On List Update and Work Function Algorithms

Eric J. Anderson!, Kris Hildrum?, Anna R. Karlin!, April Rasala®, and
Michael Saks?

! Dept. of Computer Science, Univ. of Wash., {eric,karlin}@cs.washington.edu
2 Computer Science Div., Univ. of Calif., Berkeley, hildrum@cs.berkeley.edu
3 Laboratory of Computer Science, Massachusetts Inst. of Technology,
arasala@theory.lcs.mit.edu
* Dept. of Mathematics, Rutgers Univ., saks@math.rutgers.edu

Abstract. The list update problem, a well-studied problem in dynamic
data structures, can be described abstractly as a metrical task system.
In this paper, we prove that a generic metrical task system algorithm,
called the work function algorithm, has constant competitive ratio for list
update. In the process, we present a new formulation of the well-known
“list factoring” technique in terms of a partial order on the elements of
the list. This approach leads to a new simple proof that a large class of
online algorithms, including Move-To-Front, is (2 — 1/k)-competitive.

1 Introduction

1.1 Motivation

The list accessing or list update problem is one of the most well-studied problems
in competitive analysis [1],[2],[3],[4],[5]. The problem consists of maintaining a
set S of items in an unsorted linked list, for example as a data structure for
implementation of a dictionary. The data structure must support three types
of requests: ACCESS(x), INSERT(x) and DELETE(x), where z is the name,
or “key”, of an item stored in the list. We associate a cost with each of these
operations as follows: accessing or deleting the i-th item on the list costs ;
inserting a new item costs j + 1 where j is the number of items currently on the
list before insertion. We also allow the list to be reorganized, at a cost measured
in terms of the minimum number of transpositions of consecutive items needed
for the reorganization. We consider the standard cost model in the literature:
immediately after an access or an insertion, the requested item may be moved
at no extra cost to a position closer to the front of the list. These exchanges
are called free exchanges. Intuitively, using free exchanges, the algorithm can
lower the cost on subsequent requests. In addition, at any time, two adjacent
items in the list can be exchanged at a cost of 1. These exchanges are called paid
exchanges. The list update problem is to devise an algorithm for reorganizing
the list, by performing free and/or paid exchanges, that minimizes search and
reorganization costs. As usual, the algorithm will be evaluated in terms of its
competitive ratio.

As with much of the work on list accessing, we will focus on the static list
update problem, where the list starts out with k elements in it, and all requests are
accesses. The results described are easily extended to the dynamic case including
insertions and deletions. Specifically, the cost of an insertion is the same for any
algorithm; and the cost of a deletion is the same as the cost of an access. Some
results for static list update are expressed in terms of the length k of the list.
In the case of dynamic list update, the length & is no longer uniquely defined.
However, for constant-competitive ratio results, it is enough for our purposes to
interpret k as the mazimum length of the list where necessary.

Many deterministic online algorithms have been proposed for the list update
problem. Of these, perhaps the most well-known is the Move-To-Front algo-
rithm: after accessing an item, move it to the front of the list, without changing
the relative order of the other items. Move-To-Front is known to be 2 —
competitive, and this is best possible [2],[7].

We note that other cost models have also been considered for the list update
problem [6], [?], [?]. Increasing the cost of exchanges to two (instead of one)
makes Move-To-Front optimal; this provides an independent proof that Move-
To-Front is two-competitive. Other alternatives analyzed in the literature include
allowing free exchanges for other than the referenced element, and allowing free
exchanges between elements that are not adjacent[?], [?]. These alternative cost
models can lead to qualitatively different results.

2
k+1

1.2 Metrical task systems

The (static) list update problem can also be considered within the metrical task
system framework introduced by Borodin, Linial and Saks [8]. Metrical task
systems (MTS) are an abstract model for online computation that captures a
wide variety of online problems (paging, list update and the k-server problem, to
name a few) as special cases. A metrical task system is a system with n states,
with a distance function d defined on the states: d(i,j) is the distance between
states ¢ and j. The distances are assumed to form a metric. The MTS has a set T
of allowable tasks; each task 7 € T is a vector (7(1),7(2),...,7(n)) where 7(i)
is the (nonnegative) cost of processing task 7 in state 7. An online algorithm
is given a starting state and a sequence of tasks to be processed online, and
must decide in which state to process each task. The goal of the algorithm is to
minimize the total distance moved plus the total processing costs.

The list update problem can be viewed as a metrical task system as follows.
The states of the list update MTS are the k! possible orderings of the k elements
in the list, which we also call list configurations. There are k possible tasks, one
corresponding to each list element z. The cost 7, () of processing the task 7,
in a particular list configuration 7, is equal to the depth of z in the list 7. The
distance between two states or list configurations is the number of inversions
between the list orderings, considered as permutations.’

! In this formulation, “free exchanges” are treated as made at unit cost immediately
before the item is referenced. Because the cost of these exchanges is precisely offset

One of the initial results about metrical task systems was that the work
function algorithm (W F A) has competitive ratio 2n — 1 for all MTS’s, where
n is the number of states in the metrical task system [8]. It was also shown
that this is best possible, in the sense that there exist metrical task systems for
which no online algorithm can achieve a competitive ratio lower than 2n — 1.
However, for many MTS’s the upper bound of 2n — 1 is significantly higher than
the best achievable competitive ratio. For example, there are known constant-
competitive algorithms for list update, even though the MTS for a list of &
elements has k! states. Another example is the k-server problem on a finite
metric space consisting of r points. For this problem, the metrical task system
has n = (}) states, but a celebrated result of Koutsoupias and Papadimitriou
shows that in fact the very same work function algorithm is 2k—1 competitive for
this problem [9], nearly matching the known lower bound of k on the competitive
ratio [10].

Unfortunately, our community understands very little at this point about
how to design competitive algorithms that achieve close to the best possible
competitive ratio for broad classes of metrical task systems. Indeed, one of the
most intriguing open questions in this area is:

For what metrical task systems is the work function algorithm strongly
competitive? 2

Burley and Irani have shown the existence of metrical task systems for which
the work function algorithm is not strongly competitive [11]. However, these
“bad” metrical task systems seem to be rather contrived, and it is widely believed
that the work function algorithm is in fact strongly competitive for large classes
of natural metrical task systems. The desire to make progress towards answering
this broad question is the foremost motivation for the work described in this
paper. We were specifically led to reconsider the list update problem when we
observed the following curious fact:

The Move-To-Front algorithm for list update is a work function algo-
rithm. (Proposition 8, Section 4.)

This observation was intriguing for two reasons. First because it raised the
question of whether work function algorithms generally (that is, those with more
general tie-breaking rules than that used in Move-To-Front) are strongly compet-
itive for list update. This would provide an example of a substantially different
type of metrical task system for which the work function algorithm is strongly
competitive than those considered in the past.

The second and perhaps more exciting reason for studying work functions as
they relate to list update is the tantalizing possibility that insight gained from

by the lower reference cost, this model is identical to the standard model. See [6],
Theorem 1. We continue to use the term “paid exchanges” to describe specifically
those exchanges not involving the next-referenced element.

2 We say an algorithm is strongly competitive if its competitive ratio is within a con-
stant factor of the best competitive ratio achievable.

that study could be helpful in the study of dynamic optimality for self-adjusting
binary search trees [1],[12]. It is a long-standing open question whether or not
there is a strongly competitive algorithm for dynamically rearranging a binary
search tree using rotations, in response to a sequence of accesses. The similari-
ty between Move-To-Front as an algorithm for dynamically rearranging linked
lists, and the splay tree algorithm of Sleator and Tarjan [12] for dynamically
rearranging binary search trees, long conjectured to be strongly competitive, is
appealing. Our hope is that the use of work function-like algorithms might help
to resolve this question for self-adjusting binary search trees.

1.3 Results

The main result of this paper is a proof that a class of work function algorithms
is O(1) competitive for the list update problem.®> Proving this theorem requires
getting a handle on the work function values, the optimal offline costs of ending
up in each state. This is tricky, as the offline problem is very poorly understood.
At present it is even unknown whether the problem of computing the optimal
cost of executing a request sequence is NP-hard. The fastest optimal off-line
algorithm currently known runs in time O(2*k!m), where k is the size of the list
and m is the length of the request sequence [6].

Using the framework that we have developed for studying work functions and
list update, we also present a new simple and illustrative proof that Move-To-
Front and a large class of other online algorithms are (2 — 1/k)-competitive.

The rest of the paper is organized as follows. In Section 2, we present back-
ground material on work functions and on the work function algorithm. In Sec-
tion 3, we present a formulation of the list update work functions in terms of
a partial order on the elements of the list and use this formulation to prove
that a large class of list update algorithms are (2 — 1/k)-competitive. Finally, in
Section 4 we present our main result, that work function algorithms are strongly
competitive for list update.

2 Background

We begin with background material on work functions and work function algo-
rithms.

2.1 Definitions

Consider an arbitrary metrical task system, with states s € S and tasks 7 € T.
Given a sequence of requests o, denote the ¢ 4+ 1st request in the sequence as
oty1. Let opy1 be the task 7. Let 7(s) denote the cost of executing task 7 in
state s.

3 The proof does not achieve the best possible competitive ratio of 2.

Definition 1. The work function wi(s) for any state s and index t is the lowest
cost of satisfying the first t requests of o and ending up in state s [13],[8].

Because the states and task costs are time-independent, the work functions
can be calculated through a dynamic programming formulation (which can e-
qually be taken as the definition):

wir1(s') = msin (we(s) + 7(s) + d(s, ")) . (1)

The work function algorithm is defined in terms of fundamental states:

Definition 2. A state f is fundamental at time ¢ if it satisfies wir1(f) =

wi(f) + 7(f)-

(Where the context is evident, we will simply say a state f is “fundamental”.)
The Work Function Algorithm (WF A), [13],[8], defined for an arbitrary met-
rical task system, is the following;:

Definition 3. WFA: When in state s;, service the request 0,11 = T in the state
St+1 such that

st+1 = argmins(wet1(s) + d(st, 8)) (2)
where the minimum is taken over states s that are fundamental at time t.

From the definition, we see that the work function algorithm chooses s¢41 so
that

St41 = argming (wi(s) + 7(s) + d(sy, 8)) . (3)

We consider a variant of this work function algorithm, differing only in the
subscript of the work function:

Definition 4. WFA': When in state s;, service the request T in the state s;11
such that

Se41 = argming (wer1(s) +7(s) + d(st, s)) - (4)

The minimum in the expression (4) may not be unique. Accordingly, we
define the class of states to which the work function algorithm might move:

Definition 5. Given state sy at time t, a state s at time t + 1 is wfa-eligible if
it is one of the states that minimizes (4).

Unless otherwise specified, the work function algorithm WF A’ could move to
any of these wfa-eligible states.

We next note several elementary identities, which hold at all times ¢ and all
states s and s’. As above, we let T denote the t + 1st task o, and 7(s) its task
cost in the state s.

2.2 Elementary identities

Proposition 1.

wit1(8) > wi(s). ()

Proof. By the alternative definition above (1), for some s’ we have wy11(s) =
w(s") +d(s,s") + 7(s"). By (7), w(s) < w(s') +d(s,s'). Since all task costs are
nonnegative, 7(s') > 0, and the result follows.

Proposition 2.
wit1(8) < we(s) + 7(s). (6)

Proof. By the definition (1), wi41(s) = ming (w(s') + 7(s') + d(s, s")), so for all
such s', wer1(s) < wi(s") +7(s") +d(s, s'). Substituting s for s’, and noting that
d(s,s) = 0, the result follows.

Proposition 3.

wi(s) < wi(s') +d(s, s'). (7)

is a lower bound on wyy1(s) by (1), s0 wry1(s') < wir1(s) +d(s,s').

Proposition 4. For any s,

wi+1(8) = we1(f) +d(f,) (8)

for some state f that is fundamental at time t. (The state s is derived from some
fundamental state.)

Proof. By the definition (1), there is some f for which wyy1(s) = wi(f) +7(f) +
d(f,s)- By (7), wit1(s) < wi1(f) +d(f,s), so wi(f) + 7(f) < wia(f). But

wi(f) +7(f) > wep1(f) by (6). Hence wi(f) + 7(f) = wip1(f) and f is funda-
mental at time ¢. Then wyy1(s) = w1 (f) + d(f, s) by substitution.

Proposition 5. Suppose WF A' is in state s; at time t. Suppose s is wfa-eligible
at time t, and suppose further that wyy1(s) = w1 (f) + d(f, s) where f is fun-
damental. (There is at least one such state f by (8).) Then f is also wfa-eligible
at time t, and x(f) = z(s). (The fundamental state f is wfa-eligible if s is.)

Proof. Since s is wfa-eligible, it minimizes (4), wy11(8)+7(8)+d(s¢,8) < wir1(s")+
7(s") + d(st, s") for all s'. If we show that w1 (f) +7(f) + d(st, f) < w1 (s) +
7(8)+d(s¢, s), then f minimizes (4) as well, and f then must also be wfa-eligible.
We observe first that 7(f) < 7(s). By (5) and (6), wit1(s) < we(s) +7(s) <
wi(f) +7(s) + d(f,s). Then 7(s) < 7(f) would imply wit1(8) < w(f) +7(f) +

d(f,s) = w1 (f) +d(f, s). By hypothesis, however, we have w1 (f) +d(f, s) =
wt+1(s).

Next, by the triangle inequality, d(s¢, f) < d(s¢,s) +d(f, s). Then wy1(f) +
d(st, f) < wira(f) +d(se,8) +d(f,5) = wiy1(s) +d(se,). Since 7(f) < 7(s), we
have w1 (f) +d(ss, f) + 7(f) < wig1(s) +d(sg, s) + 7(s), and f is wla-eligible.

Finally, since s is also wfa-eligible, the above inequality cannot be strict. It
would be if 7(f) < 7(s), so we must have 7(f) = 7(s).

Proposition 6. If s is wfa-eligible, then 7(s) < 7(s¢).

Proof. Suppose instead that 7(s) > 7(s¢). Then the condition (4) for s to be wfa-
eligible is wyy1(s) +7(s) +d(s, s¢) > wip1(8) +7(s¢) + d(s, 8¢) > wip1(se) +7(s¢)
by (7). But this last expression is (4) applied to the state s;. If s; satisfies (4)
strictly more strongly than s, s cannot be wfa-eligible.

2.3 Observations

The work function algorithm can be viewed as a compromise between two very
natural algorithms. First, a natural greedy algorithm tries to minimize the cost
spent on the current step. It services the (¢ + 1)st request 7 in a state s that
minimizes d(s¢, s) +7(s). Another natural algorithm is a retrospective algorithm,
which tries to match the state chosen by the optimal offline algorithm. It services
the (t + 1)st request 7 in a state s that minimizes wyy1(s).

Each of these natural algorithms is known to be noncompetitive for many
metrical task systems. W F A combines these approaches and, interestingly, this
results in an algorithm which is known to be strongly competitive for a num-
ber of problems for which neither the greedy and retrospective algorithms are
competitive.

The difference between WFA and the variant, WFA’, is in the subscript
of the work function. We actually feel that WF A’ is a slightly more natural
algorithm, in light of the discussion above about combining a greedy approach
and a retrospective approach. It is this latter work function algorithm W F A’
that we will focus on in this paper. Our proof that WF A’ is O(1) competitive
for list update can be extended to handle WF A as well. [WARNING — NOT
YET SHOWN,] ®

4 Varying the relative weighting of the greedy and retrospective components of the
work function algorithm was explored in [14].

% In addition, many prior results which hold for WF A also hold for WFA’. For ex-
ample, for the k-server problem the work function values at ¢t and ¢ + 1 are identical
for any states s that serve the ¢ + 1st request, wit1(s) = we(s). Hence WFA' and
W F A define the same algorithm, and so W F A’ is 2k — 1 competitive for the k-server
problem. The proof that WF A is 2n — 1 competitive for any metrical task system
with n states also holds for WF A’ (using the same potential function), and so WF A’
also is 2n — 1 competitive for any metrical task system.

8

3 A different view on list factoring

A technique which has been used in the past to analyze list update algorithms
is the list factoring technique, which reduces the competitive analysis of list
accessing algorithms to lists of size two [3],[7],[15],[4],[16]. For example, this
technique, in conjunction with phase partitioning, was used to prove that an
algorithm called TimeStamp is 2-competitive [4],[16]. In this section, we repeat
the development of this technique, but present it in a somewhat different way, in
terms of a partial order on elements in the list.® This view leads us to a simple
generalization of previous results and will assist us in our study of WFA'.

Consider the metrical task system corresponding to a list of length two.
In this case there are two lists, (a,b) (a in front of b) and (b,a) (b in front
of a), and the distance between these two states is 1. Since for all ¢ we have
wi((a, b)) —1 < wi((b,a)) < we((a,b))+1, we can characterize the work functions
at any given time ¢ as having one of three distinct properties:

o wi((a,b)) < wi((b,a)), which we denote a > b,
e wi((a,b)) = we((b,a)), which we denote a ~ b, or
e wi((a,b)) > wi((b,a)), which we denote a < b.

Tt is easy to verify directly from Equation (1) the transitions between these three
properties as a result of references in the string o.

C

Fig. 1. The three-state DFA: the state a > b corresponds to the case w:((a,b)) =
wi((b,a)) — 1, the state a ~ b corresponds to the case w:((a,b)) = wi((b,a)), and the
state a < b corresponds to the case w;((a,b)) = wt((b,a)) +1

The resulting three-state DFA shown in Figure 1 can be used to completely
characterize the work functions, the optimal offline list configuration, and the
optimal cost to service a request sequence o. The start state of the DFA is
determined by the initial order of the elements in the list: it is a > b if the
initial list is (a,b) and a < b if the initial list is (b, a). Each successive request
in o results in a change of state in accordance with the transitions of the DFA,
reflecting the work function values after serving that request.

Notice that the number of times a is referenced when in the state a < b plus
the number of times that b is referenced when in the state a > b is equal to the

6 This partial order has apparently been considered by Albers, von Stengel and
Werchner in the context of randomized list update, and was used as a basis for
an optimal randomized online algorithm for lists of length 4. [17]

total number of transitions into the middle DFA-state. The optimal sequence
cannot avoid incurring cost upon such references. Therefore, the optimal cost
of satisfying a sequence of requests o is given by the number of transitions into
the middle state of the DFA, plus the length of the sequence. The corresponding
optimal offline strategy is: Immediately before two or more references in a row
to the same element, move that element to the front of the list.

Now consider list update for a list of length k. The cost of an optimal sequence
can be written as the sum of the number of exchanges performed 7 and the
reference costs at each state. For any pair of elements (a,b) we can identify a
pairwise reference cost attributable to (a, b), adding one whenever b is referenced
but a is in front of b in the list, or vice versa. The standard list factoring approach
is to describe the cost of any optimal sequence for satisfying ¢ by decomposing
it into |o| plus the sum over all pairs (a,b) of (i) this pairwise reference cost
and (ii) all pairwise transpositions of a with b. For any pair (a,b), the sum of
the pairwise transpositions and the pairwise reference cost describes a (possibly
suboptimal) solution to the list of length two problem for the subsequence of o
consisting of references only to a and b. Therefore a lower bound on the optimal
cost of satisfying o is the sum of the costs of the optimal length-two solutions
over all pairs (a,b), plus the length |o|.

It is important to note that this “list factoring” lower bound is not tight.

Ezample 1. Consider a list of length five, initialized abcde, and the reference
sequence o = ebddcceacde. The sum of the length-two solutions, plus the length
of o, is 31; the optimal cost of satisfying o is 32.

On the other hand, we do not know of any small examples where the optimal
cost exceeds the list factoring lower bound by more than one, and we conjecture
that the optimal cost does not exceed the lower bound by more than an additive
constant related to the length of the list.

3.1 The partial order

We are thus led to consider the collection of k(k—1)/2 pairwise three-state DFAs,
one for each pair a,b of elements in the list of length k. Consider the result of
executing all these DFAs in parallel in response to requests in o, starting from
the states corresponding to the initial list. Figure 2 shows an example. Each
DFA defines a pairwise relation, a < b, a > b, or a ~ b as the case may be,
on the elements a and b. It is easy to verify that at every time ¢ the resulting
collection of relations defines a valid partial order on the k elements of the list. In
particular, the list configuration obtained by following Move-To-Front at every
step is always consistent with this partial order.

This partial order at each time ¢ is defined by the reference sequence o, and
does not depend on any choice of algorithm for list update. When we refer to the

7 Recall that in our model we charge for each exchange, whether “paid” or “free”; each
free exchange in the standard model precisely corresponds in our model to a reduced
reference cost on the immediately following reference. See [6], Theorem 1.

10

Z1 Z2
T x3 T2 T1 3 T2
l O (0] o] l
z3 l T2 l T3 l Z2
Z2 — — — — x3
l T2 xr3 1 l
3 Z1

Fig. 2. Tllustration of the evolution of the partial order on three elements in response
to the request sequence o = x3, 2,3, 2 assuming the initial list is ordered z1,x2,z3
from front to back. As usual, a directed edge from a to b indicates that a > b in the
partial order, whereas the absence of an edge indicates that a ~ b

“partial order”, we mean this partial order as induced by a particular ¢ at a given
time . When we say that an algorithm is “consistent with the partial order”, we
mean that, when applied to a reference sequence o, the list configuration visited
by the algorithm at each time ¢, considered as a total order of the list elements,
is consistent with the partial order induced by o at that time t.

Define by G (respectively I;) the number of elements greater than (respec-
tively incomparable to) o, in this partial order immediately prior to its reference
at time ¢. By the discussion above, the optimal cost of servicing a request se-
quence o of length n and ending up in any state s is bounded below by the
number of transitions into middle states of the DFAs, which at each step t is G.
Hence for states s, wn(s) >n+ > 4o, G-

An easy counting argument also shows:

Lemma 1.), I; <}, G;.

Proof. Since we start with a total ordering on the elements, determined by the
initial ordering of the list, each two element DFA begins either in state a < b
or a > b. For each DFA, each transition out of its middle state a ~ b must
therefore be preceded by a transition into the middle state. Taken together,
this implies that, cumulatively, the number of transitions out of middle states
cannot exceed the number of transitions into middle states. Since) G is the
cumulative number of transitions into middle states of the DFA’s, and " I; the
cumulative number of transitions out of middle states, the result follows.

Lemma 1 leads to a useful characterization of online algorithms:

Theorem 1. Any online list update algorithm that performs only free exchanges
and maintains the invariant that the list order is consistent with the partial order
is (2 — 1/k)-competitive.

Proof. Any online algorithm A that maintains a list order consistent with the
partial order and performs no paid exchanges has a total cost A(o) satisfying
A(o) < n+ Y ,(Is + Gy), where |o] =n.

By Lemma 1 and the fact that OPT' (o) < kn, we can conclude that A(o) <
n+2%,G; <(2-1/k)OPT (o). |

11

3.2 Competitive analysis of online algorithms

Theorem 1 provides a new, simple proof that a collection of online algorithms
(many already known to be competitive) are all 2—1/k competitive. These algo-
rithms include Mowve-To-Front, TimeStamp, M RI(k), and SBR(«) [4], [5], [?]-
Each of these online algorithms moves only the referenced element. By Theo-
rem 1, it is enough to show that these algorithms maintain lists consistent with
the partial order.

We observed above that Move-To-Front maintains lists consistent with the
partial order. Suppose the list is consistent with the partial order at time ¢,
immediately before a reference to x. Then immediately after the reference (and
after x is moved to the front), each element of the list is less than or incomparable
to z, and is also behind z in the list. And because the respective pairwise order
of other elements does not change, the list remains consistent with the partial
order at time ¢ + 1.

The TimeStamp algorithm (originally called TimeStamp(0)) due to Albers [4]
is defined as follows:

On a request for an item z, insert in front of the first (from the
front of the list) item y that precedes x on the list and was requested
at most once since the last request for z. Do nothing if there is no such
item y or if z is being requested for the first time.

The TimeStamp algorithm makes only free exchanges. Furthermore, by con-
struction, after a reference to z, each item y that precedes it in the resulting list
must have been requested at least twice since the last request for x. Therefore
every element in front of z is incomparable to z (and not less than z) after the
request. Each element behind z is less than or incomparable to z. Finally, the
respective orders of other elements do not change as a result of the reference
to z. Immediately prior to the initial reference to x, all elements in front of it
are greater than it in the partial order. Hence TimeStamp maintains a list order
consistent with the partial order.

Ran El-Yaniv has recently presented another family of algorithms, the M RI(k)
family [5]:

On a request for an item x, move x forward to just behind the rear-
most item y that precedes x on the list and was requested at least k + 1
times since the last request for xz. If there is no such item y or if z is
being requested for the first time, move z to the front.

El-Yaniv shows that M RI(1) is equivalent (except for the first move of each
element) to TimeStamp. Because any element that is requested more than twice
since the last reference to x must be incomparable to x after the reference to =z,
the result follows for all k.

Schulz has recently presented the SBR(a) family [?]. From his Lemma 1
and the definition, the referenced element is moved forward at least as far as
TimeStamp. Any such algorithm maintains a list order consistent with the partial
order.

12

We have shown:

Corollary 1. Move-To-Front , TimeStamp , RTS and SBR(a) are all (2—1/k)-
competitive.

4 On the performance of work function algorithms

4.1 Preliminaries

We begin with some definitions and facts. In what follows, the (¢ + 1)st request
oty1 is z. The task cost 7(s) is denoted z(s), which is the depth of z in the list
configuration s. As before, we denote by s; the state visited by the work function
algorithm at time ¢, immediately before the request to x.

We first define the 1, binary relation on two states.

Definition 6. s 1, s’ iff s and s' are identical, or if s' can be derived from
s by moving x forward while leaving the relative positions of other elements
undisturbed.

Where z is understood from context, we write simply s 1 s'.

Proposition 7. Suppose s is wfa-eligible, and s 1, s'. Then wir1(s) < wep1(s’).
(Moving x forward cannot increase the work function.)

[Is it true here that wit1(s) = wit1(s')? And is it therefore true that s wia-
eligible and s 1, s’ implies s’ is wfa-eligible?]

Proof. In the case of list update, the “free exchange” cost model implies that
whenever s 1, s', z(s) = z(s') + d(s, s'). Suppose first that s is fundamental,
wir1(8) = wi(s) + z(s). We have wyy1(s') < wi(s') + x(s') by (6), and w(s') <
wi(8)+d(s',8) by (7), 80 wiy1(s") < we(s)+d(s',s)+xz(s"). But d(s',5) +z(s") =
z(5) 80 wir1(8") < wi(s) + z(s) = wy1(s) as was to be shown.

Next suppose that s is wfa-eligible. By (7) we have wiy1(s) = w1 (f) +
d(f,s) for some fundamental state f, for which also z(f) = x(s). This means
that wiy1(s) = wi(f) +d(f,s) + 2(f) = we(f) + d(f, s) + 2(s). But wiy1(s') <
we(s') + a(s") < we(f) +d(f, ") + 2(s') < wi(f) + d(f,5) +d(s,) + a(s') =
we(f) +d(f,s) + x(s), 50 wiy1(s") < wia(s).

Recall from (6) that 7(s) < 7(s¢), so the work function algorithm cannot
move z backward.

We can now show that (a) there always exists a wfa-eligible state that requires
no paid exchanges, and (b) that if WF A’ is restricted to moving the referenced
element only, it is equivalent to the following algorithm (“Move-To-Min-w ”):

Mtmw: On a reference to z, move z forward (or not at all) to a state
with lowest work function value immediately after the reference.

13

In other words, if s; is the state the algorithm is in immediately before servicing
the t + 1-st request o1, then Mtmw moves to a state s¢y1 such that sg4q1 =
argmins ; s,+,swi+1(s) and satisfies o1 there. Summarizing:

Proposition 8. Mtmw is a special case of WFA' and Move-To-Front is a spe-
cial case of Mtmw.

Proof. We first show that M#tmw is a special case of WFA'. That is, we need
to show that any state produced by Mtmw is wfa-eligible. Suppose instead s is
a state for which s; 1 s, s minimizes wyy1(s) among all such, but s is not wfa-
eligible. Then let s’ be some wfa-eligible state for which s; 1 s’. (The existence
of such a state is demonstrated below.) Because both s; T s and s; 1 s', we have
d(st, s)+x(s) = z(s¢) = d(st,s")+x(s"). Since by hypothesis wiy1(s) < wry1(s’),
then wiy1(s) + d(se,s) + z(s) < wy1(s’) + d(se,s") + x(s'); so s is wla-eligible
if s’ is. Indeed, because s is a wfa-eligible state, the last inequality cannot be
strict, and the last expression must be equality. The set of wfa-eligible states s
for which s; 1 s thus all have the same value of wy11(s). Since by (8) the work
function value is non-increasing as x moves forward from s, if s; 1 s and s is
wia-eligible, then any s’ for which s 1 ' is also wfa-eligible.

(We note by the triangle inequality and (8) that this corollary is true for
arbitrary wfa-eligible states: if s 1, s', and s is wfa-eligible, then so is s'.)

For convenience in what follows, we denote generally by § the state formed
from s by moving z to the front without changing the order of other elements,
s 71z 8 and z(8) = 1.

It remains to demonstrate that there is at least one wfa-eligible state s
for which s; 1 s. We show that the move-to-front state s, the state which
simultaneously satisfies s; 1T §; and z(s;) = 1, is wfa-eligible. By the above
corollary, there must be some r wfa-eligible for which z(r) = 1 (for any wfa-
eligible ', take r'). It is a basic fact of permutation distance that d(r,s;) =
d(r, $¢) + d($g, s¢), because the interchanges in d(r, s;) not involving z can all be
resolved first, without moving z. Given this fact, then w1 (r) + 2(r) +d(r, 8¢) =
Wi41 (’f‘) + ZU(SAt) + d(’f’, SAt) + d(§t,8t). But wt+1(r) + d(T‘, SAt) 2 W41 (SAt) by (7),
hence wyy1(8t) + x(5¢) + d(st, $¢) < wyg1(r) + x(r) + d(s¢,7), which was to be
proved.

As a corollary, the move-to-front algorithm Move-To-Front is a special case
of the work function algorithm.

4.2 WFA’is O(1) competitive for list update.

In the preceding section, we characterized the work function algorithm in terms
of the work function values of states formed by moving the referenced element
forward. We noted that the work function value cannot increase as the referenced
element is moved forward. In order to prove results about the work function algo-
rithm, however, we must characterize all states states to which the work function
algorithm could move; and thus we must characterize circumstances under which
the work function value must strictly decrease. Our proof technique, then, sup-
poses by hypothesis that the work function algorithm encounters a state of a

14

particular undesired type; we consider the optimal sequence of interchanges and
references that leads to the given work function value; then we must construct
a new sequence, leading to a state identical to the first but for moving the refer-
enced element forward, for which the total cost (of references and interchanges)
is strictly lower.

The technically challenging part of the proof is the following lemma.

Lemma 2. Consider o = 01,x,02, T, where in oo there are no references to x,
and |o| =t. Let S be any fundamental state at the final time step t.

Let N be the set of elements that are not referenced in o2 that are in front
of x in S, and let R be the set of elements (not including x) that are referenced
in oy. Also, let S be S with © moved forward just in front of the element in N
closest to the front of the list. Then

we(S) < we(S) +IR| —|N. 9)

Proof. Suppose O is an optimal sequence ending in S after satisfying o1, x, 02, x,
so that the cost of O is the work function value w;(S). Let T denote the state
in which O satisfies the penultimate reference to z (between ojandos). We note
that, at the point immediately prior to the penultimate reference to z (at time
k, say), the cost of O is wg—1(7'). In this construction, we modify O between T
and S so as to obtain a state S, with S 1, S and wi(S) < wi(S) — M| + |R|.

Let N denote the total number of elements not referenced between o, = =
and o; = z. (This set specifically includes =, and is potentially much larger
than |[V|, which is the number of such elements in front of z in S.) Order these
non-referenced elements py, ..., py in the order they occur in the state T'.

The construction of the lower-cost state S proceeds in three stages (illustrated
below):

1. Rearrange the respective order of the non-referenced elements within 7" to
obtain some state T". In T', = will occupy the location of the front-most non-
referenced element in T'. All other non-referenced elements p in T" will satisfy
a mnon-decreasing depth property, that p(T) < p(T").% All referenced elements
remain at their original depths. (The specific definition of the state T will emerge
from the rest of the construction; the cost of the modified sequence can be
bounded by using only the non-decreasing depth property.) Evaluate o), = z in
this state T".

Denoting by I[X,Y] the number of interchanges of non-referenced elements
other than x between states X and Y, and using the non-decreasing depth
property, we show (Proposition 9, proof deferred to the Appendix) that z(T") +
d(T,T") < 2(T) + [R| + [T, T").

2. Considering O as a sequence of transpositions and references transforming
TtoS,O0:T — S, apply a suitably chosen subsequence O, including all of
the references and many of the transpositions, of O. This subsequence O’ will
transform 7" to a state S'. In this state S’, (i) each referenced element has the

8 Recall that we denote the depth of an element p in the state X by p(X).

15

same depth as it does in S; (ii) the element z occupies the position of the front-
most non-referenced element in S; and (iii) all other non-referenced elements in
S’ are in their same respective pairwise order as in S. Evaluate z in S’.

We show (Proposition 11, proof deferred to the Appendix) that such a trans-
formation from some 7' with the non-decreasing depth property, to S’ as so
defined, can be achieved by a suitably chosen subsequence of O. We also show
that I[T,T'|+I[T",S'] < I|T, S], by showing that all of the interchanges between
non-referenced items from T to T’ and from T" to S’ are contained in O.

3. Transform S’ to the state S, where S is defined by (i) S 1, S, and (i)
the depth of z in S is the depth of the front-most non-referenced element in S
(which is also its depth in S").

We show (Proposition 10, proof deferred to the Appendix) that z(S') +
d(s',S) + |N| < z(S).

This process can be illustrated as follows, using — to denote a reference, and
~ to denote pairwise interchanges between references. The original sequence O
has:

O S N N

(Recall that we assume that O satisfies z = o4 in S.)
After the above modifications (denoted 1, 2, 3), the sequence is:

PR (PN L N R U AN

The result now follows by comparing the cost of the modified sequence to
the cost of the original sequence from and after wy_1(T"). The cost attributable
to the original sequence is the sum of

z(T);

the cost of references in os;

the cost of interchanges from 7' to S between referenced elements;

the cost of such interchanges between referenced and non-referenced ele-
ments;

the cost I[T, S] of such interchanges between non-referenced elements; and
6. z(9).

- =

o

The cost attributable to the modified sequence is the sum of

the cost of interchanges leading from T' to T";

z(T");

the cost of references in os;

the cost of interchanges from T to S’ between referenced elements;

the cost of such interchanges between referenced and non-referenced ele-
ments;

the cost I[T",S'] of interchanges between non-referenced elements;

z(S"); and

8. the cost of interchanges leading from S’ to S.

Gl L=

N o

16

By construction, items two, three and four are identical for the two sequences.
Thus we compare z(T)+I[T, S]+z(S) for the first sequence to d(T, T") +=z(T") +
IT',S') + z(S") + d(5', S).

Given 2(T") + d(T, T") < &(T) + |R| + Z[T, T'), I[T, ") + I[T", ") < I[T, 5],
and 2(S") + d(S’, 8) + |N| < z(S), the result follows by substitution.

We obtain the following corollary to Lemma 2.

Corollary 2. Consider a request sequence o where the last request (the t-th
request in o) is to . If s is wfa-eligible after executing o, then the depth of x in
s is at most 2|R|, where R is the set of elements that have been referenced since
the penultimate reference to x.

Proof. Let f be a fundamental state such that wi11(s) = w1 (f) + d(f,s). B

Proposition 5, f is also wfa-eligible and z(f) = z(s). Suppose z(s) > 2|R|. Then
z(f) > 2|R|. Elements in front of z in f either have or have not been referenced
since the penultimate reference to z; so z(f) > 2|R| implies |N| > |R|, where N
is the set of elements in front of z in f that have not been referenced since the
penultimate reference to . Then by Lemma 2 there exists f with wi(f) < wi(f)
and f 1, f , contradicting the assumption that f is wfa-eligible. O

Finally, we use the lemma to obtain the main theorem.
Theorem 2. WFA' is O(1) competitive.

Proof. We consider Mtmw first. Consider an arbitrary element x, and let o =
09,T,01,%,02,%, where in g1 and oy there are no references to x. Then by Lem-
ma 2 the depth of x in the Mtmw state, immediately before the final reference
to x, is at most 2r; + ro, where 71 is the number of distinct elements referenced
in o1 and 72 is the number of distinct elements referenced in o2, not referenced
in o1, that are moved in front of = at some point during the subsequence os.

As usual, let G be the number of elements greater than x immediately before
its final reference and let I be the number of elements incomparable to 2 imme-
diately before its final reference. In addition, let L(0) be the number of elements
less than x immediately before its final reference that were incomparable to
immediately before the penultimate reference to z. We have 71 +ry < G+I+L(0).

Denote by t; the time of the penultimate reference to x, and by t2 the time
of the final reference. Since each element in L(0) at time ¢, is incomparable to x
at time ¢1, we have L(0)y, < I, . That is, for any ¢,, there is some t; < t3 such
that L(0)¢, < It,. Thus), L(0); < >, I;. But }°, I; < >, G; by the counting
argument, Lemma 1. Summarizing, we have

WFA' (o) < Z 2r1 + 1) < 2(r1 +12)
7

<2 (Gy+ I+ L(0)) <6 G < 60PT(0)
t t

Now suppose that WF A’ can introduce paid exchanges. To extend the proof
from Mtmw to WFA', we would demonstrate (1) that the paid exchanges do

17

not affect the validity of Lemma 2, and (2) that the cost of each paid exchange
can be allocated uniquely to an earlier reference of the rearward element of the
pair. Therefore the total cost of paid exchanges cannot exceed the total reference
cost, and WFA' is at least 12-competitive.

Note that, for list update, the algorithm W F A (without the subscript) can
be less effective than W FA’. Consider the sequence o = bbb for a two-element
list (a,b). After the second reference to b, the list configuration (b, a) has strictly
lower work function value. But W F A does not (necessarily) move to that state
until after the third reference to b. However, we believe it is possible to extend
the above proof of O(1)-competitiveness to W F A.

It is fairly clear that the competitive ratios shown by our analyses of these
algorithms are not tight. The above example shows that WF A, even without
paid exchanges, is no better than 3-competitive.

5 Acknowledgments

We gratefully acknowledge discussions with Susanne Albers, Ran El-Yaniv, Sandy
Irani, and Jayram Thathachar.

This work was supported in part by NSF grant ETA-9870740 and BSF grant
96-00247 (Karlin), the CRA Distributed Mentor Project (Hildrum and Rasala),
and an IBM Research Fellowship (Anderson).

References

1. S. Albers and J. Westbrook. Self-organizing data structures. In Online Algorithms:
The State of the Art, Fiat-Woeginger, Springer, 1998.

2. D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28:202-208, 1985.

3. J.L. Bentley and C. McGeoch. Amortized analysis of self-organizing sequential
search heuristics. Communications of the ACM, 28(4):404-411, 1985.

4. S. Albers. Improved randomized on-line algorithms for the list update problem.
SIAM Journal on Computing, 27: 682—693, 1998.

5. R. El-Yaniv. There are infinitely many competitive-optimal online list accessing
algorithms. Discussion paper from The Center for Rationality and Interactive
Decision Making. Hebrew University.

6. N. Reingold and J. Westbrook. Off-line algorithms for the list update problem.
Information Processing Letters, 60(2):75-80, 1996.

7. S. Irani. Two results on the list update problem. Information Processing Letters,
38(6):301-306, 1991.

8. A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical task
systems. Journal of the ACM, 52:46-52, 1985.

9. E. Koutsoupias and C. Papadimitriou. On the k-server conjecture. Journal of the
ACM, 42(5): 971-983, September 1995.

10. M. Manasse, L. McGeoch and D.D. Sleator. Competitive algorithms for server
problems. Journal of Algorithms, 11:208-230, 1990.

18

11. W. Burley and S. Irani. On algorithm design for metrical task systems. In Pro-
ceedings of ACM-SIAM Symposium on Discrete Algorithms, 1995.

12. D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. Journal of the
ACM, 32: 652-686, 1985.

13. M. Chrobak, L. Larmore. The server problem and on-line games. In On-Line
Algorithms, Proceedings of a DIMACS Workshop, Vol 7 of DIMACS Series in
Discrete Mathematics and Computer Science, pp. 11 — 64, 1991.

14. W.R. Burley. Traversing layered graphs using the work function algorithm. Journal
of Algorithms, 20(3):479-511, 1996.

15. B. Teia. A lower bound for randomized list update algorithms. Information Pro-
cessing Letters, 47:5-9, 1993.

16. S. Albers, B. von Stengel and R. Werchner. A combined BIT and TIMESTAMP
algorithm for the list update problem. Information Processing Letters; 56: 135—
139, 1995.

17. S. Albers. Private communication.

In this Appendix, we address the proofs of the three propositions leading to
Lemma 2. The most intricate part of the part of the construction is contained
in Proposition 11; we save its proof for last. Then we present some concluding
remarks about the construction and the prospect for improved bounds. [Omit-
ted.]

Proposition 9. Suppose T" is derived from T, such that (i) all referenced ele-
ments p have p(T') = p(T), (ii) x occupies in T' the location of the front-most
non-referenced element in T, and (i) T' has the non-decreasing depth property,
p(T") > p(T) for all p # x. Then the number of exchanges required to transform
T to T is bounded by (i) the number of interchanges involving x, plus (ii) the
number of referenced elements, plus (iii) the number of interchanges involving
non-referenced elements. In particular, the cost of the reference to x inT is equal
to the cost of the reference in T', plus the number of interchanges involving x.

Proof. If the first non-referenced element in 7' is x itself, then in order to satisfy
the non-decreasing depth property, p(T") = p(T) for all non-referenced elements,
and there is nothing to prove. Otherwise, denote by py, .. ., pn the non-referenced
elements in their order in T, with p, = x. We note that for ¢ > 2z, the non-
decreasing depth property requires p;(T") = p;(T"). We start by moving x forward
to the location of the first non-referenced element, p;. These interchanges all
involve z. Next, we move p; to location 2.° By the non-decreasing depth property,
either p; or ps must occupy location 2. If ps is x, we are done. Otherwise, there
may be one interchange, between p; and p». Inductively, at step ¢, for location
1, each referenced element below location ¢ has interchanged with at most one
non-referenced element, and each referenced element above location ¢ has not
interchanged with any non-referenced elements; and some element p;,j < i, is
either (i) adjacent to p;, or (ii) is in location ¢ and p; is z. If the latter, we
are done. If the former, one or the other of p; and p; must occupy location ¢

® In what follows, by slight abuse of notation, we refer to the location of the i'th
non-referenced element in 7' by the description “location i” or “position 7”.

19

by the non-decreasing depth property; swap them if necessary; and interchange
the other with all referenced elements between location ¢ and location ¢ + 1.
By induction, each referenced element has interchanged with at most one non-
referenced element, so the number of such interchanges is bounded by the number
of referenced elements. The result follows.

We next prove Proposition 10, which is in some sense the obverse of the
preceding one. Here z is already ahead of all other non-referenced elements; we
move the non-referenced elements forward to their ending positions.

Proposition 10. As above, let S’ be derived from the state S as follows:

— All referenced elements are in the same locations and in the same order in
S’ asin S.

— x occupies in S’ the position of the front-most non-referenced element in S.

— All other non-referenced elements are in the same pairwise order in S' as in

S.

As above, let S be derived from the state S by moving x forward to immediately
in front of the front-most non-referenced element. Then the cost x(S') of the
reference to x in state S', plus the distance d(S',S) from S' to S, is less than
the depth x(S) of x in S by at least the number of non-referenced elements in
front of x in S. That is, we have

z(S") +d(S",) + |N| < z(9).

Proof. Suppose z occupies the i'th non-referenced location from the front in
S. (That is, |[N| = i.) Denote the first i non-referenced elements of S in order
by gi,...,¢; = z. In S’, the element ¢; ; occupies position %; g;_2, position
i—1; and so on; g1 occupies position 2; and z occupies position 1. We transform
S’ to S by interchanging, for all 1 < j < 4, ¢; with all referenced elements
between it and g;_i, and ¢ with all referenced elements between it and z.
Each referenced element between x and ¢;_; interchanges with at most one non-
referenced element, and each such is in front of z in S. Thus the number of
exchanges required to transform S’ to S , plus the number of referenced elements
in front of z in S’, plus the number of non-referenced elements in front of z in
S, is no greater than the depth of in S. The result follows.

Finally, we address the most intricate part of the construction:

Proposition 11. Suppose S’ is derived from S, such that (i) all referenced el-
ements p have p(S") = p(S), (i) x occupies in S’ the position of the front-most
non-referenced element in S, and (iii) all other non-referenced elements are in
their same respective order in S’ as in S. Then there is o T' with the non-
decreasing depth property, and a subsequence O' C O, such that (i) O'(T') = 5',
and (ii) the cost of O is at least the cost of O' plus the cost of interchanges
I[T",T] of non-referenced elements (other than x) necessary to derive T' from
T.

20

Proof. As above, we denote by p; the non-referenced element occupying the i'th
non-referenced position in T'. For convenience, let z denote the location of x as
a non-referenced element in T, p, = z.10

We proceed by iteratively constructing 7’ from the end of the list, beginning
with O~1(S"). The location of referenced elements remains fixed throughout the
construction. As a result, we consider only the N positions of non-referenced
elements. For convenience, we describe the iteration as proceeding from i = N
to ¢ = 1. (The “base case” is denoted by “ = N + 1”.) At each step, then, we
define a map O; : T} — S’. The non-decreasing depth property is maintained for
the elements (other than z) in O; *(S’) = T/ that occupy the locations i through
N in T]. We show that any necessary interchanges of elements as we proceed
from T} to T}_, correspond to transpositions in O}.

For each pair of elements p,q # z at locations i and below in T/, we can
determine whether these two elements are in the same or in the opposite order
in T. We denote by I;[T},T] the number of pairwise inversions of such elements
(other than). We denote by |O| (respectively, |O;]) the number of transpositions
in the sequence O (respectively, O;).

Formally, we show by induction that for each i:

1. 0;(T))=S5"(and O; ' : §' = T7)

2. O; C O in the sense of a subsequence of transpositions, and |0 > |0;| +
L[T],T] (all swaps and inversions are accounted for)

3. z(T}) < pi(T) (x is no deeper than position)

4. Vp # z with p(T) > pi(T),p(T}) > p(T) (all elements other than z at
position 4 or below in T have the non-decreasing depth property)

5. Vp,q # = with p(T),¢(T) < pi(T):
(a) p(S) < x(8) <= p(T}) # p(T), and p(S) > z(S) <= p(T}) = p(T)
(b) p(T) = ¢(T}) = p(S) > q(5)

To carry out the induction proof, we will start by demonstrating the hy-
potheses for an appropriate base case. For the induction step, we assume the
five hypotheses for i + 1, derive a transformation O;, and show the validity of
the hypotheses for i. Then we define 7’ = T, and note that the non-increasing
depth property is satisfied for all p; # z. We define O' = O;, and note all of
the inversions between non-referenced elements in 7' have been accounted for,
i.e, I[T,T']+|0'| < |O|. Finally, we repeat that because the only transpositions
removed from O are between non-referenced elements, the depths, and thus the
reference costs, of all referenced elements remains identical between O and O'.

O

The base case. For the base case, we define O, = 0, T; = O~ (T"). (Notationally,
bis N + 1.) Then (1) and (2) follow from our definition (I} is zero). Items (3)
and (4) are vacuous. We must show that items (5)(a) and (5)(b) are true for all
non-referenced elements in T;. For item (5)(a), by construction of S’, elements

10 We use the terms “position” and “location” interchangeably to refer to the respective
positions of non-referenced elements in 7T'.

21

q deeper than z in S are unaffected by the shift, ¢(S) > z(S) = ¢q(S) = ¢(S")
so ¢(T) = ¢(Ty), while elements g closer to the front of S are “shifted down”,
a(S) < z(S) = q(5') # q(S5) (indeed g(S") > g(5)), so q(T) # q(Ty)-

Finally, for (5)(b), p(T) = ¢(T3),p # ¢ implies p(T') # p(T;) implies (by
(5)(a)) p(S) < x(S), similarly ¢(S) < z(S). By construction, p(S') > p(S) by
one non-referenced position, but ¢(S’) = p(S) since O~ takes q to location p(T')
in 7. Hence p(S’) > q(S').

Induction step. Now suppose the entire hypothesis is true for 7 + 1 (including
for example b = N + 1). We will construct an appropriate mapping O; that
satisfies the hypotheses for i. We describe three stages, depending on whether
the element z has yet been considered. Denoting by z the location of z in T', so
that © = p., we consider p; for (i) i > z, (ii) ¢ = z, (iii) ¢ < z in turn.

Case (i): 1 > z. We have the non-decreasing depth property for j € i+1,..., N,
which because i > z requires strictly that p;(T7,;) = p;(T’) for all locations j.
In this case, the non-decreasing depth property applied to ¢ will require strictly
that p;(T) = p;(T"). Throughout this stage, in particular, the non-decreasing
depth property for ¢ implies I,[T},T] = 0.

We examine the current occupant of position 4 in Tj,,. There are three
possibilities to consider:

— The occupant is p; itself, p;(T{,,) = p;(T). In that case, set O; = O;;1. The
non-decreasing depth property is (precisely) satisfied. Hypotheses (1) and
(2) follow immediately from their validity for ¢ + 1; hypothesis (3) and (4)
follow from the depth property; and hypothesis (5) is more restrictive, hence
valid.

— The occupant is z, 2(T}j,;) = pi(T). In this case, T; will be obtained by
interchanging p; with z. We observe that p;(T;, ;) < (T}, ;) (by the depth
property at ¢ + 1), and z(S’) < p;(S’) by construction (z is the front-most
non-referenced element in S'), so ¢ and p; are inverted by O;41, and there
is a transposition in O;;1 between them. Remove this transposition to get
O; C Oj41. The non-decreasing depth property is again precisely satisfied,
implying hypotheses (3) and (4); and hypothesis (5) is unchanged for p;, j <
i. (Hypothesis (5) does not apply to z.)

— The occupant is p; # =, pj(T;,,) = pi(T). In this case, T; will be obtained
by interchanging p; with p;. We observe (again) that the depth property
is precisely satisfied for k > 4, so pi(T},,) < p;(T{,,) = pi(T). Also, by
hypothesis (5)(b), we have p;(T},,) = pi(T) = p;(S) < pi(S). Therefore,
Oi41 inverts p; and p;. Remove this transposition to get O; C O; 1. The non-
decreasing depth property is again precisely satisfied, implying hypotheses
(3) and (4). We note that hypothesis (5) holds for p; by transitivity: suppose
p; occupies location k in T}, |, p(T') = pi(T{,,); and pi(T) = p;(T},,); so
by hypothesis (5)(b) at the previous step we have p;(S) < pi(S) < px(S),
implying (5)(b) at the current step (and in particular j # k, so (5)(a) is
satisfied).

22

This concludes the analysis of the stage where the depth property is precisely
satisfied, p; (T") = p;(T)Vi > =.

Case (i#): i = z. In this case there is nothing to do, O; = O;41. Since the depth
property is satisfied for i+1,..., N, and does not apply to z, it remains satisfied.

Case (ii3): i < z. In this case, the elements occupying locations i +1,..., N are
Dit1,---,pn other than z, together with (by the non-decreasing depth property)
some single element p;, which might be z.

We consider four cases: p; is x; p; is p;; p; # «, and p; occupies location 4 in
T}i15 pj # ©,piy and pi(T}y,) # pi(T).

— pj is z. In this case, by hypothesis (3), p; = x occupies location i + 1 in
T}, ,- In this case, T; will be obtained by interchanging p; and z. We know
pi is above @ in T/, pi(Tl,) < a(Tl,,). But, as above, (S") < pi(S")
by construction (z is the front-most such in S’). Therefore there is a swap
in O;11 between z and p;. Remove it to obtain O; C O;11. We note that
I; = I; 11, because x occupied location +1 (hypothesis (3)), and all elements
below location ¢ + ¢ have index larger than 4. The occupant of location ¢
is left undetermined here; even if it is x, hypothesis (3) remains satisfied.
Hypothesis (5) remains true, since only z’s location has changed, and the
hypothesis does not apply to it.

— pj is p;. In this case, we do nothing, O; = O;41. We have by induction that p;
is the unique element in locations ¢+ 1, ..., N whose index is less than ¢ + 1.
This implies hypothesis (3). For the same reason, the depth property contin-
ues to be satisfied in T}. Also, I; = I;11, because the inversions with respect
to p; were already counted in I;;,, and the element occupying location 7 in
T{,, (now T}, and considered in I; for the first time) is either x or (by the
depth property) has index less than 4, so has no inversions with respect to
any elements in locations ¢ + 1,..., N. Hypothesis (5) is unchanged.

— pj is neither x nor p;, and pi(T},,) = pi(T). (That is, p; occupies loca-
tion ¢ in 7" and in T, ,.) In this case, T; will be obtained by interchanging
p; with p;. We have from hypothesis (5)(a) that p;(S) > z(S), and (since
J <4, but p;(Ti,) > pi(T)) pi(Tiy1) # pi(T), so p;(S) < x(S). Hence
there is an interchange in O;y1 between p; and p;. Remove it to obtain
O; C Oj41- The element p; now occupies location ¢, element p; now satisfies
the depth property, and elements p;, pi+1,---,pn (other than z) occupy lo-
cations 1+ 1,..., N (though not necessarily in that order), so hypothesis (3)
is also satisfied. Furthermore, the inversions I; are the same as in I;; 1, since
p; and p; are the two elements with smallest indices among those occupying
locations ,i+1,..., N (so that swapping p; for p; replaced inversions involv-
ing p; with inversions involving p;, but introduced no new inversions), and
p; is now in location i (so that there are no inversions involving p;). Finally,
we note that, even though the location of p; has changed as a result of the
swap, hypothesis (5)(a) remains satisfied because p; now occupies location
i # j, pj(T) # p;j(T]) as before; and hypothesis (5)(b) does not apply to
location 3.

23

— pj is neither nor p;, and p;(T;, ;) # pi(T). In this case, pi(T;,,) < pi(T)
(that is, p; occupies a position closer to the front of the list 7}, ; than position
i). We swap p; with the element (py, say) occupying position 4 in T}, ;. We
have from hypothesis (5)(b) that p;(S) < pi(S), and here that py (T}, ;) =
pi(T) > pi(T{;,), so there is a swap between them. Remove it from O;;y
to obtain O;. The depth property continues to be satisfied, as is hypothesis
(3). The only element in locations ¢ +1,..., N in T} that is not in locations
i+1,...,Nin T (that is, does not have index > i+1) is p;. We have therefore
introduced only one additional inversion (that between p; and p;) by reason
of the progression from I;y; to I;. That additional inversion is offset by the
swap between p; and p; that we have removed from O;;1 to obtain O;.
(This is the only case in which this construction requires this offset.) Thus
hypothesis (2) remains valid. Finally, we show that hypothesis (5) remains
valid for py, the element swapped with p;. Suppose p; occupied location [
in Tj, ;. Then p;(S) > pi(S) by hypothesis (5)(b) (induction), and px(S) >
pi(S) by hypothesis (5)(b) (induction), so pr(S) > pi(S), establishing (5)(b),
and in particular k # [, establishing (5)(a).

This exhausts the possible cases for Proposition 11, and concludes the proof. O

Remarks. [Omitted.]

