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Existence Theorems, Lower Bounds and Algorithms for Scheduling to 
Meet Two Objectives 

April ILasala* Cliff Stein t Eric Torng t Patchrawat Uthaisombut § 

Abstract  

We give general results about the existence of schedules 
which simultaneously minimize two criteria. Our results 
are general in that (i) they apply to any scheduling 
environment and (ii) they apply to all pairs of metrics 
in which the first metric is one of maximum flow 
time, makespan, or maximum lateness and the second 
metric is one of average flow time, average completion 
time, average lateness, or number of on-time jobs. For 
most of the pairs of metrics we consider, we show the 
ex~tence of near-optimal schedules for both metrics as 
well as some lower bound results. For some pairs of 
metrics such as (maximum flow time, average weighted 
flow time) and (maximum flow time, number of on- 
time jobs), we prove negative results on the ability 
to approximate both criteria within a constant factor 
of optimal. For many other criteria we present lower 
bounds that match or approach our bicriterion existence 
results. 

I I n t r o d u c t i o n  

For years, scheduling algorithms have been designed to 
optimize many optimality criteria in a wide variety of 
scheduling models[15, 6, 12, 19]. Two features are com- 
mon to an overwhelming majority of this scheduling re- 
search. First, algorithms are designed for a particular 
job-machine environment (e.g. one machine and jobs 
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with release dates or parallel machines with precedence 
constraints). Second, algorithms are designed to mini- 
mize one objective (e.g. makespan, average completion 
time, or minimum lateness), without explicitly consid- 
ering other metrics simultaneously. 

There has been some research on scheduling to 
simultaneously optimize two criteria[24, 10, 17, 16, 8, 
9, 21, 22, 11]. These works all choose two particular 
criteria and focus on designing algorithms which work 
well with respect to these criteria. Similarly, there have 
been a few works that  try to characterize good schedules 
that apply to a variety of environments[14, 23, 1]. (See 
Section 2 for details.) 

1.1 O u r  Results  
In this paper, we give very general results about the ex- 
istence of schedules which simultaneously minimize two 
criteria. Our results are general in the ways described 
above. First, they apply to "any" scheduling environ- 
ment. Second, they apply to all pairs of metrics in which 
the first metric is one of maximum flow time, makespan, 
or maximum lateness and the second metric is one of av- 
erage flow time, average completion time, average late- 
ness, or number of on-time jobs. We will show that for 
almost all pairs of objectives, there exist schedules that 
are simultaneously within a small constant factor of op- 
timal for both objectives. This generalizes the work of 
Stein and Wein [23] and Aslam et al [1], who gave re- 
sults only for the problem of simultaneously minimizing 
makespan and average completion time. We also give 
lower bounds on the simultaneous approximability of 
these metrics. A summary of the results appears in Ta- 
bles 1 and 2. A precise definition of "any" appears in 
Section 2. Roughly, our model captures almost all o f  
the standard combinatorial scheduling environments. 
U p p e r  b ou nd s .  We give upper bounds on simultane- 
ously approximating two objectives in Table 1. For all 
pairs of objectives, except for two involving maximum 
flow time, we show the existence of schedules which si- 
multaneously optimize both criteria. The techniques 
used to obtain these results are a combination of exten- 
sions of previous techniques along with some new ideas. 
For several results, we use the framework developed by 
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/islam et al. [1], in which we map schedules optimizing 
a reinsure objective to probability density functions. By 
using continuous probability density functions, finding 
an upper bound on the existence of bicriterion schedules 
can be viewed as finding the probability density func- 
tion that maximizes a particular analytic expression in- 
volving minimums, maximums and integrals. Our work 
demonstrates that this technique of mapping schedules 
to probability density functions is more general than 
originally thought. For other pairs of metrics, we in- 
troduce new techniques. For example, in Section 4 we 
consider the problem of simultaneously minimizing the 
malw~pan and average weighted flow time of a schedule. 
Typically, techniques that work well for approximately 
minimizing the average completion time of a schedule 
do not extend to approximately minimizing the average 
flow time. However, by demonstrating a relationship 
between the optimal makespan schedule and the opti- 
mal average flow time schedule, we prove the existence 
of schedules that are simultaneously a constant factor 
approximation for both criteria. 
Lower  bounds .  We also give lower bounds on the 
simultaneous approximability of these metrics. Many of 
these lower bounds match the upper bounds presented. 
Furthermore, the t~hniques used to prove the lower 
bounds demonstrate another use of probability density 
functions. A summary of the lower bound results appear 
in Table 2. These lower bounds have two important 
implications. First, they demonstrate that many of 
the upper hound analyses are tight, or close-to-tight. 
Second, they demonstrate that in order to provide 
stronger upper bounds on bicriterion approximation, we 
must consider more specific scheduling models in which 
the lower bounds no longer hold. 
Algor i thms .  The techniques used to prove the exis- 
tence of schedules that  are simultaneously a good ap- 
proximation for two criteria extend, in a natural way, 
to providing bicriterion algorithms for problems where 
good approximation algorithms are known for both sin- 
gle criterion problems. We discuss this in Section 6. In 
addition we present an optimal algorithm for the spe- 
cific case of schednling a set of jobs with release dates 
to simultaneously minimize the makespan and average 
completion time of the resulting schedule. 

1.2 Prev ious  W o r k  
Some previous research has focused on scheduling to 
simultaneously optimize two criteria[24, 10, 17, 16, 8, 
9, 21, 22, 11]. These works all choose two particular 
criteria and focus on designing algorithms which work 
well with respect to these criteria. Similarly, there 
have been several papers that try to characterize good 
schedules that apply to a variety of environments[14, 

23, 1]. (See Section 2 for details.) This paper, however, 
is the first to simultaneously consider many pairs of 
metrics and many environments simultaneously. 

1.3 Mot ivat ion  
Often, the "objective" of a particular real-world 
scheduling problem is best expressed as the minimiza- 
tion of several expressions. Suppose that the resources 
being scheduled are a group of people with a variety of 
skills and multiple bosses. This group of people wants 
to keep all the bosses happy by completing requests as 
promptly as possible and also wants to insure that the 
total time needed to complete all requests will not ex- 
ceed the end of the work day. They are concerned with 
both the average completion time of all the jobs received 
over the course of the day and also with the total length 
of time it will take to complete the set of jobs. 

In the interests of space, we have omitted the details 
of most of the results which are claimed in Tables 1 and 
2. Complete details appear in the undergraduate thesis 
of the first author [20]. 

2 Background 
2.1 N o t a t i o n  and  O p t i m a l i t y  Criteria 
Very generally, this paper deals with scheduling a set J 
of •jobs on aset  o fm machines. Each job j 6 J requires 
some non-negative processing time, pj, on one of the 
machines. In addition, a job j may have an associated 
release date rj ,  deadline dj or weight wj. The release 
date is the time that  the job becomes available; it cannot 
be processed before the release date. The deadline is a 
time by which we would like the job to complete, and 
a weight is an input parameter that assigns a relative 
importance to a job. 

We define a valid schedule S to be an assignment of 
jobs to mac.hines over time such that each job j starts 
no earlier than its release date rj and runs for pj units of 
time. A job may or may not complete before its deadline 
dj. For a schedule S ® we will denote the completion time 
of job j in S = as C~. We also define three values related 
to the completion time. The flow time Ff of job j in 
schedule S z is the amount of time that passes between 
when job j is released and when it is processed, i.e. 
F~ ~-- C~ - r#. The lateness of a job L~ is the amount 
of time between its deadline and completion time, and 

z = C~ - dj. Finally we define an indicator variable 
Llf. x# which denotes whether a job is late, so U~ = 1 if 

> dj and 0 otherwise. 
There are two natural types of objective functions 

that can be defined on these parameters. The first type 
are called minmax objectives. In these we measure 
the maximum value achieved over all jobs. So for 
any 0 E {C,F,L}, and for a schedule S ~, we define 
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Makespan (Cm~) 
a Maximum Flow Time(Fm~) 

Maximum Lateness (Lm~) 

# 
ACT ~w~Ct AFT ~'~. za~F~ AL ~']~w~L# ~ ( i  - U#) 

e- ,- e- ) (2 ,2)  {1 + p, ~-77T_~)[1] (2 + p, ~--~:f_~) (I + n, ,,_~ 
( l + p ,  2 +  }) NO (1+p,2+~) NO 

~" ~" ) 0 + p, ~f-~'_~) (2, 2) (1 + p, ¢-a~_~) (2 + p, ¢,_~ 

Table 1: Existence results for many criteria for any p E [0,1]. All results expect the first are new. 

O~ 

(a,fl) ['ACT ~ w#C# 
Makespan (Cmax) (1 + p, ¢~-~-1) 

Max Flow Time (Fmax) 7 
Max Lateness (Lmax) (1 + p, ~-r:-/-~) 

# 
AFT ~w~F~ AL ~w~L~ ~-:.(1 - U~) 
(I + p, ~e-~_1) (I + p, ¢~e~[i) (2,2) 

(~ , - .~ - )  ? (N¼,N¼) 
~l." ¢p 

(1 + p, ~-~:-i-1) (1 + p, ~7=T-1 ) (2, 2) 

Table 2: Lower bounds on bicriterion scheduling for any p E [0, 1]. All the results are new. 

z -- maxj O~. For any particular instance, we Omax 
denote the objective value of the optimal schedule as 

Oraax  - -  m i n  O m a  x . 
schedules g= 

The second type of objectives are called reinsure 
objectives. In this case, for any O E {C, F, L, U), and 
for a schedule S ~, we define O.~um "- ~'~j wjO~. For any 
particular instance, we denote the objective value of the 
optimal schedule as 

O;um= mi. O,%m- 
schedule~ S" 

For bicriterion optimization, Stein and Wein [23] 
introduced the following notation. Suppose we have 
criteria (A,B), where A is a minmax criteria and B 
is a minsum criteria. Then we say that S z is an 
(a, ~)-schedule if S z is simultaneously at most an a- 
approximation for A and a E-approximation for B, i.e. 
AZma~ < aA~a ~ and B~m _~ #B~u m. Similarly an (a, ~)- 
approximation algorithm is an algorithm which, in 
polynomial time, returns an (a, ~)-schedule. A negative 
result for a bicriterion problem with objective(A, B) will 
be any result that shows that  for some ~ and/~ instances 
exist for which no (x, y)-schedule exists with x < a and 
simultaneously y < / L  

There are two technical issues associated with these 
metrics. The first is that  the lateness of a job can be 0 
or negative. Therefore, as is standard in the literature, 
we work with the delivery time model in which each 
job has an associated positive delivery time instead 
of a deadline[12]. Let qj be the non-negative delivery 

time required by job j .  We overload notation and let 
L~ = C~ + qj, with the remaining objectives defined 
as before. This model is equivalent to one in which 
the deadlines are actually non-positive. Second, as is 
customary in the literature, we approximate the metric 
of maximizing the number of on-time jobs, denoted 
m a x E ~ ( 1  - Uj). 

2.2 Envlron~ments  
Our results will apply to a large number of machine 
environments, and we will take the liberty of saying that  
they apply to any scheduling problem. We borrow the 
definition of any from Stein and Wein[23] to mean any 
problem that meets the following two conditions. 

• T runca t ion :  If we take a valid schedule S and 
remove from it all jobs that  complete after time t, 
the schedule remains a valid schedule for those jobs 
that remain. 

• C o m p o s i t i o n :  Given two valid schedules S 1 and 
S 2 for two sets J1 and J2 of jobs (where J1 N J2 is 
potentially nonempty), the composition of S 1 and 
S 2, obtained by appending S 2 to the end of S 1, and 
removing from S ~ all jobs that  are in J1 A J2, is a 
valid schedule for Jt  U J2- 

These two conditions encompass most known schedul- 
ing environments, and all cases in which the process- 
ing time of a job is independents of the time at which 
it runs. They encompass environments that  are more 
general than those defined in this section. For exam- 
ple, they capture preemptive scheduling environments, 
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COMBINE(S  1 , S 2, t )  

1. Let K = {j : C~ > t} be the set of jobs that  complete 
after time t in schedule S 2. 
2. Create schedule S 2' from schedule S 2 by removing 
from S 2 all jobs in K.  
3. Create schedule S l' by removing from S 1 all jobs in 
J - K .  
4. Return schedule S 3, formed by appending S l' to the 
end of S 2' . 

Figure 1: Procedure Combine 

precedence constraints between jobs, and also unrelated 
mac.hines environments, in which the processing time 
of a job on a machine is dependent on the machine-job 
pair. In the interests of space, we do not discuss these 
types of environments in this extended abstract. 
T h e  C o m b i n e  o p e r a t i o n :  A basic part of many of 
our constructions will be to combine two schedules via 
truncation and composition. Given two valid schedules 
S 1 and S 2 for a set of jobs J ,  we use the procedure 
COMBINE to create a valid schedule S 3 for J .  This pro- 
cedure removes from schedule $2 the jobs that  complete 
after t ime t. It  then schedules the remaining jobs in $2 
first, followed by the removed jobs, scheduled as they 
appeared in schedule $1. We call t the breakpoint. Our 
two conditions on any scheduling problem are enough 
to show that  S s is a valid schedule. The deta]|s appear 
in Figure 1. 

2 .3  R e l a t e d  W o r k  
While some papers have explicitly set out to address 
bicriterion scheduling problems, other results have been 
the byproduct of work on single criterion scheduling 
problems. For instance, Graham showed in 1966 that  
using any list scheduling algorithm for the problem 
of scheduling jobs on parallel identical machines will 
produce a schedule of length at most twice optimal[5]. 
One list-scheduling algorithm schedules jobs according 
to non-increasing ratio of weight to processing time. 
This turns out to produce a schedule with average 
weighted completion time at most (V~ + 1)/2 times 
the optimal average weighted completion time[13], and 
hence is a (2, V~ + 1)/2)-approximation algorithm. In 
the special case where the weights are all equal this 
actually achieves the optimal value[4]. 

A set of schedules is said to be "Pareto opti- 
mal" if no schedule exists that  is simultaneously bet- 
ter, in terms of both criteria, than any of the sched- 
ules in that  set. Various bicriterion scheduling prob- 
lems have been approached using the idea of Pareto op- 
timal schedules[24, 10, 17, 16, 8, 9]. Other papers have 

approached bicriterion scheduling by fixing the value 
of one of the criteria and then optimizing the other 
criterion[21, 22, 11]. By considering schedules that  were 
only close to optimal for both criteria, Chakrabarti et 
al.[2] were able to outline general techniques for cre- 
ating algorithms to optimize the makespan and aver- 
age weighted completion time simultaneously of a set 
of jobs. More recently, Stein and Wein[23] were able 
to show that  for any sched-ling problem there exists 
schedules that  are (1.88,1.88)-approximations for the 
makespan and the average weighted completion time, 
and &slam et al [1] improved these results to, for exam- 
ple, (2, e/(e  - 1))-approximations. 

3 P r e v i o u s  E x i s t e n c e  R e s u l t s  a n d  T e c h n i q u e s  

Stein and Wein[23] showed that  for any scheduling 
problem there exists schedules tha t  are simultane- 
ously good approximations for the makespan and total 
weighted completion time. Their method is encapsu- 
lated in COMBINE, where S 1 is the optimal schedule 
for makespan and S 2 is the optimal average completion 
time schedule. The following lemma is implicit in their 
work[23]: 

LEMMA 3.1. [P,3] For any scheduling problem, let S 1 
and S 2 be t~vo valid schedules. Then for  any A >_ O, 
let S A - - C O M B I N E ( S  1 , S 2, AClmax) - Then C~max <_ (1 + 

1 2 a . d  /or  job j ,  < (1 + X)CJ . 

By considering the distribution of weight in the op- 
timal average completion time schedule and choosing 
the best breakpoint out of 3 different possibilities, Stein 
and Wein were able to show the existence of (2,1.735), 
(1.785, 2) and (1.88,188)-schedules for the makespan 
and average weighted completion time. Aslam et al.[1] 
extended these results by considering infinitely many 
breakpoints and choosing the best one according to 
the distribution of weight in the optimal average com- 
pletion time schedule, thereby proving, for example, 
the existence of (2,1.582), (1.695, 2), and (1.806, 1.806)- 
schedules for (Cm~, ~-~.mjCj)- We outline their tech- 
nique below, for more details, see [1, 20]. 

Given an optimal average completion time schedule 
S AcT,  if we normalize the weights so that  fyACT v,u m = 1, 
we can interpret the average completion t ime schedule 
as a continuous probability density function(pdf). In 
particular, we can use the pdf with cumulative distribu- 
tion function 

Pr(X < x) = E wjCj .  

The advantage of probability density functions is that  
they are continuous and we can more easily consider 
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infinitely many breakpoints and then calculate an upper 
bound on the average completion time of the resulting 
schedule based on the best possible breakpoint for a 
given pdf. By considering all possible distributions 
] ,  Aslam et al.[1] showed that finding the worst case 
instance to maximize the average completion time of 
S ~ is equivalent to finding the pdf which maximizes the 
following expression: 

l + m a x  rain [ ~ l + ~ - x f ( z ) d x .  
I o<~<p J~ 

Here a is restricted to be in [0,p] to guarantee that  
any breakpoint that is chosen to minimize the average 
completion time, will still result in a schedule of length 
no more than ( l + p ) C ~ .  Aslam et al.[1] then presented 
the following upper bound. 

LEMMA 3.2. [1] If  ] ranges over all pdf's, 

! o<~<pJ~ x - e P -  1" 

The direct result of Lemmas 3.1 and 3.2 is a 
simultaneous upper bound on the makespan and average 
completion time of the best possible S ~. 

THEOREM 3.1. [1] For any p 6 [0, 1], for any schedul- 
ing problem, thvre exista a "(1 + p, ~ )-approximation 

for  wj G). 

4 N e w  Upper  Bounds  for Other Criteria 

In this section, we give bicriterion existence results for 
most pairs of minmax and reinsure criteria. Table 1 
s ,  mmarizes our results. For 10 of the possible pairs, 
we give constant factor upper bounds, but in two cases 
instances exist for which no schedule is within a constant 
factor of optimal for both criteria. These two cases are 
designated by a "NO" and will be discussed in greater 
detail in Section 5. The various results are obtained by 
using some of the machinery developed in [1] along with 
several new techniques that are specific to the particular 
objectives. 

In this extended abstract, we give the details of two 
of these upper bound results: simultaneously minimiz- 
ing the makespan and average weighted flow time and 
simultaneously minimizing the maximum flow time and 
average weighted completion time. Details on the re- 
maining metrics can be found in the undergraduate the- 
sis of the first author [20]. 

4.1 M a k e s p a n  a n d  Average Weighted Flow 
T i m e  

If S AFT is the optimal average flow time sched- 
ule and S c is the optimal makespan schedule of 
length Cla~, we will create the schedule S A = 
COMBINE(S c, S AFT, AC~*,a~). Then by choosing the 
best A 6 [0, p] we arrive at the following result. 

THEOREM 4.1. For any p 6 [0, 1], for any scheduling 
problem, there exists a (2+p, e P / ( e P - l ) )  approximation 
]or the make.span and average weighted flow time. 

P r o o f  Sketch.  Let rmax = maxj r~ and let K = C*ax 
denote the length of S c. Since all jobs must be released 
before the end of schedule S c, rm~ <_ K. Therefore, 
fo~ each job j ,  

(4.1) 
Fj AFT -- C AFT -rj _> C AFT -rmax _> C AFT - g. 

In order to use this lower bound, we consider the results 
o f S  A = COMBINE(8 C, S AFT, AK), where A 6 [1, ( l+p)].  
By Lemma 3.1, for any choice of A 6 [1, 1 + p] we know 
that the length of the resulting schedule will be at most 
(2 + p)K. Therefore, once we have p we need to choose 
A to minimize F~,m, the average flow time of our new 
schedule S ~. In this schedule, a job j with C~ ~T < AK 
is before the breakpoint, and so C~ = C AFT which 
implies that F~ = F/AFw. Now consider a job j with 
C ArT > .~g. Since C~max < (1 + A)K, the new flow 
time of'job j in our schedulecan be characterized as 

- + 

< (1 + - C; + 

where the last inequality follows from (4.1) above. Now 
that we have an upper bound on the total increase of 
the flow time of each job for a given choice of A, we 
need to find a lower bound on the optimal average 
weighted flow time schedule. We do this using the 
same lower bound. Notice that for a particular time 
y, ~'~(j:C~pT=y) ~ojF AFT ~ ~-/~(j:G~FT=y)~j(y --/~) iS a 

lower bound on the total weighted flow time of all jobs 
completing at time y in the optimal average weighted 
flow time schedule. We will now express this lower 
bound as a continuous function g(y) = ~~j wi(C~ PT - 
K ) 5 ( C  AFT - y), where 5(-), Dirac's delta function, is 
defined to be the function that satisfies the conditions 
5(z) = 0 for all z # 0 and f~_oo 5(x)dx = 1. This means 
that for a function .f(x), Dirac's delta function has the 

O0 
property that f_°oo f ( x ) 5 ( x -  z)dx = f (z) .  Given 
this representation of the weight completing at a certain 
time, we can now integrate over all time to arrive at a 
lower bound for our schedule. Since we are concerned 
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with the worst case schedule for our analysis we note 

that the worst case pdf, g(y), will have fo K g(y)dy -- O. 
This means that we can assume wlog that the weights 
have been normalized so that  ~ j  wj(C AFT - K) = 1 
and that  all jobs have C AsT > K.  At this point we 

can write E, wjF/ <_ fo Kg(y) dy + ua_~g(y) d y =  
O+A)K-u . t .  ~ ,~. 1 + f~/¢ V-K ~ , ,  .~.  For a particular g(y) we can 

find the best A in the range [1, 1 + p] to minimize the 
this integral. To arrive at  an upper bound on the 
average flow time of a schedule with a makespan at 
most (2 + p)K, we find an upper bound on the pdf  that  
maximizes this calculation. This corresponds to solving 
the problem 

f x  ° (1 + A)K max mix, y -~  ~ - -  Yg(y) dy, 
g 1<A<1+p K 

where g is a probability distribution over [0, oo). This 
is equivalent to 

[ co 1 + A -- z 
max! x_<A<,+pmin Jx x Z ~ f ( z )  dx, 

where now f ranges over all distributions. 
To solve this we choose a - A -  1 from the 

range [13, p]. To make the corresponding shift in the 
summation we let n - x - 1. The result of this set of 
transformations is 

First we claim that FmAax <: (1 + A)Fm*ex- Any job 
that is run according to the optimal average completion 
time schedule S AcT must complete before time AF~e ~ 
and therefore F# x < XF~ x. All other jobs are run 
according to their order in the optimal maz~num flow 
time schedule. When this schedule was started at time 
0, this ordering guaranteed a maximum flow time of 
Fma x. Since any job ~/ that is run in this portion of 
S A is delayed by at most AF~a ~ with respect to its start 
time in S F, its flow time can increase by at most AF~a~. 
Therefore, F ~ _< (1 + A)F~, for all jobs  j .  

Now we need to analyze the average completion 
time of S x. All jobs ] that  complete before time 
XFm*ax in S ACT will have C~ = C AcT. By the above 
argument,  we know that  Fj x ~ (1 + A ) F ~  x. This 

leads to the following upper bound on C~ for jobs with 
cT >_ XF' : 

< r# + (1 + A ) F ~  

_< C AcT + (1 + )0F~a x 

< C AcT + (I + A)C AcT/A 

= (2 + 1/ )c , 

and hence, E j w J C Y  <_ (2+ } ) E ~ z o j C f  CT -- (2+ 
1 • • r - I  

foo  1 + a - n 
m a x  r a i n  /(n) dn / 

I o<a<_p J .  n 

which was shown by  Aslam et al.[1] to be  at most 
1/(e p - 1). Therefore choosing the best  breakpoint to  
mi-lmize the average flow time of S A results in a 
schedule of length at most  (2 + p)C~a x with average 
flow time at  most (eP/(e p - 1))F~m. [] 

4.2 M a x i m u m  F l o w  T i m e  a n d  A v e r a g e  
W e i g h t e d  C o m p l e t i o n  T i m e  
Now we will look at the problem of simultaneously 
minimizing the maximum flow time of a schedule and 
the average weighted completion time. 

THEOREM 4.2. For any p 6 [0,1], for any scheduling 
problem, there exists a (1 + p, 2 + ~)-schedule for the 
maximum flow time and average weighted completion 
time. 

P r o o f .  Let S F be the optimal maximal flow time 
schedule, let S ACT be the optimal average weighted 
completion time schedule, and consider the schedule 
S A = COMBINE(S F, S ACT, AF~a~). 

5 L o w e r  B o u n d s  

Table 2 gives lower bounds on the approximability of 
the s~me problems considered in the previous section. 
As an example of the techniques used to derive these 
lower bounds we will consider two bicriterion scheduling 
problems. 

5.1 M a k e s p a n  a n d  A v e r a g e  C o m p l e t i o n  T h n e  
For the  problem of scheduling unweighted jobs with 
release dates on one machine to minimize the makespan 
and average completion time we prove a lower bound 
matching the result of Theorem 3.1. 

THEOREM 5.1. For 0 < p < 1, there exists an (infinite- 
sized) instance such &at there is no (z, y)-schedule t~ith 

" fo (c  ,Ecj). x <  l + p  a n d y <  

P r o o f  Ske tch .  Consider an instance in which there are 
n + 1 total  jobs, n of which are jobs  with pj = 0 and the 
other one job has pj  --- 1. The job  with processing time 
1 is released at  t ime O. The following pdf  f specifies, 
for some fixed p where 0 < p < 1, the release dates  and 
therefore also optimal average completion times of the 
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n jobs with p# = 0: 

l ( t )  = 5 ( p -  t + t >_ p . 

$ 8 Let C~a~ and C~u~ denote the makespan and 
average completion time of a schedule created with the 
job with pj = 1 starting at s. Notice that the only 
schedules of interest occur with 0 _< s _< p. We know 
that the makespan will be C~a~ = (1 + s). Since 

$ the optimal makespan is 1, we have that C~ = 
(1 + s)C~. Next, when analyzing the effect of s on 
C~'um we can ignore the completion time of the job 
with processing time I since as n approaches infinity, it 
becomes negligible. Thus, we obtain 

@ C~um = f o ' z f ( z ) d z + ( s + l ) [ 1 - / ' f ( z ) d x ]  

I 1 O < s < p  
¢ P - - I  t.~ s = p .  

All schedules that start the one-unit job before time p 
eP . . are no better than ~-T:~_1-approx~matmns for the optimal 

average completion time and all other schedules must 
start the unit job after time p and therefore have length 
at least 1 + p times the optimal makespan. [] 

5.2 M a x i m u m  Flow T i m e  and Average Flow 
T i m e  
Now we consider scheduling a set of jobs to simultane- 
ously minimize the maximum flow time and the aver- 
age weighted flow time of the resulting schedule. The 
following example shows that instances exist for which 
no schedule will be a constant factor approximation for 
both criteria simultaneously. 

THEOREM 5.2. If F~a x is the optimal maximum flow 
time and F~* m is the optimal total flow time of a set 
of N jobs, then instances exist for which there is no 
(a, B)-sehednle with 1 < a < ~ and 1 <_ ~ < ~4 # .for 

E F#). 

Proof .  Consider the following example on one 
machine with release dates. Let jo be released at 
t = 0 with processing time Po = V ~ .  Let jobs 
j l , jg , . . .  ,iN-1 be jobs of length 1. Let ri = i for all 
j l , j~ , . . .  ,iN-1. Since jo has the earliest release date 
and the longest processing time, the schedule S f that 
achieves F*a~ runs J0 at time t = 0 when it is released. 
All N - 1 small jobs are delayed by v/N time units. 
Fm~ of this schedule is Fma x = v/N. The total flow 
time of this schedule is ~ F f  = N ] .  

On the other hand, the optimal total flow time 
schedule, S TFT, will run all small jobs j l , j 2 , . . -  ,iN-1 
as they axe released and run j0 starting at time N. 
Since all jobs with pj = 1 complete 1 time unit after 
they are started, lb'~ri FT - -  | ,  Vz ~> 0. The larger job will 
now have to wait until all the small jobs complete and 
therefore will have F~r0 FT = N + v ~ .  The total flow 
time of this schedule will be ~ Ffj FT = 2N + v ~  - 1. 

Any schedule in which J0 starts before t = N/4  
will have at least 3N/4 small jobs with F# 
and therefore a total flow time of 5-~. i Fj  >_= 3N~/4 
which is at least V ~ / 4  times the optimal total flow 
time. However, if jo starts after t = N/4 then Fma~ 
N/4. Which is also at least V ~ / 4  times the optimal 
maximum flow time. Therefore no (a,/~)-schedule exists 
with 1 < ~ < V ~ / 4  and 1 < ~ < v ~ / 4 .  [3 

6 A l g o r i t h m s  

The existence results in this paper lead to algorithms 
in a natural way. Suppose that, for a particular 
problem, we have shown the existence of an (a,B)- 
approximation for objectives A and B, and we have 
an x-approximation algorithm for objective A and a 
V-approximation algorithm for metric B. Then using 
our constructions, we obtain an (ax, By)-approximation 
algorithm for objectives A and B. 

In certain special cases, we can obtain better 
bounds. Consider the problem of scheduling jobs on 1 
machine with release dates in which the objectives are 
minimum makespan and average completion time. For 
these objectives, we have tight upper and lower bounds 
of (1 +p, c--~T-1) on the existence of bicriterion schedules. 
In this section, we give an algorithm which actually 
matches these bounds. Using ideas from a-scheduling 
we first present a randomized algorithm that achieves 
these bounds and then describe a deterministic polyno- 
mial time algorithm. 

The idea behind a-scheduling is to use an optimal 
preemptive schedule to obtain an ordering of jobs for the 
non-preemptive case[18, 7, 3]. Consider the schedule P 
created by scheduling jobs preemptively by the shortest 
remaining processing t ime(S~7)T).  For some 0 < a _~ 
1, let C f ( a )  be the time at which an c~-fraction of j 
completes in schedule P.  A non-preemptive schedule 
can then be created by list scheduling jobs according to 
non-decreasing Cf(c~). Chekuri et al. [3] provide the 
following two lemmas for this approach to ~-scheduling. 

LEMMA 6.1. [3] The makespan of any s-schedule is at 
most 1 + a times the optimal makespan. 

The following lemma refers to the randomized algorithm 
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TLAAf:D tha t  chooses a randomly from a distribution 
f (z )  and then uses tha t  a to create a non-preemptive 
a-schedule. 

LEMMA 6.2. [3] The expected average completion time 
of Ti~AA[7) is at most 1 +8 times the optimal preemptive 
average completion time where 

; '  1 + ~ - t 
J f(a)da. m a ~  / 

o<,<t J0 t 

The randomized algorithm 7~AAf29 - 3 chooses a ran- 
domly from the probability distribution 

I ( a )  = o < a < 3 
~,>3. 

THEOREM 6.1. For 0 < 1~ < I, Po.AAf~D- ~ is a 
eP randomized (1 + ~, e--~-f_l )-appro~mation algorithm for 

llr~l(C,~, E Cj). 

Finally using the observation by Chekuri et al.13] 
that 8T~7>T creates a preemptive schedule with at 
most n - 1 preemptions, we know that there axe at 
most n - 1 interesting choices of a. This means that 
there are at most n distinct non-preemptive schedules 
that can be derived by using a-scheduling to convert 
the preemptive schedule to a non-preemptive schedule. 
Chekuri et at.[3] use this to show that by searching 
all n possible schedules and choosing the best one, we 
can in polynomial time, find a non-preemptive schedule 
that matches the expected bounds for the randomized 
algorithm. For 0 < B ~ 1, let B E S T - 3  be 
the deterministic algorithm that  tries all possible a- 
schedules with 0 < a ~ fl and chooses the one with 
the smallest total  completion time. 

THEOREM 6.2. For 0 < ~ ~_ 1, B e S T -  fl is a 
e D deterministic (1 + 8 ,  e-~T_l )-appro~mation algorithm for 

l[rjl(Cmax, ~ Cj). 
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