e.g., number

of cached neighbors / number of neighbors) works well. �is is intu-

itive, since selecting the vertices that will cause the highest hit ratio

will tend to maximize the cache’s performance. In Sec. 4.3 we show

that this approach outperforms other intuitive scoring metrics, such

as ranking by most-cached or fewest-uncached neighbors.

3.3 Cache-Guided Scheduling of Edges (CGS-E)

In CGS-E, each edge in the graph maps to a task rather than a

vertex. �e main di�erence between CGS-V and CGS-E is that in

CGS-V, all the edges with a common source vertex are processed

sequentially before moving to the next vertex. �is property is not

guaranteed in CGS-E since each edge is scheduled independently.

CGS-E manages computation at a �ner granularity than CGS-V and

has more opportunities to improve locality. However, it has higher

overheads since edges outnumber vertices by more than an order

of magnitude in most real-world graphs.

�e scoring metric tracks howmany of the two endpoint vertices

of an edge are currently in the cache. Hence, it can take only three

values: 0 if none of the vertices are cached, 1 if either source or

destination is cached, and 2 if both vertices are cached. Since the

goal is to maximize hits, a higher score is be�er.

Similar to CGS-V, all the active edges are added to the worklist at

the start of each iteration and processed in the order of their scores.

If the initial score is 2, the edge is immediately processed since

doing so causes no cache misses. Otherwise, the edge is inserted

into the worklist to be processed later, when it is likely to have a

be�er score.

When the worklist runs out of edges with score 2, it executes

an edge with score 1. Among all the edges with a score of 1, it

chooses the edge, one of whose endpoints is connected to the most

number of edges with score 1 in the worklist. �e intuition is

that processing this edge brings in new data into the cache, that

increases the score of the maximum number of edges from 1 to 2. If

there are no edges with a score of 1, the worklist executes an edge

with score 0, breaking ties in a similar manner.

4 EVALUATION

We now present our evaluation methodology including the graph

algorithms, datasets, and simulation infrastructure. We then demon-

strate the bene�ts of the vertex- and edge-based cache-guided sched-

uling schemes compared to a locality-agnostic baseline. We end

the section with several sensitivity studies.

4.1 Methodology

Applications: We evaluate CGS on PageRank and Collaborative

Filtering (CF), which are both all-active algorithms but with small

(16-byte) and large (256-byte) object sizes respectively. We use the

implementations from Ligra [41] as our locality-agnostic baselines

with vertex-ordered scheduling. All-active algorithms are generally

executed for a �xed number of iterations or until a convergence

condition is reached. However, to avoid long simulation times we

only report results for the �rst iteration. �is does not signi�cantly

a�ect the relative performance of di�erent schemes as the algo-

rithms that we evaluate have the same memory reference pa�ern

in each iteration and the graphs we use are so large that there is

negligible reuse across iterations.

We implement several scheduling schemes in our runtime with-

out changing the application code. �is makes our techniques

transparent to changes in application-level logic and makes it eas-

ier to extend them to other graph algorithms. In particular, we

expect similar gains for other all-active algorithms like Triangle

Counting, Label Propagation, etc. In addition, CGS also works

with traversal algorithms like BFS or asymmetric algorithms like

Incremental PageRank. For such algorithms, CGS can reuse the

active vertex bit vector to rank only the active vertices.

Graph datasets: We use several large real-world graphs from

various domains like social networks, web crawls, movie ratings,

etc., detailed in Table 1. With 16-byte and 256-byte objects for

PageRank, Collaborative Filtering respectively, the graph sizes

are much larger than the last-level cache size. We represent graphs

in memory in Compressed Sparse Row (CSR) format, similar to

Ligra. Since some of the graphs we use were already preprocessed,

we randomize their vertex ids before running the graph algorithm.
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Application Graph Vertices (M) Edges (M) Description

PageRank

hol 1.1 113 Hollywood actor network [8]

wik 3.5 45 Wikipedia page links [8]

liv 4.8 69 LiveJournal follower network [8]

ind 7.4 194 Crawl of Indochina network [8]

uk 19 298 Crawl of .uk domain [8]

web 118 1020 Cross-domain crawl by Webbase [8]

Collaborative

Filtering

n� 0.50 100 Net�ix movie ratings [6]

yms 0.55 61 Yahoo Music ratings [9]

Table 1: Real-world graph datasets used.

L1 cache 32 KB 8-way set-associative

L2 cache 8MB 16-way hashed set-associative

Replacement policy LRU with L2 bypassing for streaming data

Table 2: Con�guration of the simulated cache hierarchy.

Simulation infrastructure: We developed an in-house cache sim-

ulator to get �rst-order estimates of the cache performance of dif-

ferent schemes. We insert hooks into the graph processing runtime

that pro�le accesses to all the important data structures through

the cache simulator. While the cache simulator does not do de-

tailed instruction-level simulation, we veri�ed that the memory

and cache statistics that it reports are within 5% of those reported

by zsim [39]. �is simulator is simpler and faster than zsim, so it

accelerates design-space exploration but does not provide end-to-

end performance results. We simulate the cache hierarchy shown

in Table 2 and report last-level cache misses only. Since graph

processing is memory latency-bound even when using out-of-order

core processors [4], reduction in main memory accesses should

translate to improved performance.

To get the system energy breakdown numbers in Sec. 2, we simu-

late (using zsim [39]) a systemwith 32 lean out-of-order (Silvermont-

like) cores, 16MB of last-level cache, and 6DDR3memory controllers

with 12.8GB/s bandwidth per controller. We use McPAT [22] to de-

rive the energy numbers of chip components at 22 nm, and Micron

DDR3L datasheets [28] to compute main memory energy.

4.2 Bene�ts of Cache-Guided Scheduling

Fig. 7 shows the memory accesses of cache-guided scheduling

schemes compared to Ligra on PageRank and Collaborative Filtering

(CF). Both cache-guided scheduling schemes show signi�cant re-

duction in main memory accesses with CGS-E performing be�er

than CGS-V in general. On average across both applications, CGS-V

and CGS-E reduce memory accesses by 2.1× and 5.8×, respectively.

For PageRank, CGS-V and CGS-E achieve 2.4× and 4.6× lower

memory accesses than Ligra on average, respectively. �e gap

between CGS-V and CGS-E widens for Collaborative Filtering:

while CGS-V only gets up to 1.9× lower accesses (1.5× on aver-

age), CGS-E achieves up to 17× reduction (12× on average). Due

do the larger objects sizes and high average vertex degree for

Collaborative Filtering, on average, a few kilobytes of data are

accessed in processing a single vertex. By scheduling such large

chunks of work at once, CGS-V loses signi�cant opportunities for

�ne-grain adaptation to cache contents.

4.3 Sensitivity Studies

For the results in the rest of the section, we focus on PageRank.

Ligra CGS-V CGS-E
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Figure 7: Mainmemory accesses of cache-guided scheduling

schemes normalized to Ligra (lower is better).

Cache-guided scheduling with preprocessing: Fig. 8 compares

CGSwith preprocessing techniques and shows that they are comple-

mentary. We compare Ligra, Slicing, GOrder (described in Sec. 2.3),

and CGS-V and CGS-E both with and without GOrder preprocess-

ing. While CGS-E’s gains are similar to using preprocessing with

Ligra, preprocessing the graph before applying CGS-E further re-

duces main memory accesses. �us, in addition to matching the

performance of state-of-the-art preprocessing techniques without

their o�en-impractical overheads, CGS can also be combined with

preprocessing when practical to reap additional bene�ts.
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Figure 8: E�ect of applying GOrder preprocessing on the

graph before running the main algorithm using CGS. Main

memory accesses are normalized to Ligra (lower is better).

Breakdown of accesses by data structure: Fig. 9 shows the

breakdown of accesses to the major data structures: edge data,

source vertex data, and destination vertex data. While Ligra achieves

great locality in accesses to edge and source vertex data, it su�ers

from many random accesses to destination vertices. Preprocess-

ing improves the locality of accesses to destination vertex data

without impacting accesses to source vertex data. Both CGS-V and

CGS-E hurt locality of accesses to source vertices somewhat, but

improve that to destination vertices much more, giving a large

overall reduction in cache misses.
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edge data, source vertices, and destination vertices (from

bottom to top). All schemes are normalized to Ligra (lower
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Figure 10: Impact of cache line size. Main memory accesses

are normalized to Ligra (lower is better).

Impact of cache line size: Fig. 10 shows the impact of line size on

the bene�ts of CGS, by varying the line size from 16 bytes (which

matches the object size of PageRank) to 256 bytes. At each line size,

we show the reduction in memory accesses over Ligra averaged

across all graphs. CGS-E slightly outperforms preprocessing at all

line sizes and its bene�ts increase with larger line sizes. CGS-V

performs similarly to the other techniques at small line sizes, but

CGS-V’s bene�ts increase more slowly with line size, so with large

lines the gap with CGS-E and GOrder broadens.

Scoring metric for CGS-V: Fig. 11 shows the impact of scoring

metric on the bene�ts of CGS-V. We consider the following scoring

metrics: most hits (i.e., most neighbors cached), fewest misses

(i.e., fewest neighbors uncached) and highest hit ratio (our default

metric). For each scoring metric, we show the reduction in memory

accesses of CGS-V over vertex-ordered scheduling.

�e �rst two metrics perform almost the same on average. For

graphs with lower baseline cache hit ratio (hol, wik, liv) minimiz-

ing misses performs be�er and the trend reverses for graphs with

higher baseline cache hit ratio (ind, web, uk). �e third metric, max-

imizing hit ratio, consistently outperforms the other two metrics

and achieves up to 29% (14% on average) lower memory accesses.
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Figure 11: Impact of scoringmetric of CGS-V. Mainmemory

accesses are normalized to Ligra (lower is better).

We also evaluated the e�ect of valuing hits and misses di�erently

in the scoring metric. Speci�cally, we evaluated the metric:

a · hits − (1 − a) ·misses for a ∈ [0,1]

Note that a = 1 is equivalent to maximizing hits and a = 0 is

equivalent to minimizing misses. We observed that the value of

a that performs best changes across graphs, and its performance

closely matches the performance of the hit ratio metric.

5 REDUCING THE OVERHEADS OF CGS

In this section, we discuss some potential ways to reduce the over-

heads of CGS as it currently implemented.

Reducing storage overheads: In the current CGS design, the

major overhead comes from the storage required for the tasks in

the worklist and the auxiliary metadata needed to track scores ac-

curately. In particular, maintaining all the active vertices in the

worklist is very expensive. To mitigate this, we need to be able

to store only a small fraction of the active vertices in the worklist

and still capture most of the locality bene�ts of CGS. Our initial

experiments suggest that for a small worklist to be e�ective, the

order in which vertices are added to the worklist is crucial. For

example, inserting vertices in the order of their id would be inef-

fective as the algorithm would end up exploring disjoint regions of

the graph simultaneously. Preliminary results suggest that �lling

the worklist by exploring the graph in a depth-�rst fashion is a

plausible way to capture the locality achieved with an unbounded

worklist while maintaining a small worklist. We will quantify this

tradeo� in depth and explore alternative policies in future work.

Reducing processing overheads: Beyond storage overheads, sched-

uling costs must also be kept small, since each task is a few tens of

instructions. A simple approach would be to �x the scheduling logic

in hardware, but this would forgo the programmability of the cache

engine, making the system hard to adapt to new algorithms. Before

rushing towards a �xed-function scheduler, we should consider

algorithmic simpli�cations to CGS.

First, since nearby vertices tend to be explored at the same time,

grouping vertices as they are explored can lower overheads while

preserving locality. Processing groups of vertices as a single task

and only tracking the scores for a few vertices from each group

greatly reduces the number of vertices that must be tracked. Since

7



the work involved in processing a task correlates with the number

of edges rather than vertices, it might be important to balance the

number of edges across groups of vertices.

Second, some vertices have many neighbors—o�en hundreds or

even thousands—so it may be su�cient to sample a few neighbors to

infer their hit rate. �is sampling neighbors strategy would reduce

the number of cache lookups for each vertex.

�ird, some cache lines are accessed by many tasks, when the

vertices it holds have a large in-degree. When such lines are evicted

or inserted into the cache, the scores of most tasks in the worklist

are updated by the same value. �us, skipping updates in such

cases does not signi�cantly change the relative order of tasks in

the worklist. �e choice of the degree threshold that identi�es such

large vertices is crucial for this optimization to be e�ective.

Finally, we could devise more e�cient strategies to update scores

than by tracking insertions and evictions. For example, we could

sample evictions and insertions, or devise an aging mechanism that

achieves similar e�ects. We note that, although updating scores is

not cheap, we have found that it is necessary: disabling updates

makes CGS lose a large fraction of its bene�ts.

6 CONCLUSION

Graph processing su�ers from excessive main memory accesses,

causing poor performance and energy e�ciency on current systems.

We have presented our ongoing work in cache-guided scheduling,

a novel technique that improves locality by exploiting information

about the contents of the cache hierarchy to improve locality. We

demonstrated the potential of cache-guided scheduling through

two idealized schemes that reduce memory accesses by 5.8× gmean

over a locality-agnostic baseline. We will next work on developing

a practical implementation of cache-guided scheduling with the

required hardware support.
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