Complexity Classification of Network Information Flow Problems

April Rasala Lehman*

Abstract

We address the network information flow problem, in
which messages available to a set of sources must be
passed through a network to a set of sinks with speci-
fied demands. This differs from traditional multicom-
modity flow, because information can be duplicated
and encoded. Previous work has focused on the spe-
cial case of multicasting using linear coding. In this
paper, we explore the applicability of network coding
to a breadth of problems and consider the greater
potential of nonlinear coding techniques. Our main
contribution is a taxonomy of network information
flow problems. We establish a three-way partition
consisting of problems solvable without resorting to
network coding, problems requiring network coding
that are polynomial-time solvable, and problems for
which obtaining a linear network coding solution is
NP-hard. We also demonstrate limitations of linear
coding: for multicasting, nonlinear codes may em-
ploy a smaller alphabet than any linear code and,
more generally, there exist solvable information flow
problems that do not admit a linear solution.

1 Introduction

We address the network information flow problem.
Here a network is a directed acyclic graph contain-
ing sources (each with a set of available messages),
some intermediate nodes, and sinks (each demanding
a set of messages). A message is a symbol drawn from
an alphabet ¥, which is typically a finite field. One
symbol may be sent across each edge. The problem is
to determine whether the message demands at every
sink can be satisfied. This resembles a multicom-
modity flow problem, but is fundamentally different
because information can be duplicated and encoded,
while commodities can not.

~ *MIT Laboratory for Computer Science. Cambridge, MA
02139. arasala@theory.lcs.mit.edu

fMIT Laboratory for Computer Science. Cambridge, MA
02139. e_lehman@theory.lcs.mit.edu

Eric Lehman'

Generates
Mqand M 2.

t1 to

Demands Demands
Mqand M. Mqand M.

Figure 1: The canonical example of network coding.

Figure 1 shows an instance where information
flow differs from commodity flow. The single source
s has two messages, M; and Ma>, which are both
demanded by two sinks, ¢; and t2. This problem can
be solved only by coding. We send M; on the left, M,
on the right, and M; + M> down the middle. Each
sink can then compute M; and M, from the data it
receives.

1.1 Previous Work The network information
flow problem was introduced by Ahlswede, Cai, Li
and Yeung [1]. They considered the multicast prob-
lem in which a single source broadcasts a number of
messages to a set of sinks. Ahlswede, et al. showed
that if a multicast problem with k messages is solv-
able, then the minimum cut between the source and
each sink must be of size at least k. Li and Yeung [6]
showed that this bound is tight and achievable by
a restricted class of codes referred to as linear net-
work codes. A linear network code has the property
that the symbol transmitted by a node on an out-
going edge is a linear combination of the symbols
received at that node. Koetter and Médard [5, 4]
introduced an algebraic framework for study of the
problem. They reduced the problem of determin-
ing whether an instance of the network information

flow problem admits a linear solution to determin-
ing whether a related polynomial lies in the ideal of a
particular variety. They note that the usual approach
to this problem employs Grobner bases and can take
exponential time in general. However, for the spe-
cific case of the multicast problem, their framework
yields a randomized polynomial time algorithm. Ho,
Karger, Médard, and Koetter reformulated these al-
gebraic conditions in more combinatorial terms [3].
Recently, Sanders, Egner, and Tolhuizen [7], improv-
ing upon an exponential-time algorithm due to Li and
Yeung [6], presented a deterministic, polynomial-time
algorithm for the multicast problem. In addition,
Sanders et al. showed an instance of the multicast
problem where the rate achievable by network cod-
ing is a factor Q(log V') greater than the best possible
without coding, where V' is the number of nodes in
the network.

1.2 Owur Contribution In this paper, we explore
the applicability and limitations of network coding
to a breadth of information flow problems beyond
multicast. Our main contribution is a taxonomy of
information flow problems based on the number of
sources, number of sinks, distribution of messages at
the sources, and relationship between sink demands.
We describe a three-way partition of possible infor-
mation flow problems. For the first class, we prove
that network coding adds nothing; if sink demands
can be satisfied at all, traditional flow technique pro-
vide a solution in polynomial time that does not in-
volve coding. Then we exhibit a second class of net-
work information flow problems for which coding is
advantageous. In this case, solutions can be obtained
in polynomial time by adapting the Sanders-Li mul-
ticast algorithm. For the third class of problems, we
show that determining whether there exists a solution
using linear codes— as in the Sanders-Li algorithm—
is NP-hard.

We also consider limits on the power of network
coding. The Sanders-Li algorithm employs an al-
phabet ¥ of size O(m), where m is the number of
sinks. We show that this can not be substantially
improved; there exist multicast problems requiring
an alphabet of size Q(y/m). However, determining
the minimum alphabet size for a specific multicast
problem is NP-hard, whether we consider linear or
more general codes. Moreover, we show that linear
coding is limited in several respects. First, nonlin-
ear codes may allow a significantly smaller alphabet,

even for multicast problems. Furthermore, we show
that there exist solvable information flow problems
that do not admit any linear solution.

2 The Model

We model an instance of the information flow problem
with a directed, acyclic graph G = (V, E). There are
two disjoint subsets of special nodes, S,T C V. The
nodesin S = {s1,...,s,} are called sources and have
indegree zero. The nodes in T' = {t1,... ,t,} are
called sinks and have outdegree zero. All other nodes
in V are called intermediate nodes.

The goal of the problem is to transmit a collection
of messages M = {M;, Ms, ...} from the sources to
the sinks. Each message consists of one symbol drawn
from an alphabet ¥ of size ¢ > 1. (We shall frequently
regard ¥ as a finite field.) Each source s; has a set
of available messages A(s;) C M, and each sink ¢;
demands a set of messages D(t;) C M.

One symbol from ¥ can be transmitted over each
edge in the directed graph G. In particular, for each
source s;, the symbol on the edge s; — v must be
a function of the messages available at the source,
A(s;). If u is an intermediate node, then the symbol
on edge u — v must be a function of the symbols on
the edges entering u.

The set of all functions associated with edges is
called a network code. If the alphabet X is a field
and every edge function is a linear combination of its
inputs, then we say that the network code is linear.
If every edge function maps one input directly to its
output, then we say that the network code is trivial.
If, for every sink t;, every message demanded by t;
is computable as a function of the symbols on the
incoming edges, then the network code is a solution
to that instance of the information flow problem.

In practice, if we can transmit a collection of
single-symbol messages M from the sources to the
sinks, then we can equally well transmit multi-symbol
data streams by sending one symbol from each stream
in each time step.

Multicast information flow problems have re-
ceived the most study to date. In this case, there is
one source s, and there are multiple sinks #1,... ,tpn.
All messages are available at the source and de-
manded by every sink; that is, A(s) = M and
D(t;)=Mforall<i<m.

3 The Role of Alphabet Size

The size ¢ of the alphabet ¥ used in a network
code has an important practical interpretation. Each
intermediate node receives one symbol from ¥ along
each incoming edge and then transmits functions of
those symbols along its outgoing edges. Thus, in
general, each node requires logq memory bits per
incoming edge. Moreover, if each edge transmits
a constant number of bits per time step, then use
of a large alphabet adds loggq time steps of latency
per node. Consequently, we would like to keep the
alphabet size ¢ as small as possible.

3.1 A Lower Bound on Alphabet Size The
Sanders-Li algorithm shows by construction that ev-
ery solvable multicast problem can be solved using a
linear network code with an alphabet of size O(m),
where m is the number of sinks. We show that this
result is essentially tight; even if we restrict attention
to multicast problems and allow nonlinear network
codes, there exist solvable multicast problems requir-
ing an alphabet of size Q(y/m). The implication is
that ©(logm) memory bits are necessary and suffi-
cient to store a single alphabet symbol.

We begin with a technical lemma that gives some
insight into why a larger alphabet may be necessary
to solve a network coding problem. Let f; and f;
be functions mapping %2 to ¥. Then we can form a
function g;; : £2 — X2 defined by:

gij(aaﬂ) = (f’l(aaﬁ)) fj(Ot,,B))

If g;; is invertible, then we say that functions f;
and f; are independent. Equivalently, f; and f;
are independent if and only if there do not exist
distinct points (ay,31) and (a9, B2) in ¥2 such that
filew, B1) = fi(az, B2) and fj(ar, B1) = fi(az, B2).

In short, the messages a and 3 can be determined
from f;(a, B) and f;(a, B) if and only if the functions
fi and f; are independent. But the following lemma
says we can not construct a large set of pairwise
independent functions over a small alphabet. The
main idea of our subsequent theorems is that some
information flow problems are insolvable with a small
alphabet because one “runs out” of independent
functions.

LEMMA 3.1. If f1,...,fn are pairwise independent
functions of the form f; : 32 = %, thenn < g + 1.

Proof. First, we show that each function f; must
be a g-to-1 mapping. Suppose not. Then f; must
take on some value v € ¥ at more than g points
(a, B) € £2. By the pigeonhole principle, the function
fi (where j # i) must take on some value ¢ € X for
at least two of those points; call them (a;,5;) and
(a2, B2). Thus, we have fi(a1,p1) = fi(az,B2) and
filaa, B1) = fi(az, B2), contradicting the assumption
that f; and f; are independent.

Now define an agreement of the function f; to be
a pair of distinct points (a1,51) and (a2, 32) in X2
such that fi(al,ﬂl) = fi(ag,ﬂg). Each function f,
has ¢®(¢—1)/2 agreements; for each of the ¢ elements
v € ¥, we can choose ¢(g — 1)/2 pairs of distinct
points from among the ¢ points in (o,) € £2 such
that fi(a,8) =~. In all, there are ¢*(¢? — 1)/2 pairs
of distinct points in X2. Therefore, again by the
pigeonhole principle, there must exist two different
functions f; and f; that share an agreement if:

n-g*(g-1)/2 > ¢ (¢ —1)/2
n > g+1

But if f; and f; share an agreement (oq,(:1) and
(a2, B2), then we have fi(a1,B1) = fi(az,B2) and
fi(oa, B1) = fj(az, B2), contradicting the assumption
that f; and f; are independent. Therefore, we must
have n < ¢+ 1 as claimed. O

Conversely, constructing a set of ¢ + 1 pairwise
independent functions is a simple matter when ¢ is
a prime power. Regard ¥ as a finite field, and take
all functions f(z,y) of the form z + ay where a € &
together with the function y.

THEOREM 3.1. There exist solvable multicast infor-
mation flow problems that require an alphabet of size
Q(y/m), even if nonlinear network codes are permit-
ted.

Proof. Define an information flow problem as follows.
Create a single source s and intermediate nodes
vi,...,Vp. Add a directed edge s — v; from the
source to each intermediate node. For each pair of
distinct intermediate nodes v; and vj;, create a sink
t;; and add directed edges v; — t;; and v; — t;;.
Note that the number of intermediate nodes p is
©(y/m), where m is the number of sinks. There are
two messages, M; and M, available at the source,
and these two messages are demanded by every sink.

First, we show that this problem is solvable. If
the alphabet size is a prime power greater than the
number of intermediate nodes, then the edges s —
Vi,...,§ — vp may carry functions of M; and M>
that are pairwise independent. If each intermediate
node then relays its input directly to its outputs, then
each sink receives pairwise independent functions of
M; and M> and can therefore reconstruct messages
M; and M5 as desired.

Now, we show that the problem is insolvable if
the alphabet is too small. Suppose that the number
of intermediate nodes is greater than ¢ + 1. Then by
Lemma 3.1 the edges s — v; can not carry functions
of M; and M- that are all pairwise independent. In
particular, suppose that intermediate nodes v; and
vj receive functions that are not independent. Then
messages M1 and My can not be determined from the
values of these functions. Therefore, these messages
can not be computed at sink ¢;;, which receives no
other information. Thus, in general, an alphabet
of size Q(y/m) is required to solve some multicast
information flow problems. 0O

3.2 Determining the Minimum Alphabet
Size We have seen that some information flow prob-
lems can only be solved by using a large alphabet.
In this section, we show that it is computationally
hard to determine exactly how large an alphabet is
required.

The following two reductions rely on the hard-
ness of graph coloring and a generalization of graph
coloring called H-coloring. In both cases, we map an
undirected graph G' = (V', E') to a network infor-
mation flow problem G as follows. The nodes of G
consist of a single source s, an intermediate node v;
for each vertex v; € V', and a sink t;; for each edge
(v,v}) € E'. There is an edge s — v; for each vertex
v; € V', and there are edges v; — t;; and v; — ¢;; for
each edge (v;,v;) € E'. Two messages, M1 and M»
are available at the source, and these two messages
are demanded by every sink.

THEOREM 3.2. Deciding whether there exists a lin-
ear network code with alphabet size q for o multi-
cast information flow problem is NP-hard when q is
a prime power.

Proof. We use a reduction from vertex coloring on
undirected graphs.

Let G' = (V', E') be an undirected graph. Con-

struct a corresponding information flow graph G as
described above.

We show that G' is ¢ + 1 colorable if and only
if G is solved by a linear network code with an
alphabet of size ¢q. First, suppose that G' is (g + 1)-
colorable in order to show that this implies the
existence of a linear network code that solves the
information flow problem G'. Let ¢(i) € {1,... ,q¢+1}
denote the color of vertex v,. As noted after the
proof of Lemma 3.1, there exist pairwise independent
functions fi,..., f;+1 of the form f; : £2 — %.
Along each edge s — v; and all edges v; — t;;, send
the symbol f., (M1, Ms). Then each sink ¢;; receives
feiy(My, M3) and fe;)(My, Ms). Since colors on
adjacent vertices are distinct, ¢(i) # ¢(j), and so the
functions f.(;) and f.(;) are independent. Thus, each
sink can reconstruct messages M; and M> as desired.

Next, suppose that there exists a linear network
coding solution to the information flow problem G
with an alphabet of size ¢q. We show that this
implies that there exists a ¢ + 1 coloring of G'.
Each edge s — wv; then carries a nonzero linear
combination aM7 + S M>. We can partition the set of
all such linear combinations into ¢ + 1 equivalence
classes; the nonzero multiples of M; + aM, form
one class for each @ € ¥ and the nonzero multiples
of M> form the remaining class. This places every
pair of independent linear combinations into different
classes. Assign each class a distinct color. Now assign
vertex vj € V' the color of the class containing the
function associated with edge s — v;. The endpoints
of each edge (v}, v}) € E' are then colored differently,
because the functions for edges s — v; and s — v;
must be independent so that sink ¢;; can reconstruct
messages M; and M,. Therefore, this gives a valid
g+ 1 coloring of G'. O

3.3 Nonlinear Codes We now consider nonlinear
codes and show that minimizing the alphabet size re-
mains hard. We use a reduction from H-coloring. An
H-coloring of an undirected graph G is a homomor-
phism h : G — H such that h(v) and h(u) are adja-
cent vertices of H if v and u are adjacent vertices of
G. Hell and Neset¥il showed that H-coloring is NP-
hard whenever H is not bipartite and is solvable in
polynomial time if H is bipartite[2].

THEOREM 3.3. Deciding if there exists a network
code with alphabet size q for a multicast information
flow problem is NP-hard when q is a prime power.

Proof. Define a graph H as follows. The vertices
are all the functions f : ¥2 — X. There is an edge
between vertices f and g if they are independent
functions. Note that H is not bipartite for all prime
powers ¢, since there exists a set of three pairwise
independent functions.

Let G' = (V',E') be an arbitrary undirected
graph. Construct the corresponding network infor-
mation flow problem G. We show that G' is H-
colorable if and only if there exists a solution to prob-
lem G over an alphabet of size q.

Supose that G' has an H-coloring, h. Then
we can solve the information flow problem G by
sending each vertex v; the symbol f(M;, M>), where
f = h(v}). Each sink receives inputs from two vertices
v; and v; such that v and v} are adjacent in G'. This
means that h(v;) and h(v;) are adjacent in H and are
therefore independent functions. Thus, the sink can
reconstruct messages M; and M,.

On the other hand, suppose that there is a
solution to the information flow problem G. Then
we can construct an H-coloring h of the graph G’
as follows. For each vertex v; in G, let h(v}) be the
function of M; and M, output by v;. If vertices v}
and v} are adjacent in G', then the corresponding
vertices v; and v; in G share a sink. Since the sink
can reconstruct M; and Ma, the functions h(v}) and
h(vj) must be independent and thus adjacent in H.
Therefore, h is a valid H-coloring of G'. O

Interestingly, some multicast problems can be
solved with a smaller alphabet by using nonlinear
codes. For example, let ¥ be an alphabet of size
3. Let G’ be a graph whose vertices are all functions
f : ¥2 = ¥ and whose edges are all pairs of inde-
pendent functions. Then consider the corresponding
information flow problem G. This problem can be
solved using alphabet X by sending f(M;, M>) to the
vertex corresponding to the function f. On the other
hand, suppose that we want a linear solution. This
requires coloring the vertices of G' using independent
linear functions. A computation shows that the chro-
matic number of G' is 6, which implies an alphabet
of size at least 5. We conjecture that there can be
a very large gap between the absolute smallest al-
phabet size for a multicast problem and the smallest
possible alphabet size using linear coding.

4 Complexity Classification

We now provide a taxonomy of network information
flow problems. For our purposes, an information
flow problem is defined by four attributes: single or
multiple sources, single or multiple sinks, message
distribution at sources, and message distribution at
sinks. Thus a class of information flow problems
is defined by a four-tuple (a, 8, v, §), which is
interpreted as follows:

e o is 1 if there is a single source and n if there are
multiple sources.

e (is 1if there is a single sink and m if there are
multiple sinks.

e v is I if all messages are available at every
source, D if the sources have available disjoint
sets of messages, and A if there are no specific
guarantees about the availability of messages at
sources. In the case of a single source v is L.

e ¢ is I if every sink demands every message, D if
sinks demand disjoint sets of messages, and A if
there are no specific demand guarantees. In the
case of a single source 7 is 1.

We show that each of the resulting classes of in-
formation flow problems falls into one of the following
three categories.

Trivial codes suffice: The simplest problems
can be solved with a trivial network code, one in
which every edge carries an unencoded message.

Linear codes suffice: The next set consists of
problems for which nontrivial network coding is some-
times necessary. For this class of problems, linear
network coding always suffices, if a solution exists.
Furthermore, a solution can be found in polynomial
time by adapting the Sanders-Li algorithm.

Hard: Finally, the remaining problems some-
times require nontrivial network coding, but deter-
mining if a linear solution exists is NP-hard. For this
last class of problems, there are instances that do not
permit linear solutions but are solvable with nonlin-
ear codes.

In the next three subsections, we justify this catego-
rization of problems.

Problem difficulty # of sources # of sinks Information at sources Information at sinks
1 1 I, Dor A I

Trivial codes suffice ormn o
lorn m I D

Linear codes suffice lorn m ILDorA I

Hard to find linear codes, lorn m I A

may need nonlinear codes n m Dor A Dor A

4.1 Problems with Trivial Network Coding
Solutions We prove that two classes of problems
can be solved with trivial network codes, in which
every edge carries an unencoded message. Solutions
can be found in polynomial time with standard flow
algorithms.

THEOREM 4.1. An instance of information flow
problem, (n, m, I, D), with multiple sources, multi-
ple sinks and each message available at every source
but requested by exactly one sink has a solution if and
only if there is a trivial network coding solution.

Proof. We show that such an instance can be solved
by augmenting the associated network G and finding
an appropriate flow. In particular, we add a super-
source s* and add | M| edges from s* to each source
s;, creating a multigraph G'. We also add a super-
sink t*, and for each sink node t; we add |D(t;)| edges
from ¢; to t*. In G’ the original sources and sinks are
now intermediate nodes and all messages are available
only at the super source s* and requested by only the
super-sink ¢*.

Clearly, if the original problem was solvable, then
s0 is the new one. If the new problem is solvable, then
the maximum flow from s* to t* must be at least | M|
units; by a counting argument, we can not transmit
| M| messages across a cut with capacity less than
|M|. This implies that there exist | M| edge-disjoint
flow paths from s* to t*. QOur construction ensures
that every flow path traverses a former-source s; and
that exactly |D(¢;)| paths traverse each former-sink
t;. Therefore, in the original problem, each message
can be routed from a source to the appropriate sink
on a path that is edge-disjoint from the paths taken
by all other messages. Consequently, no coding is
necessary. O

Next we turn our attention to information flow
problems with a single sink and show that regardless

of the number of sources there always exists a trivial
network coding solution whenever the instance is
solvable.

THEOREM 4.2. An instance of the information flow
problem with a single sink has a solution if and only
if there is a trivial network coding solution.

Proof. Let G = (V, E) be the graph representing the
underlying network of with the single sink ¢. Create
graph G' = (V' E') by adding to G a super source
s*. In addition, for each message M;, add a node, u;,
an edge from s* to pu; and add an edge from node y;
to s; if M; € A(s;).

Clearly, if the original problem was solvable, then
so is the new one. If the new problem is solvable,
then the maximum flow from s* to ¢ must be of size
at least | M| units; by a counting argument, we can
not transmit | M| messages across a cut with capacity
less than | M|. If the maximum flow from s* to ¢ is of
size |M]|, then one unit of flow passes through each
node pu;. Therefore we can use the edge-disjoint paths
from the maximum flow to route each message to ¢
without using coding. O

4.2 Polynomial Time Solvable Linear Coding
Problems Recently Sanders et. al [7] presented
the first deterministic polynomial time algorithm for
solving the multicast information flow problem. As
Sanders et. al note, their algorithm can be seen as
a fast implementation of an algorithm due to Li et.
al [6]. We refer to these algorithms together as the
Sanders-Li algorithm. This algorithm can be easily
adapted to also solve the information flow problem
with multiple sources provided that all sinks request
to receive all messages.

The Sanders-Li algorithm was initially presented
in terms of the multicast problem in which every sink
wants to receive all available messages from a single
source. The first step of the algorithm is to find a

flow of size k from the source to each sink. Let Fj
be the flow associated with sink ¢;. The edges are
then considered in topological order. For each sink
t;, there are a set £(i) of | M| edges that are the
last edge in each flow path of F; considered by the
algorithm. The Sanders-Li algorithm maintains the
invariant that for each sink the set of symbols sent on
edges in £(i) are linearly independent combinations
of the messages.

THEOREM 4.3. An instance of the information flow
problem with every message requested by every sink
is polynomial time solvable.

Proof.Consider an instance of the information flow
problem in which every message is requested by all
the sinks. Let G = (V, E) represent the associated
network. Create a graph G' by adding a super source
s*. In addition, for each message M;, add a node
Wi, an edge from s* to u; and an edge p; — s; if
M; € .A(Sj).

For each sink ¢; find a flow F; of size |M| in G'.
Using the corresponding portions of these flow paths
in G and the Sanders-Li algorithm yields a linear
network coding solution in polynomial time. O

Note that in the special case, (1, m, I, I), where
there is only a single source the problem in which
every sink requests every message corresponds to
the multicast case and therefore the proof that it is
polynomial time solvable is due to Sanders et al [7].

4.3 Hard Linear Network Coding Problems
We now consider the class of information flow prob-
lems (n, m, D, A), where there are multiple sources
with disjoint information and multiple sinks that may
demand arbitrary messages. We show that even de-
termining whether there exists a linear network cod-
ing solution to such a problem is NP-hard. This con-
trasts with the information flow problems considered
previously, for which linear solutions can be found ef-
ficiently, provided they exist. We focus on the class
(n, m, D, A) for ease of presentation; similar argu-
ments give hardness results for more restricted prob-
lem classes.

LEMMA 4.1. Let f1, fa, f3, h, and k be linear func-
tions over a field. If x1, x5, and x3 are uniquely
determined by fi(z1,21), f2(z2,22), f3(x3,23),
g(z1, 22,3, 21, 22,23) and h(z1, T2, 3,21, 22,23) then
fi(zi, z;) = az; for some i€ {1,2,3} and o # 0.

Access to Access to

Mk, M.

Access to
M|, M.

and M .

Demands Mj' I\W |

K

Figure 2: Portion of the information flow problem
corresponding to variables z;, x; and z; and the
clause ¢; = (z; VTE V).

Proof. The values of the five functions can uniquely
determine the values of at most five of the variables
T1,%2,%3,21,22 and z3. If z; is determined and
fi(xs, 2;) depends on z;, then z; is determined as well.
Thus, at least one of the functions f; does not depend
on z;, and so fi(z;,2;) = az; as claimed. O

We now describe how to map a 3-CNF formula to
an information flow problem in the class (n,m,D,A).
Let ¢ be a 3-CNF formula over variables x1,Zs2, ... 2.
For each variable z; in ¢, we make the variable gadget
shown in the top three boxes of Figure 4.3. This
gadget consists of a source node s; with access to
messages two messages, M; and M;. The source node
has an outgoing edge to an intermediate node, r;.
For each clause ¢; = (z; V @y V x;), we create the
clause gadget shown in the bottom box of Figure 4.3.
This consists of a sink ¢;, which demands messages
M;j, My, and M;, together with two intermediate
nodes, u; and v;. The variable gadget is connected
to the clause gadget as follows. Nodes r;, ri, and
connect directly to the sink ¢;. Nodes s;, s, and s; all
connect to both u; and v;. This linkage is illustrated
in Figure 4.3. (Note that all three variable gadets
are connected to the clause gadget in the same way,
even though variable z is negated in the clause. This
negation is reflected in the demands at the sink.)

LEMMA 4.2. A 3-CNF formula ¢ is satisfiable if and
only if the corresponding information flow problem
has a linear network coding solution.

Proof. Suppose that ¢ is satisfied by some assigment
w. If a variable x; is true in 7, then source s; sends
message M, to r; and sends message M; on all other
outgoing edges. If z; is false, then s; sends M; to r;
and sends M; on all other edges. Node r; passes
its input to its output. Now consider the gadget
associated with a clause such as ¢; = (z; VTx V 2y).
Since 7 is a satisfying assignment, at least one literal
in the clause is true and so at most two literals are
false. Each message corresponding to a true literal
is sent to the sink from an r-node. Each message
corresponding to a false literal is sent from a source
node to both u; and wv;. Since there are at most
two such messages, u; and v; can relay them both
to the sink. (For example, suppose that assignment
m makes x; true and both ¥ and z; false. Then the
sink receives message M; via node r;, message My
via node u;, and message M; via node v;.) Thus, all
sink demands are satisfied, and the information flow
problem has a linear solution.

In the other direction, suppose that there is a
linear solution to the information flow problem. We
construct an assignment 7 as follows. If the output
of r; is a function of only Mj, then set z; true. If
the output is a function of only Mj, then set =;
false. Otherwise, set x; arbitrarily. Now consider
a clause ¢; = (z; VT V ;). Let f;, fr, fi denote
the values output by r;, 7, and r;, and let g and h
denote the values output by u; and v;. Since the sink
can determine messages M;, M}, and M;, Lemma 4.1
implies that either f; depends only on M}, fi depends
only on My, or f; depends only on M;. Therefore, at
least one of the literals z;, Tf, or x; is true, and the
clause is satisfied by assignment 7. Therefore, 7 is a
satisfying assignment for the 3-CNF ¢. O

Lemma 4.2 establishes the hardess of information
flow problems in the class (n, m, D, A). Minor
adjustments to the reduction yield the following,
more general result:

THEOREM 4.4. Determining whether there exist lin-
ear network coding solutions to information flow
problems in the classes (1, m, I, A), (n, m, D or
A, D or A), and (n, m, I, A) is NP-hard.

4.4 Linear Network Codes are Insufficient If
we do not insist on a linear solution, then the infor-
mation flow problems generated by 3-CNF formulas
are always solvable— even if the 3-CNF formula was
not satisfiable. This is in stark contrast to the multi-
cast case where a linear solution exists if any solution
exists.

THEOREM 4.5. There are solvable information flow
problems in the classes (1, m, I, A), (n, m, D or A,
Dor A), and (n, m, I, A) for which there is no linear
network coding solution.

Proof. [for the class (n, m, D, A)] Let ¢ be an unsat-
isfiable 3-CNF formula. By Lemma 4.2, there does
not exist a linear solution to the corresponding infor-
mation flow problem. However, we can construct a
nonlinear network coding solution to this information
flow problem as follows. Take the alphabet ¥ = I'xT,
where I is an arbitrary alphabet. Thus, each message
is a pair of symbols drawn from I'. Each source node
s; sends the first symbol of messages M; and M; to
node r; and sends the second symbol of these two
messages on all other outgoing edges. Node r; re-
lays its input to its output. Now consider a clause
¢i = (x; VT V ;). The sink s; demands messages
M;, My, and M;. From nodes r;, rj, and r, the sink
receives the first symbol of all six messages M;, M;
My, My, M;, and M;. Furthermore, the nodes u;
and v; receive the second symbol of all six messages.
Since each of these nodes can send two symbols from
I" to the sink, they can together provide the sink with
the second symbol of the three messages it demands.
O

5 Open Problems

We have shown that there are network information
flow problems for which linear codes are computa-
tionally hard to find and others for which linear codes
do not even exist. Thus, exploring nonlinear network
codes seems like a fruitful direction for future work.
The ultimate goal is to determine necessary and suf-
ficient conditions for the existence of a solution to an
arbitrary network information flow problem.

We have seen that, even in the multicast case,
a somewhat smaller alphabet can be used if one
employs nonlinear coding rather than linear. We
suspect that the gap can actually be very large, but
this requires lower-bounding the chromatic number
of graphs like the one constructed in Section 3.3. We

are unable to do this at present.

Acknowledgments

Madhu Sudan first introduced us to this problem and
gave many helpful suggestions and comments. We
would like to thank David Karger for pointing us to
the work of Sanders et al. [7].

References

[1]

3]

[4]

[5]

[6]

[7]

Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li,
and Raymond W. Yeung. Network information
flow. IEEE Transactions on Information Theory,
46(4):1204-1216, July 2000.

Pavol Hell and Jaroslav Nesetfil. On the complexity
of h-coloring. Journal of Combinatorial Theory,
Series B, 48:92-110, 1990.

Tracey Ho, David Karger, Muriel Médard, and
Ralf Koetter. Network coding from a network flow
perspective. In IEEE International Symposium on
Information Theory, 2003.

Ralf Koetter and Muriel Médard. Beyond routing:
An algebraic approach to network coding. In INFO-
COM, 2002.

Ralf Koetter and Muriel Médard. An algebraic ap-
proach to network coding. IEEE/ACM Transac-
tions on Networking, To Appear.

Shuo-Yen Robert Li, Raymond W. Yeung, and
Ning Cai. Linear network coding. IEEE/ACM
Transactions on Information Theory, 49:371-381,
2003.

Peter Sanders, Sebastian Egner, and Ludo Tol-
huizen. Polynomial time algorithms for network in-
formation flow.

