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Abstract

In this report we discuss the progress towards the devel-
opment of a system that measures reflectance using an actu-
ated light source, a light meter, and a camera. Existing re-
flectometry methods require complicated hardware or esti-
mate reflectance using standard images. The process of em-
pirically measuring reflectance is complicated and timely as
it requires controlled illumination and the direct measure-
ment of all light reflected around the hemisphere of the ob-
ject in question. Similarly, estimating the reflectivity from
a standard image is difficult as all light sources are often
not completely known and reflective behavior, i.e., specu-
larity and gloss, can cause saturation and loss of informa-
tion. Moreover, strong assumptions regarding the material,
shape, and surface are often required. We present an ap-
proach that is simple and can efficiently detect changes in
reflectance across objects, even when color, depth, and all
other information is similar. An actuated light source with
a known pose is used to illuminate the different parts of a
scene. Simultaneously, a light meter is used to measure the
change in reflected light incurred by the new source. The
resulting information can then be used to augment the seg-
mentation process as different materials vary greatly in re-
flectance regardless of color and shape.

1. Introduction
The reflective properties of different surfaces and materi-

als have been studied for centuries [11]. Indeed, the under-
standing of the behavior of visible light is used for photo-
realistic rendering [9], computer animation [17], material
classification [5], object recognition [16], and shape estima-
tion [6]. Many formalizations of the reflectance properties
of different materials have been developed. In particular, the
Bidirectional reflectance distribution function (BRDF) [12]
has been widely used for decades [15], [13], [18]. BRDFs
are four dimensional functions that determine how light is
reflected at a given point of a surface. Because the function
considers four or more variables, its measurement and spec-
ification is a complicated process. However, reflectance in-

Figure 1. Inferring material properties from an image is a difficult
task. In the image above, even when all surface and shape infor-
mation is known, classifying the material as plastic, paper, water,
or steel, is not a straightforward task. The reflectance properties
however, vary regardless of color, shape, and surface similarities.

formation has proven to be a powerful way of understanding
and even simulating different materials and environments.
For example, the BRDF is commonly empirically computed
to validate and research different materials [2]. One device
that is widely used for this process is the gonioreflectometer
[1]. The instrument measures the BRDF directly by illumi-
nating a target and measuring the light reflected around its
hemisphere with a sensor or camera.

Unfortunately, despite the recent advancements in photo-
graphic hardware, there is no simple mechanism or sensor
that can be used to quickly extract reflective information
from a scene. More recently there has been an increased
interest in estimating and learning these properties by con-
sidering different features such as those found in ‘micro-
textures’ [16] and the use of HDR images with controlled
illumination [14]. In this report, we explore different meth-
ods to measure reflectance. Our motivation is the possible
application of a reflectometry technique to the segmentation
of deformable, unknown objects, in scenes where color and
depth information do not provide sufficient information.

2. On Perceiving Reflectivity

A human tasked with analyzing and classifying the ob-
ject shown in Figure 1 will possibly move and change its
viewpoint slightly until either gloss, specularity, or trans-
parency is apparent. Intuitively speaking, the perception of
the reaction a surface has to light plays a key role in day-
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Figure 2. (a) A light source is added to the scene. Note the bright region above the dark plastic plate. (b) Red structured light is projected
as the camera is moved. (c) HOG features were computed in real-time as the light source was moved.

to-day segmentation. This approach is adopted by humans
at very early states. Indeed, infants as young as 20-weeks
of age have been observed to use reflectance for color con-
stancy [4]. In very general terms, the variations in surface
reflectance among different materials is so sharp and appar-
ent, that it can be useful even when information (and previ-
ous experience) is minimal. Consider the following tasks:
investigating if a plastic bag left outside is wet; verifying
if an image displayed on a building is a projection, moni-
tor, graffiti, or a reflection; searching for a phone that fell
into a pile of clothes. For all these tasks, colors, depth, or
even knowledge of all shapes involved might not be enough.
However, the slightest hint of gloss, specularity, or just
abrupt change in color could possibly help a person in these
situations. More importantly, this behavior can be lever-
aged without empirically computing the path of the light,
the material properties of the surface, or even the shape of
the object. In many cases, simply detecting the difference
in perceived reflectivity is enough.

In an attempt to develop a technique that provides sim-
ilar information, we implemented and tested several ap-
proaches. At the highest level, we considered three main
paths: (i) movement, (ii) controlled illumination, and (iii)
controlled reflectometry. As seen in Figure 2, our first
arrangement included several objects with gloss, color
changes, transparency, and specularity that were apparent
or could be perceived by moving the camera slightly. Even
though in some cases these provided salient information
about the objects in the scene, we found this is only the
case for some materials, and noticed that these were often
present solely in small parts of the surface of a particular
object. The next idea was to attempt to induce these type
of ’events’ by adding an actuated source of light into the
scene. In our case, we tried both structured light (see Figure
2 b) and a robotic arm with an LED light source (see Fig-
ure 2 a). These produced seemingly noticeable changes in
the environment. However, the red structured light, which

was designed to extract shape information [10], usually af-
fected all objects equally. In the case of the LED light, we
found it to be too disruptive, as it would frequently satu-
rate the image resulting in loss of information. One promis-
ing approach we explored was tracking changes in HOG
(Histogram of Oriented Gradients) [3] descriptors as a light
source was projected at different parts of the image (see Fig-
ure 2 c). We found that objects with similar material prop-
erties would have the HOG descriptors corresponding to its
location change in similar ways. However, this observed be-
havior was useful but coarse. More specifically, we found
that it could be used to differentiate paper and plastic on
a white ’blob’. However, for more challenging scenarios,
e.g., cardboard and a similarly colored paper bag, the ap-
proach would require exhaustively searching for the right
parameters. For example, selecting the appropriate cell size
for an object with a texture that is not known in advance can
be very challenging. Because the goal of our project is gen-
erality and salience, we moved on to measuring what causes
these changes instead of the changes themselves.

Measuring the amount of visible light reflected from the
environment is the standard approach to photography and
vision. Yet, any information obtained from a single view-
point will usually contain light from various sources. It ap-
pears that infants [4] quickly develop the ability to extract
reflectance information in order to achieve color constancy.
Similarly, the measurement of reflected light seems to be a
powerful tool in material analysis [2]. Moreover, our expe-
rience using actuated light was positive; the information is
useful because it does not require a complete understand-
ing of all the illumination in the scene and simply focuses
on the changes caused by actions that are well understood.
The next step was to develop a way to have this information
available whenever needed and not only when reflectance
became perceivable through controlled illumination. This
would ensure maximum generality and reliability. Follow-
ing a ‘certum quod factum’ mentality, we moved on to ex-

2



ploring the idea of directly measuring the reflected light.
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Figure 3. Illuminance readings obtained from the scene in Figure
6. The robot moves the light source and meter in a rectangular
pattern. The Z axis represents the lux value. The X, Y axis the
estimated pose of the sensor.

3. Proposed System

The goal of the proposed technique is to measure reflec-
tive information that can be used in conjunction with an
image or depth-image to better segment the objects in the
scene. We tested a hardware configuration that includes an
LED light source that is controlled by a robotic arm. There-
fore, the pose of the light source is known. Additionally,
a light meter [8] is positioned immediately next to the light
source. Like the light, the pose of the light meter is given by
the robotic arm. The light meter returns a continuous read-
ing of Lux, i.e., a measurement of the intensity of ‘visible
light’ at its location. It has a maximum range of 400,000
Lux and returns 1.5 measurements per second. The detec-
tor itself is 115mm by 60mm. Therefore, when the robotic
arm is orthogonal to a surface, a small beam of light is pro-
jected onto it and the sensor measures the amount of light
reflected back. In very general terms, in order to measure
all light reflected by a surface a sensor would have to move
through the entire hemisphere around it. However, with this
configuration, a salient measurement of some of the light
reflected is obtained. Information regarding ambient light
is unnecessary, as the measurement can be the difference
in intensity caused by the controlled light source. More-
over, because the meter is in close proximity to both the
light source and the surface, this resulting change serves a
substantial sample of reflected visible light. Finally, a stan-
dard camera observes the target environment from a fixed
or known location. This configuration was selected to cir-
cumvent saturation, self-occlusion, and the need of exten-
sive measurement trajectories. The controlled light source

will not result in saturation of the lit area as the light me-
ter has a very wide range. The self-occlusion caused by the
robotic arm is manageable as the pose of the arm is known
and the fixed camera is able to see the scene when it moves
out of view. Finally, because the arm is able to move close
to the objects in the environment, a considerable amount of
the reflected light is measured by the sensor without having
to scan the hemisphere around the target or to calculate the
path of the light.

4. Experiments
We tested our configuration on several configurations of

deformable, cluttered, objects where segmentation is chal-
lenging even with strong color, normal, and depth informa-
tion. The robot moved the controlled light source and the
light meter in a ‘lawn mower’ pattern above the objects on
the table. The end-effector remained orthogonal to the ta-
ble at all times and at a constant height. The entire pose of
the robot was logged continuously along with Lux readings,
images from a standard camera, depth-image from a Kinect
sensor, and time.

Our three main scenarios are depicted in (i) Figures 3 (b)
and 7 (b), (ii) Figures 3 (c) and 6 (b), and (iii) Figure 7. The
data obtained in these environments is presented below.
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Figure 5. The lux values obtained during the first two ‘swipes’
shown in Figure 6. Peaks correspond to the two pieces of plastic
wrapping, the CD jewel case, foam, and the plastic spatula. The
second swipe displays the two plastic cups.

5. Discussion
The measurement of the change in luminance caused by

a controlled light source proved to be salient and allowed for
the detection of several objects. We were able to correspond
the luminance readings to points in depth and pixel images.
This is due largely to the fact that the camera and light me-
ter pose information was readily available. Additionally,
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Figure 4. (a) The PR2 robot scanning a scene with a light source and light meter. (b) an arrangement of objects on a table (from left to
right, bottom-up): different plastics on paper, a transparent CD jewel case, napkins, foam, a hat, a plastic spatula, empty plastic cup, plastic
up with water, yellow paper, bananas, blue paper wrapping, a plastic lid, blue tape, a small knife, brown paper. (c) Another arrangement
(from left to right): Transparent CD case, brown paper bag, plastic spatula, paper plate, paper, green plastic wrapping, green foam, blue
tape, different kinds of paper, foam, a plastic bag with metallic nuts.
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Figure 6. (Below) the trajectory traveled by the sensor while scan-
ning the scene. (Above) Illuminance values (in Lux) obtained at
their respective X,Y locations; darker colors indicate lower inten-
sity.

we were able to obtain useful readings from objects that are
hard to perceive by cameras and depth-cameras (e.g., trans-
parent plastic). However, the process of moving the robotic
arm is time consuming and prone to error. Even though we
are able to track the actual trajectory followed by the arm,
specifying a ‘lawn mower’ pattern proved to be a difficult
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Figure 7. Resulting illuminance values for the scene depicted
above. Values of high intensity correspond to the CD jewel case,
plastic spatula, green plastic bags, and foam.

task. This is because the robot was programmed to main-
tain a constant orientation and height while scanning the
table with the light and sensor. It is possible to write a joint-
by-joint routine that allows the robot to move quickly and
efficiently, but this would limit the types of environments
that can be evaluated. It is apparent that this type of ap-
proach can greatly help with the segmentation of unknown
objects in unstructured environments, i.e., scanning the sen-
sor over a stack of papers to find a plastic binder. Yet, it is
not clear if would be practical to use this approach to as-
sign a value to all parts of an image as is done by a LIDAR
or Kinect sensor. Perhaps measurements outside the visi-
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Figure 8. (Above) Several white objects were placed at equal
height and measured with the device. The resulting difference in
Lux obtained from adding and removing a controlled source of il-
lumination were, Napkin: 611.3, Fridge: 547.67, Plastic spatula:
473.5, Paper plate: 526, Foam: 486.17, Plastic wrap: 417.25. (Be-
low) An image taken from another camera on the robot.

ble light spectrum can be used to augment the segmentation
process without the need of an actuated light and sensing
end-effector. Cameras such as the FinePix S3 Pro [7] are
able to provide IR and UV information that might directly
related to texture, material properties, and reflectance.
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