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Motivation
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Convolution (dense)
Inner product between every input pixel and every filter coefficient

Sliding window is intuitive and maps to reasonable hardware implementation

* = ?

Input activation maps Filters

(Weights)

Output activation maps



4© NVIDIA 2017

Convolution (dense)
Inner product between every input pixel and every filter coefficient

Sliding window is intuitive and maps to reasonable hardware implementation

* =

: useless MUL ops



5© NVIDIA 2017

Convolution (dense)
Inner product between every input pixel and every filter coefficient

Sliding window is intuitive and maps to reasonable hardware implementation

* =

: useless MUL ops



6© NVIDIA 2017

Convolution (dense)
Inner product between every input pixel and every filter coefficient

Sliding window is intuitive and maps to reasonable hardware implementation

* =

: useless MUL ops



7© NVIDIA 2017

Convolution (dense)
Inner product between every input pixel and every filter coefficient

Sliding window is intuitive and maps to reasonable hardware implementation

* =

: useless MUL ops



8© NVIDIA 2017

Convolution with Sparsity
Most operand values are zero

Static sparsity: pruned network weights set to ‘0’ during training

* =

* Han et al., “Learning Both Weights and Connections for Efficient Neural Network”, NIPS-2015
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Convolution with Sparsity
Most operand values are zero

* =

* Albericio et al., “CNVLUTIN: Ineffectual-Neuron-Free Deep Neural Network Computing”, ISCA-2016

Dynamic sparsity: negative-valued activations clamped to ‘0’ during inference
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Convolution with Sparsity
Most operand values are zero

Sliding window based convolution is wasteful

Fraction of non-zero (NZ) activations & weights is roughly 20~50% per layer
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Convolution with Sparsity
Most operand values are zero

Sliding window based convolution is wasteful

Fraction of non-zero (NZ) activations & weights is roughly 20~50% per layer
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Motivation
CNN inference often performed in power-limited environments

Our goal: sparsity-optimized CNN accelerator for high energy-efficiency
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Possible Solutions
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Option 1: Leverage Dense CNN Design
Employ pair of bit-masks to track non-zero weights and/or activations

* = ?
NZ activations NZ weights

(3x3) 

sliding window
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Option 1: Leverage Dense CNN Design
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NZ bitmask 
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NZ activations NZ weights

Employ pair of bit-masks to track non-zero weights and/or activations
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Option 1: Leverage Dense CNN Design
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NZ bitmask 

(weights)

NZ activations NZ weights

Employ pair of bit-masks to track non-zero weights and/or activations
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Option 1: Leverage Dense CNN Design

* =

?
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2 useful MULs

NZ activations NZ weights

Employ pair of bit-masks to track non-zero weights and/or activations

CLK#0

ALU ALU ALU ALU
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Option 1: Leverage Dense CNN Design
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Option 1: Leverage Dense CNN Design

* =

?

NZ bitmask 

(activations)

NZ bitmask 

(weights)

AND

gate
=

0 useful MULs

ALU ALU ALU ALU

Challenge: find enough useful MULs to fully

populate the vector ALUs

NZ activations NZ weights

Employ pair of bit-masks to track non-zero weights and/or activations

CLK#2
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SCNN Intuition & Approach



26© NVIDIA 2017

Intuition behind SCNN
Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights

Holds true for convolution stride ‘1’
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Intuition behind SCNN
Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights

Holds true for convolution stride ‘1’
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Intuition behind SCNN
Forget the sliding windows based convolution

All NZ activations must (at some point in time) be multiplied by all NZ weights

Holds true for convolution stride ‘1’
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The SCNN approach
The Cartesian product (i.e., all-to-all) based convolution operation

Assuming a convolution stride of ‘1’:

Minimum # MULs: Cartesian product of the NZ activations and the NZ weights
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The SCNN approach
The Cartesian product (i.e., all-to-all) based convolution operation

Assuming a convolution stride of ‘1’:

Minimum # MULs: Cartesian product of the NZ activations and the NZ weights
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The SCNN approach
The Cartesian product (i.e., all-to-all) based convolution operation

Assuming a convolution stride of ‘1’:

Minimum # MULs: Cartesian product of the NZ activations and the NZ weights
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SCNN Architecture
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SCNN Architecture
2D spatially arranged processing elements (PEs)
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SCNN Architecture
Workload distribution

Weights broadcast to all PEs

All PEs have a copy of all the NZ weights of the CNN model



42© NVIDIA 2017

SCNN Architecture
Workload distribution

Filters

(Weights)

*

PE-0 PE-1

PE-2 PE-3

Input activation maps

=

Output activation maps

PE-0 PE-1

PE-2 PE-3

Each PE is allocated with a partial volume of input and output activations

Input and output activations stay local to PE
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SCNN Architecture
Halo resolution?

B

Filters

(Weights)

Output halos:

PE-0 calculates (A x B), but the result should be accumulated in PE-1 (X)
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SCNN Architecture
Inter-PE communication channel for halo resolution
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SCNN PE microarchitecture
(Compressed-sparse frontend) + (Scattered-dense backend)
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SCNN PE microarchitecture
(Compressed-sparse frontend) + (Scattered-dense backend)
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Evaluation
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Evaluation

Network models and input activations

trained → pruned → retrained models using Caffe

Area & power

System-C → Catapult HLS → Verilog RTL → Synthesis of an SCNN PE

Performance & energy 

Performance model for cycle-level simulation of SCNN 

Analytical model for design space exploration (dataflows, sparse vs. dense)

Methodology
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Evaluation

DCNN: operates solely on dense weights and activations

DCNN-opt: DCNN with (de)compression of activations + ALU power-gating

SCNN: sparse-optimized CNN accelerator

Architecture configurations
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Performance
Dense vs. sparse

< VGGNet >

* Network-wide improvement over DCNN: AlexNet (2.37x), GoogLeNet (2.19x)



51© NVIDIA 2017

Energy consumption
Dense vs. sparse

* Network-wide improvement over DCNN: AlexNet (2.13x), GoogLeNet (2.51x)

< VGGNet >



52© NVIDIA 2017

Related Work
Qualitative comparison to prior work

Architecture
Sparse optimizations

Convolution dataflow
Weights Activations

DaDianNao [ASPLOS ‘14] - -

(Variant of)

Sliding-window

Eyeriss [ISCA ‘16] - Power-gating 

CNVLUTIN [ISCA ‘16] - Zero-skipping

Cambricon-X [MICRO ’16] Zero-skipping -

SCNN Zero-skipping Cartesian-product
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Follow-up questions?

Technical leads:

SCNN architecture & sparse models: Minsoo Rhu

TimeLoop (CNN analytical model): Angshuman Parashar

Power & area modeling: Rangharajan Venkatesan

Contacts the authors
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Conclusion

Novel Cartesian-product based convolution operation

Simple/compressed/sparse PE frontend

Scatter/dense PE backend

Superior performance and energy-efficiency

Average 2.7x higher performance than dense CNN architecture

Average 2.3x higher energy-efficiency than dense CNN architecture

SCNN: a compressed-sparse CNN accelerator


