CSE 291: Operating Systems in Datacenters

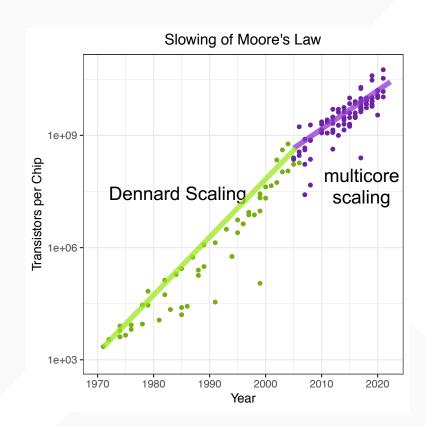
Amy Ousterhout

Nov. 1, 2022

Agenda for Today

- Announcements
- SmartNICs overview
- iPipe discussion
- nanoPU discussion

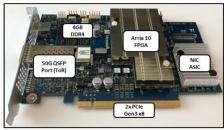
Announcements


- Discussions on Canvas
 - A place to ask questions about common hardware or software
 - Help out your peers
 - Notes about how to save state on CloudLab between experiments

SmartNICs

Incentives to Offload

- End of Moore's Law
 - Can we increase compute capacity with accelerators?
- Short tasks (e.g., 1-2 μs GET in a key-value store)
 - Can we reduce software overheads?
- Increasing network speeds
 - How can we support high bandwidth links?


SmartNICs!

Different Varieties of SmartNICs

- ASIC-based SmartNICs
 - Limited flexibility (e.g., match-action tables)
 - Best performance
- FPGA-based SmartNICs
 - More flexibility but harder to program
- Multicore SoC-based SmartNICs --- iPipe
 - Embed cores on the NIC
 - Most flexibility, worse performance
- Codesign the NIC and CPU → nanoPU

(b) Azure SmartNIC Gen2, 50GbE w/ on-board NIC FPGA-based SmartNIC

SoC-based SmartNIC

Research Questions Raised by SmartNICs

- What tasks should we offload to SmartNICs?
 - OS-level functionality: checksums, virtualization, transport layer, scheduling
 - App-level functionality: serialization, encryption, compression, part of an app, complete app
- How dynamic should this be?
- How should the SmartNIC and CPU communicate?
 - DMA
 - RDMA
 - Directly connected

iPipe Discussion nanoPU Discussion