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Abstract

In the network coding problenthere arec commodities each with an associated message
M;, a set of sources that knoi; and a set of sinks that requesf,. Each edge in the
graph may transmit any function of the messages. These functions define a network coding
solution

We explore three topics related to network coding. First, for a model in which the
messages and the symbols transmitted on edges are all from the same aphabptove
lower bounds onX|. In one case, we proy&| needs to be doubly-exponential in the size
of the network. We also show that it is NP-hard to determine the smallest alphabet size
admitting a solution.

We then explore the types of functions that admit solutions. linear solutionover a
finite fieldF the symbol transmitted over each edge is a linear combination of the messages.
We show that determining if there exists a linear solution is NP-hard for many classes of
network coding problems. As a corollary, we obtain a solvable instance of the network
coding problem that does not admit a linear solution over any Feld

We then define a model of network coding in which messages are chosen from one
alphabet,I’, and edges transmit symbols from another alphabet,In this model, we
define therate of a solution adog |T'|/ log |X|. We then explore techniques to upper bound
the maximum achievable rate for instances defined on directed and undirected graphs. We
present a network coding instance in an undirected graph in which the maximum achievable
rate is strictly smaller than the sparsity of the graph.
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Title: Associate Professor of Electrical Engineering and Computer Science






Acknowledgments

| wish to thank my advisor Madhu Sudan. His help with technical matters shows its mark
clearly on my work but it was the quiet encouragement and support that were most im-
portant to me. My thesis readers, Dan Spielman and Muried&dd, provided very useful
feedback on drafts of this work. Over the last six years, Cliff Stein, Anna Karlin and Gor-
don Wilfong all went well beyond their official roles as mentors. The work presented in
this thesis is the result of collaborative efforts. Nick Harvey and Robert Kleinberg have
made the closing stretches of graduate school the most enjoyable. Other fellow students,
past and present, haven been the people who drew me back to work each day. In particular,
| would like to thank David Liben-Nowell and Adam Smith for their friendship. Be Black-
burn, Joanne Talbot and Kathleen Dickey always seemed to be looking out for me. Abby
Marsh, Alison Cohen and Taylor Schildgen provided many excellent diversions from work.

| have been extremely lucky to have my family close by. | wish to thank my father for his
encouragement along the way and interest in my work. Finally, Eric Lehman is an official
collaborator on part of the work in this thesis and an unofficial collaborator in all that | do.
His support, understanding and love are extraordinary.






Contents

1

Introduction 11
1.1 Definitions. . . . . . . . . 13
1.2 Discussionof Model . . . ... .. ... ... .. 16
121 Cycles. . . . . . e 16
122 Rate . . . . . . e 17
1.3 Two Restricted Network Coding Problems . . . . . . ... ... ... ... 18
1.3.1 Multicast Problem . . . . ... ... ... 19
1.3.2 k-Pairs Communication Problem . . . . . ... ... ... ... .. 19
1.4 Characteristicsofa Solution . . . . . .. .. ... ... ... L, 20
141 AlphabetSize . . .. ... .. .. .. ... .. 20
1.4.2 Linearityofasolution . .. ... ... . ... ........... 22
1.5 Historyof NetworkCoding . . . . . . . . .. ... ... .. ... ..., 22
1.5.1 Prehistory of Network Coding . . . . ... ... .......... 22
1.5.2 The DawnofNetworkCoding . . . ... .. ... ... ...... 24
1.6 OurResults . . . . . . . . . e 25
1.6.1 AlphabetSize . . . .. .. ... ... .. .. 25
1.6.2 Complexity of Linear Network Coding . . . . . ... ... .. .. 25
1.6.3 The Capacity of an Information Network . . . . . ... ... ... 26
1.6.4 Models for GraphswithCycles . . ... ... .. ... ...... 27
1.6.5 Thek-Pairs Communication Problem in Undirected Graphs . . . . 27
Alphabet Size 29
2.1 LowerBoundforMulticast . . . . . ... ... ... .. 30
2.2 HardnessforMulticast . . . .. .. ... ... 31
221 GeneralCodes . . .. .. . .. . ... 32
2.3 Lower Bound for General Problem . . . . . . .. .. ... ... ...... 33
2.3.1 Construction . . .. .. ... ... 34
2.3.2 Analysis . . ... 35
2.3.3 AlLowerBoundon AlphabetSize . . . . ... ... ... ..... 39
2.3.4 OperatingBelow Capacity . . . .. ... ... ... ........ 40

7



2.4 DiscussionandOpenProblems . . . . ... ... ... ... .. ... ... 41

25 References. . . . . . . .. e 41
Complexity of Linear Network Coding 43
3.1 Taxonomy of Network Coding Problems . . . . . .. ... ... ...... 43
3.1.1 EasyProblems .. ... .. ... . ... .. ... 44
3.1.2 Polynomial Time Solvable Linear Coding Problems . . . . . .. .. 45
3.1.3 Hard Linear Network Coding Problems . . . . .. ... ... ... 46
3.2 Insufficiency of Field LinearCodes . . . . . . . .. ... ... ....... 51
3.3 DISCUSSION . . . . . . e e e 53
3.4 References. . . . . . . . . e 53
Entropy Based Upper Bounds 55
4.1 Definitions. . . . . . . 56
4.2 SparseEdgeCuts . . . . . . . ... 58
4.3 Meagerness . . . . . . . i e e e e 59
4.4 The SplitButterfly . . . . ... .. ... 60
4.5 Entropy Based View of Network Coding . . . . . . ... .. ... ..... 62
4.6 DOWNSIreamness . . . . . . . . . .. e e e 64
4.7 Entropy-basedaxioms . . .. ... ... ... 67
4.8 The General Network Coding Problem . . . . . . .. ... ... ...... 69
4.9 Definitions. . . . . . .. 69
4.10 Extension of Techniques . . . . . . . .. ... . . ... ... .. ..... 70
4.11 Open QUESLIONS . . . . . . . . e 71
4.12 ReferenCes . . . . . . . . o o e e e e e e e 71
Graphs with Cycles 73
5.1 Modelsfor GraphswithCycles . . . . . . ... ... ... ... ...... 74
5.1.1 DelayVariables . . . . ... ... ... .. ... . 74
5.2 Straight-Line Program . . . . . . . . . . . . .. e 75
5.2.1 Time-Expanded Graph . . . .. .. ... ... ... ........ 76
5.2.2 EquivalenceofModels . . . .. ... ... ... ... ... 77
5.3 Rate of a Network Coding Solution. . . . . . ... ... ... ....... 81
5.4 Entropy Interpretationof Rate . . . . . .. .. ... ... ... .. ... 81
5.5 Extending Techniques to GraphswithCycles . . .. ... . ... ... .. 82
55.1 Directedcycles . . . . . . ... 83
56 OpenQuUEeStioNS . . . . . . . . . e e 85
57 References. . . . . . . . e 86



6 k-Pairs Communication in Undirected Graphs 87

6.1 Motivation . . . . . . . .. 87
6.1.1 The Okamura-Seymourexample . . . .. ... .. ... ... ... 88
6.1.2 The 5-commodity Okamura-Seymour example . . .. .. .. ... 91
6.2 Operational Downstreamness . . . . . . . . . . . . e 92
6.2.1 A MotivatingExample . . . . .. ... oo 92
6.2.2 Definition of Operational Downstreamness . . . . ... ... ... 93
6.2.3 Applying Operational Downstreamness to the Example . . . . . .. 94
6.3 Characterization of Operational Downstreamness . . . . . .. ... .. .. 95
6.3.1 Basins of Influence Decomposition . . . ... ... ... ..... 96
6.3.2 Basins of Influence and Operational Downstreamness: Partl . . . . 97
6.3.3 Basins of Influence and Operational Downstreamness: PartIl . . . 100
6.4 Okamura-Seymour with Five Commodities . . . .. ... ... ... ... 102
6.5 Special Bipartite Graphs . . . . . . . .. ... 107
6.6 OpenProblems . ... ... ... .. .. ... .. 108
6.7 References. . . . . . . . . . . .. 109
7 Future Work 111
A Entropy 113



10



Chapter 1

Introduction

How much information can be transmitted through a network? This fundamental question
has recently received renewed attention.

Information in a network is often viewed as an immutable commodity. Data packets
in a network are modeled in the same way as cars in a highway system or water in a sys-
tem of pipes. However, information is fundamentally different from traffic or a fluid in
two respects. A car reaching an intersection can proceed along only one road. In con-
trast, information can be duplicated and transmitted across many channels in a network
simultaneously. In addition, information can also be manipulated in ways with no physical
analogue. For example, if a network router receives bigdy, then it can transmit a
function, sayr & y, of the two bits.

Doescodinginformation in this way provide any advantage? The example in Figure
1-1 shows that it can [1]. In this example, the nedeas two bits of informationy andy.
Nodesf andg both want these two bits. Each directed edge represents a channel that can
transmit one bit of information.

Let’s first look for a naive solution. Suppose each edge transmits one of the two bits.
Then, in particular, edggl, e) transmits either: or y. In both cases, one of the two sinks
receives one bit twice and the other bit not at all. Apparently we are stuck.

However, Figure 1-1 shows a way around this difficulty. The label on each edge speci-
fies the function ofc andy transmitted over that edge. Nodeends bitr on one out-edge
and bity on the other. Nodesandc copy the bit they receive to both out-edges. The key
is that edgdd, e) transmits the function: © y rather than either bit or y alone. Finally,
nodee copies the bit it receives to both out-edges. As a result, rfageeives bothr and
x @ y and so it carcomputethe value ofy as well. Similarly, node can compute: from
y andx @ y and thus also obtain both bits.

This example reinvigorated the field of network information theory. The generaliza-
tion of this technique is now callegktwork coding Evidently, allowing edges to transmit
functions can increase the amount of information that can be sent through a network. This
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Source with
xandy

Requests Requests
xand y xand y

Figure 1-1: The node is a source with two bitsy andy, of information. The two bottom
nodes,f andg, need to each receive both bits. The shown solution sends the exclusive or
of the two bits down the middle edge fra#to e.

observation raises some interesting questions. We give preliminary answers here and pro-
vide more detail throughout the thesis.

How useful is network coding? When is it useful to transmit functions on the edges of
a network? How much more information can be sent in this way? The benefit can
be huge. In some instances network coding can increase the amount of informa-
tion transmitted through a network by a factor @fr) wheren is the number of
nodes [11, 25].

Do we need to use more complicated functions™ the example, each edge transmits a
single bit, and the only nontrivial function is xor. Could more complex schemes be
required for more complicated networks? As it turns out, working with bits is not suf-
ficient for some problems; we must use an alphabet larger{ttar}. Furthermore,
functions more complex than xor may be required.

How hard is finding suitable edge functions?Many traditional routing problems are
computationally hard [2, 16, 20]. In contrast, for some interesting classes of prob-
lems, appropriate edge functions can be found efficiently [19, 15, 10]. In these cases,
network coding not only increases the throughput, but also makes the problem effi-
ciently solvable. However, determining whether suitable edge functions exist for the
general problem could be anywhere from easy (in P) to undecidable [22].

12



What are the node requirements?How computationally powerful must nodes be in or-
der to implement network coding? What are the memory requirements? In our ex-
ample, nodel must be able to computedy, whereas a traditional router only copies
and forwards data. Furthermore, noflenust be able to store bothandx @ y in
order to compute,. For some restricted versions of the problem, upper bounds on
computational requirements are known but no bounds have been found for the gen-
eral problem. We present evidence that computational requirements may be large.

What about more general networks? The network in Figure 1-1 is directed and acyclic,
but most real networks are not. Is network coding useful if the graph contains di-
rected cycles? What if the network is undirected? Even formulating these questions
rigorously requires considerable care. For directed graphs with cycles, the answer
is yes. Network coding in undirected graphs is less understood and a major topic of
this thesis.

In the remainder of this chapter, we define a model for network coding and discuss
some of its aspects. Next, we define two restricted problems of particular interest. We then
consider the history of network coding and conclude by outlining the main contributions of
this thesis.

1.1 Definitions

In this section we define a model for network coding in directed acyclic graphs. There
are three parts to our model. First, we define the type of communication problem that we
consider. Then we define the concept of a network code. Lastly, we define what it means
for a network code to be a solution to a communication problem. The model presented in
this section is relatively simple but adequate for Chapters 2 and 3. In Section 1.2 we discuss
the limitations of this model, and in Chapters 4 and 5 we introduce more general models.

Definition 1 (Instance of the Network Coding Problem) An instance of the network
coding problem is specified by the following:

e Adirected acyclic grapli: = (V, E).
e A nonnegative integer capacitye) for each edge.
e A setZ consisting ok commodities.

e For each commodity € Z, a set of sourceS(i) C V and a set of sink¥'(i) C V.

13



In the example in Figure 1-1, each edge has capacifihere are two commodities and
nodea is the source for both. Thereforg(1) = S(2) = {a}. Nodesf andg are the sinks
for both commodities. Thug(1) = T(2) = {f, g}

Let's take a minute to discuss the model in terms of an actual communication problem.
The graphG represents the network with routers or computers represented by nodes in
V' and communication channels between some computers, represented by edges. Each
commodity models a file that must be transmitted through the network. blogjgresents
a computer that has a copy of two files, one file for each commodity. N¢@dasd ¢
represent two other computers that want copies of both files.

Definition 2 (Network Code) A network code is defined by:
e An alphabet..

e For each edge < E, a functionf, : ¥F — ¢,

Note that a network code is just an alphabet and a set of edge functions. In a moment we
will define anetwork coding solutignwhich incorporates the requirements that a network
code must satisfy if it “solves” the given instance.

In Figure 1-1 the alphabet I8 = {0, 1} and the label next to an edge specifies the
function associated with that edge. For example, the fundtigy : ¥* — ¥ associated
with edge(b, d) is defined byf o) (z, y) = .

We return to our physical interpretation of this example. The files associated with
each commodity are represented as a sequence of symbol&frétns important to note
that in designing a network code, we choose the alphabén this way, the problem of
transferring files is reduced to the problem of transferring a single symbol from each file.
We call these single symbafsessages

Formally, if the network code uses an alphabethen associated with each commaodity
1 is a symbolM; € X which must be transmitted from the sources to the sinks. We refer
to M; as the message for commodityand letM = (M, M,... M) be thek-tuple
of messages associated with theommodities. For convenience, we say a source for
commodity: is asource for messagk/; and a sink for commodity requests messagd,.

The domain for each edge function is the set of all posgikigples of messages. The
function f, specifies, for each possible combination of messagethec(e) symbols from
Y] sent over edge.

Note that the definition of a network code does not require that the code be imple-
mentable or that sinks receive the requested information. For example, Figure 1-2 depicts a
different network code for the same instance. The code in Figure 1-2 has two flaws. First,
nodeb cannot compute the functionA y, which it must transmit on edg#, d), from the
information it receives. Second, the sinks do not receive enough information to determine
uniguely both messages. For example; i 0 then nodef cannot determine the value of

14



Source with
xandy

1 oy xny L
f 8

Requests Requests

xand y xand y

Figure 1-2: The source has two bits of informationy andy, and the nodeg andg need
to receive both bits. The edges are labeled with functions which determine a network code
which is not a network coding solution.

y from z andx A y. We define a network code to be a solution if it possesses neither of
these flaws.

Definition 3 (Network Coding Solution) A network code is g@olutionto an instance of
the network coding problem if for evekytuple of message¥ = (M, M, ... My):

e For every edggu,v) € E, the functionf, ., is computable from the functions on
in-edges ta: and messages for whiehis a source.

e For every sinkv for commodityi, the functions on in-edges totogether with the
messages for whichis a source are sufficient to determine the valu@/Kf

Our intuition is that the code in Figure 1-1 is a solution. To verify this, we must check
that every edge functiofi,, ., is computable from the information on the in-edges &nd
the messages for whiehis a source. Node is the only source and it is a source for both
messages. Therefore the edgesh) and (a, ¢) can be assigned any function ofandy.
Nodesbh, c ande copy the message received on the single in-edge to both out-edges. Node
d receives botlxr andy on in-edges and therefore can transmit any function ahdy on
edge(d, e). Next we check that each sink can compute the requested information. Node
f receivesr unencoded on edgé, ) and the function: & y on edge(e, f). From this
information it can computg. Similarly for nodeg. Therefore this network code meets the
definition of a network coding solution.
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1.2 Discussion of Model

This model has been used in almost all work to date on network coding and is the model
we use for the next two chapters. However, it has two drawbacks. First, the model requires
that the communication network be directed and acyclic. Second, for the general network
coding problem there is no notion of the rate of a solution. These drawbacks are discussed
more extensively below. A contribution of this thesis is a clarification of these issues and
more general models that address them.

1.2.1 Cycles

We model a communication network as a directed acyclic graph. Why is this necessary?
Without this restriction, a solution, under our definition, may be meaningless in practice.

My
Source with ‘ Requests
message My @ @‘e message My
My

Figure 1-3: The functions on the edges in the graph meet the definition for a network coding
solution. However, there is actually no way to transmit a message fromaodeodec.

As an example, consider the instance in Figure 1-3. Messagmust be sent from
nodea to nodec. A “solution” is to send)M; along both edgéb, ¢) and edgec, b). This
network code meets the definition of a network coding solution. Nédexlc can each
compute the function on their out-edge from the function on their in-edge. However, there
isn't even a path from the soureeto the sinkc. Therefore, there is no practical way to
implement this so-called solution.

There is a natural suggestion to address this issue. Suppose we impose a total order on
the edges irG and require that the function assigned to edige’) be computable from
the in-edges ta that come before edde, v) in the ordering. This restriction does remove
the issue of cyclic dependencies between edge functions. However, this is too restrictive a
condition because it also rules out obvious solutions in other instances. For example, the
instance in Figure 1-4 has four commodities each with a single source and single sink. Each
edge has capacity two which means that two symbols can be transmitted on each edge. As
a practical matter, this problem can be solved. As indicated in the diagram, there is enough
capacity for each message to be sent two hops clockwise to its destination. However, in
this scheme, every edge function depends on the preceding edge in the cycle. Therefore
there is no total order of edges under which this scheme is allowed.

16



M3 My

Source for M 4 Source for M 1

Requests M, d s Requests M3
M, Mj My My

Source for M 30 b Source for M 5

Requests M M; M, Requests M,

Figure 1-4: In the example, each edge has capacity two. There are four commodities. For
each commodity there is a single source and a single sink two hops clockwise from the
source. There is no ordering on the edges which allows one to define a solution for this
instance.

The examples in Figures 1-3 and 1-4 suggest some of the difficulties in extending our
simple definition for a network code and network coding solution in a directed acyclic graph
to graphs with cycles. One solution is to associate a non-zero delay with each edge and
consider the behavior of the network over time. We address these issues more extensively
in Chapter 5.

1.2.2 Rate

The questions posed within this model are feasibility questions: does an instance have a
solution? To clarify the issue, consider the instance in Figure 1-5, which is similar to the
example in Figure 1-1. Now there are four commaodities, but each edge still has cdpacity

Is there a solution? In our model, no. There are two out-edges from theanddierefore,
a network coding solution would need to encode the value of four messages using just two
symbols. Clearly this is impossible.

On the other hand, in practice it is possible. Let’s reconsider our physical interpretation
of network coding. Node represents a computer which receives four files, and ngdes
andg want copies of these files. We know nodean sendwo files to f andg using the
solution in Figure 1-1. Therefore, in practice, it can send four files, it just takes twice as
long.

In Chapter 4, we extend our model to define the rate of a solution. For example, under
the extended model, there exists a raté solution to the instance in Figure 1-5. In the

17



Source Source Source Source
with with  with with

Requests Requests
Mll Mz, M3 andM4 MII M2, M3 andM4

Figure 1-5: In the example, each edge has capacity one. There are four commodities each
with their own source. Nodesandg are the sinks.

next section we discuss the one situation in which the current model includes (implicitly) a
notion of rate of a solution.

1.3 Two Restricted Network Coding Problems

In this section we define two restricted versions of the network coding problem. Both are
fundamental problems in network communication. The first, the multicast problem, has
been the focus of much of the work in network coding. All positive network coding results,
such as efficient network coding algorithms, apply only to the multicast problem and small
generalizations. The second problem we define isktpairs communication problem,
which is closely related to the classical multicommodity flow problem. The applicability
of network coding to theé-pairs communication problem is not well understood and will
be the focus of Chapters 4 and 6.

18



1.3.1 Multicast Problem

In an instance of thenulticastnetwork coding problem, there is a single source for all
messages and a set of sinks which request all messages. Figure 1-6 is an example of the
multicast problem. Node is a source for four messages and nagesandd are the sinks,

Source with
Ml! M2, M3 and M4

Requests
Ml/ M2, M3 and M4

Requests Requests
Ml/ M2, M3 and M4 MI/ M2, M3 and M4

Figure 1-6: This is an example of the multicast problem. Ned@ethe source for all four
messages. Nodésc andd are the sinks, which request all the messages.

which request all messages. Since all messages have the same source and same set of sinks,
one can rephrase the feasibility of a multicast problem as an optimization problem in which
the source is trying to send as many messages as possible to all sinks. This is important
because rephrasing the multicast problem in these terms means that one can consider the
rate of a multicast solution within the model presented in this chapter. However, in general
when commodities have different sets of sources and different sets of sinks, the model
needs to be adapted to consider the rate of a solution.

In a small generalization of the multicast problem, each sink still requests all messages
but there is no restriction on the sources. This generalization is interesting because essen-
tially all results that hold for the multicast problem also hold for this generalization.

1.3.2 k-Pairs Communication Problem

Another important problem in network communication is supportirdifferent point-to-
point connections. In an instance of thgpairs communication problem, there &reom-
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modities, each with a single source and single sink for each commodity. In the example in

Source Source
with x with y

x x®y Yy

Requests Requests
Yy X

Figure 1-7: This is an example of thiepairs communication problem. For message
nodea is the source and nodeis the sink. For messagg nodeb is the source and node
is the sink. A solution over the alphabfgt, 1} is given in the labels next to the edges.

Figure 1-7, there are two commodities. For the one commodity, nagléhe source and
nodef is the sink. For the other, nodas the source and nodses the sink.

The k-pairs communication problem is interesting because it is closely related to the
classical multicommodity flow problem. On an abstract level, instances of the two prob-
lems are defined in exactly the same way. However, commodities in a multicommodity
flow problem can only “flow”. In contrast, commodities in tlepairs communication
problem are information and thus can be copied and encoded. A fundamental question is
the extent to which network coding is beneficial for th@airs communication problem.

This question is the focus of Chapters 4 and 6.

1.4 Characteristics of a Solution

In this section we discuss some characteristics of a network coding solution of particular
importance in this thesis: the size of the alphabet and the types of edge functions.

1.4.1 Alphabet Size

The first network coding problem we considered in Figure 1-1 has a solution over a binary
alphabet. But sometimes a larger alphabet is required. For example, Figure 1-8 shows an

20



instance and a solution using the finite fiélglas the alphabet. However, there is no so-
lution with an alphabet of size. Roughly, every pair of out-edges from the source needs

to carry enough information to determine both messages. Over a binary alphabet there are
only a small number of different choices of edge functions. Therefore, using a binary al-
phabet, some pair of out-edges from the source is forced to transmit redundant information
and the corresponding sink is unable to determine both messages. We generalize this idea
and provide a formal proof in Chapter 2.

Source with
xandy

Requests Requests Requests Requests Requests Requests
xand y xandy xandy xandy xandy xandy

Figure 1-8: An instance in which there is a solution d¥ebut not over a binary alphabet.
The top node is a source ferandy. For each pair of nodes in the middle layer there is a
sink in the bottom layer requesting both messages.

A large alphabet is undesirable for three reasons:

Latency. In practice, transmitting a symbol from a large alphabet takes longer than trans-
mitting a symbol from a smaller alphabet. If a network coding solution uses a large
alphabet, then a sink may need to wait a long time before it even begins decoding a
message. Therefore, the network latency could be large.

Memory. Second, if nodes within the network need to compute functions over a large
alphabet, then they may need a significant amount of storage even to remember the
last alphabet symbol received on each edge.

Function Complexity. A small alphabet limits the complexity of edge functions. With a
large alphabet, we lose this guarantee.

Fault Tolerance. A network failure during the transmission of a symbol from a large al-
phabet would cause a significant loss of data.
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Although none of these issues is critical for the alphabet sizes we've seen 8mfar (
3), some instances require an extremely large alphabet (doubly exponential in the size of
the network and number of commodities). We discuss this further in Chapter 2.

1.4.2 Linearity of a solution

How complicated do edge functions need to be? Ideally, a network code would use func-
tions that are easy to represent and implement. Three restricted classes of codes using such
simple functions have received special attention in the literature.

e A network code idrivial if edges transmit only unencoded messages. Traditional
routing solutions are trivial codes.

¢ A network code idinear if the alphabet is a finite field and edges transmit only linear
combinations of the messages. The code in Figure 1-1 is lineaffg\aard the code
in Figure 1-8 is linear oveFs.

¢ A network code isvector linearif the alphabet is a finite vector space over a finite
field. Furthermore, every component of every transmitted vector is a linear combina-
tion of the components of the message vectors. Every linear code is vector linear.

1.5 History of Network Coding

Network coding is a relatively new field that has strong connections to some classical prob-
lems in information theory and graph theory. In this section we describe the history of
network coding, beginning with a review of these connections. We then describe the most
influential early research in network coding. At the end of each chapter, we discuss the
previous work related to its topic.

1.5.1 Prehistory of Network Coding

The field of network coding has roots in information theory as well as connections to two
classic graph problems: Steiner tree packing and multicommodity flow.

Information Theory

Information theorists have concentrated on communication over a single (possibly noisy)
channel. In the closest approach to network coding, a set of senders wishes to transmit
information across a channel to a set of receivers. (See [5].) This work has led to a thorough
understanding of data compression and error-tolerance.
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However, a network cannot be accurately modeled as a single channel. The physical
structure of a network introduces tremendous complexities not present in the single channel
case. For example, in a network communication problem, different receivers may have
access to different channels in a network. Characterizing the capacity of an information
network has remained an open problem for decades.

Steiner Tree Packing

In a traditional view of communication in a network (predating network coding) data can
be replicated at nodes but not encoded together with other data. The problem of packing
fractional Steiner trees in a graph can be used to model this type of communication.

We begin by defining a Steiner tree and then discuss the fractional Steiner tree packing
problem. Given a directed gragh, a specified node and a subse$ of the vertices, a
Steiner treas a tree rooted at containingS. A fractional Steiner tree is a Steiner tree
along with a weight betweetand1. Given a directed capacitated grapha noder and
a subset of verticeS, afractional Steiner tree packing a set of fractional Steiner trees
such that for every edge i the total weight of trees containing that edge is no more than
the capacity of the edge. The objective of the fractional Steiner tree packing problem is to
maximize the total weight of the set of Steiner trees.

The problem of multicasting from a source to a set of sinks has traditionally been stud-
ied as a fractional Steiner tree packing problem. Suppose amoédeds to transmit data
to a set of nodes. Each tree in a fractional Steiner packing can be used to send a fraction
of the data, given by its weight.

Generally, optimal fractional Steiner packing in undirected graphs is hard. Jain, Mah-
dian and Salavatipour [16] showed that the problem in undirected graphs is APX-hard [16].
This implies that the optimal value cannot be found efficiently unless ¥P. However,
they gave a polynomial time algorithm to find &98-approximation.

Multicommodity Flow

The communication problem in which there is a single source and single sink for each com-
modity has traditionally been viewed aswalticommodity flow problenin this perspective
data is modeled as a fluid: the amount of data leaving a node must exactly equal the amount
entering except at sources and sinks.

In an instance of the multicommodity flow problem, there is a directed capacitated
graphG andk commodities. For each commoditythere is a single sourcgi), a single
sink t(i), and a demand,. In a multicommodity flow, the total flow of all commodities
across an edge i@ must be no more than the capacity of that edge. The objective is to
find the largest fraction such that for every commodity at least-d; units of commodity
i flow from sources(i) to sink¢(i). This problem can be solved optimally using linear
programming [34]. For further details see [34, 35, 23, 4].
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The multicommodity flow problem is most closely related to kRpairs communica-
tion problem. Understanding the relationship between these two problems is the focus of
Chapters 4 and 6.

1.5.2 The Dawn of Network Coding

The field of network coding is only five years old; it was introduced by Ahlswede et al. [1]

in 2000. Their work focused on the multicast problem and proved that a source can mul-
ticastk messages to a set of sinks provided the min-cut between the source and each sink
has capacity:. This was the first major progress in understanding the capacity of a com-
munication network.

Li, Yeung and Cai showed that the maximum achievable rate for the multicast problem
can always be achieved using a linear code [24]. This focused attention on linear codes and
in particular raised the question of whether they can be used to solve a wider array of net-
work coding problems. Their proof of the existence of a linear solution can be viewed as the
first deterministic algorithm for network coding. However, its running time is exponential
in the size of the network.

Koetter and Mdard devised an algebraic framework for network coding [19]. This
reduced the problem of finding a linear solution for a general network coding problem to
finding a non-zero point for a multivariate polynomial. Using their algebraic framework,
Koetter and Mdard where able to extend the study of linear network coding to directed
graphs with cycles. For the special case of multicasting, Ho et al. [14] used the additional
structure of the problem to construct an efficient randomized algorithm. Their algorithm
has the nice property that it can be implemented in a distributed fashion without coordina-
tion between nodes in the network.

Jaggi et al. devised a polynomial-time implementation of the Li, Yeung and Cai mul-
ticast algorithm [15]. We refer to this procedure as the Jaggi-Li algorithm. It always finds
a linear solution over a fieldl such thaiF| = O (#sinks). This raised the question of
whether an even smaller alphabet would suffice. A second important contribution of Jaggi
etal. was an instance ennodes in which network coding achieves a r@téog n) times
larger than the best rate achievable with fractional Steiner tree packing [15].

Up to this point, all research in network coding assumed the network was directed. In
2004, Li et al. [27] considered network coding in undirected graphs. They showed that
fractional Steiner tree packing techniques can achieve atl¢ashe maximum possible
multicast rate. This put an upper bound on the usefulness of network coding in undirected
graphs for the multicast problem. Furthermore, it showed a drastic difference between
network coding in the directed and undirected cases. It has been conjectured that for the
k-pairs communication problem in an undirected graph the optimal rate can be achieved
without network coding [27, 25, 11]. This open question is one of the motivations for the
work in Chapter 6.
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The applications of network coding now extend well beyond maximizing capacity to
areas such as error-correction, wire-tapping protection and detection, and distributed net-
work management. The Network Coding Home Page [18] provides a bibliography for the
topics not covered in this thesis. Ho’s dissertation [13] is also an excellent reference for
many of these topics.

1.6 Our Results

We now outline the contributions of this thesis to the area of network coding chapter by
chapter. Network coding is a young field with many exciting open questions. We discuss
these at the end of each chapter.

1.6.1 Alphabet Size

An important measure of a network code is the size of the alphabet; a smaller alphabet is
better. In Chapter 2 we show:

e Determining the smallest alphabet size for which there is a solution is NP-hard. This
work initiated the study of complexity questions related to network coding.

e There are multicast instances requiring an alphabet of?s(z¢#sinks). (Recently,
this was shown to be tight by Fragouli and Soljanin [8].)

e For the general network coding problem, we show a periodicity effect. There are
instances which only admit a solution if the alphabet size is a petfepower.

e Building on this, we show a doubly-exponential lower bound on alphabet size for
certain instances.

e For these instances, slightly increasing the capacity of a single edge exponentially
reduces the required alphabet size. This is a motivation for refining the model in
Section 1.1 to consider the rate of a solution. We do this in Chapter 4.

The results in this chapter appeared in [21, 22].

1.6.2 Complexity of Linear Network Coding

Positive results for the multicast problem suggested that solvable instances might always
admit a linear solution. Furthermore, there was hope that the multicast algorithms could be
extended to general network coding problems.

In Chapter 3 we classify network coding problems based on the configuration of sources
and sinks. We show that
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For some classes of problems, every solvable instance admits a trivial solution, which
can be found efficiently using traditional flow techniques.

The multicast problem and a generalization with multiple sources are the only re-
stricted network coding problems for which network coding is necessary and linear
codes suffice. The known multicast algorithms can be extended to solve instances of
the generalization [15, 10, 14].

We show that it is NP-hard to determine if a linear solution exists if sinks are allowed
to request different subsets of the messages.

As a corollary, we obtain an instance of the general network coding problem that
admits a vector linear solution but not a linear solution.

The work in Chapter 3 appeared in [21].

1.6.3 The Capacity of an Information Network

In Chapter 4 we define a model for network coding in a directed acyclic graph in which the
rate of the solution is a parameter. Our goal is to find necessary and sufficient conditions for
the existence of a solution of ratdor an instance of the general network coding problem.
This remains an open question; however, we make the following advances:

We define the sparsity of an edge-cut, a natural condition to consider. We show this
is neither necessary nor sufficient.

We then define an improved cut condition calle@agerness We show that the
capacity of the most meager edge-cut is an upper bound on the achievable rate.

We present an example in which the maximum achievable ra&gisbut the most
meager cut has capacity This shows that meagerness is a necessary but not suffi-
cient condition.

The proof of this gap leads to a tighter entropy-based upper bound on the maximum

achievable rate. (This condition was independently discovered by Song, Yeung and
Cai [36] and is discussed in [39] as well.)

Preliminary results appeared in [11]. The work in this chapter is joint with Nicholas

Harvey and Robert Kleinberg.
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1.6.4 Models for Graphs with Cycles

Our objective in Chapter 5 is to extend the techniques from the preceding chapter to graphs
with cycles and to undirected graphs. We consider three possible models for network cod-
ing in directed graphs (which may have cycles) and prove their equivalence. Unlike the
work of Koetter and Mdard [19], we do not restrict our attention to linear coding solution.

We model an undirected graph, roughly, with a directed graph by replacing each undi-
rected edge with two oppositely-directed edges. Under this model, we let a network code
split the capacity of an undirected edge in any possible way between the two oppositely-
directed edges.

With these models in hand, we then extend our entropy-based upper bounds on the
maximum rate of a network coding solution to this new setting. It is important to note that
undirected graphs present considerable challenges beyond directed graphs. A contribution
of this chapter is the introduction of a framework for studying network coding in undirected
graphs.

The work in this chapter is joint with Nicholas Harvey, Robert Kleinberg and Eric
Lehman.

1.6.5 Thek-Pairs Communication Problem in Undirected Graphs

Recall that in thek-pairs communication problem there arecommodities, each with a
single source and single sink. This problem is closely related to the multicommodity flow
problem and understanding this relationship in undirected graphs is the focus of Chapter 6.

The target of this investigation is an open conjecture: for any instance in an undirected
graph, the maximum rate of a network coding solution can be achieved using multicom-
modity flow techniques. In undirected graphs, the value of the sparsest cut is an upper
bound on the maximum achievable rate with and without network coding. However, it is
well known that the maximum multicommodity flow in a network can be much smaller than
the value of the sparsest cut [32, 23]. In a limited sense, we extend this result to network
coding. In particular, we prove the first gap between the maximum rate of a network coding
solution and the value of the sparsest cut. In fact, we show such a gap exists for an infinite
class of instances using a new entropy-based necessary condition for the existence of a net-
work coding solution. For all of these instances, we prove the conjecture is true; namely,
the maximum rate of a network coding solution can be achieved using multicommodity
flow techniques.

The work in this chapter is joint with Nicholas Harvey and Robert Kleinberg.
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Chapter 2
Alphabet Size

In this chapter we consider the sizef the alphabeE. There are a number of reasons why
alphabet size is interesting. First, a small alphabet implies that the edge functions are simple
and efficiently computable. Second, the alphabet size is related to the network latency. In
a network implementing a network code each symbol from the alphabet for the code is
mapped to a sequence of symbols from the alphabet the network is using. The encoding of a
symbol from a large alphabet is larger and therefore takes longer to pass through a network
than the encoding of a symbol from a small alphabet. Third, a naive implementation of a
network code requires nodes to store alphabet symbols in order to compute edge functions.
Thus a larger alphabet might require more storage at nodes. Finally, there is a connection
between understanding the alphabet size and understanding the computational complexity
of network coding. Currently, the general network coding problem is not known to be
decidable. An upper bound on the size of the alphabet admitting a solution would imply
decidability.

In this chapter we present two lower bounds on the alphabet size required for there to
exist a solution. The first lower bound is for the multicast problem. We show that the size of
the alphabet for some instances musfX§¢/m) wherem is the number of sinks. We then
prove that determining the minimum alphabet size that admits a solution for an instance of
the multicast problem is NP-hard. This hardness result initiated the study of complexity
issues related to network coding.

For the general network coding problem we demonstrate a periodicity effect. Specifi-
cally, we show instances of the network coding problem @itmessages arnd(k?) nodes
for which there only exists a solution if the alphabet size is a petfégower. Combining
these instances we create an instance of the network coding probler mghsages that
only admits a solution if the alphabet size is doubly-exponenti&l ibastly, we consider
solutions that use slightly larger alphabets for the edges than for the sources. We show that
these solutions avoid the periodicity effect for the previously considered instances. This in-
troduces the idea of solutions which operate at rates otherthHarChapter 4 we consider
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this concept in far greater depth.

2.1 Lower Bound for Multicast

We show that there exist solvable multicast problems requiring an alphabet 6f(sjze)
wherem is the number of sinks. This has recently been shown to be a tight bound [8].

We begin with a technical lemma that gives some insight into why a larger alphabet
may be necessary to solve a network coding problem.fLaihd f; be functions mapping
>2 to . Then we can form a functiog; : X* — Y2 defined by:

giJ'(O‘aﬁ) = (fz(gvﬁ) 3 f]'(o‘7ﬁ))

If g is invertible, then we say that functiorfsand f; areindependent Equivalently, f;
and f; are independent if and only if there do not exist distinct points ;) and(az, 52)
in X2 such thatf;(ay, 61) = fi(az, 52) and fj(a1, 51) = fi(as, B2).

In short, the messagesand 3 can be determined fronfi(«, 8) and f;(«a, ) if and
only if the functionsf; and f; are independent. But the following lemma says we can not
construct a large set of pairwise independent functions over a small alphabet. The main
idea of our subsequent theorems is that some information flow problems are not solvable
with a small alphabet because one “runs out” of independent functions.

Lemmal If f,,..., f, are pairwise independent functions of the fofm X2 — X, then
n<gqg+1.

Proof. First, we show that each functigi must be aj-to-1 mapping. Suppose not. Then
f; must take on some valug € ¥ at more than points(a, 3) € X2 By the pigeonhole
principle, the functionf; (wherej # i) must take on some valuec ¥ for at least two of
those points; call thenvy, 51) and (az, 52). Thus, we have;(aq, 81) = fi(az, f2) and
filaq, B1) = f(a2, B2), contradicting the assumption thatand f; are independent.

Now define anagreemenbf the function f; to be a pair of distinct pointsa, ;)
and (as, 3») in X2 such thatf;(ay, 3,) = fi(as, 32). Each functionf; hasq?*(q — 1)/2
agreements; for each of theelementsy € ¥, we can choose(q — 1)/2 pairs of distinct
points from among the points in(a, 3) € X2 such thatf;(a, 3) = ~. In all, there are
¢*(¢> — 1)/2 pairs of distinct points irt?. Therefore, again by the pigeonhole principle,
there must exist two different functiorfsand f; that share an agreement if:

n-*(g—1)/2 > ¢(¢—-1)/2
n > qg+1
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But if f; and f; share an agreemeft, 3;) and (as, 32), then we havef;(ay, £1) =
filag, B2) and f;(aq, 51) = f;(az, B2), contradicting the assumption th#t and f; are
independent. Therefore, we must have ¢ + 1 as claimedd

Conversely, constructing a setgf 1 pairwise independent functions is a simple matter
wheng is a prime power. Regartl as a finite field, and take all functionf§z, y) of the
form x + ay wherea € X together with the function.

Theorem 2 There exist solvable instances of the multicast network coding problem that
require an alphabet of siz@(y/m).

Proof. Consider an instance of the multicast network coding problem defined as follows.
There is a single soureeand intermediate nodes, . . ., v,. There is a directed edde, v;)

from the source to each intermediate node. For each pair of distinct intermediatevhodes
andv,, create a sink;; and add directed edgés, t,;;) and(v;, ¢;;). Note that the number of
intermediate nodesis ©(,/m), wherem is the number of sinks. There are two messages,
M, and M, available at the source, and these two messages are demanded by every sink.

First, we show that this problem is solvable. 3¢t and M, represent the two messages
which must be multicast from the source to all sinks. If the alphabet size is a prime power
greater than the number of intermediate nodes, then the é€ges. . . ., (s, v,) may carry
functions of M; and M, that are pairwise independent. If each intermediate node then re-
lays its input directly to its outputs, then each sink receives pairwise independent functions
of M, and M, and can therefore reconstruct messaesand M, as desired.

Now, we show that the problem is not solvable if the alphabet is too small. Suppose
that the number of intermediate nodes is greater thanl. Then by Lemma 1 the edges
(s,v;) can not carry functions af/; and\/, that are all pairwise independent. In particular,
suppose that intermediate nodesndv; receive functions that are not independent. Then
messaged/; andM; can not be determined from the values of these functions. Therefore,
these messages can not be computed at sinkhich receives no other information. Thus,
in general, an alphabet of sigH/m) is required to solve some instances of the multicast
network coding problem

2.2 Hardness for Multicast

We have seen that some multicast network coding problems can only be solved by using a
large alphabet. In this section, we show that it is computationally hard to determine exactly
how large an alphabet is required.

The following two reductions rely on the hardness of graph coloring and a general-
ization of graph coloring called-coloring. In both cases, we map an undirected graph
G' = (V' F’) to an instance of the multicast network coding problem on a gfaats
follows. The nodes of7 consist of a single source an intermediate node; for each
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vertexv; € V', and a sinkt;; for each edg€gv;, v;} € E’. There is an edges,v;) € E

for each vertexs, € V', and there are edges;,t;;) € E and(v;,t;;) € E for each
edge{v;,vj} € E’. Two messages\/; and )M, are available at the source, and these two
messages are demanded by every sink.

Theorem 3 Deciding whether there exists a linear network code with alphabeydizea

multicast network coding instance is NP-hard wlyge a prime power.

Proof. We use a reduction from vertex coloring on undirected graphs.

LetG' = (V’, E') be an undirected graph. Construct an instance of the network coding
problem defined on a grapgh as described above.

We show thatG’ is ¢ + 1 colorable if and only if the instance is solved by a linear
network code with an alphabet of sizeFirst, suppose that’ is (¢ + 1)-colorable in order
to show that this implies the existence of a linear network code that solves the instance of
the network coding problem. Leti) € {1,...,¢ + 1} denote the color of vertex. As
noted after the proof of Lemma 1, there exist pairwise independent fundtions, f,.;
of the form f; : ¥ — 3. Along each edgés, v;) and all edgesu;, ¢;;), send the symbol
fe,(My, M,). Then each sink;; receivesf,; (M, M,) and f.(;) (M, M,). Since colors on
adjacent vertices are distineti) # c(j), and so the functiong.;) and f.(;) are indepen-
dent. Thus, each sink can reconstruct messageand M/, as desired.

Next, suppose that there exists a linear solution to the network coding instance with
an alphabet of sizg. We show that this implies that there existg & 1 coloring of
G’'. Each edgds,v;) then carries a nonzero linear combination/; + 3M,. We can
partition the set of all such linear combinations ipt¢ 1 equivalence classes; the nonzero
multiples of My + aM; form one class for each € Y and the nonzero multiples afl,
form the remaining class. This places every pair of independent linear combinations into
different classes. Assign each class a distinct color. Now assign vereX” the color of
the class containing the function associated with gdge;). The endpoints of each edge
{v;, v} € £’ are then colored differently, because the functions for edges) and(s, v;)
must be independent so that sihkcan reconstruct messagkf and/,. Therefore, this
gives a validg + 1 coloring of G’. O

2.2.1 General Codes

We now consider general codes and show that minimizing the alphabet size remains hard.
We use a reduction frori/-coloring. An H-coloring of an undirected gragh is a homo-
morphismh : G — H such thath(v) andh(u) are adjacent vertices @f if v andu are
adjacent vertices af’. Hell and N&efil showed that/ -coloring is NP-hard whenevey

is not bipartite and is solvable in polynomial timeffis bipartite[12].

Theorem 4 Deciding if there exists a network code with alphabet gifer a instance of
the multicast network coding problem is NP-hard whes a prime power.
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Proof. Define a graph as follows. The vertices off are all the functiong : X2 — ¥.
There is an edge between vertictandg if they are independent functions. Note tHat
is not bipartite for all prime powerg since there exists a set of three pairwise independent
functions.

LetG' = (V’, E') be an arbitrary undirected graph. Construct an instance of the multi-
cast network coding problem d@r as described above. We show tli#tis H-colorable if
and only if there exists a solution to the network coding instance over an alphabet @f size

Suppose that:’ has an-coloring, h. Then we can solve the instance of the network
coding problem by sending each vertexhe symbolf (M, M,), wheref = h(v}). Each
sink receives inputs from two vertices and v; such thatv; and v} are adjacent irG".
This means thati(v;) andh(v;) are adjacent i/ and are therefore independent functions.
Thus, the sink can reconstruct messayjgsand M.

On the other hand, suppose that there is a solution to the network coding instance. Then
we can construct af/-coloring i of the graphGG’ as follows. For each vertex in G, let
h(v) be the function of\/; and M, transmitted on the out-edge of If verticesv; andz;;.
are adjacent iri’, then the corresponding verticesandv; in G share a sink. Since the
sink can reconstruct/; and M, the functionsh(v;) andh(v}) must be independent and
thus adjacent iri/. Therefore/ is a valid H-coloring of G'. O

Interestingly, some multicast problems can be solved with a smaller alphabet by using
nonlinearcodes. For example, Iéi be an alphabet of size 3. L&' be a graph whose
vertices are all functiong : ¥? — ¥ and whose edges are all pairs of independent func-
tions. Then consider the instance of the network coding problem on a gfagnived as
before. This problem can be solved using alphabey sendingf (M, Ms) to the vertex
corresponding to the functiofi On the other hand, suppose that we want a linear solution.
This requires coloring the vertices @f using independent linear functions. A computation
shows that the chromatic number @f is 6, which implies an alphabet of size at least 5.
We conjecture that there can be a very large gap between the absolute smallest alphabet
size for a multicast problem and the smallest possible alphabet size using linear coding.

2.3 Lower Bound for General Problem

We now turn our attention to the general network coding problem. In this section, we
show aperiodicity effect for every integerc > 2, there exists an instance of the network
coding problem that admits a solution if and only if the alphabet size is a pétfquwer.
Building on this result, we construct an instance witfk) messages and(k) nodes that
admits a solution if and only if the alphabet size is an enornti*(+*)). In other

words, if we regard each message as a lengtketor over the binary field, thesh must

be exponentialin the size of the network. For this same instance, we show that if edge
capacities are slightly larger than the message size, then there is a solution with a modest
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alphabet size of)(2*%). In light of these results, we suggest that a more appropriate model
would assume that the network operates at slightly under capacity.
We present the following results in this section:

e The power of network codes does not strictly increase with alphabet size, but rather
increases as the size of the set of perfect roots of the alphabet size increases. Thus,
an alphabet size df, which is a perfect square, a perfect cube, adf @ower is
strictly better than a size @&Por 23, but an alphabet of siz#’, which is only a7
power is not. In practice, one might be tempted to use an alphabet stZemf25*
so that a single alphabet symbol fits into a machine word. However, our construction
suggests that these would actually be poor choices, sid@nd 64 have so few
divisors.

e When linear coding is used to solve the multicast problem, an alphabet @b gizg
suffices if there aren sinks. The situation with the general network coding problem
is dramatically different. By placing many of our constructions in parallel, we ob-
tain an instance of the general network coding problem with) nodes, including
sinks, that requires an alphabet of sz&(©(*"/*)  Thus, there exist instances of
the network coding problem that are solvable, but require extremely large alphabets.
Naively, even describing the solution takes space exponential in the problem size.

e We show that our lower bound on the alphabet size does not hold if we slightly
increase the capacity of the edges. In particular, the instance described above admits
a vector-linear solution where messages are vectors of lengtbvided each edge

can transmit a vector of Iengtrh(l + %)
q

In light of these results, we suggest that a better model for the study of network coding
problems would allow the network to operate at slightly under capacity, since this may
avoid an exponential blowup in the solution complexity. In Chapter 4 we consider a more
general definition of a network coding solution which allows each edge and message to use
a different alphabet.

2.3.1 Construction

First we describe the construction of an instance of the network coding problem that we
denotel,. We then prove that instandg admits a solution if and only if the alphabet size
is ak™ power. The construction is shown fbr= 3 in Figure 2-1.

There is a single source wittk messaged/;, M, ... M, and a single middle-layer
node. There is an eddgé of capacity2 from the source to the middle layer node. There
areO(k?) sinks. There is an edge of capacityrom the middle-layer node to each sink.
One sinkt* requests alkk messages and all other sinks requeshessages. LeP =
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Source with

M1 My, M3, My, Mg, and Mg

M1, M4, An Mi, Mi, Mi, Mp, M2, M2 M3 M3 Ms;3,
My, Msp, M4, M4, M5, M4, M4, Ms M4, M4, Ms;,
M3 Mg M; Mg Mg Ms; Mg Mg Ms; Mg Mg

Figure 2-1: In this instance of the network coding problem, all edges are directed down-
ward. All edges have capacify except for the thick, curved edge, which has capatity
There are six message¥;, M, ..., Mg. The top node is the only source and has every
message. The bottom layer of nodes is the sinks, whose requests are listed below each
node. The complementary sinks are not shown.

{M;,My... M} andP = {Mj1, My,5... My.}. The sinktp requests all messages in

P, and the sink3 requests all messageshh For alli andj such thatl < i,j < k there

is a sinkt;; that requests the messagegP U {M;}) — { M,.,;} and a complementary sink

t;; that requests the messagesP U { My ;}) — {M;}. From the source t¢" there is an
edge of capacitgk — 2, and from the source to every other sink there is an edge of capacity
k—1.

2.3.2 Analysis

The analysis of the network, relies on understanding the functidn : X2 — 32 that
describes the two symbols transmitted over edg&\Ve first prove a preliminary fact about
the functionf.
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Lemma 5 The functionF : ¥% — %2, which determines the symbol sent over edigés
2k—2
q -to-1.

Proof. Sinkt* must recover all the messages from the symbol sent on@dgel the2k — 2
other alphabet symbols it receives on the direct edge from the source: bt — %22
be the function that determines the — 2 symbols sent along the direct edge.Flfis not
¢*¢~2-to-1, thenF must map more thag?*—2 points in£2* to some pair of symbols in
»:2. Theng necessarily maps two of these points to the same valbg*re. Thus, sinkt*
receives identical symbols for two different sets of sent messages and can not distinguish
them.O

We now consider restrictions placed on the functfoby a sink requesting a set 6f
messages. In particular, we consider the set of assignments & tinessages that are
mapped byF to the same value. For the remainder of this section wg let=? be a fixed
value sent by down edgeC' and B C X?* denote the subset of sizé 2 that /' maps
to 8. Thus,B is the set of assignments to messages such that theCédggies the value
(. Consider a subset of tid& messagesl = {M,,, M, ... M, }. The set of assignments
to the messages A such that there exists an assignment to the remaining messages on
which F' takes on the valug is the projection of each point i® onto the coordinates
s1,52...5.. We denote this set as,, ,, . (B) or equivalentlyr,(B). For example, if
A ={My, My, M3}

ma(B) = {($1,902,$3) | (x1,22,%3,Ys, .. yo2x) € B
for some(yy, ys . - - yor) }

Lemma 6 Lett be a sink requesting the sétof £ messages. Then,(B)| = ¢* .

Proof. In addition to the point ir.? sent to the middle-layer node, the sihlilso receives

k — 1 symbols on a direct edge from the source. If the gim&ceives the valug ¢ X2
from the middle-layer node, then the assignment taitheessages il must be according

to one of the points i 4(B). Each point int4(B) represents a different assignment to the
messages inl. Therefore, the sink must receive a different set &f— 1 symbols along
the direct edge from the source for each of the points,(3). Since there are only*~!
different assignments to the— 1 symbols sent down the direct edge from the source, we
must haver,(B)| < ¢*~!. Otherwise, the messagesAncan not be uniquely determined
from the information received at the sink.

By construction, there is a complementary stnequesting the subsett consisting of
the otherk messages. By the same argument as abavéB)| < ¢*~*. The number of
different points in:?* on which F' takes on the valug is at most{w4(B)| - |7x(B)|. By
Lemma 5,F is ag?*~2-to-1 function. Therefore,
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q < |ma(B)| - |rz(B)|
< Jma(B)|- "
¢t < |ma(B))

Therefore|ra(B)| = ¢*1. O

We learn more about the structure of the set of poiten which F' takes on the
value 3 by applying the above lemma to sinkequesting the set of £ messages and its
complementary sinkrequesting the othér messages.

Lemma 7 Lett be a sink requesting the sétof k messages, and lebe the sink requesting
the otherk messages!. Then

B = m4(B) x mx(B)

Proof. Consider an assignment B to the messages. Suppasassigns thé messages in

A according to an assignment and assigns the messagesliaccording to an assignment
zz. Then,zy € m4(B) and zz € m4(B) by the definition of projection. Therefore,
B C 7a(B) x nx(B). By Lemma 6,|14(B) x mx(B)| = |7a(B)| - |7z(B)| = ¢**72.
Since|B| = ¢**~2 by Lemma 5,8 has the same size as the set containing it. Therefore,
B = WA(B) X Wz(B). ([

The next lemma shows that for at least one sink, the projection of thB seto the
messages requested by that sink is “large”. The proof makes use of the discrete Loomis-
Whitney inequality relating the size of a set to the product of the sizes of projections of
the set [28, 3, 38, 37] . Roughly, the discrete Loomis-Whitney inequality generalizes the
intuition that a massive statue must look big from the front, the side, or the top; that is, a
big region must have some big projection.

Theorem 8 (Discrete Loomis-Whitney Inequality) LetQ C ¥* andr < h,
h

Qs I Ime(@p 07

1<s1<...<8-<h

Lemma 9 There exists a set éfmessaged = (PU{M;})—{M,_,} suchthatm.(B)| >
-1 (k—1)2
o= [

Proof. We prove this in three steps. First we show that there exists a mesdgageP
such that|r;(B)| > [q%—‘. Then we show that there exists a setkof 1 messages,
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(k—1)2

P—{M;} = {M,,, M, ... M, _,}suchthatr,, ., ., ,(B)| > {q : ] To finish the
proof, we use Lemma 7 to show that

‘ﬂ-i,Sl,Sz.-Skil(B)‘ > ’ﬂ-l(B)’ ’ |7T51732~~~3k—1 (B)’
Using the Loomis-Whitney Inequality for= 1,
I ImB) = |=(B)]

1<i<k

— qk—l

Therefore, there exists at least one messdge P for which |m;(B)| > [q%w.
Similarly, by the Loomis-Whitney Inequality for=k — 1,

1

H Tsrs9esia (B)[ =1 > |75(B)
k+1<s1<s9<...<sp_1<2k
— g1
11 Torsmosea(B) = g

k+1<s1<59<...<sk_1<2k

Since there aré terms in the product on the left, there exist a subsét ef 1 messages

(k—1)2

M, , M, ...M, }C Psuchthatr,, , 5 . (B)|>|q =
1 2 k—1 1,52 k—1

For eachr; € m;(B), there existss € np(B) that assigns messagé; the valuez,.
Similarly, for each(ys,,...ys,_,) € Ts .s,..5._,(B) there existyy € np(B) that corre-
sponds to assigning the messa@#s, , M, ,... M, .} the valueys,, ys, - .. ¥s,_, ). BY
Lemma 7,B = 7p(B) x mp(B), and so there is a point i that assigns the valug to
messagé/; and the values;,, v,, - .., ys,_, t0 messages/, , M,,,... M Therefore,

Sk—1"

’ﬂ-i,81,82~-8k71 (B)’ ] B)‘ ’ ‘7"81,82--'81@71(3)‘

10

Theorem 10 There exists a solution to network if and only if the alphabet sizg is a
perfectk™ power.

v
El
>~

v
- _ 1
Q
e

O
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Proof. There are two steps. We first show how to construct a solution with an alphabet of
sizeq = (* for any¢ > 2. Then we show that the network only admits a solution if the
alphabet size is a perfekt' power.

LetI" be a set of sizé. We regard each message as a lerigtlector of symbols drawn
from I'. Recall that edg€’ has capacit. Therefore, we can seritk symbols fromI’
across edg€’. We use thesek symbols to transmit the first coordinate of each of 2ke
messages. The sintk, which requests altk messages, must recei2g length+ vectors.
Via edge(C, it receives the first coordinate of each of th@gevectors. Along the direct
edge of capacitgk — 2 from the source t@*, we send the remaining — 1 coordinates
of each of the2k messages. Now consider a sinkequesting a subset of £ messages.
Sink ¢ receives the first coordinate of each messagd iinom edgeC'. The remaining
k — 1 coordinates of each of the messageslinan be transmitted across the direct edge
of capacityk — 1 from the source t@. Thus, each sink receives every coordinate of the
messages it requests. The alphabet sizeds/*.

Next, we show that the alphabet size must bié"gpower. Lemma 9 says that there

k—1 (k—1)2

exists a setl = (P U {M,}) — {M,;} of k messages withr4(B)| > {qTW [q Z
On the other hand, since there is a stpkfor everyl < i,j < k requesting the set of
message§P U {M;}) — {My.;}, we must havér(B)| = ¢*~! by Lemma 6. These two
relationships can hold simultaneously onlyis ak" power.O

2.3.3 A Lower Bound on Alphabet Size

We now construct an instancé,, of the network coding problem witB () nodes that

admits a solution if and only if the alphabet sizegis= 25P(?/*)) " The construction

is as follows. For each prime number< n'/?, we take the instancé, of the preced-

ing construction, which forces the alphabet size to h& @ower. We place all of these
constructions in parallel in order to create instarige

Corollary 11 Instance/,, with ©(n) nodes admits a solution if only if the alphabet size is
gen(2(n'7%))

Proof. The number of nodes i, is at most:

nl/3

Y 2P+1 = O(n)
=1

Instancel,,, is solvable if and only if the alphabet size ip power. Thus, instancé,
is solvable if and only if the alphabet size i9%8 power for every prime less tham'/3.
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The product of primes less thanis e(!°(1)* (see [9]). Therefore, the minimum alphabet
size isq = 2°°(2("*)) g

The fact thatJ, is made up of a collection of disjoint networks is not critical to the
proof. In fact, one can add some sinks that join the networks and force some degree of
coding. More generally, one can imagine problems in which the various instances requiring
different vector sizes are embedded in a larger network and may not be easily detectable.

While the instance/, requires a very large alphabet, not much storage is actually
needed at the nodes. Also, the solution presented in Section 2.3.2 can be described con-
cisely without resorting to a particularly powerful description language. An interesting
guestion is whether other instances admit only solutions with not only enormous alphabets,
but also comparable storage requirements and description complexity.

2.3.4 Operating Below Capacity

We now consider the effect of allowing the network to operate at slightly below full ca-
pacity. We model this using vector linear codes in which the edges are allowed to transmit
vectors that are longer than the message vectors. In particular, suppose that each message
is a lengthk vector, but vectors transmitted over edges have le(igth ¢)k. We show

that for vanishingly smalk, the network.J,, in Corollary 11 admits a solution over any

field with a vector length linear in the size of the network. Using a constant-size field, this
corresponds to a vector-linear solution with an alphabet that is only exponential (instead of
doubly exponential) in the size of the network.

Theorem 12 There exists a vector linear solution over the figldto the network/,, on
©(n) nodes with message-vector lengthnd edge-vector Iengthl +n~% 3) n.

Proof. Recall thatJ, is constructed by placing instancés I, I5 . . . I, in parallel, where
s is the largest prime less tharl/®. Consider primep and the subnetwork, in J,,. In
our solution, we sencﬁﬂ unencoded bits of each message across étige/,. A sink
requestingy messages must receive a totapaf message bits. A total gf {ﬂ of these
message bits are sent via edgeThe remaining at most

pn—p- hﬂ <(p—1n

message bits can be transmitted along the direct edge from the source to the sink. Similarly
the sinkt* requesting all the messages receﬂlps{ﬂ message bits from edgeéand can
receive the other at mo&2p — 2)n message bits via the direct edge with capaijty- 2.

40



We can upper bound the lengih of the two vectors transmitted across edgeas
follows. For each of thep messages, we transnﬁtﬂ bits on edgeC. Therefore, we

have:
[
p
2n +2p

2n <1+£>
n

2n (1 + n*2/3)

2K

IA

IN

Therefore the length of each vector sent across édgeat most(l + n*2/3) n. We make
no use of the extra capacity along any other edge.

2.4 Discussion and Open Problems

The work in this chapter raises two interesting open problem.

e For aninstance of the network coding problem, find an integek; such that either
there exists a solution to the instance using an alphabet of size at magbr the

instance is not solvableThis is closely related to the question of whether the general
network coding problem is decidable. For a specific alphabet size, it is possible to
search all network codes over that alphabet and check is any of them are network
coding solutions. However, in light of Theorem 10 it is not clear which alphabet
sizes should be tried.

Does every solvable instance admit a solution with a moderate alphabet size,
provided the network operates just below capacityur results suggest that using

a network at full capacity may be undesirable; even if a solution exists, an enormous
alphabet may be required. On the other hand, slightly increasing the network capacity
eliminates this problem, at least for the instance we propose. This points toward an
exploration of network coding in a model where the network has a small amount of
surplus of capacity. Proving that under such a model, every solvable instance admits
a solution with a moderate alphabet size is an interesting open question.

2.5 References

Theorems 2, 3 and 4 appeared in [21] and are joint work with Eric Lehman. Theorem 2,
which shows that an alphabet of sigg#sinks) sometimes necessary, was independently
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proved by Feder, Ron and Tavory[29]. Recently it was shown to be tight by Fragouli and
Soljanin[8]. All three algorithms for the multicast problem, the Jaggi-Li algorithm [15], the
randomized algorithm due to Ho et al. [14] and the deterministic algorithm due to Harvey
et al. [10], require an alphabet of size at moXt#sinks). Therefore, in terms of the
encoding length of an alphabet symbol, all is within an additive constant of optimal.

Dougherty, Freiling, and Zeger[6] independently showed that a problem solvable with
a smaller alphabet (say, si2¢ may not be solvable with a larger alphabet (dize By
relating the network coding problem to orthogonal Latin squares, they created an instance
of the multicast problem that has a solution as long as the alphabet size2ism@t

Theorems 10 and 12 and Corollary 11 appeared in [22] and are joint work with Eric
Lehman.
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Chapter 3

Complexity of Linear Network Coding

In this chapter, we explore the applicability and limitations of linear network coding to a
breadth of network coding problems beyond multicast. Our main contribution is a taxon-
omy of network coding problems based on the connectivity of sources and sinks to the rest
of the graph. We describe a three-way partition of possible network coding problems. For
the first class, we prove that network coding adds nothing; if sink demands can be satis-
fied at all, traditional flow techniques provide a solution in polynomial time that does not
involve coding. Then we exhibit a second class of network coding problems for which
coding is advantageous. In this case, linear solutions can be obtained in polynomial time
by adapting the Jaggi-Li multicast algorithm. For the third class of problems, we show that
determining whether there exists a solution using linear codes— as in the Jaggi-Li algo-
rithm [15, 24]— is NP-hard. Finally, the techniques developed to prove hardness also yield
solvable instances of the network coding problem that do not admit linear solutions.

3.1 Taxonomy of Network Coding Problems

For our purposes, a network coding problem is defined by four attributes: single or multiple
sources, single or multiple sinks, message distribution at sources, and message distribution
at sinks. Thus a class of network coding problems is defined by a four-plg ¢, J),

which is interpreted as follows:

e «is 1ifthere is a single source andf there are multiple sources.
e Jis 1ifthere is a single sink and if there are multiple sinks.

e vislifall messages are available at every source, D if the sources have available dis-
joint sets of messages, and A if there are no specific guarantees about the availability
of messages at sources. In the case of a single sgusce
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e ¢ is | if every sink demands every message, D if sinks demand disjoint sets of mes-
sages, and A if there are no specific demand guarantees. In the case of a single source
~vis .

We show that each of the resulting classes of network coding problems falls into one of
the following three categories.

Trivial codes suffice: The simplest problems can be solved with a trivial network code,
one in which every edge carries an unencoded message. There are two types of problems in
this class. The first type is problems with a single sink regardless of the number of sources
and distribution of information at the sources. The second type is problems in which each
message is available at every source but requested by exactly one sink.

Linear codes suffice: The next set consists of problems for which nontrivial network
coding is sometimes necessary. For this class of problems, linear network coding always
suffices, if a solution exists. Furthermore, a solution can be found in polynomial time by
adapting the Jaggi-Li algorithm. Problems in this class have the property that every sink
requests the entire set of available messages. Thus problems in this class may have multiple
sources with no guarantees on the distribution of information between sources.

Hard: Finally, the remaining problems sometimes require nontrivial network coding,
but determining if a linear solution exists is NP-hard. For this last class of problems, there
are instances that do not permit linear solutions but are solvable with vector linear codes.

In the next three subsections, we justify this classification. The following table
summarizes these results.

Problem difficulty # of sources # of sinks Information atinformation at
sources sinks

Trivial codes lorn 1 I, Dor A I

suffice lorn m I D

Linear codes suffice lorn m I,Dor A |

Hard to find linear lorn m I A

codes, may need n m DorA DorA

general codes

3.1.1 Easy Problems

Theorem 13 An instance of network coding problem, (n, I, D), with multiple sources,
multiple sinks and each message available at every source but requested by exactly one
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sink has a solution if and only if there is a trivial network coding solution.

Proof. We show that such an instance can be solved by augmenting the associated graph
G and finding an appropriate flow. Létbe the number of number of commodities and
s1,Ss ... s, be thel nodes which are the sources. We add a super-sotiread addk
edges frons™* to each sourcs;, creating a multigraply’. We also add a super-sik For
each node let ¢ be the number of commoditiédor whichv € T(i). Add ¢ edges fromv
to t*. In G’ the original sources and sinks are now intermediate nodes and all messages are
available only at the super sourgeand requested by only the super-siihk

Since the super-source can transmit every message unencoded to each node that was a
source, if the original problem was solvable, then so is the new one. If the new problem
is solvable, then the maximum flow frogi to ¢t* must be at least units; by a counting
argument, we can not transnititmessages across a cut with capacity less thaithis
implies that there exist edge-disjoint flow paths froms* to ¢t*. Our construction ensures
that every flow path traverses a former-sousrcand that exactly paths through node if
v was a sink for; commodities. Therefore, in the original problem, each message can be
routed from a source to the appropriate sink on a path that is edge-disjoint from the paths
taken by all other messages. Consequently, no coding is neceSsary.

Next we turn our attention to network coding problems with a single sink and show that
regardless of the number of sources there always exists a trivial network coding solution
whenever the instance is solvable.

Theorem 14 An instance of the network coding problem with a single sink has a solution
if and only if there is a trivial network coding solution.

Proof. Let G = (V, E) be the graph representing the underlying network of the instance
with the single sink for all ¥ commodities. Create graghf = (V’, E’) by adding toG a
super sourca*. In addition, for each commodity add a nodey;, an edge from* to y;

and add an edge from nogeto v if v € S(i).

Since a network code for the new problem can transmit mesgageencoded to each
nodev € S(7), if the original problem was solvable, then so is the new one. Now we show
that if the new problem is solvable, then the maximum flow frgnto ¢ must be of size at
leastk; by a counting argument, we can not transinihessages across a cut with capacity
less thank. If the maximum flow froms* to ¢ is of sizek, then one unit of flow passes
through each nodg;. Therefore we can use the edge-disjoint paths from the maximum
flow to route each messagettaithout using codingd

3.1.2 Polynomial Time Solvable Linear Coding Problems

Jaggi et al. [15] presented a deterministic polynomial time algorithm for solving the mul-
ticast network coding problem. This algorithm can be easily adapted to also solve the
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network coding problem with multiple sources provided that all sinks request to receive all
messages. Ho et al. [14] provided an efficient randomized algorithm for finding solutions
to this class of problems.

The Jaggi-Li algorithm was initially presented in terms of the multicast problem in
which every sink wants to receive all available messages from a single source. The first
step of the algorithm is to find a flow of siZzefrom the source to each sink. Label the sinks
ti1,12...t,. Let F; be the flow associated with sink The edges are then considered in
topological order. For each sink there are a sef(i) of K edges that are the last edge
in each flow path of; considered by the algorithm. The Jaggi-Li algorithm maintains the
invariant that for each sink the set of symbols sent on edgégjrare linearly independent
combinations of the messages.

Theorem 15 An instance of the network coding problem with every message requested by
every sink is polynomial time solvable.

Proof. Consider an instance of the network coding problem in which every message is re-
quested by all the sinks. Lét = (V, E) represent the associated network. Let, ... %,

be them sinks requesting every message. Create a gféfly adding a super source.

In addition, for each messagdé;, add a node:;, an edge frons* to x;. In addition, for a
nodev € S(7), add an edge from; to v.

For each sink; find a flow F; of sizek in G’. Using the corresponding portions of
these flow paths i and the Jaggi-Li algorithm yields a linear network coding solution in
polynomial time.O

Note that in the special case, (n, |, 1), where there is only a single source the problem
in which every sink requests every message corresponds to the multicast case and therefore
the proof that it is polynomial time solvable is due to Jaggi et al. [15].

3.1.3 Hard Linear Network Coding Problems

We now consider the class of network coding problemsr(, D, A), where there are
multiple sources with disjoint information and multiple sinks that may demand arbitrary
messages. We show that determining whether there exists a linear network coding solution
to such a problem is NP-hard. This contrasts with the network coding problems considered
previously, for which linear solutions can be found efficiently, provided they exist. We
focus on the classi( m, D, A) for ease of presentation; similar arguments give hardness
results for more restricted problem classes. We discuss these extensions at the end of the
section.

We begin with a preliminary lemma.

Lemma 16 Let f1, fo, f3, h, and k be linear functions over a field. I, x5, and x3
are Uniquely determined bﬁl (.’L'l, 21), fg(l’g, ZQ), fg(l’g, 23), g(xl, Xo, T3, 21, %2, 23) and
h(ﬂ?l, To, T3, 21, %2, 23) thenfi(flfi, Z,L'> = ax; for somei € {1, 2, 3} anda §£ 0.
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s(j, j_) sl 1) )
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Figure 3-1: Portion of the instance derived from a 3-CNF formula. Each of the top boxes
corresponds to a variable gadget. The bottom box corresponds to the clauses gadget for
¢ = (z; VTE V).

Proof. The values of the five functions can uniquely determine the values of at most five of
the variables:y, zs, x3, 21, 22 andzs. If x; is determined and;(z;, z;) depends on;, then
z; I1s determined as well. Thus, at least one of the functifrioes not depend of), and
SO fi(x;, z;) = ax; as claimed D

Reduction: We now describe how to map a 3-CNF formula to an instance of the net-
work coding problem in the clags, m,D,A). Let ¢ be a 3-CNF formula over variables
x1,%2,...2,. For each variable; in ¢, we make the variable gadget shown in the top
three boxes of Figure 3-1. This gadget consists of a source 4{gdg which is a source
for commoditiesj and;j. The source node(j, j) has an outgoing edge to an intermediate
node,r;. For each clause = (z; V@ V z;), we create the clause gadget shown in the bot-
tom box of Figure 3-1. This consists of a sit{k, &, [), which demands messages, M,
and M, together with two intermediate nodes,andv;. The variable gadget is connected
to the clause gadget as follows. Nodesr,, andr; connect directly to the sink(i, k, ).
Nodess;, si, ands; all connect to both; andv,. This linkage is illustrated in Figure 3-1.
(Note that all three variable gadgets are connected to the clause gadget in the same way,
even though variable,, is negated in the clause. This negation is reflected in the demands
at the sink.)

Lemma 17 A 3-CNF formula¢ is satisfiable if and only if the corresponding network
coding problem has a linear network coding solution.
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Proof. Suppose thap is satisfied by some assignment If a variablez; is true in,

then sources(j, j) sends mes_sagMj to r; and sends messagé; on all other outgoing
edges. Ifr; is false, thems(j, j) sendsi/; to r; and sendsV/; on all other edges. Node

r; passes its input to its output. Now consider the gadget associated with a clause such as
¢; = (z; VT V x;). Sincer is a satisfying assignment, at least one literal in the clause is
true and so at most two literals are false. Each message corresponding to a true literal is
sent to the sink from an-node. Each message corresponding to a false literal is sent from

a source node to botly andv;. Since there are at most two such messageandv; can

relay them both to the sink. (For example, suppose that assignmmakesz; true and
bothz;;, andz; false. Then the sink receives messaggvia noder;, messagé/; via node

u;, and message/; via nodev;.) Thus, all sink demands are satisfied, and the instance of
the network coding problem has a linear solution.

In the other direction, suppose that there is a linear solution to the instance of the net-
work coding problem. We construct an assignmeras follows. If the output of; is a
function of only A/}, then setr; true. If the output is a function of only/z, then sety;
false. Otherwise, set; arbitrarily. Now consider a clause = (z; V7 V x;). Let f;, fi, fi
denote the values output by, r, andr;, and letg andh denote the values output lyand
v;. Since the sink can determine messadgs My, andM;, Lemma 16 implies that either
f; depends only o/;, f, depends only o/, or f; depends only od/;. Therefore, at
least one of the literals;, =, or z; is true, and the clause is satisfied by assignment
Therefore;r is a satisfying assignment for the 3-CNFO

Lemma 17 establishes the hardness of network coding problems in therclassiy,

A). We conclude this section by describing minor adjustments to the reduction which yield
the following more general result.

Theorem 18 Determining whether there exist linear network coding solutions to network
coding problems in the classes, (n, I, A), (n, m, D or A, D or A), and {, m, |, A) is
NP-hard.

We've shown how to map a 3-CNF formula to an instance in the class:( D, A).
We now describe extensions of this result to the remaining classes in Theorem 18. We start
with the class (1, I, A). For this problem we show how to use sinks to fix the way that
messages are distributed from a common source. We then turn to therglassy, D).
We only sketch the reduction here. The key elements in both of these reductions are found
in the preceding discussion about the clagsi, D, A). Finally, since {, m, I, A) contains
(1, m, 1, A) and (», m, A, A) contains ¢, m, D, A) the theorem follows.

Lemma 19 A 3-CNF formulag is satisfiable if and only if the corresponding instance of
the network coding problem (m, I, A) has a linear network coding solution.

Proof. Instances in the class$,(m, I, A) have a single source with all the messages. There
are no restrictions on the demands at the sinks. dtdte the graph obtained from the
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reduction given above for a 3-CNF formula We augmentz with a super-source*
and an edge of capaciB/from s* to s(j, j) for each nodes(j,j) € G. In addition, we
change node(j, j) from being a source for messages and M; to being a sink for both
messages. Each nodgj, j) can receive the two messages it now requests unencoded.
Therefore, if the original instance had a linear solution, the augmented instance does as
well. Now suppose the augmented instance has a linear solutions then receives two
linear functions of the messages and is able to deddgdand )/;. Therefore the linear
functions that node(j, j) receives do not depend on any messages otherithamd M.
A linear solution for the new instance can be mapped to a linear solution for the original
instance. The result follows from Lemma 17.

Augmenting the reduction to create an instance in the class,(l, A) was straightfor-
ward. The next lemma deals with the class«:, D, D). While the heart of the reduction
is the same as given for the class (n, D, A) we need to insure that each message is
requested by exactly one sink. This restriction adds some complexity to the structure of the
instance produced by the reduction. Figure 3-2 shows the main changes to the reduction.

Lemma 20 A 3-CNF formulag is satisfiable if and only if the corresponding instance of
the network coding problem(m, D, D) has a linear network coding solution.

Proof. Instances in the class (m, D, D) have a single source for each message and a single
sink requesting each message. In the reduction given for the elass O, A) for each

clause with variabler; there was a sink requesting messdge We alter the reduction

given above in order to insure each message is requested by exactly one sink. Figure 3-2
shows most of the additions to the reduction. Gelbe the graph obtained according to the
reduction given for#, m, D, A) from 3-CNF formulag. For variablez; let C'(j) be the

set of clauses in which the literal appears. Le€’ () be the clauses in which; appears.
Without loss of generality assume that for all variabtesthere are no clauses with both

x; andz;.

For each variable;, we add two sources(j) ands(j) and an edge from each of these
new sources to nod€j, 7). Nodes(7, j) is no longer a source. We also add two sinks
andt(j) which are the only sinks requestiig; and M5 respectively.

For each clause, = (z; V 7, Vx;) there are three new messagés Y,z andY;; with
new sources (ij), o(ik) ando(il). We add a single sink(i) requesting all three messages
associated with clause. We create the remainder of the network to insure gt must
also receiveV! (j), M (k) and M (l) in order to decodd’;, Y;z andY;.

For each variable;;, we add a patlg; of length three froms(j) to ¢(j). We also add
a single patlp;; from o(ij) to 7(¢) of length three. The middle edge oy is the middle
edge fromg;. This common edge must transmit a linear function which depends on both
M; andY;;. Therefore, sink (i) will need to receive messagé, in order to recovet’;.

We add an edge of capacity three from the ntdgk, 1) to 7(i). We construct similar paths
for the other variables and clauses.
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Source Source Source Source Source | Source
with with with with with

M; My, M;
s(k) s(k) (1)

Source
with
Yi ic

T(i)
Sink for

Yij! YiE and Yil

Figure 3-2: The gray portion corresponds with the part of the graph derived according to
the reduction for#, m, D, A). The black nodes and edges are the alterations to the instance
which put it in the classi{, m, D, D).
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Lastly, we need to add some direct edges from sources to sinks for other messages.
The middle edge on the path is the middle edge on all paths; such that;, € C(j).
Therefore, we add an edge from sous¢éj) to sink () for all ¢ # ¢ andc¢;, ¢, € C(j).

We also add an edge from sourde;) to sinkt(;) for all ¢; € C(j). We add similar edges
for the other messages.

We now show that the augmented instance has a linear solution if an only if the original
instance did. By construction, each message associated with a variable can be decoded by
its sink. This is because there is a patlfrom s(j) to t(j) and direct edges tt(j) from
every source for a message whose only path to a sink uses the middle gglge in

Similarly, for a sink7 (i) associated with a clausg, the messages receive along the
pathp;; will be a linear combination of;;, M/, and messagey,; such thatc, € C(j).

Since there is a direct edge from every sou@g) to 7(:) such that + 4, 7(i) can recover

a linear combinatiorY;; and //;. Note that this linear combination must depend on both
Y;; and)M;. Likewise, for the other messages whidi) requests. Therefore, there exists a
linear solution to this instance if an only4{i) can receivel/;, M; and M, from ¢(i, k, ).
Therefore the augmented instance has a linear solution if and only if the original instance
admits a linear solutioriJ

3.2 Insufficiency of Field Linear Codes

If we do not insist on a linear solution, then the coding problems generated by 3-CNF
formulas arealwayssolvable— even if the 3-CNF formula was not satisfiable. This is in
stark contrast to the multicast case where a linear solution exists if any solution exists. At
the end of this section we present a simple solvable network with no linear solution.

Theorem 21 There are solvable network coding problems in the classes:( I, A), (n,
m, D or A, D or A), and {, m, |, A) for which there is no linear network coding solution.

Proof. [for the class#, m, D, A)] Let ¢ be an unsatisfiabl& CNF formula. By Lemma 17,
there does not exist a linear solution to the corresponding network coding problem. How-
ever, we can construct a nonlinear network coding solution to this network coding problem
as follows. Take the alphab&t = I'" x I', wherel is an arbitrary alphabet. Thus, each
message is a pair of symbols drawn frdéim Each source(j, j) sends the first symbol

of messaged/; and M; to noder; and sends the second symbol of these two messages
on all other outgoing edges. Nodgrelays its input to its output. Now consider a clause

¢; = (z; VTL V). The sinkt(j, k, 1) requests the three messagdés M;, and)M;. From
nodes;, r, andr;, thet(j, k, [) receives the first symbol of all six messagdés M5, My,

My, M,;, andM;. Furthermore, the nodeg andv; receive the second symbol of all six
messages. Since each of these nodes can send two symbolstiodtvet(j, k, 1), they can
together provide the second symbol of the three messalges/;; and M. O
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Figure 3-3: A network coding instance with a vector linear solution but no field linear
solution.

The above theorem demonstrates that linear codes do not suffice for a large class of
general network coding problems. For concreteness, we present a simple network which
does not have a linear solution but does have a vector linear solution.

The example network presented in Figure 3-3 is derived by considering the unsatisfiable
2-CNF formula(z; V zx) A (T; V zi) A (2 V T) A (T; VTy). First consider a vector linear
solution overs =T x I'. Nodes(j, j) sends the first symbol from/; and the first symbol
from M5 to nodew. Nodes(j, j) sends the second symbol froid; and M to the four
unlabeled intermediate nodes. Similarly fgk, k). It is check that all sinks receive both
requested messages.

Now suppose their is a linear solution. LEKM;, M5) and f, (M, k) be the linear
functions sent taw andv respectively. Node(j, k) receives three linear functions. Sinfe
is a function of)M/; and M5 and f, is a function of),, and Mg, one of these functions must
depend on only one of its inputs. Without loss of generality, assfir®/;, M;) = M;.
Then node (5, k) must receivel/; unencoded and therefore must also recéiffgeunen-
coded. This implies thaf, (M}, M;) = aM; for some non-zere.. Therefore, regardless
of the third linear function transmitted to nodg, &), it cannot possibly reconstruct mes-
sages\/; and M. Hence there is no linear solution.
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3.3 Discussion
There are two, very important, open questions related to the work in this chapter.

e What is the computational complexity of the general network coding problem?
It is not even known if the general network coding problem is decidable.

e Find an algorithm for any class of problems for which linear codes are not suffi-
cient. For the classes of problems for which linear solutions are not sufficient, there
are no known algorithms (regardless of efficiently). This set of problems represents
the majority of network communication problems. All known algorithms for the
multicast problem use the fact that any solvable instance admits a linear solution.
Therefore, a algorithm, regardless of efficiency, for any class of problems for which
linear codes are not sufficient would necessarily introduce new techniques.

3.4 References

There are now three efficient algorithms for the multicast problem. Ho et al. [14] presented
a randomized algorithm which can be implemented in a distributed fashion[19]. Jaggi et al.
found a fast implementation for the algorithm due to Li, Yeung and Cai [24]. In addition,
Harvey, Karger and Murota [10], building on the framework of Koetter aratidtd [19],
used matrix completion techniques to derive an entirely different deterministic algorithm.
Each of these algorithms can be used to solve all the network coding problems for which
linear codes are sufficient.

Koetter and Mdard conjectured that any solvable network coding problem would have
a linear solution. Theorem 21 answered this conjecture in the negative. However, the net-
works used in the proof of the theorem admit vector linear solutions. Effros et al. presented
a similar example to the network in Figure 3-3 and conjectured that linearity, in some form,
is always sulfficient. In [6], Doughtery, Freiling and Zeger showed that every instance with
two commodities that admits a solution over the alphdlbet } admits a linear solution.
However, if the instance has three or more commodities, a solution{Ové} does not
imply the existence of a linear solution.

A series of papers have further explored the uses and limits of codes which satisfy some
linearity condition [21, 33, 7, 24, 31].
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Chapter 4

Entropy Based Upper Bounds

The k-pairs communication problem represents an important class of problems in terms
of both theory and practice. The problem of allowihgoint-to-point connections in a
communication network arises in many practical situations. In addition, this problem has a
strong connection to the classical multicommodity flow problem. The primary motivation
for the work in the next three chapters is understanding this fundamental communication
problem. For this reason, we present the results in terms of-{beirs communication
problem. However, many of them apply directly or are easily extended to general network
coding problems. At the end of each of of this chapter we discuss the straightforward
extensions of these ideas to the general network coding problem.

In this chapter we consider a definition of a network code that allows us to consider
guestions about the maximum rate of a network coding solution. In the previous two chap-
ters, network codes used the same alphabet for all messages and all edges. Suppose that
we used a much larger alphabet on the edges. Some instances that previously did not have
a solution, now would have solutions. However, these solutions seem “worse” than a solu-
tion which uses the same size alphabet for all sources and all edges. We quantify this by
defining the rate of a network coding solution.

We then consider the problem of determining the maximum rate at which every source
can simultaneously transmit information to its sink. For the multicast problem there is a
min-cut condition which determines this rate[24]. For kRpairs communication problem,
we consider two possible cut conditions. The first is the value of the sparsest edge cut in the
graph. For directed graphs network codes can achieve much higher rates than suggested by
the value of the sparsest edge cut.

We define a quantity called thmeagernessf a cut. We show that while meagerness
is an upper bound on the maximum rate achievable in a directed graph, it is not a lower
bound. To prove this, we present an instance ofthgairs communication problem in
which the most meager cut has valubut the maximum coding rate &/3. The proof of
this result relies on information theoretic arguments and leads to general upper bounds on
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o (1) o(2)
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T(1) I'(2)
T(1) T(2)

Figure 4-1: In black is an instance of theyairs communication problem. The gray edges
and nodes are added to create the augmented graph.

the maximum achievable rate.

4.1 Definitions

We redefine a network code and a network coding solution. These definitions rely on an
augmented graphl. By augmented the graph, we can treats source messages and sym-
bols transmitted on edges in a similar way. Figure 4-1 shows the underlying graph and
augmented graph for an instance of tApairs communication problem.

Definition 4 (Augmented Graph &) Given a instance of the-pairs communication
problem on underlying directed gragh, theaugmented grapty = (V/, E) is obtained by
applying the following transformation 1G.

e For each commodity, we add a new vertex(i) with one outgoing edgé&(i) =
(o(1), s(7)) and no incoming edges. The set of all ed§és is denoted bys.

e For each commodity, we add a new vertex(i) with one incoming edgé'(i) =
(t(7), 7(i)) and no outgoing edges. The set of all ed@és is denoted by .

A generalized edgef G is an edge of7. If ¢ = (u,v) is such an edge, the set of all
incoming edges ta will be denoted byn(e).

We now redefine a network code and network coding solution. For the remainder of this
thesis, network codes will be specified on the augmented graplote that the augmented
graph is acyclic if the underlying graph is acyclic.
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Definition 5 (Network Code) Given a network coding instance with underlying acyclic
graph G and augmented graptr, a network code is given by specifying the following
data:

e Anedge alphabet(e) for each generalized edge

e Afunction f, for each generalized edge

For a specified network code and sebf generalized edges, let

o N(A) = [leeaX(e).
e fu: X(S) — X(A) such that for every-tuple of message#,

fa(M) = {fe; (M), fer (M) ... fe, (M)}
e In(A) = Ucealn(A).

Definition 6 (Network Coding Solution) A network code defined on an augmented di-
rected acyclic graplizis asolutionto an instance of thé-pairs communication problem if
it meets the following conditions. Léf be thek-tuple of messages.

e Forevery edges(i) € S, fsu)(M) = M;.

e For every generalized edgec F \ S, the functionf, : [, 2(S) — X(e) is com-
putable from the functions on edgeditie).

e Foreveryedgd (i) € 7, fru(M) = M;.

Our new definition of a network coding solution does not restrict the amount of infor-
mation sent across an edge. Intuitively in a solution which uses much larger edge alphabets
than source alphabets the sources communicate at a much lower information rate than the
rate of the links in the network. To precisely capture this, we define the rate of a network
coding solution.

Definition 7 (Rate) We say a network coding solution defined on the augmented g¥aph
achieves rate if there exists a constamtsuch thatiog, |X(e)| < ¢(e) for eache € E, and
log, |X(S(7))| > rd; for each commodity.

The constant in the definition of rate is chosen to allow a network code to use any
choice of alphabet size. The idea is that a network code can use a large alphabet on the
edges but if the rate of the solution is still good then the alphabet for each commodity must
also be large.
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Figure 4-2: In this example, soureéi) has an edge to every sink other thdf) and an
edge tou. Sinkt(i) has an in-edge from and an in-edge from every source excef).
Without network coding the maximum rateligk. A rate1 network coding solution sends
M, & M, & ... My, over edg€u, v). Sinks(i) also receives\/; directly froms(;) for all

J# i

In this chapter we focus on thepairs communication problem and consider various
necessary and sufficient conditions. We first consider some natural cut-based conditions
and show that while some are necessary conditions, none are sufficient conditions. The
proofs of these results lead to conditions based on the structure of the underlying graph and
properties of the entropy function. We can prove that a network coding solution for any
generalinstance must satisfy these conditions. It is an open question as to whether these
are sufficient conditions.

4.2 Sparse Edge Cuts

In our search for necessary and sufficient conditions, it is natural to consider the capacity of
any edge set whose removal disconnects a number of source-sink pairs. However, consider
a modification of the canonical example in Figure 4-2. (This example is due to Nick Harvey
and was noticed independently by Li and Li [26].) The middle vertical edge has capacity
1. Removing this edge from the graph disconnects all sources from their respective sinks.
Therefore, the sparsestigecut in the graph has sparsityk. At first glance it appears that

the best possible rate requires that all source-sink pairs share the capacity of the middle
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vertical edge. Using coding over a finite field, a rat@etwork coding solution sends
the exclusive or of all messages across the middle vertical edge. Each sink also receives
unencoded every message other than the one it requests. Sincé aghtion exists, it is
clear that the capacity of a set of edges disconnecting each source from its respective sink
is not an upper bound on the achievable coding rate.

It is worthwhile to consider why there exists a solution of rat@hen the sparsity of
this graph isl/k. The network coding solution sends sinks information that they didn’t
request but that enables them to decode the message they want. This motivates the next
cut-based condition. Specifically, we consider cuts that separate an entire set of sources
from an entire set of sinks. We require that such a cut separate sources even from sinks for
other commodities.

4.3 Meagerness

Given a set of edged, we define the capacity of to be the sum of the capacities of the
edges inA.

e€cA

In light of the above example, consider edge cuts which separate a set of sources entirely
from a set of sinks.

Definition 8 (Isolation) Given an edge set C E and a subset of commoditiés C Z,
we sayA isolatesP if for all i, 5 € P, every path fronx(i) to ¢(j) intersectsA.

A cut A that isolates a set of commoditiésmust disconnect each source for a com-
modity in P from the sink foreverycommodity inP. The demand of the commodities in
P is writtend(P).

Consider again the example in Figure 4-2. Suppose the set of commadditi@stains
all commodities. A cutd which isolatesP must separate the sourggl) from all sinks.
This implies that all the gray out-edges froifil) must be inA. Similarly, all the gray
out-edges frons(2) must be inA. Therefore, cuts which isolate a setmay need to be
much larger than a cut that separates every souréefiom its corresponding sink.

Definition 9 (Meagerness) The meagernessef a cut A is defined to bex if A does not
isolate any commodities and otherwise is defined as:

M(A) = min { fz?) }

For a graphG, the value of most meager cut@his denoted by
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Mg =min A
ACE

Note that the meagerness of a grapls defined in terms of; itself and not(y. Consider
again our example in Figure 4-2. If we chodBdo be a single commodity, say = {1},
then we only need to ensure thatseparates the source for that one commodity from its
sink. Removing the middle edge separat€b) from (1) and therefore isolates the set
P = {1}. Therefore, the meagerness of the graph in Figure 4t2 is

The following lemma upper bounds the achievable rate by the meagerngss of

Lemma 22 Consider an instance of the-pairs communication problem on a directed
graphG = (V, E'). The maximum rate achievable by a network code is at st

Proof. Let A be the most meager cut (d and letP be the set of commodities isolated by
A. Every path from the sources for a commodity/tnto a sink for any commodity i
must intersectd. Therefore, the information transmitted on edgestimust be sufficient
to uniquely determine thgP|-tuple of messages set from sources for commoditig3.in

Let G be the augmented graph. The symbols on edge$ @an take onX(A)| =
[I.c4 |X(e)| different values. There arf],., |X(S(4))| different | P|-tuples of messages
for the commodities irP.

[Ti=s@) < T I=eE)

eP ecA

Letr be the rate of this solution. Then there exists a consgtanth thatog, |X(e)| < c(e)
for all e € F andlog, |X(S(2))| > rd;.

log, (H \E(S(i))!> < log, (H \E(€)|>

i€P ecA
D logy [S(S(0)] <) log, [S(e)|
i€P e€cA

The left side is at least,_, rd; = rd(P) and the right-hand side is at mast,_ , c(e) =
c(A). O

4.4 The Split Butterfly

In the previous section we proved that the meagerness of a graph is an upper bound on
the maximum achievable network coding rate. In this section we introduce an example,
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Figure 4-3: The meagerness of this graph isut the maximum rate at which all three
sources can communicate with their respective sinkgds

called the split butterfly, in which the maximum achievable rate using network coding is
strictly smaller than the meagerness of the graph. In the next section we introduce the
new techniques which are used to prove that the maximum achievable rate is less than the
meagerness. We then prove the gap between the meagerness of the graph and the maximum
achievable coding rate for the example.

Consider the instance depicted in Figure 4-3. &et (V, ) be the graph correspond-
ing to this instance. The set of commoditiesZis= {a, b, c} and the demand for each
commodity isl. Each edge idz has capacity.

We show that the value of the most meager cufiis 1. We also give a solution of rate
2/3. Later, we will show that there does not exist a network coding solution for any rate
r>2/3.

Lemma 23 The value of the most meager cutiis 1.

Proof. For each subset of the commodities, we determine the meagerest cut separating
them. Since all edges have capaditg cut that must cut edge-disjoint paths to isolate
must have capacity at leastBy considering all possible sizes fét, we show there are at
least| P| edge-disjoint paths which need to be cut in order to isafate

Suppose” has one commodity. For alli, there is a path froma(:) to ¢(¢) with capacity
1. Now suppose’ has two commodities. ¥ € P, then the two edge-disjoint paths from
s(c) tot(c) must be cut. IfP = {a, b}, then the edge&s(a), t(b)) and(s(b),t(a)) must be
cut. Finally, if P = {a, b, ¢} then the two edge-disjoint paths froifr) to ¢(c) must be cut.
In addition the two edge&s(a), (b)) and(s(b), t(a)) must be cut. Therefore the capacity
of a cutA isolating P is at least P|. Since each commodity has demahndhis proves the
claim. O
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A rate 2/3 solution for the instance in Figure 4-3 is the following. LetS(i)) =
{0,1}* for all i andX(e) = {0,1}? for all e. The messag@/, is transmitted on the only
path froms(a) to¢(a). Similarly, the messag#/, is transmitted on the only path frosfb)
to ¢(b). Each of the bits for messagé, are transmitted on one of the two paths freMm)
to t(c). Therefore, edges, ande, must transmiB bits each. Every other edge transmits
fewer tham3 bits.

Our next step is to prove an upper bound2g8 on the maximum network coding
rate for the graph in Figure 4-3. This will show that the meagerness of this graph is not
equal to the maximum achievable rate. Intuitively, the edgesnde, must transmit all
the information from the three sources to the three sinks. The proof of this result is based
on tighter necessary conditions. To derive the tighter conditions we take an information
theoretic perspective on the problem of network coding. We first present the necessary
definitions and conditions and then return to considering this example.

4.5 Entropy Based View of Network Coding

We describe the entropy based view of network coding forithmairs communication
problem. Let( be the augmented graph for an instance of thgairs communication
problem. Suppose for each source ed§é) we chose a message uniformly at random
from X(S(i)). We assume the messages are chosen independently. For each generalized
edgee, we associate with a random variablé&’,.

Pr(Y, = a) = Pr(f.(M) = a)

where M is chosen uniformly at random froli(S). For a setd = {ej,es...¢4} Of
generalized edges;y = {Y.,,Y., .. .Ye‘A‘}. We use the standard definition of the joint
entropy of a set of random variables (See Appendix A for definitions and statements of
basic results). As a shorthand, we u$eA) to refer toH (Y,) for any setA of generalized
edges.

The following Lemma applies to any network coding solution on a directed acyclic
graph.

Lemma 24 Let A be a set of generalized edges. Given a network coding solution,
H(S,A) = H(S)
andforalli € 7

H(5(i),A) = H(T(i), A)

The above lemma follows directly from the definition of a network coding solution. The
following lemma relates the entropy of sources and edges in a satkition.
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Lemma 25 Given a network coding solution defined on an augmented gfaphrater,
there exists a constantsuch that the following hold. For all edges= F,

H(e) < c(e)logy b

and for all commoditieg € Z,

H(S(i)) > rd;logy b

Proof. By the definition of a rate code, there exists a constansuch thafog, |X(e)| <
c(e) for all e € E andlog, |>(S(2))| > rd, for all : € Z. Therefore,

(e)] < b

2(5(0)]

IV IA

brdi

Since we choose each source message uniformly at randonftsia)),

H(S(i) = — > Pr(fsm(M)=a)log,Pr(fsq(M)=a)
aeS(S())
1 1
= - 2 EEe e

a€X(S(4))
= log, [X(5(2))|
> logy(b"*)
= rd;log,b

For edgee € F,

H(e) = — ZPr fo(M) = a)log, Pr (fo(M) = )
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Where the second inequality follows from the fact that the entropy function is maximized
by the uniform distribution™d

4.6 Downstreamness

We now consider a relationship between the entropy of edge s6tsWe begin by defining

a relationship between edge sets called downstreamness. We then show that if é¢lge set
is downstream of edge sdt H(A) > H(B). This will be a key to analyzing the example

in Figure 4-3.

Definition 10 (Downstreamness)Let GG be the augmented graph for an instance of the
k-pairs communication problem. Given two sétsnd B of generalized edges, we sa&y

is downstream ofl if for all edgese in B, every pathp such thate € pandp NS # 0
satisfiegp N A # (). We writeA ~» B if B is downstream ofi.

As an example, consider the instance in Figure 4-4. The €dieis downstream from
the pair of edgeg.S(a),e;}. Similarly, {S(b),es} ~ T'(a). Note that our definition of
A ~» B allows for the possibility thatl = ). A set of edgesB is downstream from the
empty set when there is no path from a source to an edgeiinG.

Lemma 26 For any setsA and B of generalized edges, # ~ B, then there exists a
functionhp @ X(A) — X(B) such that

faohap = fB

Proof. Let D be the set of all generalized edges that are downstreafn dhe setB is a
subset ofD. We prove for each edgec D, there exists a functioh,, : X(A) — X(e)
such that

onhAe:fe

Order the edges i@ in topological order so that every edgelir(e) is either not inD
or comes before in the ordering. For the base case,ddte the first edge in the ordering.
Then every edge ifn(e) is not in D. If e € A then the claim follows immediately.
Otherwise, by the definition of downstreamnests, an edge with no in-edges @. In this
casef, must be a constant function since there is no path from any sourcdteerefore,
the claim follows.

Now assume the claim is true for edggse; ...e,_1 € D. Let

Dy = {60, €1y - 6k71}
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Suppose is an in-edge te;. If € ¢ D, then there is a path from a source*tand therefore
also a path from a source 9. Thus every edge im(ey) is in Dy_;. By the definition of a
network coding solution, there exists a functign : Heeln(%) Y(e) — X(ex) which maps
the functions on edges im(ey) to f.,. Usingg,., and the functiong 4, for e; € D;,_, we
can construct 4, . O

The definition of downstreamness implies a relationship betweeH {8 and H (B)
if A~ B. We prove this relationship in the following lemma. Downstreamness can be
viewed as a structural relationship which implies that the corresponding random variables
form a Markov chain.

Lemma 27 For sets of generalized edgdsand B, if A~ B, then

H(A) > H(B)

Proof.

Let Yy, refer to the random variable associated with alsetf generalized edges. By
downstreamnes$ — Y, — Yjp forms a Markov chain. By the data-processing inequal-
ity, I(Ys,Ya) > I(Ys,Yp). Equivalently,

H(Ya) — H(Ya|Ys) > H(Yp) — H(Y5|Ys)

SinceYj is the random variable representing the choice of messages transmitted on all
out-edges from sources(Y4|Ys) = 0 andH (Y|Ys) = 0. Therefore H(Y4) > H(Y5).
O

Using downstreamness and the properties of the entropy function, we now prove that
the maximum rate achievable with network coding for the instance in Figure 23is
Figure 4-4 shows the augmented graph for this instance.

Lemma 28 In the instance depicted in Figure 4-3 the maximum achievable rate with net-
work coding i2/3.

Proof. We use the following three downstreamness relationships:

{S(a)vel} ~ {S(a)’T(b)’el}
{S(b), €2} ~ {T(a),S(b), €2}
{S(a)78(b)7€1762} ~ {S<a)?s(b)>T(c)7elve2}

The first downstreamness relationship implies

H(5(a),e1)

VIV
=

n

=

Wn

=

o
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tHb) ¢ Y ta)

Figure 4-4: The augmented graph for the instance in Figure 4-3. The edges in gray are
the edges added in the augmentation process. The meagerness of this instdntehe
maximum rate at which all three sources can communicate with their respective sinks is
2/3.

where the second inequality follows by Lemma 24. Similarly,

H(S5(b),e2) = H(S(a),S(b),e2)

Adding these two inequalities together we get
H(S(a),e1) + H(S(b),e2) = H(S(a), S(b), e1) + H(S(a), 5(b), €2)

We combine the two terms on the right side using the submodularity of entropy.
H(S(a),e1) + H(S(b),e2) = H(S(a), S(b), e1, e2) + H(S(a), S(b))

On the left side, we can upper bout S(a),e;) by H(S(a)) + H(e;) and likewise for
H(S(b), e2).

H(S(a)) + H(S(b)) + H(e1) + H(ez) > H(S(a), S(b), e1,e2) + H(S(a),S(b))
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Using the fact that the sources are independent, we can cHi¢ék)) + H(S(b)) on the
left with H(S(a), S(b)) on the right.

H(ey) + H(eg) > H(S(a), S(b), €1, e)
By the third downstreamness relationship,
H(S(a),S(b),e1,e2) > H(S(a),S(b),T(c),e1,e2)
Using this inequality and replaciri(c) with S(c¢),
H(ey) + H(eg) > H(S(a),S(b),S(c),e1,e2)
The term on the right contains all sources in the instances. Therefore,

H(e1) + H(ez) H(5(a), S(b), 5(c))

>
> H(S(a))+ H(S(b)+ H(S(c))

where the second inequality follows because the sources are independent. Finally, we apply
Lemma 25 to the last inequality. If rateis achievable, then there exists a constesiuich
that

(dy + dp + de)rlogb
(da + db + dC)T'

(c(e1) + c(eq)) logb

(c(er) + cles))
2

3

(AVARVS

r

v

The last inequality follows because all edges have capacégd all commodities have
demandl. O

4.7 Entropy-based axioms

Examining the proof of Lemma 28 carefully, it uses only the following entropy based ax-
ioms.

Submodularity of entropy: H is a non-negative, non-decreasing, submodular set func-
tion.

Downstreamness:|If A ~» B, thenH(A) > H(B)
.S

Independence of sourcesfor any setS(i), S(i2), ..., S(i;) of sources,
H(S(i1),...,8(i;)) = H(S(i1)) + ...+ H(S(i5))
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Correctness: The random variablegs ;) andYr(;) are equal. Consequently, for any set of
generalized edgds, H(U U {S(i)}) = H(U U{T(i)}).

Rate: The entropy of a random variable is maximized when the random variable is
distributed uniformly over its sample space. Therefore

H(e) < c(e)logb

and
H(S(i)) > rd;logb

in a rater solution with constan.

For any instance of a network coding problem there is a finite (but exponentially large)
set of constraints which can be derived from these axioms. All of these constraints are
linear, which leads to the following linear program for computing an upper bound on the
maximum rate- achievable via network coding. We ignore the constegib which arises
in the rate constraint.

LP - Acyclic

max r

st. H(U) >0 (VU C E)
H(U U {e}) > H(U) (VU C E,e € E)
HU)+HW) >HUUW)+HUNW)  (YU,W CE)
HUUS®G) =HUUT®GE} (VU C E,VieT)
H(U) > H(U") VUU CE:U~U"
H (e) < c(e) (Vee E\{SUT})
H (5(i)) > rd (V S(i) €S)
H(S) = ZH(S(Z))

.
Il
—

For every subsdi C F, thereis a variablé/ (U). The intuition is that{ (U) represents
the joint entropy of the functions associated with edge& inNote that by interpreting
H(-) as the basé entropy function, ignoring thé&g b arising in the rate constraints does
not effect the admissibility of a ratesolution. The first three constraints ensure that the
assignments to variables are non-negative, non-decreasing and submodular. The fourth
constraint ensures that a solution to the LP obeys correctness. The fifth constraint ensures
that the downstreamness axiom holds. The sixth constraint says that édgecapacity
c(e). The seventh constraint is that every source transmits at rate at-led&te last
constraint specifies that the sources are independent.
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We put forth the following conjecture for directed acyclic graphs:

Conjecture 29 The maximum achievable network coding rate is equal to the optimal value
of the linear prograni.P-acyclic.

It was shown by Song, Yeung and Cai in [36, 39] that the maximum rate found by a similar
LP is an upper bound on the maximum network coding rate. (See [36] and Chapter 15 of
[39]).

4.8 The General Network Coding Problem

Although we described all of our results in terms of thpairs communication problem,

it is easy to extend them to general network coding problems defined on directed acyclic
graphs. In this section we describe an augmented graph for a general network coding
problem. The definitions of a network coding solution and rate follow. Downstreamness,
as defined for thé-pairs communication problem, also applies to the general network
coding problem. Finally we discuss the extensions of Lemma 24 to the general problem
and the applicability of Lemmas 25, 26 and 27.

4.9 Definitions

Definition 11 (Augmented GraphG) Given a network coding instance on underlying di-
rected acyclic graphz, the augmented graply = (V, E) is obtained by applying the
following transformation td-.

e For each commodity, we add a new vertex(i) with one outgoing edg8(i,v) =
(o(i),v) for every noder € V which was a source for commodity The set of out-
edges fronw (i) is denotedS (i) and the set of all edge$(i, v) for all commodities
is denoted bys.

e For each commodity and each node € V that was a sink for, we add a new
vertexr (i, v) with one incoming edg&'(i, v) = (v, 7(i,v)) and no outgoing edges.
Let7 (i) = {T(i,v) : v € V}andT = U;7 (3).

A generalized edgef G is an edge of7. If ¢ = (u,v) is such an edge, the set of all
incoming edges to will be denoted byn(e).

We can use the same definition of a network code given folktpairs communication
problem but need to redefine a network coding solution.
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Definition 12 (Network Coding Solution) A network code defined on an augmented di-
rected acyclic graplds is asolutionto an instance of the network coding problem if it meets
the following conditions. Let/ be the|Z|-tuple of messages.

o For every commodity, for every edges (i, v) € S(i), fsqv (M) = M.

e For every generalized edgec E \ S, the functionf, : [L2(S) — X(e) is com-
putable from the functions on edgeditie).

e For every commodity, for every edgd’(v,i) € T (i), frw) (M) = M;.

Notice that this definition of a network coding solution requires that every ed§éijror
7 (i) uses the same alphabet and transmits the same message. For comyteidity) be
this alphabet.

Definition 13 (Rate) We say a network coding solution defined on the augmented graph
G achieves rater if there exists a constamtsuch thatlog, |X(e)| < ¢(e) for eache € E,
andlog, |X(7)| > rd; for each commodity.

4.10 Extension of Techniques

Using similar ideas as in Section 4.5, we can define the entropy of a source and the random
variable associated with an edge. First we extend Lemma 24 to the general problem.

Lemma 30 Let A be a set of generalized edges. Given a network coding solution for an
instance of the general network coding problem,

H(S,A) = H(S)
ForallieZ,letB C S(i),C C T(i), S(i,v) € S(i) andT (u,i) € 7 (i),

H(B,A) = H(S(i,v), A) = H(T(u, i), A) = H(C, A)

This lemma follows directly from the definition of a network coding solution. Lemmas
25, 26 and 27 did not rely on any special structure offthpgairs communication problem.
Together with Lemma 30 and the properties of the entropy function, these lemmas imply
that under the appropriate modifications, the linear program given in the previous section
provides an upper bound on the maximum achievable rate for a general network coding
problem defined on a directed acyclic graph.
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4.11 Open Questions

There is one important open question related to the work in this chapter.

e For aninstance of the network coding problem, what is the maximum achievable
rate? Is the optimal value of the linear program in Section 4.7 equal to the maxi-
mum achievable network coding rate? A similar question was raised in [39, 36].
This linear program can be thought of as combining some conditions that the joint
entropies of subsets of a set of random variables must satisfy with some conditions
that the structure of the graph impose. The conditions that specify that entropy is a
submodular, non-negative and non-decreasing function are knoShamon type
information inequalities Recently, what are known a®n-Shannon type informa-
tion inequalitieshave been found [30, 39]. These are not fully understood and may
be required to correctly characterize the maximum achievable rate.

4.12 References

The results in this chapter are joint work with Nicholas Harvey and Robert Kleinberg.

For the multicast problem, necessary and sufficient conditions for the existence of a rate
r solution were given by Ahlswede et al. [1]. The example in Figure 4-2 is due to Nicholas
Harvey and was independently discovered by Li and Li [25].

The linear program in Section 4.7 is similar to an upper bound presented by Song,
Yeung and Cai [36]. The actual linear programming formulation is presented in Chapter 15
of [39].
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Chapter 5
Graphs with Cycles

How should one define network coding solutions in undirected graphs, or in graphs with
cycles? In Chapter 4 we define a network code to be a solution only if the following
condition is satisfied:

e The functionf, : X(S) — X(e) is computable from the functions on edgesgiife).

In graphs with cycles, using this local condition is insufficient. Consider the following
graph. The label next to each edge specifies the symbols transmitted over that edge.

M
o) ! t(1) T(1)

M,

s(1) M, M,

Clearly, this shouldn't be allowed as a network coding solution. We consider three methods
for defining a network coding solution that avoid these foundational problems. We show
that all three are equivalent. Once a sound model has been established, we extend the
techniques from the previous chapter to graphs with cycles. We define and prove all our
results in terms of thé-pairs communication problem. The results can be extended to
the general network coding problem using ideas similar to those presented at the end of
Chapter 4.

For consistency, all three models assume ¢hahe graph obtained by augmenting the
underlying graph, is a directed graph. We extend the definition of the augmented@raph
to instances in which the underlying graghis undirected. Recall that our definition of a
k-pair communication instance in Chapter 1 was not specific to any type of graph.
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Definition 14 (Augmented Graph Q) ‘Given ak-pairs communication problem on under-
lying graph G, the augmented grapty = (V, E) is obtained by applying the following
transformation ta.

e If GG is undirected, replace each undirected edgev} with two oppositely directed
edgequ,v) and (v, u).

e For each commodity, we add a new vertex(:) with one outgoing edgé(i) =
(o(7), s(i)) and no incoming edges. The set of all ed§és is denoted bys. We also
add a new vertex (i) with one incoming edgé&'(:) = (¢(¢), 7(¢)) and no outgoing
edges. The set of all edgé$:) is denoted by .

A generalized edgef G is an edge of5. If e = (u,v) is such an edge, the set of all
incoming edges ta will be denoted byn(e).

5.1 Models for Graphs with Cycles

The first model we discuss was introduced by Koetter ad&id[19] and uses polynomi-

als in a formal variable to represent the messages transmitted across an edge in the graph.
The second model we describe is a straight-line program formulation. Each line in the
straight-line program is required to be computable from only the previous lines in the pro-
gram. Multiple lines in the straight-line program can specify information to be transmitted
over the same edge so long as the total capacity of the edge is not exceeded. The last model
expands the underlying graph ouvetime steps. The functions on edges between layers

and: + 1 represent the information transmitted throughout the graph atttiene-step.

5.1.1 Delay Variables

Koetter and Mdard[19] considered network coding in a directed graph with cycles. Their
approach was to use a formal varialileand to associate with each directed edge F a
polynomial inD:

o0

ge(D) = Z ae ;D

J=0

Thus, the coefficient 0P’ in the polynomialg.(D) represents the information trans-
mitted across edgeat timej. The coefficients.. ; are actually functions of the-tuple of
messages transmitted from the sources. Therefore

9e(D, M) = " ac;(M)D’
j=0
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When we consider undirected graphs, we allow the designer of the code to split the
capacity between a forward and backward edge. We do not require that this split be done
in the same way at every time step. To allow for this flexibility, the image of the function
a.; is a time dependent alphabiete, j).

Definition 15 (Network Code) Given an instance of the network coding problem on un-
derlying graphG;, a network code is specified a maximum degr@ed by defining for each
edgee € F and time0 < j < ¢ the following:

e An alphabet:(e, j).
e Afunctiona. ; : 3X(S) — X(e, j).

The functiong(D, M) is no longer a polynomial because the image.0f is not the
same for allj. For convenience, we still refer g D, M) as a polynomial irD.

Without loss of generality, we alter Koetter ancelard’s model by requiring that the
polynomials inD be of degree at most— 1 for e ¢ 7 and degree fore € 7.

Definition 16 (Delay Variable Network Coding Solution) We say a network code
defined in the delay variable model isalutionif

e Forall S(l) eSS, gs(z)(D7 M) = M,

e Foralle € E \Sandj > 0, a.; is computable from the coefficients of terms of
degree less thain the polynomials associated with edgediife).

e For all T(Z) eT, gt (i) (D, M) = MZDt

Koetter and Mdard were able to make elegant use of this formulation. In particular,
using other algebraic techniques they were able to extend their results for multicast coding
to directed graphs with cycles. We will show that the next two models are equivalent to
the delay variable model. The graph over time model is extremely cumbersome to work
with but the natural model in which to extend our techniques from directed acyclic graphs
to graphs with cycles. Given the equivalence of the three models, once we have extended
our techniques to graphs with cycles using the graph over time model, it is possible to use
any of the three for proving new results.

5.2 Straight-Line Program
We now describe a straight-line program formulation of a network codeGLet (V, E)

be a graph and: be the augmentation @f. The information transmitted on each edge in
G is determined by a finite set of rules. Each rule is associated with an(edgec E. A
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rule maps thé-tuple of messages to some information to be transmitted across ege
denote a rule byule, ; to indicate it is thejth rule and is associated with edgef a rule
in the straight-line program specifies information to be transmitted on directed githgs
this information should be computable from the preceding rules for eddeéin The one
exception is out-edges from sources. We require that there is exactly one rule associated
with an out-edge of a source and this rule specifies that the edge transmits the message for
that commodity (i.erulegg; = M;).

A network code defined by a straight-line program soéutionif all in-edges to sinks
for commodityi transmit the messag¥;. Without loss of generality we require that there
is only one rule for an in-edge to a sink.

5.2.1 Time-Expanded Graph

Our third method for defining a network coding solution in a graph with cycles is to insist
that it must be possible to implement such a network coding solution over time. This notion
is made precise below by specifying a leveled directed acyclic gfaplepresenting the

flow of information inG over a sequence oftime steps, and requiring that a network cod-
ing solution inG should come from a network coding solution@j. A similar approach

was advocated in [11], but that paper proposed a “memoryless” model of network coding
based on a slightly different definition 6f;,. Here, in contrast, we advocate a model which
implicitly treats each node d@F as having infinite memory.

Definition 17 (Time Expanded GraphG,) Given an instance of the network coding
problem in a directed grapty, thetime-expanded grapfi; = (V;, A;) is a directed acyclic
graph obtained using the following transformation.

e The vertex seY, includes the set” x {0,1,2,...,t}. The vertex ol represented
by the ordered paifv, s) will be denoted by.

e For each edge = (u,v) € E there aret edges(u;—_1,vs). Letes = (us_1,v5) for
1<s <t

e Foreachv € V and eachs € {0,1,2,...,t}, there is an edgév,_;,vs) € E. These
edges are referred to asemory edges

e For each commodity, we add a new source vertex:) and we add the directed edge
S(i) = (o(i), s(i)o) to E;

e Similarly, for each commodity, we add a new sink(i) to V and a directed edge
T(i) = (t(i)e, 7(1)) tO .
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If a network coding instance is defined on an undirected géaptinen the grapld-; is
obtained fromG by first replacing each undirected edge(oby two oppositely directed
edges and then performing the above transformation.

Since G, is a directed acyclic graph, the definition of a network code and network
coding solution from Chapter 4 are still appropriate.

5.2.2 Equivalence of Models

We show these three models are equivalent by describing a mapping between network codes
defined in the three models. We start with a code specified in the delay variable formulation
and map it into a code specified in the time-expanded graph model. We then map a code in
the time-expanded graph model to a straight-line program formulation for a code. Finally
we map a code defined by a straight-line program into a code defined using a formal delay
variable.

Lemma 31 Given an augmented grapfi for an instance of the network coding problem
and a network coding solution specified with edge polynorgiats{g.(D, M) : e € E},
there exists a network code solution specified with a time-expanded gfaphd edge
functionsf = {f.(M) : e € E,}.

Proof. Suppose we are given a network code specified in the delay variable formulation and
let t be the maximum degree of the polynomials for edgssch that ¢ 7. If e € 7 then
the degree of. ist + 1. We map this network code to edge functions in the time-expanded
graphG;. We describe this mapping for each type of edgé&in
Source edges:In both models the functions transmitted on an out-edge from the
source for commodity must be equal ta/;. Therefore, in the delay variable model
gs@ (D, M) = M; and in the graph over time model we |&t;) (M) = M;.
Edges ofG: Let e be an edge ir¢ that is not an out-edge from a source or an in-edge
to a sink. InG, the edgeqde;, e, ... ¢} are associated with edge In the delay variable
model the polynomiad. (D, M) = Zj’:o a.;(M)DJ specifies the information transmitted
on edge: over time. By definitiong., = 0. Forj > 1, let f., = a. ;.
Memory edges:If e = (v, v511) IS @ memory edge ity; then it has infinite capacity in the
time-expanded graph model. In this case we use the function assigned te tedtpe!d”
all the information received at noden previous time steps. Specifically/lii(e) is the set
of in-edges t@ in I, thenf. = fin().
Sink edges:If e = T'(i) is an in-edge to a sink(:) then the delay variable formulation
requiresg.(D, M) = M;D'™! and is computable from the functions for coefficients of
terms of degree at mostin the polynomials on in-edges o We assign the function
Jr@y (M) = M.

We now show that the network code specified@giis a network coding solution. First,
an edge5(:) transmits the messadé;. Second, by definition, a memory edgpist copies
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all the information transmitted on in-edgkse) and therefore its function is computable
from the functions ofin(e).

LetE = {e € E: e ¢ SUT}. We prove by induction orj that f.,) is computable
from the functions inin(e;) for e € E. The edge:; computes the functiorf,, = ae.
By definition, this function must be computable from the coefficients of terms of degree
0 in the polynomials on edges im(e). The only polynomials with non-zero coefficients
for D" are the polynomials associated with out-edges from sources. Therefenaust
be computable from the in-edgesdahat are out-edges from sources.SIfi) € In(e) in
G, then by the definition of+;, S(i) € In(e,). Therefore, ifa.; is computable thetf,, is
computable.

Now assume for alt € E and allj’ < j, fe, = ey is computable from the edges
in In(e; ). We need to show that the functigi, = a.; is computable from the functions
on edges ifnn(e;). Lete; = (u;_1,v;). The function associated with the memory edge
(uj_2,uj—1) computes the value of all functions associated with terms of degree less than
j—1linthe polynomials on edgesin(e). If ¢’ € In(e), thenf., = ac ;1. Therefore the
functions associated with edgedlit{e;) compute the values of all the coefficients of terms
of degree at most — 1 in polynomials associated with edgedirie) in the delay variable
formulation. Since:. ; must be computable from these coefficierftsis computable from
the functions on edges in(e;). By a similar argument, for each commodityhe function
fr@) is computable from edges In (7). O

Having mapped network coding solutions specified using delay variables to network
coding solutions in the time-expanded graph model we now map solutions in the time-
expanded graph model to straight-line program formulations.

Lemma 32 Given an augmented graph for an instance of the network coding problem
and a network coding solution specified on a time-expanded graptith edge functions
f=1{f.(M) : e € E,}, there exists a network coding solution specified with a straight-line
program and rulegule = {rule,; : ¢ € E}.

Proof. Suppose we are given a network coding solution specified in a time-expanded graph
G,. We map this network code to rules in a straight-line program. First, in both models the
functions transmitted on an out-edge from a source for commaodityst be equal td/;.
Therefore, the first set of rules are

forl1 <i<k rulegg,; : Transmit)/;

For the remaining rules, choose a topological ordering of the edgEstimat are not
out-edges of sources or in-edges to sinks. We consider each edge in turn according to this
ordering. If edge: is a memory edge then we do nothing. Otherwise, edgeassociated
with an edge: € E. Let f. (M) be the function associated with. We create a rule
rule. »( ;) (M) which transmits the same function As;(1/).
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rulec () : Transmitf, ;(M)

The functionh(e, j) = k + ordere;) where ordefe) is the position of edge in the
chosen topological ordering.

Finally, for each in-edge to a sink a network coding solution in the time-expanded
graph model requires that;)(M) = M,. Similarly, in the straight-line program model
the single rule associated wiif(i) must specifyM;.

ruleT(i),g(i) : Transmitft(i)(M)

wherel(i) = k +t = |E| + 1.

We now show that each rule for an edgé computable from the rules preceding it
associated with edges In(e). Lete = (u,v) be an edge oF and let{e;,...¢e;} be the
t edges inG, associated witle. By the definition of a network code in a time-expanded
graphGy, f..(M) must be computable from the edge functiondlfde;) for all s. Included
in In(e,) is a memory edgéus_1,us). The function on this memory edge is computable
from the information received at at prior time steps. Therefore, once we have specified
a rule in the straight-line program for all non-memory edgekiife;) for all j < s, the
rule rule, pe s (M) = fe (M) is guaranteed to be computable from the preceding rules.
A similar argument shows that the rule for an edge) is computable from the previous
rules for edges ifin(7°(7)). O

Finally, we demonstrate how to transform a straight-line program formulation for a
network coding solution into a delay variable formulation.

Lemma 33 Given an augmented graph for an instance of the network coding problem
and a network coding solution specified with a straight-line program and roide —
{rule.; : e € E} there exists a network coding solution specified with edge polynomials
d=A{9.(D,M) :e€ E}.

Proof. Suppose we are given a network coding solution specified by a straight-line program.
We map this network code to polynomials in a delay varidble-irst, in both models the
functions transmitted on an out-edge from a source for commadityst be equal td/;.

If S(¢) is an out-edge from a source, theq,) (D, M) = M;.

LetE = {e € E : e ¢ SUTY}. For each edge € E, we create the polynomial
ge(D, M) = Z;ZO a.;D7 term by term. Forj = 0, for all edgese € E, a.o = 0.
Assume that we have determined; for all j < j and alle € E. Foran edge € E, let
{rule.;,,rule.;, ...rule.,; be the rules in the straight-line program that have not been
mapped to coefficients and are computable from rules in the straight-line program that have
been mapped to coefficients. Let

aej(M) = (rule.; (M), rule.;,(M)...rule.; (M))
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Since{rule.; ,rule.,;, ...rule.,;, } are rules that are computable from rules we al-
ready mapped to coefficients, ;(1/) is computable from the coefficients of terms of de-
gree less than in the polynomials associated with edgediirie). Since each rule in the
straight-line program is definable from preceding rules, as long as there are rules in the
straight-line program that have not been mapped to coefficients, we will be able to find a
new rule which can be mapped to a coefficient. Since there are a finite number of rules,
this process will terminate. Assume that the maximum degree of a polynomial associated
with an edge inE is ¢. By the definition of a network coding solution in the straight-
line program model, for each in-edge to a sink there is a rule which specifies that the
edge transmits the messagig. In this special case, we map this rule to the polynomial
gT(z‘)(D7 M) = MZ-DH_I. O

These three Lemmas show that all three models of network coding in graphs with cycles
are equivalent and hence prove the following theorem.

Theorem 34 The delay variable, straight-line program and time-expanded graph models
of network coding are equivalent.

These three models resolve the foundational issues of defining a network coding solu-
tion in a graph with cycles. By construction, a network code in any of these three models
specifies the function to be transmitted across an edge for évenyle of messages. How-
ever, it is often easier to reason about the augmented geagitectly. For this purpose it
is convenient to have a notion of a network coding solution defined.on

Definition 18 (Consise Network Coding Solution)Given an instance of the network
coding problem and a solution defined in the time-expanded graph model, we define a
conciserepresentation of this solution as follows.

e Fore € SUT, letX(e) and f. be equal to the edge alphabet and function defined
for the edge: € G;.

e Fore e E\{SUT}, let{es, e;...¢,} in G, be the edges associated withand
fers fes - - - fe, DE the functions assigned to these edges in the network coding solution.

— Theedge alphabes defined a&(e) = [, X(e;).
— Theedge functioris defined ag. : X(S) — X(e)

fe(M) - (fel(M>7f62(M>7 cte fet(M>>

Although we defined a concise network coding solution in terms of a time-expanded
graph, the mappings given in this section presetye) and f.. Therefore, starting from
any definition of a network coding solution, the above transformation will produce the same
concise representation.
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5.3 Rate of a Network Coding Solution

Using the concise representation of a network coding solution, we define the rate of a
solution.

Definition 19 (Rate(Directed)) Given an instance of the network coding problem with un-
derlying directed grapliz, we say a network coding solution achieves ratethere exists

a constant such thatog, |>(e)| < c(e) for eache € E, andlog, |X(S(:))| > rd; for each
commaodityi.

Definition 20 (Rate(Undirected)) Given an instance of the network coding problem with
underlying undirected graply, we say a network coding solution achieves ratéthere
exists a constaritsuch that

e for each edge € E represented by oppositely directed edgesnd ¢ in G,

log, (12(¢)] - [2()1) < efe)

e and for each commodity
log, [S(S(1))| > rd;

Our definition of a rate code, allows the code designer to split the use of an undirected
edge in any possible way. It should be noted that there could be other interpretations for
an undirected edge. For example, one could assume that an undirected: edgeith
capacityc can be used, at each time step, as either a capachgannel fromu to v or as
a capacityc channel fromv to w. Our definition is more general than this. Since we are
interested in upper bounding the maximum achievable rate, we choose this more general
definition. Another possibility would be to interpret this edge as allowing a channel of
capacityc from u to v anda channel of capacity from v to «. This at most doubles the
maximum achievable rate and would be more restrictive than just using our definition with
doubled edge capacities.

5.4 Entropy Interpretation of Rate

When bounding the rate of a network coding solution, we use the entropy-based view
of network coding defined in Chapter 4. Recall that we defined the entropy of random
variables associated with generalized edges. For a graph with cycles, we define the entropy
of an edge in terms of concise network coding solutions. In particular, for edgé, let

Y, be the random variable such tHat(Y, = a) = Pr(f.(M) = «) forall a € 3(e). Asin
Chapter 4 we usé/ (e) as short-hand fof (Y?).
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Lemma 35 Given a concise network coding solution defined on an augmented graph
rate r, there exists a constahtsuch that the following hold. For all edges= F,
H(e) < c(e) logy b

and for all commodities € Z,
H(S(i)) > rd;logy b

The proof of this result closely mimics the proof of Lemma 25 in Chapter 4 and is
therefore omitted. Using similar techniques, we can also prove the following lemma for
undirected graphs.

Lemma 36 Let G be an undirected graph and I&t be the augmented graph. Given a
concise network coding solution of ratethere exists a constahtsuch that the following
hold. For any paire and e of edges corresponding to an undirected edge

H(e)+ H(e) < c(e)logy b
and for any edge (i)

H(S(i)) > rd;logy b

5.5 Extending Techniques to Graphs with Cycles

We can also extend our techniques from the Chapter 4 to graphs with cycles. We start
by extending the concept of downstreamness to sets of generalized edges in a graph with
cycles.

Lemma 37 Let A, B be sets of generalized edgeginand letA,, B; be the corresponding
sets of generalized edges@h. If A ~ B thenA; ~ B;.

Proof. Let p be a path in7; which intersectsB, andS. Deleting the memory edges from
p and mapping each remaining edge to the corresponding edgewé obtain a path’
which intersects3 andS. SinceA ~» B, it follows thatp’ intersectsA. Thusp intersects
A, O

Corollary 38 Given a concise network coding solution in augmented gi@@nd sets of
generalized edged, B such thatd ~» B, there exists a function,s 5 : X(A) — X(B)
such thatfs = ga g o fa.
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Corollary 39 Given a concise network coding solution in augmented gr@plior any
pair of generalized edge sets B such that4 ~ B, we havel (A) > H(B).

Note that Corollary 39 ensures that the downstreamness axiom specified in Chapter 4
is still satisfied in the context of concise network codes in general graphs. It is trivial to
verify that all of the other axioms in that section also remain valid in general graphs. We
restate them here in terms of general graphs.

Submodularity of entropy: H is a non-negative, non-decreasing, submodular set func-
tion.

Downstreamness:If A~ B,thenH(A) > H(B).

Independence of sourcesfor any setS(i), S(i2), ..., S(i;) of sources,

H(S(iv),...,S0;) = H(S(iy)) + ...+ H(S(;)).

Correctness: The random variablegs ;) andYr(;) are equal. Consequently, for any set of
generalized edgds, H(U U {S(i)}) = H(U U{T'(4)}).

Rate: The entropy of a random variable is maximized when the random variable is dis-
tributed uniformly over its sample space. Therefore in an instance defined on a di-
rected graphH(e) < c(e)logb and H(S(i)) > rd;logb in a rater solution with
constanb. In an instance define on an undirected graihe ) + H(e) < c(e)logb
andH (S(i)) > rd;log b in a rater solution with constant.

These axioms constitute a powerful technique for proving upper bounds on the rate
achievable by network coding in general graphs. To illustrate, we consider-plags
communication problem on a directed cycle.

5.5.1 Directed cycles

The maximum flow is equal to the sparsest edge cut in a directed cycle bleghe rate of
the maximum multicommodity flow. We can use the axioms given above to show that the
maximum achievable rate with coding is also
We begin by finding the sparsest edge cut. For the directed cycle, the sparsest edge cut
contains a single edge. For a single edgthe sparsity of the edge is given by the number
of commodities whose shortest path freifi) to ¢(i) on the cycle use.. For edgeu, let
Z(u) be the set of commodities whose shortest path fsginto ¢(i) uses edge. Lete be
an edge such that
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c(e)
Ziel(e) d;
In other words, the edge cut consisting:a$ a sparse cut. Now we use downstreamness
to show thatt (e) > >, 7., H(S(i)). We index the commodities Bi(e) = {i1, iz .. .74}
according to the order in which their sink is encountered on the directed cycle starting at
the head of edge.

=r

Lemma 40 Forall 1 < j < g, starting at the head af and traversing around the directed
ring, t(i,;/) appears strictly before(i,) for j' < j .

Proof. For the purposes of obtaining a contradiction, assume that traversing around the
directed cycle starting at the head @fs(i;) is encountered beforgi;) and ;' < j.
Sincei; € Z(e), the shortest path from(i;) to #(i;) traverses edge. Thereforet(i,)

is encountered beforgi;) and therefore also beforéi; ). This contradicts the definition

of the indexing of the commaodities]

LetS(Z(e)) = {S(4) : ¢ ¢ Z(e)}. Using induction ory, we will show that
H(e,S(Z(e))) = H(e,S(Z(e), S(i), S(ia), ... S(iy))
For the base casg¢,= 1. By the above lemma, starting at the head,adll nodess(i;) for
i; € Z(e) are encountered aftefi;). Therefore the only path from an ed§é:;) to 7'(i;)
is throughe. This implies the following downstreamness relationship

{e,S(Z(e))} ~ {e, S(Z(e)), T(in)

By the downstreamness and correctness axidfiis,S(Z(e))) > H(e,S(Z(e)), S(i1)).
Now suppose that

H(e,S(Z(e))) > H(e,S(Z(e), S(i1),S(i2),...S(ij))

for all j/ < j. By Lemma 40, for alp > j the only path fromS(i,) to 7'(i;) traverses edge
e. Therefore,

{6, Sil, SZ'2 ce Sij—l > S(I(B))} > {67 Sil? Siz e Sij_l,S(I(e)), T(Zj)}
Combining this with the inductive hypothesis,

H{e, 5(Z(e)))

ARV
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Where the second inequality follows by the downstreamness and correctness axioms. Using
the submodularity of the entropy function and the Independence of sources,

H(e) + H(S(Z(e)) = H(S(Z(e) + Y H(S(iy))

1 EI(E)

H(e) = ) H(S(iy))

i;€Z(e)

If »* is the rate of this concise solution, then by Lemma 35 there exists a cohstauit
c(e)logh H(e)
> H(S(i)

i]' EI(e)

> ridilogh

i;€Z(e)

AVARAY

v

Therefore,

c(e)
Zijez(e) dZ
The above argument proves the following theorem.

r* <

Theorem 41 Let G be a directedn-cycle with vertex sev’ = {v,...,v,}. For anyk-
pairs communication problem i&, the maximum rate achievable by network coding is
equal to the maximum flow.

5.6 Open Questions

In this chapter we defined three equivalent models for network coding in graphs with cycles.
There are two open questions related to this work.

e Are these models general enough®he time-expanded graph model makes clear
that a network coding solution in that model is implementable in a graph with cycles.
However, are there network coding solutions which are ruled out by the models in
this chapter?
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e Are there other models for network coding in undirected graphs?When taking
an information theoretic view of network coding, we require, roughly, that

H (E) +H <Z> < c(e)

where the undirected edgds modeled by two oppositely directed edgesind e.
What happens if, instead, we require

H (Z,E) < c(e)?

Is this more appropriate in some situations? Another option would be to allow, at
each time step, the edgeto be used in one of the two directions at full capacity.
What solutions are possible under this model?

5.7 References

The delay variable model for network coding in a directed graph with cycles is due to
Koetter and Mdard[19]. The time-expanded graph model was sketched by Li, Cai and
Yeung[24]. Both of these models were generalized for the purposes of our work.

The other results in this chapter are joint work with Nicholas Harvey, Robert Kleinberg
and Eric Lehman.
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Chapter 6

k-Pairs Communication in Undirected
Graphs

At the end of Chapter 5, we extended our techniques for upper bounding the maximum rate
of a solution to graphs with cycles. In this chapter we focus orktpairs communication
problem in undirected graphs. We begin with some motivation and consider a small graph
of interest. We use our techniques from the previous chapter to prove a gap between the
sparsest edge-cut in this graph and the maximum rate achievable with network coding. This
is the first result of its kind. We then consider a modification to this example that motivates
the introduction of a new technique. Using these techniques we prove that the maximum
achievable rate can be obtained using multicommodity flow techniques alone for a infinite
class of interesting graphs.

6.1 Motivation

Our objective is to understand the relationship between multicommodity flow and network
coding in undirected graphs. Network coding in undirected graphs is very different from
network coding in directed graphs. To understand this we must review the definition of
sparsity of a graph.

Definition 21 (Sparsity) For a k-pairs communication problem on an undirected graph
G, let Z(A) be the set of commodities whose source and sink are in different connected
components of’ = (V, E'\ A). Thesparsityof a set of edged is given by

ZEGA C(e)
ZiEI(A) d;

and thesparsityof GG is equal tomin s g sparsity(A).

sparsity(A) =
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A pigeonhole argument shows that the sparsity of an undirected grapltan upper
bound on the maximum achievable network coding rate. In contrast, we saw in Chapter 4
that the sparsity of a set of edges in a directed graph has no relationship to the maximum
achievable rate.

The sparsity of the graph is also an upper bound on the maximum multicommaodity flow
value. Therefore, in instances in which there exists a multicommodity flow of rate equal
to the value of the sparsity of the graph, there is no advantage to using network coding;
the maximum rate achievable with network coding is equal to the maximum rate achiev-
able with flow techniques in these instances. The interesting open question is whether the
maximum rate achievable with network coding is always equal to the maximum multicom-
modity flow rate for instances of thepairs communication problem on undirected graphs.

We start with two interesting examples in which there is a gap between the value of
the sparsest cut and the maximum multicommodity flow rate. These examples lead to an
infinite class of graphs for which the maximum achievable rate with coding is equal to the
maximum multicommaodity flow rate. This class includes an infinite number of instances
in which the maximum multicommodity flow rate is less than the sparsity of the graph.

6.1.1 The Okamura-Seymour example

We consider a small example due to Okamura and Seymour[32] in which the maximum
multicommodity flow rate is less than the value of the sparsest cut. This example is a 4-
commodity flow problem in an undirected graph with 5 vertices. Each source has demand
1 and each edge has capadity

s(a) t(c)

s(b) t(a)
A

s(d) Hd)

s(c) t(b)

Figure 6-1: The Okamura-Seymour Example.
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The maximum concurrent flow in this graphdg4, achieved when each of the com-
moditiesa, b, ¢ sends half of its flow on each of the two-hop paths from its source to its
sink, and commodityl sends one-third of its flow on each of the two-hop paths from its
source to its sink.

In this section we prove that the maximum rate achievable by network coding is also
3/4. We use the axioms from Chapter 5 to prove that no rate greates tHas achievable.

The multicommodity flow demonstrates that this rate is achievable.

We consider three different edge cuts and prove an entropy inequality based on each.
For each of these edge cuts, we exploit the symmetry of the problem to obtain two anal-
ogous inequalities. Combining the resulting nine inequalities together yields the desired
bound.

Figure 6-2: The first edge cut consists of the black generalized edges. The gray sinks are
the ones that are downstream from the edge cut. The number beside a sink indicates in
which downstreamness relationship it is involved.

First consider Figure 6-2. This illustrates the following downstreamness relations, in
which we refer to an edge by naming its head and its tail, @lgefers to the edge from
to d:

{da,db,ce,eb, S(b)} ~ {da,db,ce,eb,S(b), T(a)} (1)
{da,db, ce,eb, S(b),S(a)} ~ {da,db,ce,eb,S(b),S(a),T(c), T(d)} (2)

These in turn imply the following series of entropy inequalities, using the downstream-
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ness and correctness axioms.

v

H(da,db, ce, eb, S(b)) H(da,db, ce,eb, S(

H(da,db, ce,eb, S(

H(da,db, ce, eb, S(b
( (

H(da,db, ce,eb, S

v

The submodularity axiom implies
H(da) + H(db) + H(ce) + H(eb) + H(S(b)) > H(da, db, ce, b, S(b))
while independence of sources implies
H(S(a), S(b),5(c),S(d)) = H(S(a)) + H(S(b)) + H(S(c)) + H(S(d)).

Combining these two inequalities with (6.1), and canceling the #é(i%i(b)) on both sides,
we obtain

H(da)+ H(db) + H(ce) + H(eb) > H(S(a)) + H(S(c)) + H(S(d)). (6.2)

The Okamura-Seymour graph has an automorphism which dixasl e while cyclically
permutinga, b, ¢, SO there are two other such entropy inequalities:

H(db) + H(dc) + H(ae) + H(ec) > H(S(b)) + H(S(a))+ H(S(d)) (6.3)
H(dc)+ H(da) + H(be) + H(ea) > H(S(c))+ H(S(b))+ H(S(d)) (6.4)
Let
Dy = Hf(ad)+ H(bd) + H(cd)
Doy = H(da)+ H(db)+ H(dc)
E;, = H(ae)+ H(be)+ H(ce)
Eow = H(ea)+ H(eb) + H(ec).
Summing (6.2), (6.3), and (6.4), we obtain
2Dout + Ein + Eow > 2(H(S(a)) + H(S5(b)) + H(S(c))) + 3H(S5(d)). (6.5)

Figures 6-3 and 6-4 lead, via a similar sequence of steps, to the following inequalities:

Dip + Dot +2E;, > 2(H(S(a)) + H(S®)) + H(S(c))) + 3H(S(d)) (6.6)
9D+ 2B > 2(H(S(a)) + H(S(®)) + H(S(c))). (6.7)
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Figure 6-3: The second cut.

Summing (6.5-6.7), we obtain:
3(Din + Dout + Ein + Eour) > 6(H(S(a)) + H(S(b)) + H(S(c)) + H(S(d))). (6.8)
Using Lemma 36 we may interpret equation (6.8) as saying:
3 Z cle) > GT’Zdi.
e€E(Q) €T

Since all 6 edges have capacity 1, and all 4 commodities have demand 1, this reduces to
18 > 24r, orr < 3/4, as desired.

Lemma 42 The maximum achievable rate for thepairs communication problem de-
picted in Figure 6-1is3/4.

In Section 6.4 we will re-derive this result using a different technique.

6.1.2 The 5-commodity Okamura-Seymour example

Suppose that we enhance the Okamura-Seymour example by adding a fifth commodity with
sourcee and sinkd. Itis easy to check that the maximum concurrent flow now has3ydte

Later, we will present a proof that this is also the maximum rate achievable by a network
coding solution. In the following section we develop the additional techniques which are
used to prove this upper bound on the maximum network coding rate.
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Figure 6-4: The third cut.

6.2 Operational Downstreamness

In this section we present a stronger condition than downstreamness. We first discuss a
motivating example. We then defirperational downstreamnessd prove an entropy
inequality which holds when a set of edges is operationally downstream from another set
of edges. Using this, we reanalyze our motivating example. In the next section we present
a combinatorial characterization of operational downstreamness.

6.2.1 A Motivating Example

Suppose we are givenfapairs communication problem in a graph It is tempting to
conjecture that, given any functidnsatisfying the axioms specified in Section 5.5, there
exists a concise network coding solution whose entropy functién kbowever this is not
the case. This is best illustrated with an example. Consider the augmented(giaph
Figure 6-5 with edgesu, v), (v,u), S(a), S(b),T(a) andT'(b). Let H(uv) and H (vu) be
the entropy of the random variable associated with edges and(v, ).

We can use the axioms to prove lower bounddtimv) and H (vu).
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Figure 6-5: An instance of the network coding problem consisting of two verticeslv
and the edgeéu, v) and (v, u). Vertexu is the source for and sink forb. Vertexw is the
source fo and the sink for. The augmented graph is depicted above.

H(uv) > H(uv,S(b)) — H(S(b)) submodularity of entropy
> H(uv,S(b),T(a)) = H(S(b)) {(u,v),(S(b),v)} ~ {(v,t(a))}
= H(uv,S(b),S(a)) — H(S(D)) correctness
= H(5(b),5(a)) = H(S(b))
= H(S(a)) Independence of sources

By symmetry,H (vu) > H(S(b)). Now consider the joint entrop¥ (uv, vu). Using
downstreamness relations, we can only prove a lower bound on the joint entropy of the ran-
dom variables associated with a set of edges if at least one in-edge to a sink is downstream
of the set of edges. However, edfjé&:) is only downstream of edge sets containi(@).
Similarly, edgeT'(b) is only downstream of edge sets containi#i@). Therefore, using
downstreamness the strongest lower bound we can deriféus, vu) > H(S(i)) where
H(S(7)) is the entropy of one of the two sources.

Intuitively, the pair of edgesu, v) and (v, u) need to send two sources worth of infor-
mation between the nodesandwv. To prove this we need to define a stronger condition
than downstreamness and consider the time-expanded graph.

6.2.2 Definition of Operational Downstreamness

We present a definition of a relationship called operational downstreamness. We then prove
an entropy inequality that holds if a set of edges is operationally downstream of another set
of edges. Although it is not clear from the definition, there is a combinatorial condition
that can be used to test if the relationship holds. We delay a discussion of the combinatorial
characterization of operational downstreamness until the next section.

Definition 22 (Operational Downstreamness)Let GG be a directed graph. For general-
ized edge setS, U’ C FE, we sayU’ is operationally downstream &f, writtenU o~ U’,
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if for all network coding solutions o6';, there exists a functiogy;, ,; mapping the symbols
transmitted on edges iti; to the symbols transmitted on edgedin

Note that ifU ~ U’ thenU o~ U’.

Lemma 43 If U’ C E is operationally downstream frofii  F, then

HU) = H{U')

Proof. Let X = {Y. : e € S}. LetYy andYy be the random variables associated with
the edge set§/ andU’. By the definition of operational downstreamness and causality,
X — Yy — Yy forms a Markov chain. By the data-processing inequality, Y,) >
I(X, Yy ). Equivalently,

H(Yy) — H(Yu|X) = H(Yy) — H (Y| X)

SinceX is the random variable representing the messages transmitted on all out-edges from
sourcesH (Y| X) =0andH(Yy|X) = 0. Therefore H(Yy) > H(Yy). O

6.2.3 Applying Operational Downstreamness to the Example

To understand the difference between downstreamness and operational downstreamness,
we reconsider the graph in Figure 6-5. We will prove that v), (v,u)} o~ {S(a), S(b)}.
Using Lemma 43 this proves thaf((u,v), (v,u)) > H(S(a)) + H(S(b)). There is no
corresponding downstreamness relationship that proves this inequality.

Let G be the augmented graph in Figure 6-5 anddgbe the time-expanded graph.
Suppose that the relationship

{(u,v), (v,u)} o~ {S(a), S(b)}

does not hold. Let/, be the2t edges inG? associated withu, v) and (v, ). If the op-
erational downstreamness relationship does not hold, then there exists a network coding
solution onG; such that there does not exist a function mapping the symbols transmit-
ted on edges i/; to the symbols transmitted of(a), S(b)}. The edgesS(a) andS(b)
transmit the two messagéd, and M,. If there does not exist a function mapping the
symbols transmitted on edgesliih to M, and M, then there are tw@-tuples of messages

that induce the same symbols on edgeE;inLet (z,y) and(z’,y’) be two assignments to

(M,, My) such that(x,y) # («/,y') but fy,(z,y) = fu, (2, y"). Assume without loss of
generality that: # 2.

Lemma 44 For each edge € F with tail u, (0 < s < ),
fe(xla y) = f6<x/7 y/) = fe(‘rv y) (69)
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For each edge € F with tail v, (0 < s < t),

fe(xluy) = fe(z,y) = fe(xluy/)~ (6.10)

Proof. In each of (6.9) and (6.10), the second equality follows from our assumption that
fu,(z,y) = fu,(2',y'), so we need only prove the first equality in each. The proof is
by induction ons. The base case = 0 holds because every edge with tajl satisfies
In(e) = {S(a)} and therefore the value gf is completely determined by the message
sent by source(a); the corresponding claim for edges with tajlis established similarly.

For the induction step, assume> 0 and letA = In(e). By the induction hypothesis,
fa(@',y) = falz,y) = fa(2’, ). Since the function§f. } form a network coding solution

on G, there exists a function. which maps the symbols transmitted on edged i the
symbol transmitted on. Now

fe(@y) = ge(fa(x',y)) = ge(falz,y)) = fe(x,y).

O

Applying the lemma to the edg&(a) = (v, 7(a)), we conclude thafr(z',y) =
fr@(z,y). This violates the correctness of the network coding solution, which requires
thath(a) (‘1',7 y) =a andfT(a)('r? y) =<

Lemma 45 Let G be the graph consisting of two verticasv and two directed edges
e; = (u,v) andes = (v, u), with two commodities, b satisfyings(a) = u, t(a) = v and
s(b) = v, t(b) = u, as in Figure 6-5. Theke;, es} o~ {S(a), S(b)} = S.

This lemma confirms our intuition that the two eddesv) and (v, u) have at least
enough capacity as the sum of the demands betweeadlv. Next we extend this argument
to a general directed edge cut in an undirected graph.

6.3 Characterization of Operational Downstreamness

The definition of operational downstreamness is convenient for proving the entropy in-
equality in Lemma 43. However, it isn’'t clear from the definition that given a set of edges
Aitis easy to determine which edges are operationally downstreain of

In this section we present a combinatorial characterization of operational downstream-
ness. Given a set of generalized edgesve are interested in determining the set of edges
whose edge functions are completely determined by the symbols transmitted on edges in
A for all network coding solutionsin order to do this we break the graph irfiasins of
influence The initial step in this decomposition is to determine for each source nét in
the basin of reachabilityof the source. Roughly, for a source edge notirthe basin of
reachability with respect to edge sétis the subgraph reachable from the source without

95



crossing an edge id. Once each source’s basin of reachability is determined, we group
overlapping basins of reachability into a single basin of influence.

We prove that the source edge for a commodity whose source and sink are in different
basins of influence with respect to an edge4é$ operationally downstream of the edge
setA. If for all commodities whose source edge is notdirihe source and sink are in the
same basin of influence, then the set of eddedoes not operationally downstream any
additional source edges.

For the rest of this section, we are given an instance ofktpairs communication
problem. LetG = = (V, E) be the augmented graph for this instance. Hdie a set of
generalized edges ©f.

6.3.1 Basins of Influence Decomposition

We define the decomposition of the augmented grajiito basins of reachability and then
basins of influence with respect to the sebf generalized edges. Note that operational
downstreamness can be applied in directed as well as undirected graphs. The figures that
illustrate the combinatorial decomposition use a directed graph as the example.

For a source edg8(i), the nodes and edges@freachable fron$ (i) without crossing
an edge inA is thebasin of reachabilityof sourceS(i) with respect teA. We denote this
Basin(S(i), A). The following figure shows a basins of reachability decomposition.

S(a) S(b) S(a) S(b)
: Tw s “w s
T(b) T(a) T(b) T(a)
===<p CutA Basin of Reachability Basin of Reachability
of S(a) with respect of S(b) with respect
tocut A to cut A

Let G be the union of the basins of reachability. The weakly connected componeits of
form the basins of influence. For the same graph andig¢the following figure shows the
basins of influence with respect to
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S(a) S(b) S(a) S(b)

T(b) T(a) T(b) T(a)

===-=-» CutA Basins of Influence decompositon
with respect to cut A

Note that edges ande’ are in the same basin of influence if there exists a sequence of
source edgeS(iy), S(i2) ... S(i¢) such that

e ¢ € Basin(S(i1), A)
o ¢ € Basin(S(ig), A).

e for 1 < ¢ < ¢, the basins of reachabiliti3asin(S(i,), A) and Basin(S(iz41), A)
share at least one node.

6.3.2 Basins of Influence and Operational Downstreamness: Part |

Understanding the combinatorial characterization of operational downstreamness is a two
step process. We start by showing that the source edge for a commodity is operationally
downstream of a set of generalized eddei$ the source and sink for that commodity are
in different basins of influence with respect4o

Suppose source edg#i) and sink edgd’(i) are in different basins of influence with
respect to edge set. Our goal is to prove that o~ S(i).

The argument is by contradiction. We assume tHat is not operationally downstream
of A. Let A, be the set of edges i3, associated wittd. By definition, A o~ S(i) if for
all network coding solutions, the symbols transmitted on edgds determine the symbol
transmitted orb (7). Since we are assuming this relationship does not hold, there must exist
a network coding solution such that

1. There exists two differerit-tuples of messages.

2. The edge5 (i) transmits different symbols for the two differelrtuple of messages.
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3. The edges inl; transmit the same symbols under béthuples of messages.

Let z andz’ be two suchk-tuples of messages. Lét, be the function for this net-
work coding solution that mapstuples of messages to symbols transmitted on edges in
A;. Our assumption is that thetuples of messagesand:’ assign different messages to
commodity: and f4,(z) = fa, (7).

Our argument begins by breaking the graph into two parts. B.dte the basin of
influence containing(i) and B be G \ B. Let B, be the part ofi, associated with the
basinB. We partition the commodities based on which part of the graph they are in. Let
S(B) andS(B) be the source edges ihand B respectively. Now, from andz’ we create
four k-tuples of messages.

The fourk-tuples of messages which we use in our argument atg(x, y), 2’ = (2/, ),
(z,y") and(2’,y). By assumption: # «’.

We now outline the argument. We start by considering the time expanded graph. In
this graph we prove a set of downstreamness relationships. The first set of downstreamness
relationships show that every edgeBnis downstream of the sourc&$B) and the edges
in A4,. Similarly, we show that every edge 8, is downstream of the edges iy and the
sourcesS(B). These allow us to show that the edgesdintransmit the same symbols
under allfour k-tuples of messages. In particular, we prove that the edgds iransmit
the same symbols for the message typle/) and the message tupl€’, y). Since the edge
T(i) is downstream from the edges. and the sources ifi(B), it must also transmit the
same symbol under the twietuples of messages. This creates a contradiction since we
assumed that andz’ assign different messages to commodity

For0 < s <t letA; = {e; € A:i < s}. Therefored, is the empty setd; is the set
of edges in4; between the first two layers of the time-expanded gi@pand so on.

Lemma 46 For an edge(u,, vs. 1) Withu, € B,

{As—1 US(B)} ~ (us; vst1)
For an edge(us, v,,1) With u, € B,

{A1 US(B)} ~ (us,v541)
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Proof. Supposex € B. By assumption, every path from a source ed(¢) € B to
u intersectsA. Therefore, inG, every path fromS(j) to u, intersectsA, ;. Therefgre
(us, vs+1) IS downstream ofd,_; U S(B). A similar argument proves the claimife B.
O

Lemma 47 For an edgee = (u,, vs41) € Ay Withug € B;

fe(xa y/) = fe($a y) = fe(‘rlv y/) (6-11)
For an edge(u,, v,11) € A, Withu, € B,

fe(xay/) - fe($/>y/) = fe(x>y) (612)

Proof. In each of (6.11) and (6.12), the second equality follows from our assumption that
fa,(x,y) = fa, (2, y). We prove this claim by induction on Lete, = (uy, vs41). FOrthe
base cases = 0. Suppose: € B, thenln(ey) € S(B). Since(z,y’) and(z,y) send the
same message on edgesSii3), f.,(z,y') = f.,(x,y). Similarly foru € B.

Now assume the claim is true for dll< s. Letu € B and lete = (us,vs41). The
message tuple&e, y) and(x,y’) transmit the same messages on edgeS(i). By the
inductive hypothesis they also induce the same symbols on eddgsiinLetC = {A, U

S(B)}-

fC(Q:,y) = fc(x,y/)

By Lemma 46, ~» e. Therefore, there exists a functiag,. which maps the symbols on
edges inC' to the symbol on edge

f6<x7y) = hCe(fC(l’,y)> - hCe<fC(«T,y,)) - fe(x7y/)
A similar argument proves the claimife B. O
Applying the above Lemma to eddé:) yields

fray (@' y) = fra(z,y)

However, we assumed thatandz’ transmit different functions on eddg(i). Therefore,
this is not a network coding solution.

Lemma 48 For a k-communication problem, lef = (V, E) be the underlying graph If
S(i) and T'() are in different basins of influence with respect to a 4edf generalized
edges, thel o~ S(37).
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6.3.3 Basins of Influence and Operational Downstreamness: Part I

We now show that the basins of influence condition in the previous Lemma is also a neces-
sary condition if the underlying graph is undirected. Specifically, given & sétgeneral-

ized edges, if for all commoditiessuch thatS(:) ¢ A, the edgesS(:) and7'(i) are in the

same basin of influence, then the setloes not operationally downstream any additional
sources.

Lemma 49 For a k-communication problem, |€t = (V, E') be the underlying undirected
graph andG be the augmented graph. Givenc E if for all S(i) ¢ A, S(i) andT (i) are
in the same basin of influence, thédndoes not operationally downstream any edge)
with S(i) ¢ A.

Proof. Without loss of generality, ifA contains an edg€(;) then we replace it with edge
S(j). We construct a network coding solution and thxuples of messagesandz’ such
that

¢ the edges iM transmit the same symbols on inputandz’,

e and for alli such thatS(i) ¢ A, x; # ).

We construct a network coding solution in the straight-line program formulation. For all
commoditiesj with S(j) € A, we fix3(S5(j)) = 1. For commoditieg with S(j) € A, let
¥(5(4)) = {0,1} andz; = 0 andz; = 1.

In defining the straight-line program, &1 be a variable which represents tié-tuple
of messages (i.e. if thg|-tuple of messages is, thenM; = x; and if the|Z|-tuple of
messages is’, thenM; = z}). The firstk rules of the straight-line program specify that
S(i) € S transmits the messagdé;.

We define the remaining straight-line program in blocks. For efige ¢ A, the
ith block specifies a code which allow¥i) to receive)M;. We describe this block for
commodity:. By the conditions of the lemmeat (i) and7'(i) are in the same basin of
influence. Therefore, there exists an alternating patif edges connecting(:) to 7'(4).
(What is meant by alternating path is that the path uses some edges in the reverse direction
but we do not require that the direction of the edges strictly alternate.) Without loss of
generality, we assume the first edgeHris an out-edge from nod€i). In addition, we
assume the patk can be decomposed as:

P = Qi; PZ'+17 Qi+1> P1;+27 Qi+2 cee Pz’+h71, Qi+h—1, Pz'+h

where the pair of path®; and(); are both directed paths that start at a negg where
S(j) ¢ A. The following figure shows what the pathmay look like.
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s(i)

V(i, i+1) V(i+1, i+2) V(i+ h-1, i+h)

Note that the nodé(i) which is the head of (7) is contained in the patk,, but may not
be the first node on that path. To simplify notation, reorder the commaodities according to
the appearance &f;j) in path P.

For a pair of pathg); and P+, letv(; j11) be the first node in common to the paths.
For eachy such that there is a sub-pafh in P, we create a set of rules which sends the
messagé\/; from the source(j) alongP; to vy ;.

Consider the node; ;,,1). There are rules in the network coding solution which have
sentM; tov(; ;1) alongQ);. There are also rules which have séft, ; along P, tov; i11).
Now we use a patlf?iﬂ to sendM; @ M, from nodev(; ;1) to nodes(i + 1). Since the
underlying graph is undirected and there is a path from nodes(: + 1) to nodev; ;11),
there must exist a path._.;, from v(,i+1) t0 (7 + 1). The next figure depicts these paths.

s(i) O s(i+1) s(i+h)
_ t@)
Pii2 eee F h
[ i+
Piy1 O/J
V@, i+1) V(i+1, i+2) V(i+h-1, i+h)

After this set of rules has been specified, there are rules which have transidjtted/; , |
to nodes(i + 1). The source edgé(: + 1) is an in-edge ta(: + 1). Therefore, there
are already rules that have sent messafye to nodes(i + 1). Using the information in
previously specified rules, the node is able to compute the value of the messagiée
then create a set of rules which transiit along path);; to nodev;; ;.
The remaining rules in this block are specified as follows.
Forj=:+2toj=i+h—1

e Create a set of rules to transmiif; @ M; fromv;_, ; to nodes(;) along pathp;.
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e Create a set of rules to transmif; from s(j) to v, ;41 along pathe),.

Lastly, a set of rules sendd; @ M, from v ,_1,11) t0 t(:) along part of patH—:’Hh.
The last rule the block for commoditysends); from ¢(i) to (i) on edgel (7).

For each commoditysuch thatS(i) ¢ A we create a block of rules as described above
which transmit)/; to 7'(4). Itis not difficult to check that every rule can be computed from
previously specified rules. Since edgesdimlways send ¢ 0 or 1 & 1, they transmit the
same symbol under andz’. Therefore, edgé(7) is not operationally downstream dfif
T'(7) is in the same basin of influence with respectito

If G'is an undirected graph andl C F is a set ofundirectededges, then the set of
commodities which are operationally downstream frdns exactly the set of commodi-
ties whose source and sink are in different connected components ef (V, E \ A).
Therefore, as a corollary of Lemmas 48 and 49, we arrive at an alternate proof that the
sparsity ofG is an upper bound on the maximum rate achievable with network coding.

Corollary 50 Given an instance of the-pairs communication problem on an undirected
graphG, the maximum achievable rate is at most the sparsity.of

Similarly, for an undirected cut in G, operational downstreamness says tiay) >
H(Z(A)) whereZ(A) is the set of commodities whose source and sink are in different
connected components @f = (V, E'\ A). Recall the linear program at the end of Chapter
5. Suppose instead of considering directed cuts,ime only consider undirected cuts and
use operational downstreamness. If the optimal value for this LP is equal to the maximum
multicommodity flow, then combining sparse cuts using the submodularity of the entropy
function is sufficient to determine the maximum multicommodity flow. Such a relationship
would shed new light on the gaps that can exist between the sparsitgrd the maximum
multicommodity flow.

6.4 Okamura-Seymour with Five Commodities

Recall that the 5-commodity Okamura-Seymour example is the 5-node, 5-commodity in-
stance depicted in Figure 6-6. We will name the edges of this graph by simply listing their
tail and head, in that order. For instanaé refers to the edge from nodeto noded. Now
consider the first half of Figure 6-7, which illustrates the downstreamness relation

{da,ea, S(a)} ~ {da,ea, S(a),T(c)}.
This implies the entropy inequality
H(da,ea,S(a)) > H(da,ea,S(a),T(c)) = H(da,ea, S(a), S(c)). (6.13)
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s(a) t(c)

s(b) t(a)
s(d) A

t(e)

s(e)
t(d)

s(c) t(b)

Figure 6-6: The 5-commodity Okamura-Seymour Example.

Figure 6-7: Two downstreamness relations.

Similar cuts using the incoming edges of nodesdc lead to the corresponding inequali-
ties:

H(db, eb, S(b))
H(dc,ec,S(c))

> H(db,eb,S(b),S(a)) (6.14)
> H(dc,ec,S(c),S(b)). (6.15)
Summing (6.13) and (6.14), and using submodularity, we obtain
H(da,ea, S(a)) + H(db,eb, S(b)) > H(da, ea,db,eb, S(a), S(b), S(c)) + H(S(a)).
Summing (6.15) and (6.16), and using submodularity and independence of(i.oluGr)ces, we
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obtain

H(da,ea,S(a)) + H(db,eb,S(b)) + H(dec,ec,S(c))
> H(da,ea,db,eb,dc,ec,S(a),S(b),S(c)) + H(S(b),S(C)) + H(S(a)).
(6.17)

Figure 6-8: An operational downstreamness relation.

We now use operational downstreamness. Figure 6-8 illustrates the operational down-
streamness relation

{da,ea,db,eb,dc,ec,S(a),S(b), S(c)} o~ {S(a),S(b),S(c),S(d),S(e)}

because the basin of influence of each source is a singleton set. This implies the entropy
inequality

H(da, ea,db,eb, de, ec, S(a), S(b), S(c)) > H(S(a), S(b), S(c), S(d), S(e)).
Combining this with (6.17) and using independence of sources, we obtain

H(da,ea,S(a)) + H(db,eb,S(b)) + H(dc, ec,S(c))
> 2H(S(a))+2H(S(b)) +2H(S(c)) + H(S(d)) + H(S(e)). (6.18)
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Submodularity of entropy implies that
H(da) + H(ea) + H(S(a)) > H(da,ea, S(a))

and similarly for the other two terms on the left side of (6.18). Expanding out the left side
using these inequalities, and canceling the téf(a)) + H(S(b)) + H(S(c)) on both
sides, we arrive at:

H(da) + H(ea) + H(db) + H(eb) + H(dc) + H (ec)
> H(S(a))+ H(S(b))+ H(S(c)) + H(S(d)) + H(S(e)). (6.19)
The second half of Figure 6-7 illustrates the downstreamness relation:
{ae, be, ce, S(e)} ~ {ae, be, ce, S(e), T(d)}.

Similarly,
{ad,bd, cd, S(d)} ~ {ad,bd,cd,S(d), T(e)}.

These lead to the entropy inequalities
H(ae,be, ce,S(e)) > H(ae,be,ce,S(e), T(d)) = H(ae,be,ce,S(e), S(d))

H(ad,bd, cd, S(d)) > H(ad,bd, cd, S(d),T(e)) = H(ad, bd, cd, S(d), S(e)).

Adding and using submodularity, we derive:
H(ae, be, ce, S(e)) + H(ad,bd, cd, S(d))
> Hfae,be,ce,ad,bd, cd, S(d),S(e)) + H(S(d),S(e)). (6.20)
Figure 6-9 illustrates the operational downstreamness relation
{ae, be, ce,ad, bd, cd, S(d), S(e)} o~ {S(a),S(b),S(c),S(d),S(e)}

because the basin of influence of each source is a singleton set. This implies the entropy
inequality

H(ae, be, ce, ad, bd, cd, S(d), S(e)) > H(S(a), S(b), 5(c), S(d), S(e)).
Combining this with (6.20) we obtain

H(ae, be,ce, S(e)) + H(ad,bd, cd, S(d))

(ae )
> H(5(a), 5(b), 5(c), 5(d), S(e)) + H(S(d), 5(e)).
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Figure 6-9: An operational downstreamness relation.

If we expand both terms on the left side using submodularity as we did with equation (6.18),
expand the right side using independence of sources, and cancel theH¢f(S)) +
H(S(e)) which appear on both sides, we obtain:

H(ae) + H(be) + H(ce) + H(ad) + H(bd) + H(cd)
> H(S(a))+ H(S(b)) + H(S(c))+ H(S(d))+ H(S(e)). (6.21)

Summing (6.19) and (6.21), we find that the sum of the entropies of all 12 directed edges
(i.e. the sum of the entropies of all 6 undirected edges) is at least twice the sum of the
entropies of all 5 sources. Using Lemma 36, this implies that

> cle) =2 rd;. (6.22)

e€E(G) €L

In the 5-commodity Okamura-Seymour example, all undirected edges have capacity 1, and
all commodities have demand 1, so (6.22) reduces o 10r, i.e. » < 3/5, as desired.

In the 4-commodity Okamura-Seymour example, all undirected edges have capacity 1, and
d, = dy = d. = dg = 1 while d, = 0. Thus (6.22) reduces © > 8r, i.e. r < 3/4, as
desired.
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6.5 Special Bipartite Graphs

The analysis of the 5-commodity Okamura-Seymour example extends to an infinite family
of graphs. Specifically, supposeis a bipartite graph whose vertex set is partitioned into
two independent setg 1/. Consider an instance of tihepairs communication problem in

G with the property that for every commodity, the source and sink both belovigotahey

both belong tdV. Let S(V') denote the set of sourcesfiy andS(W) the set of sources

in W. For a vertex, let In(v) denote the set of incoming edgeswoin G, and let7 (v)
denote the set of edgesTnwhose tail isv. We have a downstreamness relation

In(v) ~ In(v) UT (v).

Summing over all elements dof, and repeatedly applying the submodularity axiom, we
derive
> H(In(v)) > HIn(V)) + H(S(V)).

veV
Using operational downstreamness, we derive

H(In(V)) > H(S).

Combining these two inequalities and rearranging some terms using submodularity and
independence of sources,

Y H(e) > H(S).

ecE(W,V)
Here E(W, V) denotes the set of directed edges fréimto V in G. Similarly, we may
derive
> H(e) > H(S).
ecE(V,W)
Summing these two inequalities, we obtain an entropy inequality which implies

Z cle) > 2 Z rd;,

eck 1€l

o Xecle)
This inequality is tight in instances where each source-sink pair is joined by a 2-hop path,
and a dual-optimal length function assigns length every edge of7, as was the case with
the4-commodity and-commodity Okamura-Seymour examples. It is not hard to come up
with infinitely many other bipartite graphs satisfying this property.
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Theorem 51 Multicommodity flow achieves the same maximum rate as network coding in
any instance of thé-pairs communication problem defined on an underlying undirected
bipartite graphGG where a dual-optimal length function assighto every edge and every
source-sink pair is distancgapart.

6.6 Open Problems
There are three fundamental open questions related to the work in this chapter.

e What is the maximum rate achievable for an instance of the network coding
problem defined on an undirected graph? Our proofs in this chapter made use
of the properties of the entropy function and the concepts of downstreamness and
operational downstreamness. Are these the essential ingredients in determining the
maximum achievable rate? These conditions can be specified as a linear program,
which is extremely large even for small instances. Is the optimal value of this linear
program equal to the maximum achievable network coding rate?

e For an instance of thek-pairs communication problem on an undirected graph,
do multicommodity flow techniques always achieve the maximum rateThe an-
swer is yes for all instances in which the maximum multicommodity flow value is
equal to the value of the sparsest cut. In addition, we've found an infinite class of
instances for which the answer is yes even though there is a gap between the maxi-
mum multicommaodity flow value and the value of the sparsest cut. Does this result
extend to all instances of thepairs communication problem on undirected graphs?
A related question is to understand the relationship between the polytope of feasible
multicommodity flows and the polytope characterizing the entropies associated with
network coding solutions for a given instance of tRpairs communication problem.

e Do sparse cuts and submodularity characterize the maximum multicommaodity
flow value? It is well known that there are instances of the multicommodity flow
problem for which there is a large gap between the value of the sparsest cut and
the maximum flow value. Suppose that the maximum rate achievable with network
coding is also achievable using flow techniques. Then techniques which characterize
the maximum network coding rate also characterize the maximum multicommodity
flow.

Theorem 50 provides an information theoretic characterization of the sparsity of an
undirected cut. Is there a way to combine the resulting inequalities together and
use the submodularity of the entropy function to prove a tight upper bound on the
maximum multicommodity flow rate?
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6.7 References

This chapter explores the gap between the maximum rate achievable with and without
coding. In directed acyclic graphs, network coding can achieve &¥xatgetimes larger,
wheren is the number of nodes in the graph, than multicommodity flow techniques. Li
et al. [27] showed that for the multicast problemundirectedgraphs, an optimal tree
packing exists which achieves at least half the maximum rate achievable with network
coding. This result showed that communication problems in directed and undirected graphs
have different properties.

Li and Li [26] and Harvey et al. [11] conjectured that for undirected graphs, the maxi-
mum rate for an instance of thiepairs communication problem is achievable with multi-
commaodity flow techniques.

The results in this chapter are joint work with Nicholas Harvey and Robert Kleinberg.
Very similar results have been independently discovered [17].
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Chapter 7

Future Work

We now consider four broad directions for future work. More specific questions were listed
at the end of each chapter.

Where can network coding be used®ptimal solutions for multicast network cod-

ing problems can be found efficiently. For general communication problems beyond
multicast, network coding can substantially increase the amount of information that
can be transmitted through a network. An algorithm for finding high rate network
codes for the general network coding problem would be very useful but none is cur-
rently known. Even approximation algorithms could result in more efficient use of
network bandwidth.

What is the complexity of the network coding problem? The multicast problem

is known to be in efficiently solvable. However, determining if there exists a solution
of a given rate for the general network coding problem could be undecidable. One
issue is that there is no known upper bound on the sizes of the alphabets that need
to be considered. Suppose we knew a funcpgm) such that for every solvable
instance on a network with nodes, there exists a solution in which every edge uses
an alphabet of size at mostn). Then we could determine if an instance is solvable,

at any rate, by checking all network coding solutions with alphabets of size at most
p(n) for each edge. Another possibility for showing decidability is to prove that
the optimal values of the linear programs presented in Chapters 4 and 5 define the
maximum achievable rate.

Does there exist a subset of all functions that are sufficient for all network coding
problems? All the known algorithms for the multicast problem make use of the fact
that any solvable instance admits a linear solution over some finite Fiel@an

we find a restricted class of functions such that any solvable instance of the general
network coding problem admits a solution using only functions from that class? If
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this class of functions had a nice enough structure, then efficient algorithms might
follow from its characterization.

What is the capacity of an information network? This is the $64,000 dollar ques-

tion. Prior to the paper by Ahlswede et al. [1], the capacity of information networks
was not well understood. Their characterization of the feasible rate region for the
multicast problem was the first significant progress on this important open question.
In Chapters 4 and 5, we presented some upper bounds on the maximum achievable
rate. Are these upper bounds tight? Do we need additional techniques to understand
the capacity of information networks? In thepairs communication problem on
undirected graphs, how does the maximum achievable rate compare to the maximum
multicommodity flow?
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Appendix A
Entropy

We review the definition of Shannon entropy and some of its properties.

Definition 23 Entropy: Let X; be a random variable taking on valuesih. LetPr («;)
be the probability thatX; = «,;. The Shannoentropyof X; is given by

H(X;) = - Z Pr (a;)log, Pr(a;)

;€3

= —Ex(log, Pr (o))

Let X = {X;, X, ... X, } be a set of random variables taking on valuesin= ¥; x
Yo...2,. LetPr(a) = Pr(a,as...q,) be the joint probability thatX; = «; for all i.
Thejoint entropyH (X ) = H(X;, X, ... X,,) is defined as follows.

H(X,X5...X,) = — Z Pr(aj,ay...ap)logPr((ag, s ... ap))

(a1,a2...an)ET

= —Ex(logPr(ay,a;...ay))

For a pair of random varaible¥ andY’, we can also define the conditional entropy
H(X|Y) = —Ex(log Pr (z|y)). The joint entropy of a pair of random variables can be
written in terms of conditional entropie#! (X,Y) = H(X) + H(Y|X).

The mutual information between two random variables, writtéN, V'), can be ex-
pressed as

I(X,)Y) = HX)+H(Y)—H(X,Y)
= H(X)-— H(X|Y)
= H(Y)—H(Y|X)



Random varaibleX(, Y, andZ are said to form a Markov chaitk — Y — Z if X is
conditionally independant df|Y". In the special case whefe= ¢(Y") for any functiong,
X —Y — Z always holds.

Theorem 52 Data Processing Inequalitp] If X — Y — Z,then/(X;Y) > I(X; 7).
A few other charateristics of the entropy function are also useful. (See page 297 in

[39].)
Nonegativity: For any random varaiblg’,

H(X)>0

Nondecreasing: For a set of random variables = {X;, X,...X,} and any random
variableX, 1,

H(X U{Xn11}) = H(X)

Submodularity: For any two sets of random variablés = {X;, X,... X,,} andY =
{V1,Ya,... Y, },

H(X)+H(Y)>HXUY)+HXNY)
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