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ABSTRACT
We consider the general network information flow problem,
which was introduced by Ahlswede et. al[1]. We show a
periodicity effect: for every integer m ≥ 2, there exists an
instance of the network information flow problem that ad-
mits a solution if and only if the alphabet size is a perfect
mth power. Building on this result, we construct an instance
with O(m) messages and O(m) nodes that admits a solution

if and only if the alphabet size is an enormous 2exp(Ω(m1/3)).
In other words, if we regard each message as a length-k bit
string, then k must be exponential in the size of the network.
For this same instance, we show that if edge capacities are
slightly increased, then there is a solution with a modest
alphabet size of O(2m). In light of these results, we sug-
gest that a more appropriate model would assume that the
network operates at slightly under capacity.

1. INTRODUCTION
Network information theory considers the information car-
rying capacity of a network. Formally, in the network in-
formation flow problem, introduced by Ahlswede at. al [1],
a network is represented by a directed acyclic multigraph
containing sources (each with a set of available messages),
intermediate nodes, and sinks (each demanding a set of mes-
sages). Messages are single symbols from an alphabet Σ of
size q. An edge with capacity c can transmit c symbols from
the alphabet. Information can be duplicated and encoded
at internal nodes. A solution is a set of encoding functions
for internal nodes and a decoding function for each sink that
collectively allow the sinks to receive all their requested mes-
sages.

To give perspective on this model, we consider two other
classic problems which have been used to model communica-
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tion networks. First, in the framework of multi-commodity
flow, a message is a commodity that must be shipped from
a sender to a receiver. Flow must be conserved at internal
nodes, and two commodities can only share an edge if the
sum of their flows is at most the capacity of the edge [3].
In contrast, in the information flow problem we view a mes-
sage as information. Thus, flow conservation is no longer
an issue; an internal node receiving one copy of a message
can transmit exact copies of this message on two or more
outgoing links. Similarly, messages can “share” an edge in a
complex way, since an edge can carry an arbitrary function
of two or more messages.

Second, in contrast to traditional information theory, which
has concentrated on the single channel case, network in-
formation theory combines questions of routing and coding
together in one framework. In the single channel case, a
collection of senders attempts to transmit some messages
to a collection of receivers over a possibly noisy channel.
However, an entire network cannot be viewed as a single
channel, since there can exist many entry and exit points
with distinct characteristics.

Therefore, many interesting questions about network infor-
mation flow are not properly studied in either of the above
settings. A cannonical problem is shown in Figure 1. The
source has two single-bit messages, each edge can transmit
one bit, and each receiver must get both bits. A solution is to
transmit the XOR of the two bits across the middle edge so
each receiver can reconstruct the two transmitted messages.
Thus, the capacity of the network in Figure 1 is dependent
on the computational power of the internal nodes.

Initial approaches to network coding used linear codes and
focused on the multicast problem [1, 11, 9, 8]. In this early
work, the alphabet Σ is a finite field F, and each symbol
departing a node is a linear combination of the symbols en-
tering that node. For such an approach, the field F must be
sufficiently large. In particular, |F| = O(# sinks) is always
sufficient [7] and |F| = Ω(

√
# sinks) is sometimes neces-

sary [10, 13].

For non-multicast problems, the situation is more complex.
Specifically, there are solvable instances of the network cod-
ing problem for which no linear solution exists, regardless
of the choice of field F [10]. Medard et. al [14] conjectured
that every solvable instance can be solved with a vector-
linear code. In this case, the alphabet consists of all length-
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Figure 1: In this instance of the network information

flow problem, all edges are directed downward and

can transmit one bit. The goal is to transmit bits b1

and b2 from the source to both sinks.

k vectors over a finite field F. Each component of a vector
departing a node is a linear combination of all the compo-
nents of all vectors entering that node. Recently, Doughtery,
Freiling, and Zeger [5], constructed a solvable instance of
the network information flow problem that does not admit
a vector-linear solution.

In this paper, we consider how alphabet size scales with
the size of the network. This problem is of interest because
a large alphabet size may be associated with high latency,
node storage requirements, and solution complexity. Pre-
vious results are few and somewhat surprising. Riis [15]
showed that for every k ≥ 1, there exist solvable instances of
the network information flow problem which are not solvable
with a vector-linear code using vectors of size k. However,
Riis’ networks do have vector-linear solutions for somewhat
larger vector sizes. Dougherty, Freiling, and Zeger [4] have
shown that every solvable instance with two single-bit mes-
sages admits a linear solution and that this does not hold for
three or more single-bit messages. In addition, by relating
the network information flow problem to orthogonal Latin
squares, they created an instance of the multicast problem
that has a, not necessarily linear, solution as long as the
alphabet size is not 2 or 6. Thus, a problem solvable with
a smaller alphabet (say, size 5) may not be solvable with
larger alphabet (size 6).

Our Results
We show that network codes possess a curious property with
regard to alphabet size. When using linear codes for mul-
ticast, one need only ensure that the underlying field F is
sufficiently large for the problem at hand. If an instance of
the multicast network information flow problem has a linear
solution over one field, then it has a linear solution over every
larger field. In contrast, we show that in the general setting,
there is no such thing as a “sufficiently large” alphabet. In
particular, for each integer m ≥ 2, we exhibit an instance of
the network information flow problem that admits a solution

if and only if the alphabet size is a perfect mth power. Thus,
if m = 3, then the corresponding instance has a solution if
the alphabet size is 23 = 8, 33 = 27, or 43 = 64, but not
if the alphabet size is 10, 000. Our construction has several
implications:

• The power of network codes does not strictly increase
with alphabet size, but rather increases as the size of
the set of perfect roots of the alphabet size increases.
Thus, an alphabet size of 26, which is a perfect square,
a perfect cube, and a 6th power is strictly better than a
size of 22or 23, but an alphabet of size 27, which is only
a 7th power is not. In practice, one might be tempted
to use an alphabet size of 232 or 264 so that a single
alphabet symbol fits into a machine word. However,
our construction suggests that these would actually be
poor choices, since 32 and 64 have so few divisors.

• When linear coding is used to solve the multicast prob-
lem, an alphabet of size t suffices if there are t sinks.
The situation with the general network information
flow problem is dramatically different. By placing many
of our constructions in parallel, we obtain an instance
of the general network information flow problem with
O(n) nodes, including sinks, that requires an alphabet

of size 2exp(Ω(n1/3)). Thus, there exist network infor-
mation flow problems that are solvable, but require ex-
tremely large alphabets. Naively, even describing the
solution takes space exponential in the problem size.

• We show that our lower bound on the alphabet size
does not hold if we slightly increase the capacity of
the edges. In particular, the instance described above
admits a vector-linear solution where messages are vec-
tors of length n provided each edge can transmit a

vector of length n
“

1 + 1

n1/3

”

.

In light of these results, we suggest that a better model for
the study of network information flow problems would allow
the network to operate at slightly under capacity, since this
may avoid an exponential blowup in the solution complexity.

2. CONSTRUCTION
In this section we describe the construction of an instance
of the network information flow problem that we denote Ik.
In the next section, we prove that instance Ik admits a so-
lution if and only if the alphabet size is a kth power. The
construction is shown for k = 3 in Figure 2.

There is a single source with 2k messages M1, M2 . . . M2k

and a single middle-layer node. There is an edge C of ca-
pacity 2 from the source to the middle layer node. There
are O(k2) sinks. There is an edge of capacity 2 from the
middle-layer node to each sink. One sink t∗ requests all
2k messages and all other sinks request k messages. Let
S = {M1, M2 . . . Mk} and S = {Mk+1, Mk+2 . . . M2k}. The
sink tS requests all messages in S, and the sink tS requests

all messages in S. For all i and j such that 1 ≤ i, j ≤ k there
is a sink tij that requests the k messages (S∪{Mi})−{Mk+j}
and a complementary sink tij that requests the k messages
(S ∪ {Mk+j}) − {Mi} . From the source to t∗ there is an
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Figure 2: In this instance of the network information flow problem, all edges are directed downward. All

edges have capacity 2, except for the thick, curved edge, which has capacity 4. There are six messages,

M1, M2, . . . , M6. The top node is the only source and has every message. The bottom layer of nodes is the

sinks, whose requests are listed below each node. The complementary sinks tij are not shown.

edge of capacity 2k − 2, and from the source to every other
sink there is an edge of capacity k − 1.

3. ANALYSIS
The analysis of the network Ik relies on understanding the
function F : Σ2k → Σ2 that describes the two symbols trans-
mitted over edge C. We first prove a preliminary fact about
the function F .

Lemma 1. The function F : Σ2k → Σ2, which determines
the symbol sent over edge C, is q2k−2-to-1.

Proof. Sink t∗ must recover all the messages from the
symbol sent on edge C and the 2k−2 other alphabet symbols
it receives on the direct edge from the source. Let g : Σ2k →
Σ2k−2 be the function that determines the 2k − 2 symbols
sent along the direct edge. If F is not q2k−2-to-1, then F

must map more than q2k−2 points in Σ2k to some pair of
symbols in Σ2. Then g necessarily maps two of these points
to the same value in Σ2k−2. Thus, sink t∗ receives identical
symbols for two different sets of sent messages and can not
distinguish them.

We now consider restrictions placed on the function F by
a sink requesting a set of k messages. In particular, we
consider the set of assignments to the 2k messages that are
mapped by F to the same value. For the remainder of this
section we let β ∈ Σ2 be a fixed value sent by F down edge
C and B ⊆ Σ2k denote the subset of size q2k−2 that F

maps to β. Thus, B is the set of assignments to messages
such that the edge C carries the value β. Consider a subset
of the 2k messages A = {Ms1 , Ms2 . . . Msr}. The set of
assignments to the messages in A such that there exists an

assignment to the remaining messages on which F takes on
the value β is the projection of each point in B onto the
coordinates s1, s2 . . . sr. We denote this set as πs1,s2...sr (B)
or equivalently πA(B). For example, if A = {M1, M2, M3}

πA(B) = {(x1, x2, x3) | (x1, x2, x3, y4, . . . y2k) ∈ B

for some (y4, y5 . . . y2k)}

Lemma 2. Let t be a sink requesting the set A of k mes-
sages. Then |πA(B)| = qk−1.

Proof. In addition to the point in Σ2 sent to the middle-
layer node, the sink t also receives k − 1 symbols on a di-
rect edge from the source. If the sink t receives the value
β ∈ Σ2 from the middle-layer node, then the assignment to
the k messages in A must be according to one of the points
in πA(B). Each point in πA(B) represents a different as-
signment to the messages in A. Therefore, the sink t must
receive a different set of k− 1 symbols along the direct edge
from the source for each of the points in πA(B). Since there
are only qk−1 different assignments to the k − 1 symbols
sent down the direct edge from the source, we must have
|πA(B)| ≤ qk−1. Otherwise, the messages in A can not be
uniquely determined from the information received at the
sink.

By construction, there is a complementary sink t requesting
the subset A consisting of the other k messages. By the
same argument as above, |πA(B)| ≤ qk−1. The number of
different points in Σ2k on which F takes on the value β is
at most |πA(B)| · |πA(B)|. By Lemma 1, F is a q2k−2-to-1
function. Therefore,



q
2k−2 ≤ |πA(B)| · |πA(B)|

≤ |πA(B)| · qk−1

q
k−1 ≤ |πA(B)|

Therefore, |πA(B)| = qk−1.

We learn more about the structure of the set of points B

on which F takes on the value β by applying the above
lemma to sink t requesting the set A of k messages and its
complementary sink t requesting the other k messages.

Lemma 3. Let t be a sink requesting the set A of k mes-
sages, and let t be the sink requesting the other k messages
A. Then

B = πA(B) × πA(B)

Proof. Consider an assignment z ∈ B to the messages.
Suppose z assigns the k messages in A according to an as-
signment zA and assigns the messages in A according to an
assignment zA. Then, zA ∈ πA(B) and zA ∈ πA(B) by the
definition of projection. Therefore, B ⊆ πA(B) × πA(B).
By Lemma 2, |πA(B)×πA(B)| = |πA(B)| · |πA(B)| = q2k−2.
Since |B| = q2k−2 by Lemma 1, B has the same size as the
set containing it. Therefore, B = πA(B) × πA(B).

The next lemma shows that for at least one sink, the pro-
jection of the set B onto the messages requested by that
sink is “large”. The proof makes use of the discrete Loomis-
Whitney inequality relating the size of a set to the product
of the sizes of projections of the set [12, 2, 17, 16] . Roughly,
the discrete Loomis-Whitney inequality generalizes the in-
tuition that a massive statue must look big from the front,
the side, or the top; that is, a big region must have some big
projection.

Theorem 4 (Discrete Loomis-Whitney Inequality).
Let Q ⊆ Σh and r ≤ h,

|Q| ≤
Y

1≤s1<...<sr≤h

|πs1,...,sr (Q)|hr−1(h
r)

−1

Lemma 5. There exists a set of k messages A = (S ∪
{Mi}) − {Mk+j} such that |πA(B)| ≥

l

q
k−1

k

m

‰

q
(k−1)2

k

ı

.

Proof. We prove this in three steps. First we show
that there exists a message Mi ∈ S such that |πi(B)| ≥
l

q
k−1

k

m

. Then we show that there exists a set of k − 1

messages, S − {Mk+j} = {Ms1 , Ms2 . . . Msk−1} such that

|πs1,s2...sk−1(B)| ≥
‰

q
(k−1)2

k

ı

. To finish the proof, we use

Lemma 3 to show that

|πi,s1,s2...sk−1(B)| ≥ |πi(B)| · |πs1,s2...sk−1(B)|

Using the Loomis-Whitney Inequality for r = 1,
Y

1≤i≤k

|πi(B)| ≥ |πS(B)|

= q
k−1

Therefore, there exists at least one message Mi ∈ S for

which |πi(B)| ≥
l

q
k−1

k

m

.

Similarly, by the Loomis-Whitney Inequality for r = k − 1,

Y

k+1≤s1<s2<...<sk−1≤2k

|πs1,s2...sk−1(B)| 1
k−1 ≥ |πS(B)|

= q
k−1

Y

k+1≤s1<s2<...<sk−1≤2k

|πs1,s2...sk−1(B)| ≥ q
(k−1)2

Since there are k terms in the product on the left, there
exist k − 1 messages {Ms1 , Ms2 . . . Msk−1} ⊆ S such that

|πs1,s2...sk−1(B)| ≥
‰

q
(k−1)2

k

ı

.

For each xi ∈ πi(B), there exists x ∈ πS(B) that assigns
message Mi the value xi. Similarly, for each (ys1 , . . . ysk−1) ∈
πs1,s2...sk−1(B) there exists y ∈ πS(B) that corresponds
to assigning the messages {Ms1 , Ms2 , . . . Msk−1} the val-
ues (ys1 , ys2 . . . ysk−1). By Lemma 3, B = πS(B) × πS(B),
and so there is a point in B that assigns the value xi to
message Mi and the values ys1 , ys2 , . . . , ysk−1 to messages
Ms1 , Ms2 , . . . Msk−1 . Therefore,

|πi,s1,s2...sk−1(B)| ≥ |πi(B)| · |πs1,s2...sk−1(B)|

≥
l

q
k−1

k

m

‰

q
(k−1)2

k

ı

Theorem 6. There exists a solution to network Ik if and
only if the alphabet size q is a perfect kth power.

Proof. There are two steps. We first show how to con-
struct a solution with an alphabet of size q = `k for any
` ≥ 2. Then we show that the network only admits a solu-
tion if the alphabet size is a perfect kth power.

Let Γ be a set of size `. We regard each message as a length-
k vector of symbols drawn from Γ. Recall that edge C has
capacity 2. Therefore, we can send 2k symbols from Γ across
edge C. We use these 2k symbols to transmit the first co-
ordinate of each of the 2k messages. The sink t∗, which
requests all 2k messages, must receive 2k length-k vectors.



Via edge C, it receives the first coordinate of each of these
2k vectors. Along the direct edge of capacity 2k − 2 from
the source to t∗, we send the remaining k− 1 coordinates of
each of the 2k messages. Now consider a sink t requesting a
subset A of k messages. Sink t receives the first coordinate
of each message in A from edge C. The remaining k − 1
coordinates of each of the messages in A can be transmitted
across the direct edge of capacity k−1 from the source to t.
Thus, each sink receives every coordinate of the messages it
requests. The alphabet size is q = `k.

Next, we show that the alphabet size must be a kth power.
Lemma 5 says that there exists a set A = (S ∪ {Mi}) −
{Mk+j} of k messages with |πA(B)| ≥

l

q
k−1

k

m

‰

q
(k−1)2

k

ı

.

On the other hand, since there is a sink tij for every 1 ≤
i, j ≤ k requesting the set of messages (S∪{Mi})−{Mk+j},
we must have |πA(B)| = qk−1. These two relationships can
hold simultaneously only if q is a kth power.

4. A LOWER BOUND ON ALPHABET SIZE
We now construct an instance, Jn, of the network informa-
tion flow problem with Θ(n) nodes that admits a solution

if and only if the alphabet size is q = 2exp(Ω(n1/3)). The
construction is as follows. For each prime number p ≤ n1/3,
we take the instance Ip of the preceding construction, which
forces the alphabet size to be a pth power. We place all of
these constructions in parallel in order to create instance Jn.

Corollary 7. Instance Jn with Θ(n) nodes admits a so-

lution if only if the alphabet size is 2exp(Ω(n1/3)).

Proof. The number of nodes in Jn is at most:

n1/3
X

i=1

2i
2 + 1 = Θ(n)

Instance Ip, is solvable if and only if the alphabet size if a pth

power. Thus, instance Jn is solvable if and only if the alpha-
bet size is a pth power for every prime p less than n1/3. The
product of primes less than x is e(1+o(1))x (see [6]). There-

fore, the minimum alphabet size is q = 2exp(Ω(n1/3)).

The fact that Jn is made up of a collection of disjoint net-
works is not critical to the proof. In fact, one can add some
sinks that join the networks and force some degree of coding.
More generally, one can imagine problems in which the var-
ious instances requiring different vector sizes are embedded
in a larger network and may not be easily detectable.

While the instance Jn requires a very large alphabet, not
much storage is actually needed at the nodes. Also, the
solution presented in Section 3 can be described concisely
without resorting to a particularly powerful description lan-
guage. An interesting question is whether other instances
admit only solutions with not only enormous alphabets, but
also comparable storage requirements and description com-
plexity.

5. OPERATING BELOW CAPACITY
In this section we consider the effect of allowing the network
to operate at slightly below full capacity. We model this us-
ing vector linear codes in which the edges are allowed to
transmit vectors that are longer than the message vectors.
In particular, suppose that each message is a length-k vector,
but vectors transmitted over edges have length (1+ ε)k. We
show that for vanishingly small ε, the network Jn in Corol-
lary 7 admits a solution over any field with a vector length
linear in the size of the network. Using a constant-size field,
this corresponds to a vector-linear solution with an alphabet
that is only exponential (instead of doubly exponential) in
the size of the network.

Theorem 8. There exists a vector linear solution to the
network Jn on Θ(n) nodes with message-vector length n and

edge-vector length
“

1 + n−2/3
”

n.

Proof. Recall that Jn is constructed by placing instances
I2, I3, I5 . . . Is in parallel, where s is the largest prime less
than n1/3. Consider prime p and the subnetwork Ip in Jn.

In our solution, we send
l

n
p

m

unencoded bits of each mes-

sage across edge C in Ip. A sink requesting p messages must

receive a total of pn message bits. A total of p
l

n
p

m

of these

message bits are sent via edge C. The remaining at most

pn − p ·
‰

n

p

ı

≤ (p − 1)n

message bits can be transmitted along the direct edge from
the source to the sink. Similarly the sink t∗ requesting all

the messages receives 2p ·
l

n
p

m

message bits from edge C and

can receive the other at most (2p− 2)n message bits via the
direct edge with capacity 2p − 2.

We can upper bound the length k′ of the two vectors trans-
mitted across edge C as follows. For each of the 2p messages,

we transmit
l

n
p

m

bits on edge C. Therefore, we have:

2k
′ = 2p

‰

n

p

ı

≤ 2n + 2p

= 2n
“

1 +
p

n

”

≤ 2n
“

1 + n
−2/3

”

Therefore the length of each vector sent across edge C is at

most
“

1 + n−2/3
”

n. We make no use of the extra capacity

along any other edge.

6. DISCUSSION
Our results suggest that using a network at full capacity may
be undesirable; even if a solution exists, an enormous alpha-
bet may be required. On the other hand, slightly increas-
ing the network capacity eliminates this problem, at least



for the instance we propose. (An interesting open question
is whether every solvable instance admits a solution with
moderate alphabet size, provided that the network operates
just below capacity.) This points toward an exploration of
network coding in a model where the network has a small
amount of surplus of capacity.
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