SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks

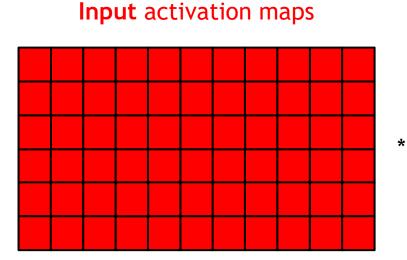
Angshuman Parashar, **Minsoo Rhu***, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and William J. Dally

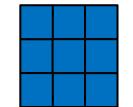
* Now at POSTECH (Pohang University of Science and Technology), South Korea

Motivation

Inner product between every input pixel and every filter coefficient

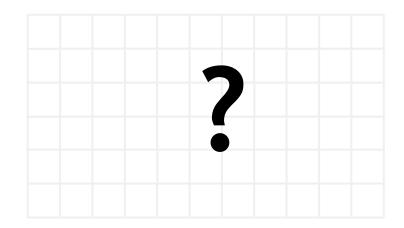
Sliding window is intuitive and maps to reasonable hardware implementation



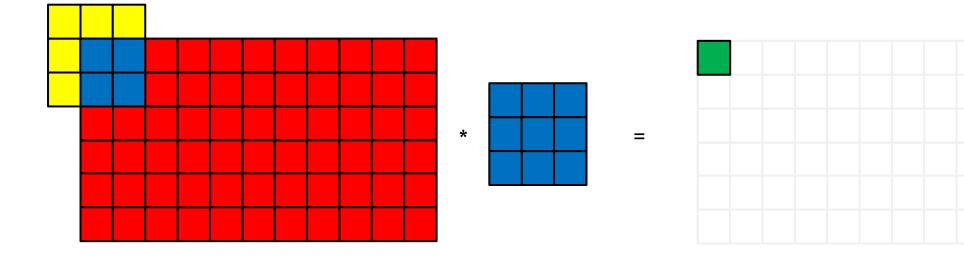


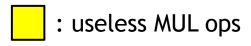
=

Output activation maps

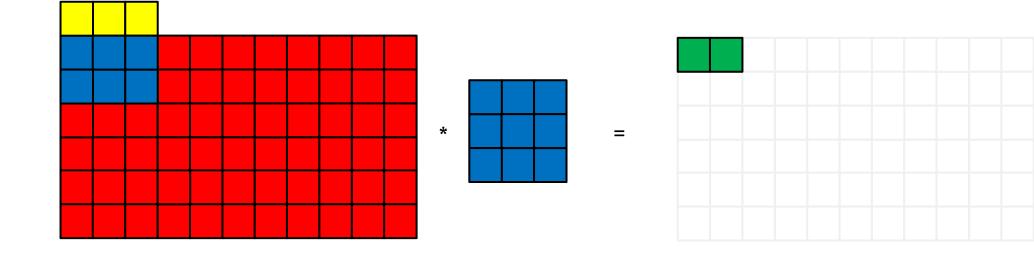


Inner product between every input pixel and every filter coefficient



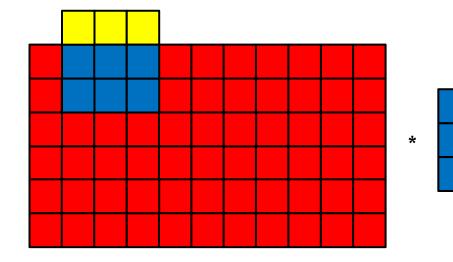


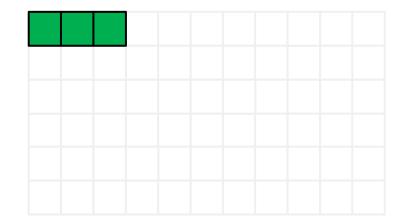
Inner product between every input pixel and every filter coefficient



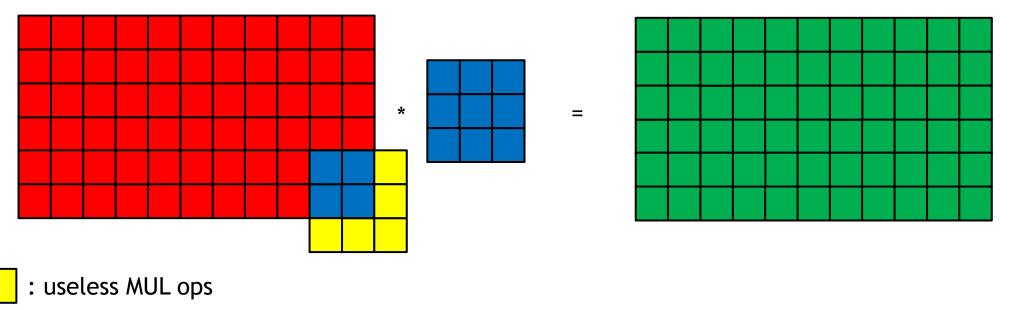
Inner product between every input pixel and every filter coefficient

=



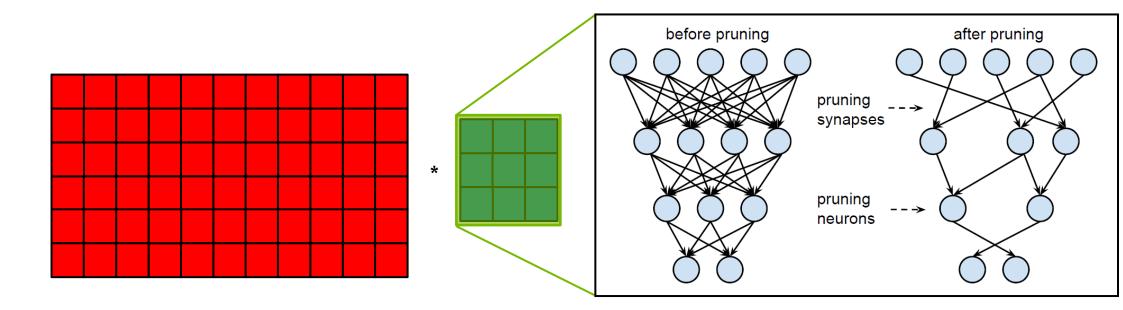


Inner product between every input pixel and every filter coefficient



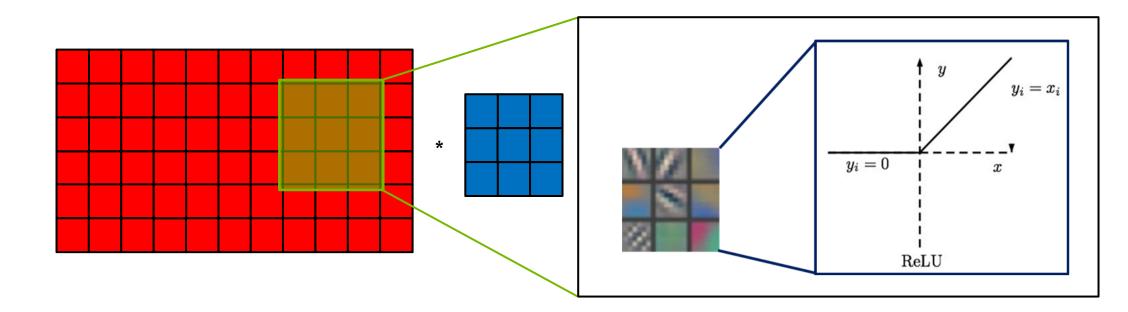
Most operand values are zero

Static sparsity: pruned network weights set to '0' during training



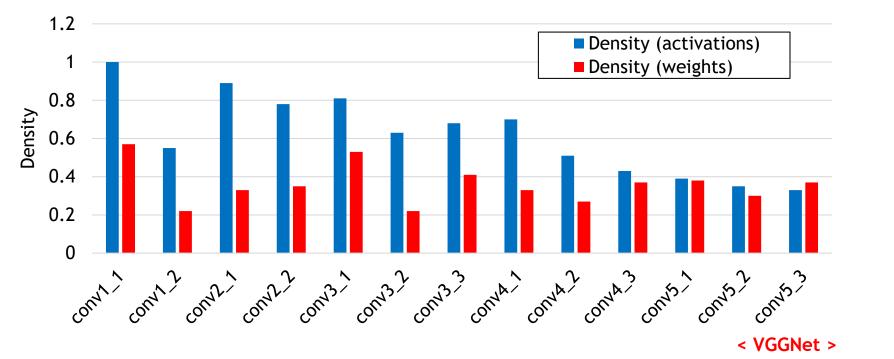
Most operand values are zero

Dynamic sparsity: negative-valued activations clamped to '0' during inference



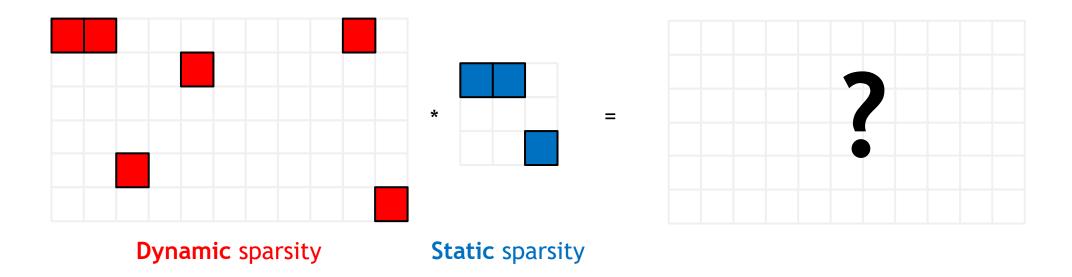
Most operand values are zero

Sliding window based convolution is wasteful



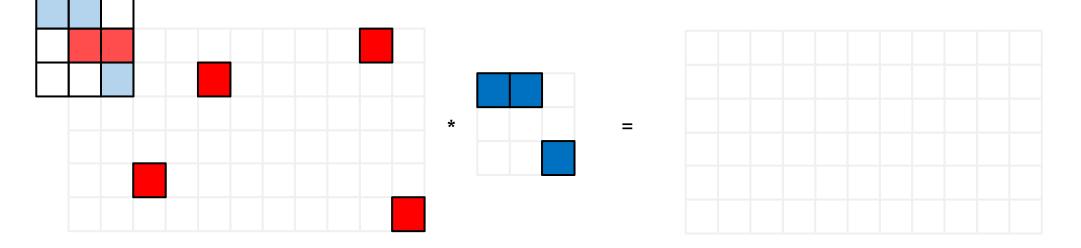
Most operand values are zero

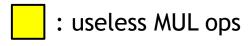
Sliding window based convolution is wasteful



Most operand values are zero

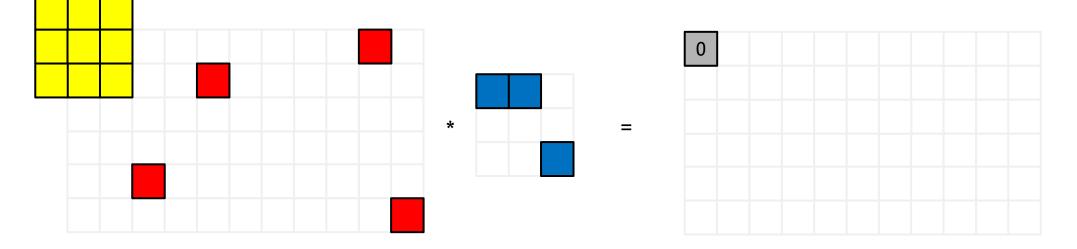
Sliding window based convolution is wasteful

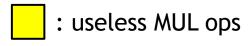




Most operand values are zero

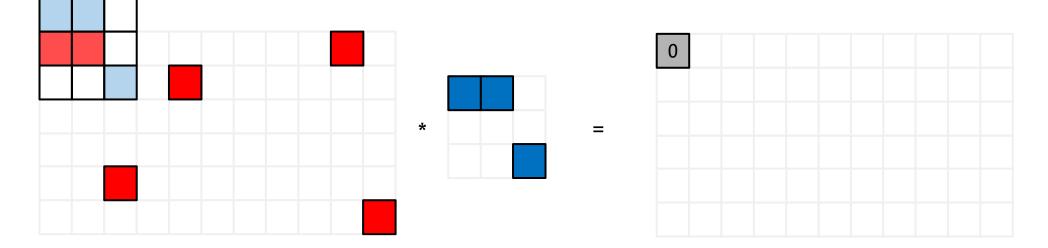
Sliding window based convolution is wasteful

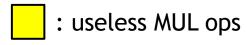




Most operand values are zero

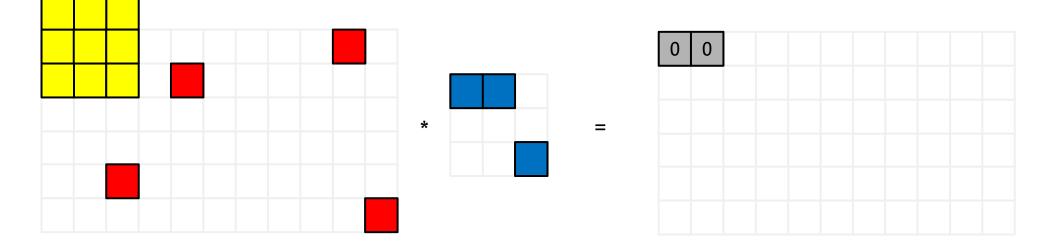
Sliding window based convolution is wasteful





Most operand values are zero

Sliding window based convolution is wasteful



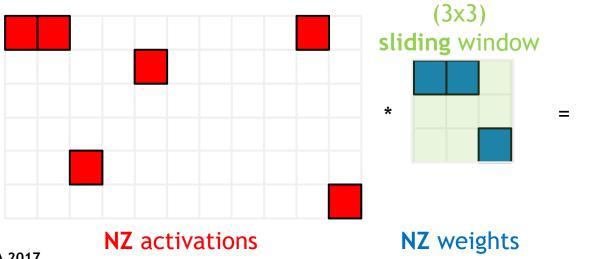
Motivation

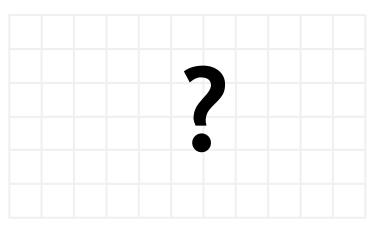
CNN inference often performed in power-limited environments

Our goal: sparsity-optimized CNN accelerator for high energy-efficiency

Possible Solutions

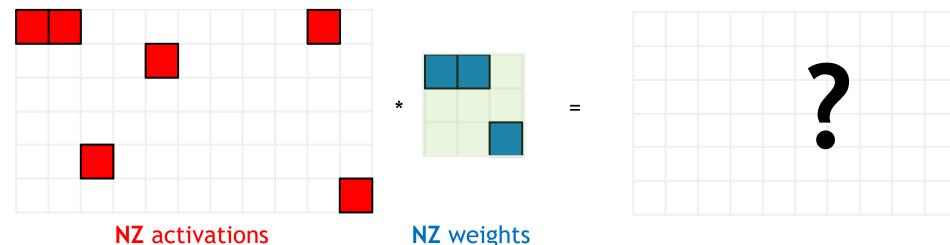
Employ pair of bit-masks to track non-zero weights and/or activations





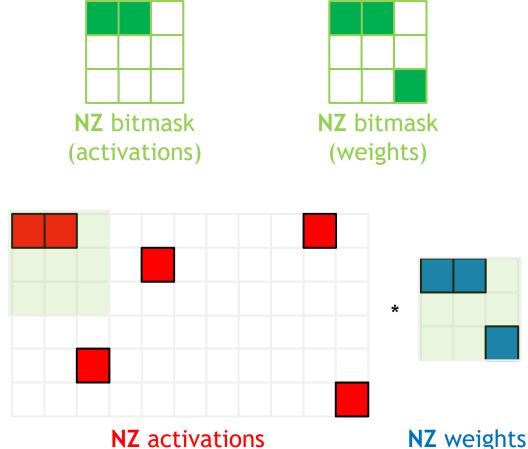
©NVIDIA 2017

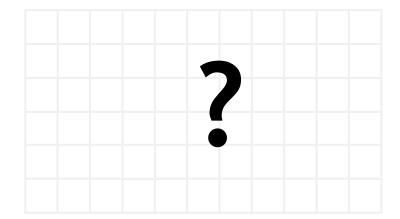
Employ pair of bit-masks to track non-zero weights and/or activations



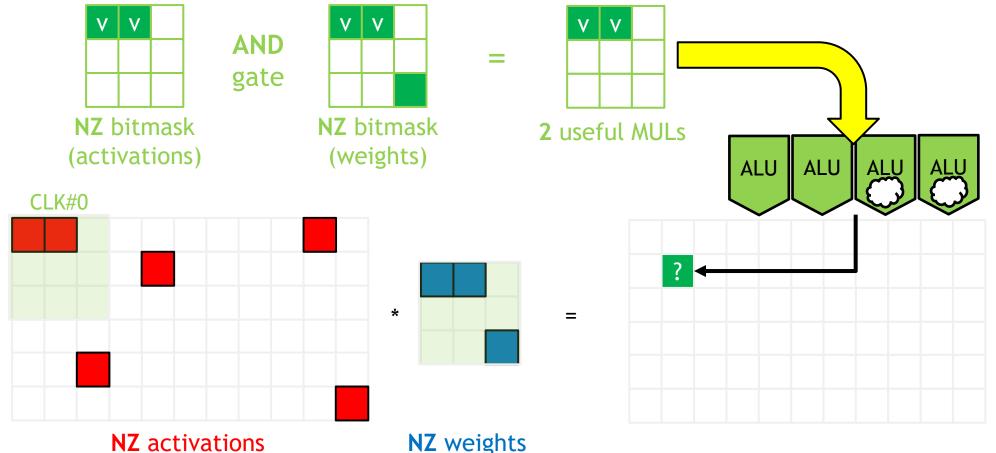
19 💿 nvidia.

Employ pair of bit-masks to track non-zero weights and/or activations



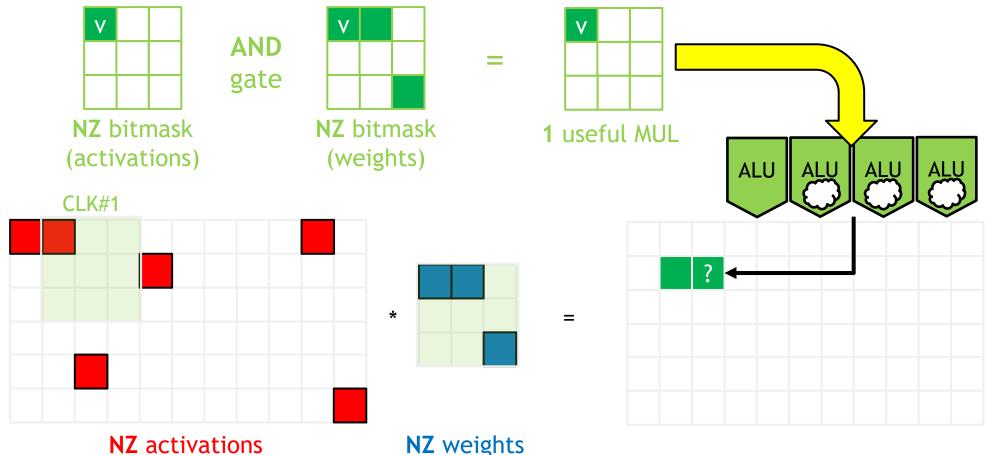


Employ pair of bit-masks to track non-zero weights and/or activations

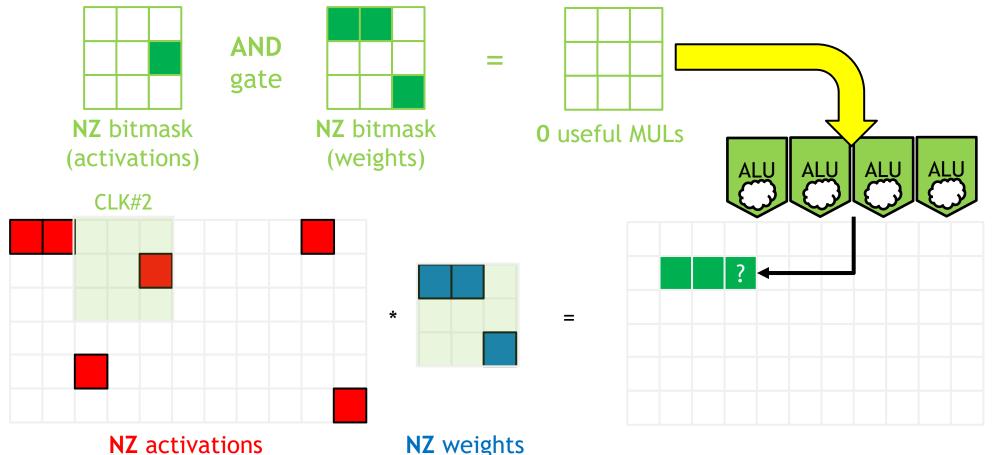


21 📀 NVIDIA.

Employ pair of bit-masks to track non-zero weights and/or activations

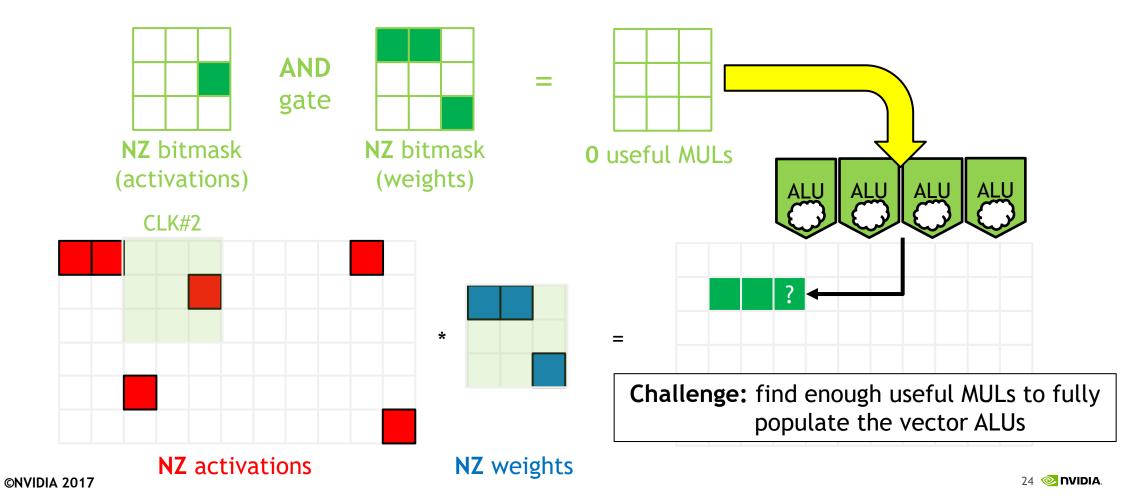


Employ pair of bit-masks to track non-zero weights and/or activations



23 📀 NVIDIA.

Employ pair of bit-masks to track non-zero weights and/or activations



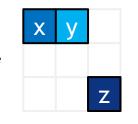
SCNN Intuition & Approach

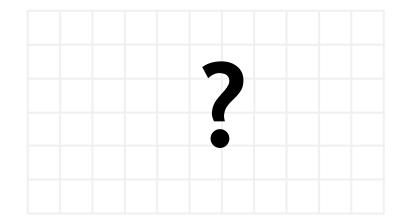
Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights

Holds true for convolution stride '1'



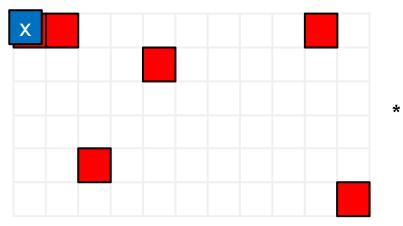


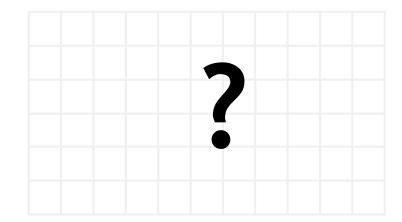


Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights

Holds true for convolution stride '1'

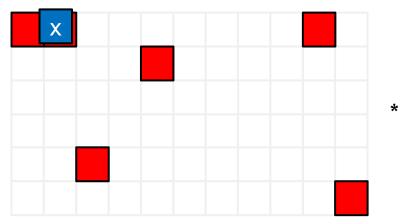


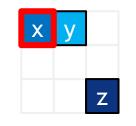


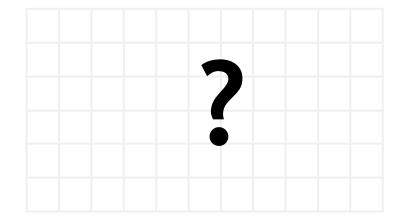
Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights

Holds true for convolution stride '1'







Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights

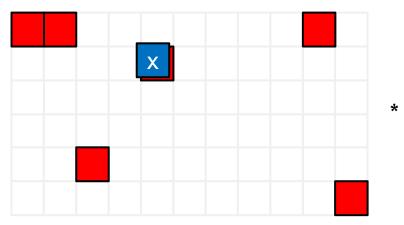
Holds true for convolution stride '1'

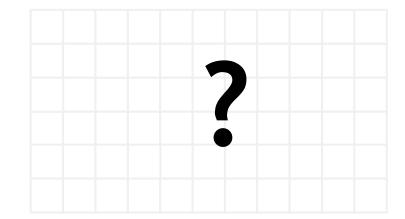


Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights

Holds true for convolution stride '1'

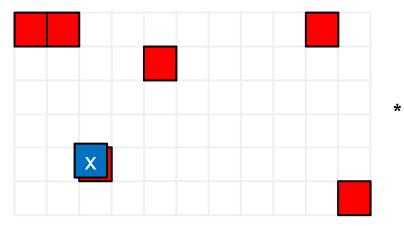


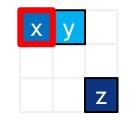


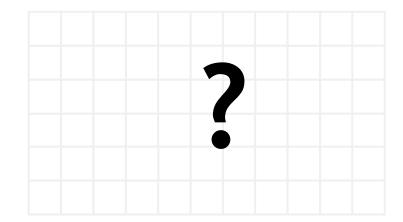
Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights

Holds true for convolution stride '1'

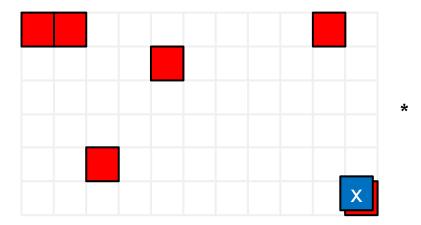






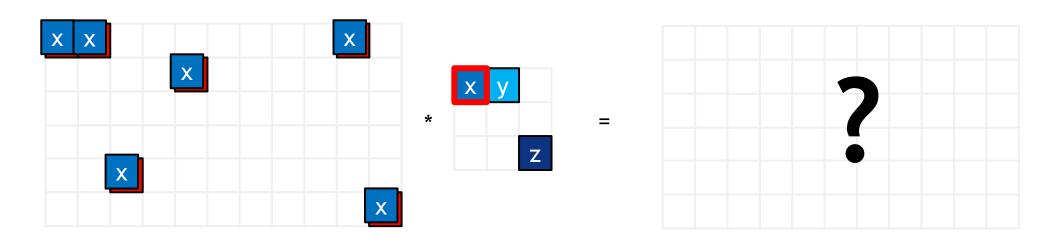
Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights



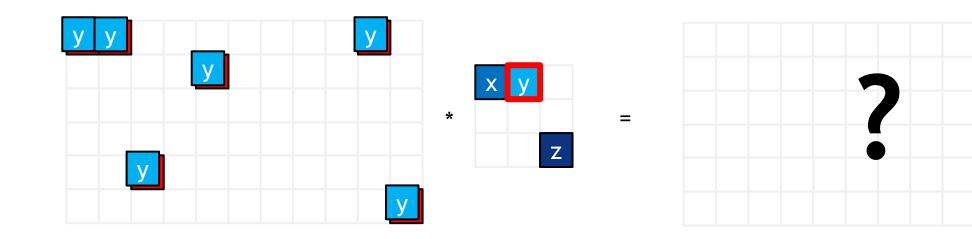
Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights



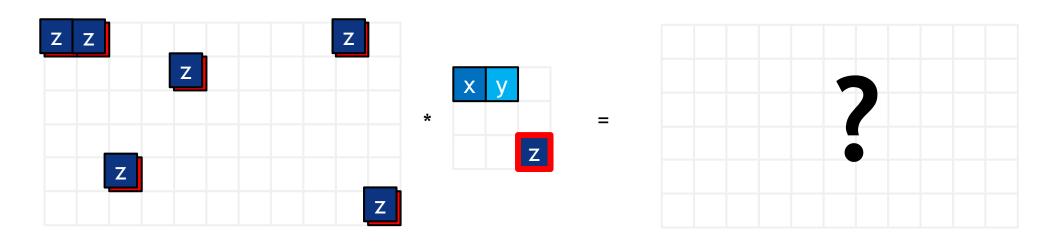
Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights



Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights

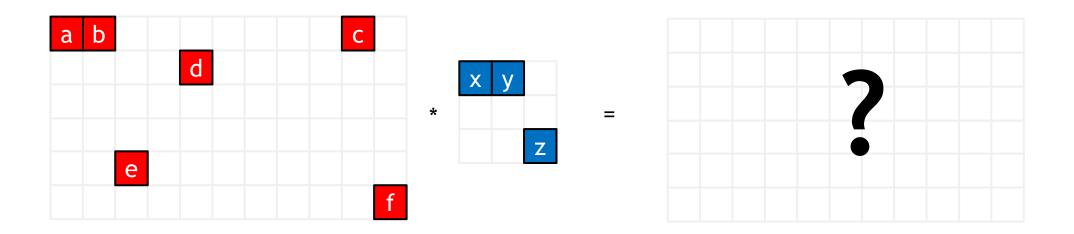


The SCNN approach

The Cartesian product (i.e., all-to-all) based convolution operation

Assuming a convolution stride of '1':

Minimum # MULs: Cartesian product of the NZ activations and the NZ weights

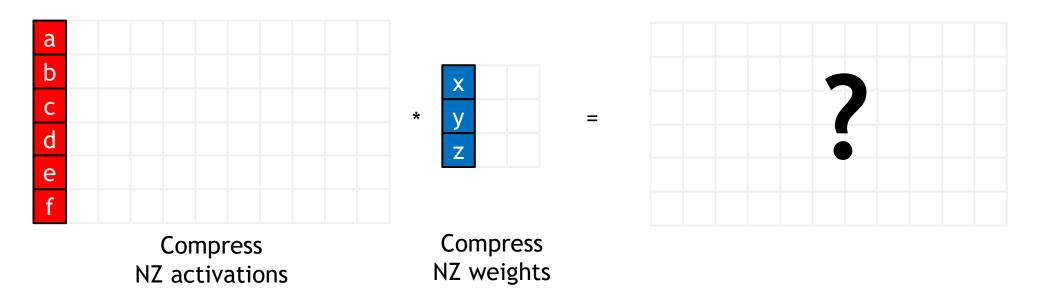


The SCNN approach

The Cartesian product (i.e., all-to-all) based convolution operation

Assuming a convolution stride of '1':

Minimum # MULs: Cartesian product of the NZ activations and the NZ weights

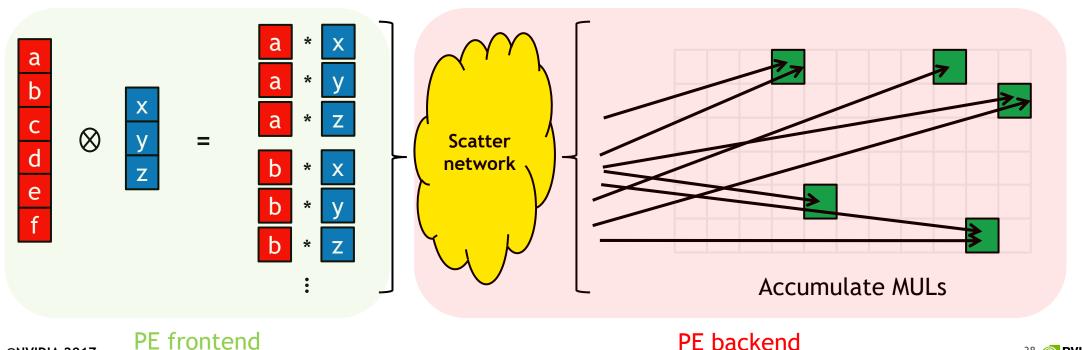


The SCNN approach

The Cartesian product (i.e., all-to-all) based convolution operation

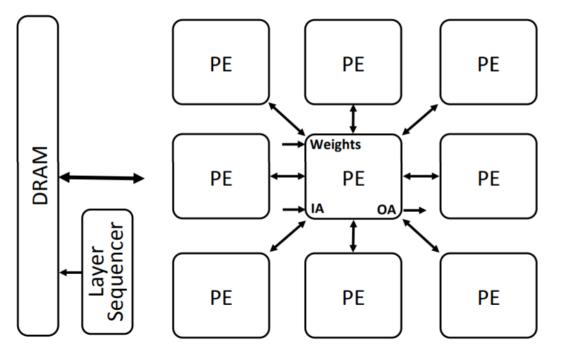
Assuming a convolution stride of '1':

Minimum # MULs: Cartesian product of the NZ activations and the NZ weights



©NVIDIA 2017

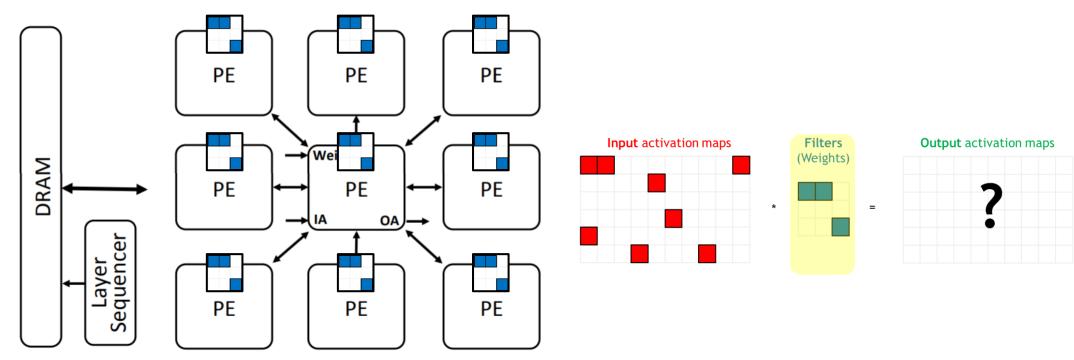
2D spatially arranged processing elements (PEs)



Workload distribution

Weights *broadcast* to all PEs

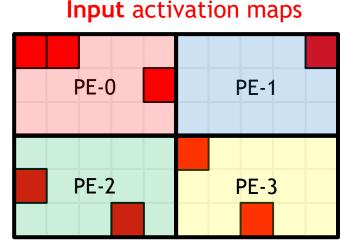
All PEs have a copy of all the NZ weights of the CNN model



Workload distribution

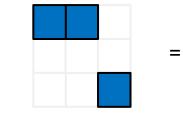
Each PE is allocated with a *partial* volume of input and output activations

Input and output activations stay local to PE



Filters (Weights)

*



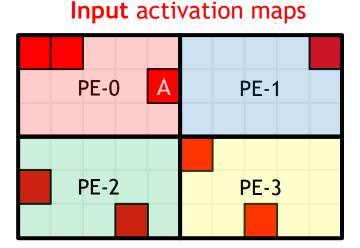
Output activation maps

PE-0	PE-1
PE-2	PE-3

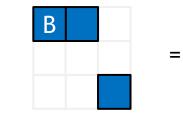
Halo resolution?

Output halos:

PE-0 calculates (A x B), but the result should be accumulated in PE-1 (X)

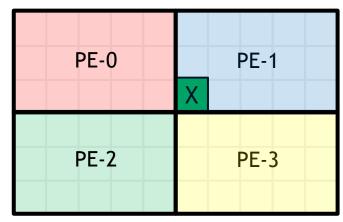


Filters (Weights)

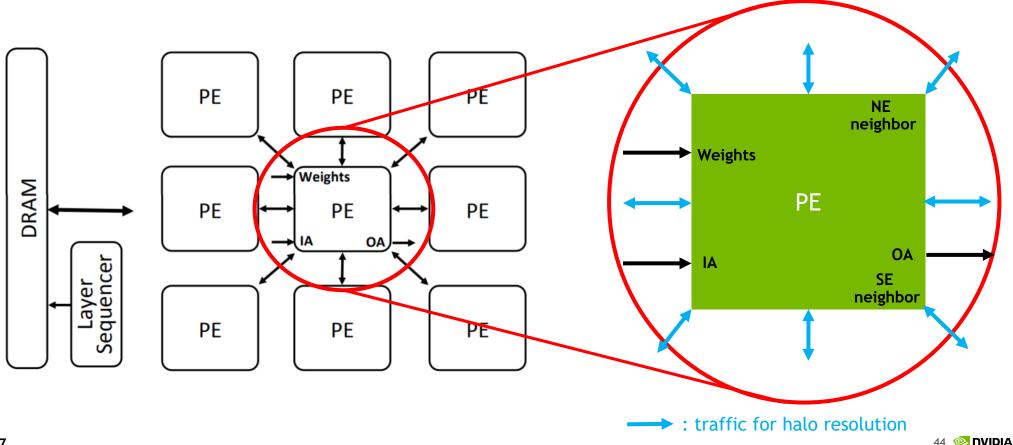


*

Output activation maps

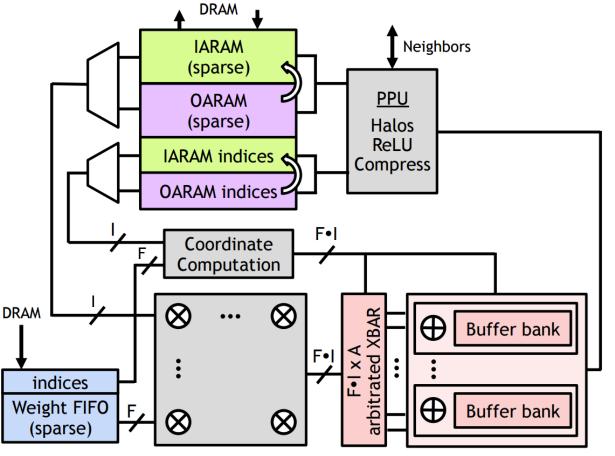


Inter-PE communication channel for halo resolution



SCNN PE microarchitecture

(Compressed-sparse frontend) + (Scattered-dense backend)

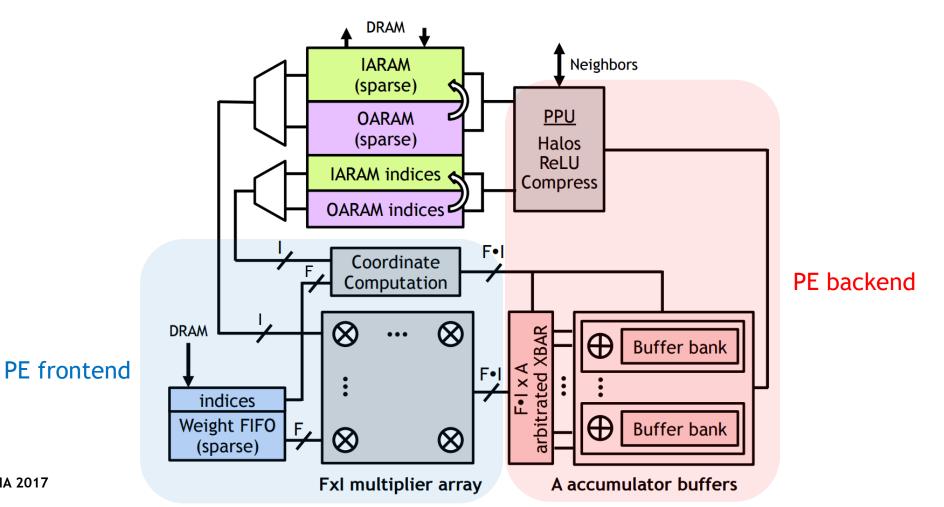


FxI multiplier array

A accumulator buffers

SCNN PE microarchitecture

(Compressed-sparse frontend) + (Scattered-dense backend)



46

Evaluation

Evaluation

Methodology

```
Network models and input activations
```

trained \rightarrow pruned \rightarrow retrained models using Caffe

Area & power

```
System-C \rightarrow Catapult HLS \rightarrow Verilog RTL \rightarrow Synthesis of an SCNN PE
```

Performance & energy

Performance model for cycle-level simulation of SCNN

Analytical model for design space exploration (dataflows, sparse vs. dense)

Evaluation

Architecture configurations

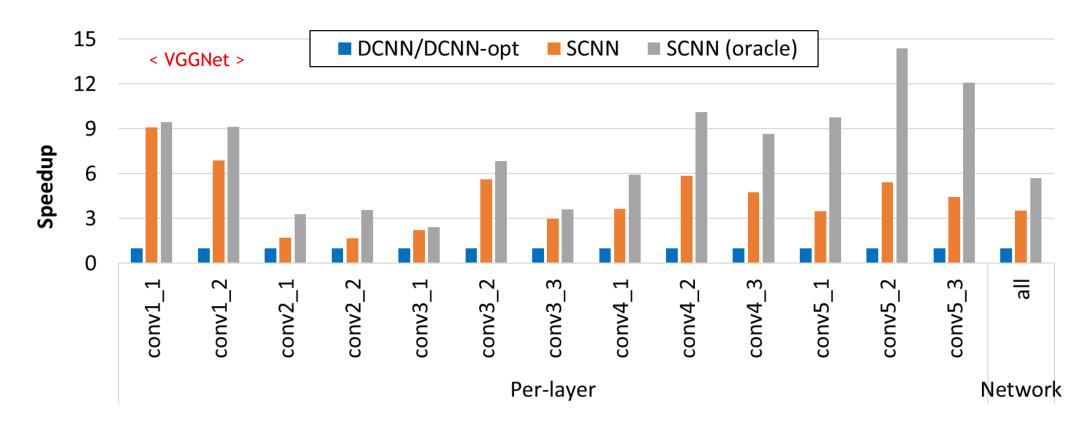
DCNN: operates solely on dense weights and activations

DCNN-opt: DCNN with (de)compression of activations + ALU power-gating

SCNN: sparse-optimized CNN accelerator

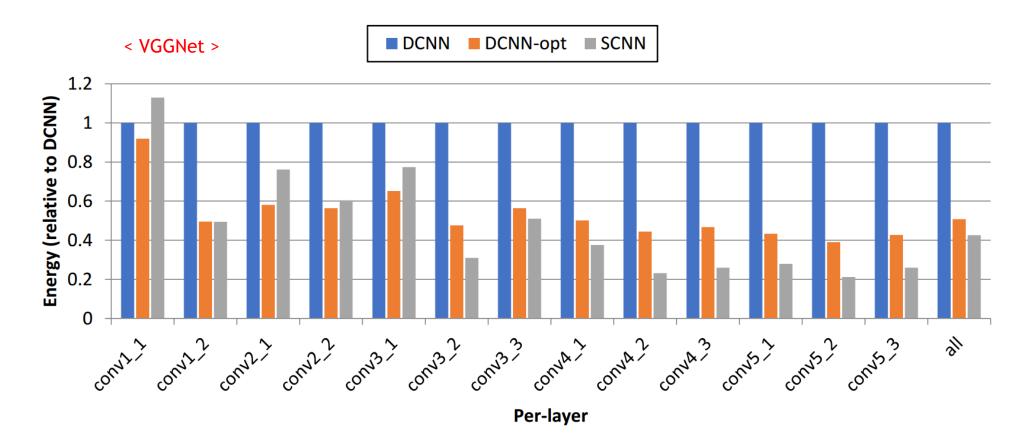
Performance

Dense vs. sparse



Energy consumption

Dense vs. sparse



Related Work

Qualitative comparison to prior work

Architecture	Sparse optimizations		Convolution dataflow
	Weights	Activations	Convolution datanow
DaDianNao [ASPLOS '14]	-	-	(Variant of) Sliding-window
Eyeriss [ISCA '16]	-	Power-gating	
CNVLUTIN [ISCA '16]	-	Zero-skipping	
Cambricon-X [MICRO '16]	Zero-skipping	-	
SCNN	Zero-skipping		Cartesian-product

Follow-up questions?

Contacts the authors

Technical leads:

SCNN architecture & sparse models:

TimeLoop (CNN analytical model):

Power & area modeling:

Minsoo Rhu

Angshuman Parashar

Rangharajan Venkatesan

Conclusion

SCNN: a compressed-sparse CNN accelerator

Novel Cartesian-product based convolution operation

Simple/compressed/sparse PE frontend

Scatter/dense PE backend

Superior performance and energy-efficiency

Average 2.7x higher performance than dense CNN architecture Average 2.3x higher energy-efficiency than dense CNN architecture