CACHE-GUIDED SCHEDULING

EXPLOITING CACHES TO MAXIMIZE LOCALITY IN GRAPH PROCESSING

Anurag Mukkara, Nathan Beckmann, Daniel Sanchez

1st AGP - Toronto, Ontario - 24 June 2017

Graph processing is memory-bound

- Irregular structure causes seemingly random memory references
- On-chip caches are too small to fit most real-world graphs

PageRank

General-purpose system

50% of system energy is due to main-memory

Specialized accelerator

Memory bottleneck becomes more critical

Exploiting graph structure through caches

- Real-world graphs have strong community structure
 - Significant potential locality
 - Difficult to predict ahead of time

- Idea: Let the cache guide scheduling!
 - Cache has information about the right vertices to process next – those which cause fewest misses

- This work: A limit study on the benefits of cache-guided scheduling (CGS)
 - □ CGS reduces misses by up to 6x

Impact of Scheduling on Locality

Schedule: Order in which vertices of the graph are processed

- Many important algorithms are unordered schedule does not affect correctness
 - Ex. PageRank, Collaborative Filtering, Label Propagation, Triangle Counting

Schedule impacts locality significantly

Vertex-ordered schedule follows layout order

- Vertices are processed in the order of their id
- All edges of a vertex are processed consecutively

- Used by state-of-the-art graph processing frameworks
 - □ Ligra, GraphMat, etc.

- Simplifies scheduling and parallelism
- □ Poor locality

Layout order might not match community structure

In-memory vertex layout

Consecutive vertices in layout are spread out across the graph

Access pattern of vertex-ordered schedule

Preprocessing changes layout for better order

Wei et al. Speedup Graph Processing by Graph Ordering, SIGMOD' 16

Cache-Guided Scheduling Design

High-level design

Maintains a list of tasks ranked based on a locality metric

Costs, benefits, and idealizations

- □ Extra memory accesses to edge list
 - Filling worklist with tasks
 - Keeping task scores up to date
- Space overheads of worklist and auxiliary metadata
 - Takes away some of the available cache capacity

For this limit study we ignore these costs

- Large reduction in memory accesses
 - Better energy efficiency and performance

Cache-Guided Scheduling of Vertices (CGS-V)

- Ranks and schedules each vertex of the graph
- Vertices ranked by fraction of neighbors that are cached

- □ Large locality benefits
- Track vertices only (not edges)

- Pitfall: Real-world graphs have skewed degree distributions
 - Many high-degree vertices that are connected to most of the graph

- Processing high-degree vertices
 - Flushes the cache and kills locality
 - Misses opportunities to process other beneficial regions

Ranks and schedules edges instead of vertices

- Better locality due to finer-grained scheduling
- Each edge causes exactly two cache accesses
 - Simpler ranking algorithm Number of endpoints that are cached
- □ #Edges >> #Vertices → Higher tracking overheads

Limit Study on Benefits of CGS

Methodology

□ Large real-world graphs with up to 100 million vertices, 1 billion edges

Graph	hol	wik	liv	ind	uk	web	nfl	yms
Vertices (Millions)	1.1	3.5	4.8	7.4	19	118	0.5	0.5
Edges (Millions)	113	45	69	194	298	1020	100	61

- Graph algorithms
 - □ PageRank 16-byte vertex objects
 - Collaborative Filtering 256-byte vertex objects
- Custom cache simulator to compute main-memory accesses
 - Single core system
 - 2-level cache hierarchy with 32KB L1, 8MB L2
- See paper for details

Large reduction in memory accesses for PageRank

Memory Access Reduction

CGS-V - 2.4x gmean

CGS-E - 4.6x gmean

Much larger benefits with Collaborative Filtering

CGS-V

CGS-E

Memory Access Reduction

CGS-V - 1.5x gmean CGS-E -12x gmean

Larger vertex data – 256 bytes per vertex

- Edge list accesses are negligible (3% only)
- Finer-granularity scheduling of CGS-E becomes more important

CGS benefits from better graph layout

Ongoing Work CGS Hardware Implementation

Reducing storage overheads

Maintaining all vertices in the worklist is prohibitively expensive

- Can a small worklist capture most of the benefits?
 - Order in which the worklist is filled is crucial

- Adding vertices in order of their id is bad
 - Explores multiple disjoint regions of the graph simultaneously
- Insight: Explore the graph in depth-first fashion to fill the worklist
 - 100 element worklist gives 50% of the benefits of CGS-E

Reducing processing overheads

- Processing each edge takes only a few instructions
 - Ex. PageRank: One floating point addition per edge
 - Task scheduling logic must be cheap

CGS-E gives much better locality than CGS-V, but has higher overheads

- Practical middle ground: Each task processes a cache line of edges
 - Minimizes loss of spatial locality in edge list accesses
 - Sidesteps the issue of high-degree nodes

Conclusion

Real-world graphs have abundant locality, but hard to predict

Cache has rich information about which regions are best to process

Cache-Guided Scheduling gives large reduction in memory accesses

THANKS FOR YOUR ATTENTION!

QUESTIONS ARE WELCOME!

