
723

Existence Theorems, Lower Bounds and Algorithms for Scheduling to
Meet Two Objectives

April ILasala* Cliff Stein t Eric Torng t Patchrawat Uthaisombut §

Abstract

We give general results about the existence of schedules
which simultaneously minimize two criteria. Our results
are general in that (i) they apply to any scheduling
environment and (ii) they apply to all pairs of metrics
in which the first metric is one of maximum flow
time, makespan, or maximum lateness and the second
metric is one of average flow time, average completion
time, average lateness, or number of on-time jobs. For
most of the pairs of metrics we consider, we show the
ex~tence of near-optimal schedules for both metrics as
well as some lower bound results. For some pairs of
metrics such as (maximum flow time, average weighted
flow time) and (maximum flow time, number of on-
time jobs), we prove negative results on the ability
to approximate both criteria within a constant factor
of optimal. For many other criteria we present lower
bounds that match or approach our bicriterion existence
results.

I I n t r o d u c t i o n

For years, scheduling algorithms have been designed to
optimize many optimality criteria in a wide variety of
scheduling models[15, 6, 12, 19]. Two features are com-
mon to an overwhelming majority of this scheduling re-
search. First, algorithms are designed for a particular
job-machine environment (e.g. one machine and jobs

Laboratory for Computer Science, Cambridge, MA
02139. arasala@theory.lcs.mit.edu. Supported by a Lucent
Technologies GRPW fellowship. Part of this work was done while
at Dartmouth College.

tDepartment of IEOR, Columbia University, New York, NY
10027. clif~@ieor.colunbia.edu. Research partially supported
by NSF Career Award CCR-96248283 NSF Grant EIA-98-02068,
NSF Grant DMI-9970063 and an Alfred P. Sloan Foundation
Fellowship.

tDept, of Computer Science and Engineering, 3115 Engineer-
ing Building, Michigan State University, East Lansing, MI 48824-
1226. torng0cse.msu.edu. FAX: (517)432-1061. Supported in
part by NSF grant CCR-9701679.

§Department of Computer Science University of Pittsburgh,
Pittsburgh, PA 15260. utp0cs.pit'a.edu. Part of thie work was
done while at Michigan State University.

with release dates or parallel machines with precedence
constraints). Second, algorithms are designed to mini-
mize one objective (e.g. makespan, average completion
time, or minimum lateness), without explicitly consid-
ering other metrics simultaneously.

There has been some research on scheduling to
simultaneously optimize two criteria[24, 10, 17, 16, 8,
9, 21, 22, 11]. These works all choose two particular
criteria and focus on designing algorithms which work
well with respect to these criteria. Similarly, there have
been a few works that try to characterize good schedules
that apply to a variety of environments[14, 23, 1]. (See
Section 2 for details.)

1.1 O u r Results
In this paper, we give very general results about the ex-
istence of schedules which simultaneously minimize two
criteria. Our results are general in the ways described
above. First, they apply to "any" scheduling environ-
ment. Second, they apply to all pairs of metrics in which
the first metric is one of maximum flow time, makespan,
or maximum lateness and the second metric is one of av-
erage flow time, average completion time, average late-
ness, or number of on-time jobs. We will show that for
almost all pairs of objectives, there exist schedules that
are simultaneously within a small constant factor of op-
timal for both objectives. This generalizes the work of
Stein and Wein [23] and Aslam et al [1], who gave re-
sults only for the problem of simultaneously minimizing
makespan and average completion time. We also give
lower bounds on the simultaneous approximability of
these metrics. A summary of the results appears in Ta-
bles 1 and 2. A precise definition of "any" appears in
Section 2. Roughly, our model captures almost all o f
the standard combinatorial scheduling environments.
U p p e r b ou nd s . We give upper bounds on simultane-
ously approximating two objectives in Table 1. For all
pairs of objectives, except for two involving maximum
flow time, we show the existence of schedules which si-
multaneously optimize both criteria. The techniques
used to obtain these results are a combination of exten-
sions of previous techniques along with some new ideas.
For several results, we use the framework developed by

724

/islam et al. [1], in which we map schedules optimizing
a reinsure objective to probability density functions. By
using continuous probability density functions, finding
an upper bound on the existence of bicriterion schedules
can be viewed as finding the probability density func-
tion that maximizes a particular analytic expression in-
volving minimums, maximums and integrals. Our work
demonstrates that this technique of mapping schedules
to probability density functions is more general than
originally thought. For other pairs of metrics, we in-
troduce new techniques. For example, in Section 4 we
consider the problem of simultaneously minimizing the
malw~pan and average weighted flow time of a schedule.
Typically, techniques that work well for approximately
minimizing the average completion time of a schedule
do not extend to approximately minimizing the average
flow time. However, by demonstrating a relationship
between the optimal makespan schedule and the opti-
mal average flow time schedule, we prove the existence
of schedules that are simultaneously a constant factor
approximation for both criteria.
Lower bounds . We also give lower bounds on the
simultaneous approximability of these metrics. Many of
these lower bounds match the upper bounds presented.
Furthermore, the t~hniques used to prove the lower
bounds demonstrate another use of probability density
functions. A summary of the lower bound results appear
in Table 2. These lower bounds have two important
implications. First, they demonstrate that many of
the upper hound analyses are tight, or close-to-tight.
Second, they demonstrate that in order to provide
stronger upper bounds on bicriterion approximation, we
must consider more specific scheduling models in which
the lower bounds no longer hold.
Algor i thms . The techniques used to prove the exis-
tence of schedules that are simultaneously a good ap-
proximation for two criteria extend, in a natural way,
to providing bicriterion algorithms for problems where
good approximation algorithms are known for both sin-
gle criterion problems. We discuss this in Section 6. In
addition we present an optimal algorithm for the spe-
cific case of schednling a set of jobs with release dates
to simultaneously minimize the makespan and average
completion time of the resulting schedule.

1.2 Prev ious W o r k
Some previous research has focused on scheduling to
simultaneously optimize two criteria[24, 10, 17, 16, 8,
9, 21, 22, 11]. These works all choose two particular
criteria and focus on designing algorithms which work
well with respect to these criteria. Similarly, there
have been several papers that try to characterize good
schedules that apply to a variety of environments[14,

23, 1]. (See Section 2 for details.) This paper, however,
is the first to simultaneously consider many pairs of
metrics and many environments simultaneously.

1.3 Mot ivat ion
Often, the "objective" of a particular real-world
scheduling problem is best expressed as the minimiza-
tion of several expressions. Suppose that the resources
being scheduled are a group of people with a variety of
skills and multiple bosses. This group of people wants
to keep all the bosses happy by completing requests as
promptly as possible and also wants to insure that the
total time needed to complete all requests will not ex-
ceed the end of the work day. They are concerned with
both the average completion time of all the jobs received
over the course of the day and also with the total length
of time it will take to complete the set of jobs.

In the interests of space, we have omitted the details
of most of the results which are claimed in Tables 1 and
2. Complete details appear in the undergraduate thesis
of the first author [20].

2 Background
2.1 N o t a t i o n and O p t i m a l i t y Criteria
Very generally, this paper deals with scheduling a set J
of •jobs on aset o fm machines. Each job j 6 J requires
some non-negative processing time, pj, on one of the
machines. In addition, a job j may have an associated
release date rj , deadline dj or weight wj. The release
date is the time that the job becomes available; it cannot
be processed before the release date. The deadline is a
time by which we would like the job to complete, and
a weight is an input parameter that assigns a relative
importance to a job.

We define a valid schedule S to be an assignment of
jobs to mac.hines over time such that each job j starts
no earlier than its release date rj and runs for pj units of
time. A job may or may not complete before its deadline
dj. For a schedule S ® we will denote the completion time
of job j in S = as C~. We also define three values related
to the completion time. The flow time Ff of job j in
schedule S z is the amount of time that passes between
when job j is released and when it is processed, i.e.
F~ ~-- C~ - r#. The lateness of a job L~ is the amount
of time between its deadline and completion time, and

z = C~ - dj. Finally we define an indicator variable
Llf. x# which denotes whether a job is late, so U~ = 1 if

> dj and 0 otherwise.
There are two natural types of objective functions

that can be defined on these parameters. The first type
are called minmax objectives. In these we measure
the maximum value achieved over all jobs. So for
any 0 E {C,F,L}, and for a schedule S ~, we define

725

Makespan (Cm~)
a Maximum Flow Time(Fm~)

Maximum Lateness (Lm~)

ACT ~w~Ct AFT ~'~. za~F~ AL ~']~w~L# ~ (i - U#)

e- ,- e-) (2 ,2) {1 + p, ~-77T_~)[1] (2 + p, ~--~:f_~) (I + n, ,,_~
(l + p , 2 + }) NO (1+p,2+~) NO

~" ~") 0 + p, ~f-~'_~) (2, 2) (1 + p, ¢-a~_~) (2 + p, ¢,_~

Table 1: Existence results for many criteria for any p E [0,1]. All results expect the first are new.

O~

(a,fl) ['ACT ~ w#C#
Makespan (Cmax) (1 + p, ¢~-~-1)

Max Flow Time (Fmax) 7
Max Lateness (Lmax) (1 + p, ~-r:-/-~)

AFT ~w~F~ AL ~w~L~ ~-:.(1 - U~)
(I + p, ~e-~_1) (I + p, ¢~e~[i) (2,2)

(~ , - .~ -) ? (N¼,N¼)
~l." ¢p

(1 + p, ~-~:-i-1) (1 + p, ~7=T-1) (2, 2)

Table 2: Lower bounds on bicriterion scheduling for any p E [0, 1]. All the results are new.

z -- maxj O~. For any particular instance, we Omax
denote the objective value of the optimal schedule as

Oraax - - m i n O m a x .
schedules g=

The second type of objectives are called reinsure
objectives. In this case, for any O E {C, F, L, U), and
for a schedule S ~, we define O.~um "- ~'~j wjO~. For any
particular instance, we denote the objective value of the
optimal schedule as

O;um= mi. O,%m-
schedule~ S"

For bicriterion optimization, Stein and Wein [23]
introduced the following notation. Suppose we have
criteria (A,B), where A is a minmax criteria and B
is a minsum criteria. Then we say that S z is an
(a, ~)-schedule if S z is simultaneously at most an a-
approximation for A and a E-approximation for B, i.e.
AZma~ < aA~a ~ and B~m _~ #B~u m. Similarly an (a, ~)-
approximation algorithm is an algorithm which, in
polynomial time, returns an (a, ~)-schedule. A negative
result for a bicriterion problem with objective(A, B) will
be any result that shows that for some ~ and/~ instances
exist for which no (x, y)-schedule exists with x < a and
simultaneously y < / L

There are two technical issues associated with these
metrics. The first is that the lateness of a job can be 0
or negative. Therefore, as is standard in the literature,
we work with the delivery time model in which each
job has an associated positive delivery time instead
of a deadline[12]. Let qj be the non-negative delivery

time required by job j . We overload notation and let
L~ = C~ + qj, with the remaining objectives defined
as before. This model is equivalent to one in which
the deadlines are actually non-positive. Second, as is
customary in the literature, we approximate the metric
of maximizing the number of on-time jobs, denoted
m a x E ~ (1 - Uj).

2.2 Envlron~ments
Our results will apply to a large number of machine
environments, and we will take the liberty of saying that
they apply to any scheduling problem. We borrow the
definition of any from Stein and Wein[23] to mean any
problem that meets the following two conditions.

• T runca t ion : If we take a valid schedule S and
remove from it all jobs that complete after time t,
the schedule remains a valid schedule for those jobs
that remain.

• C o m p o s i t i o n : Given two valid schedules S 1 and
S 2 for two sets J1 and J2 of jobs (where J1 N J2 is
potentially nonempty), the composition of S 1 and
S 2, obtained by appending S 2 to the end of S 1, and
removing from S ~ all jobs that are in J1 A J2, is a
valid schedule for Jt U J2-

These two conditions encompass most known schedul-
ing environments, and all cases in which the process-
ing time of a job is independents of the time at which
it runs. They encompass environments that are more
general than those defined in this section. For exam-
ple, they capture preemptive scheduling environments,

726

COMBINE(S 1 , S 2, t)

1. Let K = {j : C~ > t} be the set of jobs that complete
after time t in schedule S 2.
2. Create schedule S 2' from schedule S 2 by removing
from S 2 all jobs in K.
3. Create schedule S l' by removing from S 1 all jobs in
J - K .
4. Return schedule S 3, formed by appending S l' to the
end of S 2' .

Figure 1: Procedure Combine

precedence constraints between jobs, and also unrelated
mac.hines environments, in which the processing time
of a job on a machine is dependent on the machine-job
pair. In the interests of space, we do not discuss these
types of environments in this extended abstract.
T h e C o m b i n e o p e r a t i o n : A basic part of many of
our constructions will be to combine two schedules via
truncation and composition. Given two valid schedules
S 1 and S 2 for a set of jobs J , we use the procedure
COMBINE to create a valid schedule S 3 for J . This pro-
cedure removes from schedule $2 the jobs that complete
after t ime t. It then schedules the remaining jobs in $2
first, followed by the removed jobs, scheduled as they
appeared in schedule $1. We call t the breakpoint. Our
two conditions on any scheduling problem are enough
to show that S s is a valid schedule. The deta]|s appear
in Figure 1.

2 .3 R e l a t e d W o r k
While some papers have explicitly set out to address
bicriterion scheduling problems, other results have been
the byproduct of work on single criterion scheduling
problems. For instance, Graham showed in 1966 that
using any list scheduling algorithm for the problem
of scheduling jobs on parallel identical machines will
produce a schedule of length at most twice optimal[5].
One list-scheduling algorithm schedules jobs according
to non-increasing ratio of weight to processing time.
This turns out to produce a schedule with average
weighted completion time at most (V~ + 1)/2 times
the optimal average weighted completion time[13], and
hence is a (2, V~ + 1)/2)-approximation algorithm. In
the special case where the weights are all equal this
actually achieves the optimal value[4].

A set of schedules is said to be "Pareto opti-
mal" if no schedule exists that is simultaneously bet-
ter, in terms of both criteria, than any of the sched-
ules in that set. Various bicriterion scheduling prob-
lems have been approached using the idea of Pareto op-
timal schedules[24, 10, 17, 16, 8, 9]. Other papers have

approached bicriterion scheduling by fixing the value
of one of the criteria and then optimizing the other
criterion[21, 22, 11]. By considering schedules that were
only close to optimal for both criteria, Chakrabarti et
al.[2] were able to outline general techniques for cre-
ating algorithms to optimize the makespan and aver-
age weighted completion time simultaneously of a set
of jobs. More recently, Stein and Wein[23] were able
to show that for any sched-ling problem there exists
schedules that are (1.88,1.88)-approximations for the
makespan and the average weighted completion time,
and &slam et al [1] improved these results to, for exam-
ple, (2, e/(e - 1))-approximations.

3 P r e v i o u s E x i s t e n c e R e s u l t s a n d T e c h n i q u e s

Stein and Wein[23] showed that for any scheduling
problem there exists schedules tha t are simultane-
ously good approximations for the makespan and total
weighted completion time. Their method is encapsu-
lated in COMBINE, where S 1 is the optimal schedule
for makespan and S 2 is the optimal average completion
time schedule. The following lemma is implicit in their
work[23]:

LEMMA 3.1. [P,3] For any scheduling problem, let S 1
and S 2 be t~vo valid schedules. Then for any A >_ O,
let S A - - C O M B I N E (S 1 , S 2, AClmax) - Then C~max <_ (1 +

1 2 a . d /or job j , < (1 + X)CJ .

By considering the distribution of weight in the op-
timal average completion time schedule and choosing
the best breakpoint out of 3 different possibilities, Stein
and Wein were able to show the existence of (2,1.735),
(1.785, 2) and (1.88,188)-schedules for the makespan
and average weighted completion time. Aslam et al.[1]
extended these results by considering infinitely many
breakpoints and choosing the best one according to
the distribution of weight in the optimal average com-
pletion time schedule, thereby proving, for example,
the existence of (2,1.582), (1.695, 2), and (1.806, 1.806)-
schedules for (Cm~, ~-~.mjCj)- We outline their tech-
nique below, for more details, see [1, 20].

Given an optimal average completion time schedule
S AcT, if we normalize the weights so that fyACT v,u m = 1,
we can interpret the average completion t ime schedule
as a continuous probability density function(pdf). In
particular, we can use the pdf with cumulative distribu-
tion function

Pr(X < x) = E wjCj .

The advantage of probability density functions is that
they are continuous and we can more easily consider

727

infinitely many breakpoints and then calculate an upper
bound on the average completion time of the resulting
schedule based on the best possible breakpoint for a
given pdf. By considering all possible distributions
] , Aslam et al.[1] showed that finding the worst case
instance to maximize the average completion time of
S ~ is equivalent to finding the pdf which maximizes the
following expression:

l + m a x rain [~ l + ~ - x f (z) d x .
I o<~<p J~

Here a is restricted to be in [0,p] to guarantee that
any breakpoint that is chosen to minimize the average
completion time, will still result in a schedule of length
no more than (l + p) C ~ . Aslam et al.[1] then presented
the following upper bound.

LEMMA 3.2. [1] If] ranges over all pdf's,

! o<~<pJ~ x - e P - 1"

The direct result of Lemmas 3.1 and 3.2 is a
simultaneous upper bound on the makespan and average
completion time of the best possible S ~.

THEOREM 3.1. [1] For any p 6 [0, 1], for any schedul-
ing problem, thvre exista a "(1 + p, ~)-approximation

for wj G).

4 N e w Upper Bounds for Other Criteria

In this section, we give bicriterion existence results for
most pairs of minmax and reinsure criteria. Table 1
s , mmarizes our results. For 10 of the possible pairs,
we give constant factor upper bounds, but in two cases
instances exist for which no schedule is within a constant
factor of optimal for both criteria. These two cases are
designated by a "NO" and will be discussed in greater
detail in Section 5. The various results are obtained by
using some of the machinery developed in [1] along with
several new techniques that are specific to the particular
objectives.

In this extended abstract, we give the details of two
of these upper bound results: simultaneously minimiz-
ing the makespan and average weighted flow time and
simultaneously minimizing the maximum flow time and
average weighted completion time. Details on the re-
maining metrics can be found in the undergraduate the-
sis of the first author [20].

4.1 M a k e s p a n a n d Average Weighted Flow
T i m e

If S AFT is the optimal average flow time sched-
ule and S c is the optimal makespan schedule of
length Cla~, we will create the schedule S A =
COMBINE(S c, S AFT, AC~*,a~). Then by choosing the
best A 6 [0, p] we arrive at the following result.

THEOREM 4.1. For any p 6 [0, 1], for any scheduling
problem, there exists a (2+p, e P / (e P - l)) approximation
]or the make.span and average weighted flow time.

P r o o f Sketch. Let rmax = maxj r~ and let K = C*ax
denote the length of S c. Since all jobs must be released
before the end of schedule S c, rm~ <_ K. Therefore,
fo~ each job j ,

(4.1)
Fj AFT -- C AFT -rj _> C AFT -rmax _> C AFT - g.

In order to use this lower bound, we consider the results
o f S A = COMBINE(8 C, S AFT, AK), where A 6 [1, (l+p)].
By Lemma 3.1, for any choice of A 6 [1, 1 + p] we know
that the length of the resulting schedule will be at most
(2 + p)K. Therefore, once we have p we need to choose
A to minimize F~,m, the average flow time of our new
schedule S ~. In this schedule, a job j with C~ ~T < AK
is before the breakpoint, and so C~ = C AFT which
implies that F~ = F/AFw. Now consider a job j with
C ArT > .~g. Since C~max < (1 + A)K, the new flow
time of'job j in our schedulecan be characterized as

- +

< (1 + - C; +

where the last inequality follows from (4.1) above. Now
that we have an upper bound on the total increase of
the flow time of each job for a given choice of A, we
need to find a lower bound on the optimal average
weighted flow time schedule. We do this using the
same lower bound. Notice that for a particular time
y, ~'~(j:C~pT=y) ~ojF AFT ~ ~-/~(j:G~FT=y)~j(y --/~) iS a

lower bound on the total weighted flow time of all jobs
completing at time y in the optimal average weighted
flow time schedule. We will now express this lower
bound as a continuous function g(y) = ~~j wi(C~ PT -
K) 5 (C AFT - y), where 5(-), Dirac's delta function, is
defined to be the function that satisfies the conditions
5(z) = 0 for all z # 0 and f~_oo 5(x)dx = 1. This means
that for a function .f(x), Dirac's delta function has the

O0
property that f_°oo f (x) 5 (x - z)dx = f (z) . Given
this representation of the weight completing at a certain
time, we can now integrate over all time to arrive at a
lower bound for our schedule. Since we are concerned

728

with the worst case schedule for our analysis we note

that the worst case pdf, g(y), will have fo K g(y)dy -- O.
This means that we can assume wlog that the weights
have been normalized so that ~ j wj(C AFT - K) = 1
and that all jobs have C AsT > K. At this point we

can write E, wjF/ <_ fo Kg(y) dy + ua_~g(y) d y =
O+A)K-u . t . ~ ,~. 1 + f~/¢ V-K ~ , , .~. For a particular g(y) we can

find the best A in the range [1, 1 + p] to minimize the
this integral. To arrive at an upper bound on the
average flow time of a schedule with a makespan at
most (2 + p)K, we find an upper bound on the pdf that
maximizes this calculation. This corresponds to solving
the problem

f x ° (1 + A)K max mix, y -~ ~ - - Yg(y) dy,
g 1<A<1+p K

where g is a probability distribution over [0, oo). This
is equivalent to

[co 1 + A -- z
max! x_<A<,+pmin Jx x Z ~ f (z) dx,

where now f ranges over all distributions.
To solve this we choose a - A - 1 from the

range [13, p]. To make the corresponding shift in the
summation we let n - x - 1. The result of this set of
transformations is

First we claim that FmAax <: (1 + A)Fm*ex- Any job
that is run according to the optimal average completion
time schedule S AcT must complete before time AF~e ~
and therefore F# x < XF~ x. All other jobs are run
according to their order in the optimal maz~num flow
time schedule. When this schedule was started at time
0, this ordering guaranteed a maximum flow time of
Fma x. Since any job ~/ that is run in this portion of
S A is delayed by at most AF~a ~ with respect to its start
time in S F, its flow time can increase by at most AF~a~.
Therefore, F ~ _< (1 + A)F~, for all jobs j .

Now we need to analyze the average completion
time of S x. All jobs] that complete before time
XFm*ax in S ACT will have C~ = C AcT. By the above
argument, we know that Fj x ~ (1 + A) F ~ x. This

leads to the following upper bound on C~ for jobs with
cT >_ XF' :

< r# + (1 + A) F ~

_< C AcT + (1 +)0F~a x

< C AcT + (I + A)C AcT/A

= (2 + 1/)c ,

and hence, E j w J C Y <_ (2+ }) E ~ z o j C f CT -- (2+
1 • • r - I

foo 1 + a - n
m a x r a i n /(n) dn /

I o<a<_p J . n

which was shown by Aslam et al.[1] to be at most
1/(e p - 1). Therefore choosing the best breakpoint to
mi-lmize the average flow time of S A results in a
schedule of length at most (2 + p)C~a x with average
flow time at most (eP/(e p - 1))F~m. []

4.2 M a x i m u m F l o w T i m e a n d A v e r a g e
W e i g h t e d C o m p l e t i o n T i m e
Now we will look at the problem of simultaneously
minimizing the maximum flow time of a schedule and
the average weighted completion time.

THEOREM 4.2. For any p 6 [0,1], for any scheduling
problem, there exists a (1 + p, 2 + ~)-schedule for the
maximum flow time and average weighted completion
time.

P r o o f . Let S F be the optimal maximal flow time
schedule, let S ACT be the optimal average weighted
completion time schedule, and consider the schedule
S A = COMBINE(S F, S ACT, AF~a~).

5 L o w e r B o u n d s

Table 2 gives lower bounds on the approximability of
the s~me problems considered in the previous section.
As an example of the techniques used to derive these
lower bounds we will consider two bicriterion scheduling
problems.

5.1 M a k e s p a n a n d A v e r a g e C o m p l e t i o n T h n e
For the problem of scheduling unweighted jobs with
release dates on one machine to minimize the makespan
and average completion time we prove a lower bound
matching the result of Theorem 3.1.

THEOREM 5.1. For 0 < p < 1, there exists an (infinite-
sized) instance such &at there is no (z, y)-schedule t~ith

" fo (c ,Ecj). x < l + p a n d y <

P r o o f Ske tch . Consider an instance in which there are
n + 1 total jobs, n of which are jobs with pj = 0 and the
other one job has pj --- 1. The job with processing time
1 is released at t ime O. The following pdf f specifies,
for some fixed p where 0 < p < 1, the release dates and
therefore also optimal average completion times of the

729

n jobs with p# = 0:

l (t) = 5 (p - t + t >_ p .

$ 8 Let C~a~ and C~u~ denote the makespan and
average completion time of a schedule created with the
job with pj = 1 starting at s. Notice that the only
schedules of interest occur with 0 _< s _< p. We know
that the makespan will be C~a~ = (1 + s). Since

$ the optimal makespan is 1, we have that C~ =
(1 + s)C~. Next, when analyzing the effect of s on
C~'um we can ignore the completion time of the job
with processing time I since as n approaches infinity, it
becomes negligible. Thus, we obtain

@ C~um = f o ' z f (z) d z + (s + l) [1 - / ' f (z) d x]

I 1 O < s < p
¢ P - - I t.~ s = p .

All schedules that start the one-unit job before time p
eP . . are no better than ~-T:~_1-approx~matmns for the optimal

average completion time and all other schedules must
start the unit job after time p and therefore have length
at least 1 + p times the optimal makespan. []

5.2 M a x i m u m Flow T i m e and Average Flow
T i m e
Now we consider scheduling a set of jobs to simultane-
ously minimize the maximum flow time and the aver-
age weighted flow time of the resulting schedule. The
following example shows that instances exist for which
no schedule will be a constant factor approximation for
both criteria simultaneously.

THEOREM 5.2. If F~a x is the optimal maximum flow
time and F~* m is the optimal total flow time of a set
of N jobs, then instances exist for which there is no
(a, B)-sehednle with 1 < a < ~ and 1 <_ ~ < ~4 # .for

E F#).

Proof . Consider the following example on one
machine with release dates. Let jo be released at
t = 0 with processing time Po = V ~ . Let jobs
j l , jg , . . . ,iN-1 be jobs of length 1. Let ri = i for all
j l , j~ , . . . ,iN-1. Since jo has the earliest release date
and the longest processing time, the schedule S f that
achieves F*a~ runs J0 at time t = 0 when it is released.
All N - 1 small jobs are delayed by v/N time units.
Fm~ of this schedule is Fma x = v/N. The total flow
time of this schedule is ~ F f = N] .

On the other hand, the optimal total flow time
schedule, S TFT, will run all small jobs j l , j 2 , . . - ,iN-1
as they axe released and run j0 starting at time N.
Since all jobs with pj = 1 complete 1 time unit after
they are started, lb'~ri FT - - | , Vz ~> 0. The larger job will
now have to wait until all the small jobs complete and
therefore will have F~r0 FT = N + v ~ . The total flow
time of this schedule will be ~ Ffj FT = 2N + v ~ - 1.

Any schedule in which J0 starts before t = N/4
will have at least 3N/4 small jobs with F#
and therefore a total flow time of 5-~. i Fj >_= 3N~/4
which is at least V ~ / 4 times the optimal total flow
time. However, if jo starts after t = N/4 then Fma~
N/4. Which is also at least V ~ / 4 times the optimal
maximum flow time. Therefore no (a,/~)-schedule exists
with 1 < ~ < V ~ / 4 and 1 < ~ < v ~ / 4 . [3

6 A l g o r i t h m s

The existence results in this paper lead to algorithms
in a natural way. Suppose that, for a particular
problem, we have shown the existence of an (a,B)-
approximation for objectives A and B, and we have
an x-approximation algorithm for objective A and a
V-approximation algorithm for metric B. Then using
our constructions, we obtain an (ax, By)-approximation
algorithm for objectives A and B.

In certain special cases, we can obtain better
bounds. Consider the problem of scheduling jobs on 1
machine with release dates in which the objectives are
minimum makespan and average completion time. For
these objectives, we have tight upper and lower bounds
of (1 +p, c--~T-1) on the existence of bicriterion schedules.
In this section, we give an algorithm which actually
matches these bounds. Using ideas from a-scheduling
we first present a randomized algorithm that achieves
these bounds and then describe a deterministic polyno-
mial time algorithm.

The idea behind a-scheduling is to use an optimal
preemptive schedule to obtain an ordering of jobs for the
non-preemptive case[18, 7, 3]. Consider the schedule P
created by scheduling jobs preemptively by the shortest
remaining processing t ime(S~7)T). For some 0 < a _~
1, let C f (a) be the time at which an c~-fraction of j
completes in schedule P. A non-preemptive schedule
can then be created by list scheduling jobs according to
non-decreasing Cf(c~). Chekuri et al. [3] provide the
following two lemmas for this approach to ~-scheduling.

LEMMA 6.1. [3] The makespan of any s-schedule is at
most 1 + a times the optimal makespan.

The following lemma refers to the randomized algorithm

730

TLAAf:D tha t chooses a randomly from a distribution
f (z) and then uses tha t a to create a non-preemptive
a-schedule.

LEMMA 6.2. [3] The expected average completion time
of Ti~AA[7) is at most 1 +8 times the optimal preemptive
average completion time where

; ' 1 + ~ - t
J f(a)da. m a ~ /

o<,<t J0 t

The randomized algorithm 7~AAf29 - 3 chooses a ran-
domly from the probability distribution

I (a) = o < a < 3
~,>3.

THEOREM 6.1. For 0 < 1~ < I, Po.AAf~D- ~ is a
eP randomized (1 + ~, e--~-f_l)-appro~mation algorithm for

llr~l(C,~, E Cj).

Finally using the observation by Chekuri et al.13]
that 8T~7>T creates a preemptive schedule with at
most n - 1 preemptions, we know that there axe at
most n - 1 interesting choices of a. This means that
there are at most n distinct non-preemptive schedules
that can be derived by using a-scheduling to convert
the preemptive schedule to a non-preemptive schedule.
Chekuri et at.[3] use this to show that by searching
all n possible schedules and choosing the best one, we
can in polynomial time, find a non-preemptive schedule
that matches the expected bounds for the randomized
algorithm. For 0 < B ~ 1, let B E S T - 3 be
the deterministic algorithm that tries all possible a-
schedules with 0 < a ~ fl and chooses the one with
the smallest total completion time.

THEOREM 6.2. For 0 < ~ ~_ 1, B e S T - fl is a
e D deterministic (1 + 8 , e-~T_l)-appro~mation algorithm for

l[rjl(Cmax, ~ Cj).

R e f e r e n c e s

P]

I2]

J. A. Aslam, A. Rasala, C. Stein, and N. Young.
Improved bicriteria existence theorems for scheduling.
In Proceedings of the lOth ACM-SIAM S~mposium on
Dincrete Algorithms, 1999. To appear.
S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B.
Shmoys, C. Stein, and J. Wein. Improved scheduling
algorithms for reinsure criteria. In F. Meyer auf der
Heide and B. Monien, editors, Automata, Languages
and Programming, number 1099 in Lecture Notes in
Computer Science. Springer, Berlin, 1996. Proceedings
of the 23rd International Colloquium (ICALP'96).

[3] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein.
Approximation techniques for average completion time
scheduling. In Proceedings of the 8th ACM-SIAM
Symposium on Discrete Algorithms, pages 609-618,
January 1997. To appear in SIAM J. Computing.

[4] R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory
of Scheduling. Addison-Wesley, 1967.

[5] R.L. Graham. Bounds for certain multiprocessor
anomalies. Bell System Technical Journal, 45:1563-
1581, 1966.

[6] P~.L. Graham, E.L. Lawler, J.K. Lenstra, and
A.H.G. Rinnooy Kan. Optimization and approxima-
tion in deterministic sequencing and scheduling: a sur-
vey. Annals of Discrete Mathematics, 5:287-326, 1979.

[7] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein.
Scheduling to minimize average completion time: Off-
line mad on-line approximation algorithms. Mathemat-
ics of Operations Research, 22:513-544, August 1997.

[8]]. A. Hoogeveen. Minimizing maximum promptness
and maximum lateness on a single machine. Mathe-
matics of Operations Research, 21:100-114, 1996.

[9] J. A. Hoogeveen. Single-machine scheduling to mini-
mize a function of two or three maximum cost criteria.
Journal of Algorithms, 21(2):415-433, 1996.

[10] J. A. Hoogeveen and S.L. van de Velde. Minimizing to-
tal completion time and maximum cost simulatneously
is solvable in polynomial time. Operations Research
Letters, 17:205-208, 1995.

[11] C.A.J. Hurkens and M.J. Coster. On the makespan
of a schedule minimizing total completion time for
unrelated parallel machines. Unpublished manuscript,
1996.

[12] David Karger, Cliff Stein, and Joel Wein. CRC Hand-
book on Algorithms, chapter Scheduling Algorithms.
Cl~C Press, 1998.

[13] T. I~waguchi and S. Kyan. Worst case bound of
an LRF schedule for the mean weighted flow-time
problem. SIAM Journal on Computing, 15:1119-1129,
1986.

[14] E.L. Lawler. Optimal sequencing of a single machine
subject to precedence constraints. Management Sci-
ence, 19:544-546, 1973.

[15] E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy Kan, and
D.B. Shmoys. Sequencing and scheduling: Algorithms
and complexity. In S.C. Graves, A.H.G. Rinnooy Kan,
and P.H. Zipkin, editors, Handbooks in Operations
Research and Management Science, Vol 4 , Logistics
of Production and Inventory, pages 445-522. North-
Holland, 1993.

[16] S.T. McCormick and M.L. Pinedo. Scheduling n
independent jobs on m uniform machines with both
flow time and makespan objectives: A parametric
approach. ORSA Journal of Computing, 7:63-77, 1992.

[17] R.T. Nelson, R.K. Satin, and I~.L. Dvmiels. Scheduling
with mnltiple performance measures: the one-machine
case. Management Science, 32:464--479, 1986.

[18] C. Phillips, C. Stein, and J. Wein. Minimizing aver-
age completion time in the presence of release dates.

731

Mathematical Programming, 82:199-223, 1998.
[19] M. Pinedo. Scheduling: Theory, Algorithms and Sys-

tems. Prentice Hall, 1995.
[20] A. Rasala. Existence theorems for scheduling to

meet two objectives. Technical Report PCS~TR99-347,
Department of Computer Science, Dartmouth College,
1999.

[21] D. B. Shmoys and E. Tardos. An approximation algo-
rithm for the generalized assignment problem. Mathe-
matical Programming A, 62:461-474, 1993.

[22] W.E. Smith. Various optimizers for single-stage pro-
duction. Naval Research Logistic~ Quarterly, 3:59-66,
1956.

[23] C. Stein and J. Wein. On the existence of schedules
that are near-optimal for both makespan and total
weighted completion time. Operations Research Let.
ters, 21, 1997.

[24] L.N. Van Wassenhove and F. Gelders. Solving a
bicriterion scheduling problem. European Journal of
Operations Research, 4:42-48, 1980.

