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I. INTRODUCTION

Most manipulation platforms involve robots with multiple
degrees of freedom, which results in motion planning prob-
lems in high-dimensional configuration spaces. Moreover,
planning problems involving grasping and manipulation of
complex objects require invoking computationally-expensive
collision checking procedures several times. Consequently,
existing planners can not achieve high quality solutions,
e.g., in terms of a cost function, in reasonable amount of
computation time.

In this talk, we present an algorithm that overcomes these
difficulties by augmenting the asymptotically-optimal RRT∗

algorithm with a sparse sampling procedure, called the Ball
Tree algorithm, and a memoization technique that speeds up
the collision checking procedure. The proposed algorithm
is specifically tailored for anytime computation. That is, a
feasible solution is identified quickly, and the solution is
refined towards an optimal one if the algorithm is allowed
more computation time.

The algorithm is evaluated in a series of Monte-Carlo sim-
ulation studies involving seven, twelve, and fourteen degree-
of-freedom manipulation planning problems using a realistic
simulation environment. Simulation results suggest that the
proposed algorithm provides significant improvements in
both the quality of the first solution found as well as the
final path that is executed by the robot, while incurring
no substantial computational cost when compared to the
RRT algorithm. The algorithm is also tested on the PR2
platform for single-arm and dual-arm planning problems. A
more elaborate discussion of the algorithms and the results
presented in this talk is given by Perez et al. [1].

II. ALGORITHM

The RRT∗ algorithm, introduced by Karaman and Fraz-
zoli [2], is an incremental sampling-based motion planning
algorithm with the asymptotic optimality guarantee, i.e.,
almost-sure convergence to globally optimal solutions, which
the RRT algorithm lacks, without incurring substantial com-
putational overhead when compared to the RRT.

We implement the RRT∗ algorithm by delaying calls to
the collision checking procedure until absolutely necessary.
During the extension phase of the RRT∗ algorithm, we
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(a) RRT (b) BT+RRT∗

Fig. 1. Given the goal of taking both arms of the PR2 from an initial pose
underneath the table to the pre-grasp pose with the end effectors near the
mug, (a) the RRT typically results a plan involving unnecessary actuation
of several joints while (b) our method identifies more efficient plans.

first compute the cost of each path, sort them in the order
of increasing cost, and check the paths for collision in
this ordering until a collision-free path is found. During
the rewiring phase of the RRT∗ algorithm, we invoke the
collision checking procedure only if the cost of the rewiring
path is low enough to improve the cost of the rewiring vertex.
(see [1]). Although in the worst case, this approach will result
in checking all trajectories for collision, the authors have
found in the experimental studies that on average only a few
paths are checked for collision, significantly improving the
running time of the RRT∗ algorithm in problems in which
collision checking is computationally expensive.

The Ball Tree algorithm, presented by Shkolnik and
Tedrake [3], is a sampling-based method similar to the RRT
that approximates connected regions of free space with balls
instead of points. Treated as sets of reachable points, the
algorithm uses these balls to perform rejection sampling,
resulting in trees that are sparser than those of the standard
RRT while maintaining probabilistic completeness.

We propose a manipulation planning algorithm that offers
two compelling advantages. Firstly, it is noticeably faster
than conventional planners at identifying an initial, low-cost,
feasible path to the goal in configuration space. Secondly, the
algorithm is able to take advantage of available computation
time to refine this solution towards an optimal one. We
achieve these characteristics by combining the Ball Tree
algorithm, which maintains sparse trees to efficiently reach
the goal, the RRT∗ algorithm, which provides the anytime
refinement of the tree, and a memoization method, which
speeds up the collision checking procedure.

The proposed algorithm is called the BT+RRT∗ in this
text. The details of this algorithm are given by Perez et al. [1].



III. RESULTS

We evaluate the effectiveness of our algorithm through
both simulation as well as through experiments on the PR2
robot. We first perform a Monte Carlo study to analyze the
algorithm’s performance on two different planning problems
for the PR2 robot. The first involves finding an obstacle-free
path through configuration space that brings a single, seven
degree of freedom arm to a pre-grasp pose. In the second
scenario, we consider jointly planning trajectories for both
arms (see Figure 1). The experiments were performed using
the OpenRAVE simulation environment [4].

A. Single-Arm Scenario (Seven Degrees of Freedom)

The results for the seven degree-of-freedom single-arm
planning scenario are summarized in Figure 2.
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Fig. 2. Solution cost as a function of computation time, averaged over the
set of single-arm Monte Carlo simulations for the four planning algorithms.
Vertical bars indicate standard deviation over the 100 runs while the open
circles denote the average completion time. The bottom figure presents an
inset view that compares the mean behavior of the three algorithms that
utilize the RRT∗.

B. Dual-Arm Scenario (Fourteen Degrees of Freedom)

TABLE I
FOURTEEN DEGREE OF FREEDOM MONTE CARLO RESULTS

BT+RRT∗ RRT RRT∗ BT/RRT∗
Success Rate (100 runs) 100.00% 25.00% 59.00% 99.00%

First Solution Time (s) 34.76 (60.06) 70.78 (82.90) 106.20 (108.65) 23.81 (38.79)
Cost (rad) 9.82 (2.94) 21.00 (7.69) 10.03 (2.61) 25.46 (9.08)

Final Solution Time (s) 374.65 (46.46) 263.16 (30.40) 380.82 (34.20) 406.00 (59.20)
Cost (rad) 8.64 (1.95) 21.00 (7.69) 9.28 (2.14) 10.58 (2.32)

Time per Iteration (ms) 37.50 (4.65) 26.34 (3.04) 38.12 (3.42) 40.64 (5.93)

The results for this scenario are summarized in Table I.
Allowing a maximum of 10,000 iterations, the RRT∗ was
able to find a solution in 59 of the runs and the RRT was
successful in only 25. The BT/RRT∗ planner identified a
solution in all but one run while our algorithm found a
trajectory every time. Much like the seven and twelve degree
of freedom simulations, the BT+RRT∗ and BT/RRT∗ Ball
Tree planners return an initial solution much sooner than the
RRT and RRT∗. On average, our algorithm takes longer than
the BT/RRT∗ to isolate an initial solution, though with the
benefit of a significant improvement in cost that resembles

that returned much later by the RRT∗, both in terms of mean
cost and variance. After 10,000 iterations, the BT+RRT∗

yields an average trajectory cost slightly better than that of
the RRT∗ and BT/RRT∗.

C. PR2 Experimental Validation

In addition to the Monte Carlo simulations, we utilized
our algorithm to execute both the single-arm and dual-
arm scenarios on the experimental PR2 platform. We
demonstrated our planner together with the standard RRT
approximately a dozen times for each of the two cases. Both
algorithms were allowed 1000 iterations in the single-arm
scenario and 2000 iterations in the dual-arm scenario.
Figure 1(b) presents a time lapse image that shows the
typical trajectories that result from our planner. We compare
this with the RRT solutions that typically require excessive
arm motion. The consistency with which our algorithm plans
efficient paths through configuration space supports the
small variance in the lower cost solutions found in the Monte
Carlo simulations. Videos that show single-arm and dual-arm
planning with our algorithm on the PR2 robot are available at
http://ares.lids.mit.edu/manipulation planning/

IV. CONCLUSION

Incremental sampling-based motion planners, such as the
RRT, are able to identify feasible motion plans quickly, mak-
ing them appealing for manipulation. However, the solutions
returned by these planners are often far from optimal and
the exploration of the space is commonly sacrificed to avoid
computationally-expensive collision checking. This paper
described a sampling-based planning algorithm that leverages
the efficient planning capabilities of the Ball Tree algorithm
together with the asymptotic optimality provided by the
RRT∗. Moreover, the algorithm delays checking paths for
collision until it is absolutely necessary and leverages mem-
oization to reduce its computation time. We employed Monte
Carlo simulations to evaluate the ability of this algorithm
to provide low-cost solutions for high-dimensional planning
problems in a timely fashion. We further demonstrated the
algorithm’s performance through experiments that involved
planning single and dual-arm trajectories on the PR2 robot.
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