
Network Coding

by

April Rasala Lehman

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2005

c© April Rasala Lehman, 2005. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in

part.

Author .
Department of Electrical Engineering and Computer Science

January 31, 2005

Certified by .
Madhu Sudan

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by. .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Network Coding
by

April Rasala Lehman

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In thenetwork coding problem, there arek commodities each with an associated message
Mi, a set of sources that knowMi and a set of sinks that requestMi. Each edge in the
graph may transmit any function of the messages. These functions define a network coding
solution.

We explore three topics related to network coding. First, for a model in which the
messages and the symbols transmitted on edges are all from the same alphabetΣ, we prove
lower bounds on|Σ|. In one case, we prove|Σ| needs to be doubly-exponential in the size
of the network. We also show that it is NP-hard to determine the smallest alphabet size
admitting a solution.

We then explore the types of functions that admit solutions. In alinear solutionover a
finite fieldF the symbol transmitted over each edge is a linear combination of the messages.
We show that determining if there exists a linear solution is NP-hard for many classes of
network coding problems. As a corollary, we obtain a solvable instance of the network
coding problem that does not admit a linear solution over any fieldF.

We then define a model of network coding in which messages are chosen from one
alphabet,Γ, and edges transmit symbols from another alphabet,Σ. In this model, we
define therateof a solution aslog |Γ|/ log |Σ|. We then explore techniques to upper bound
the maximum achievable rate for instances defined on directed and undirected graphs. We
present a network coding instance in an undirected graph in which the maximum achievable
rate is strictly smaller than the sparsity of the graph.

Thesis Supervisor: Madhu Sudan
Title: Associate Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I wish to thank my advisor Madhu Sudan. His help with technical matters shows its mark
clearly on my work but it was the quiet encouragement and support that were most im-
portant to me. My thesis readers, Dan Spielman and Muriel Médard, provided very useful
feedback on drafts of this work. Over the last six years, Cliff Stein, Anna Karlin and Gor-
don Wilfong all went well beyond their official roles as mentors. The work presented in
this thesis is the result of collaborative efforts. Nick Harvey and Robert Kleinberg have
made the closing stretches of graduate school the most enjoyable. Other fellow students,
past and present, haven been the people who drew me back to work each day. In particular,
I would like to thank David Liben-Nowell and Adam Smith for their friendship. Be Black-
burn, Joanne Talbot and Kathleen Dickey always seemed to be looking out for me. Abby
Marsh, Alison Cohen and Taylor Schildgen provided many excellent diversions from work.
I have been extremely lucky to have my family close by. I wish to thank my father for his
encouragement along the way and interest in my work. Finally, Eric Lehman is an official
collaborator on part of the work in this thesis and an unofficial collaborator in all that I do.
His support, understanding and love are extraordinary.

5

6

Contents

1 Introduction 11
1.1 Definitions . 13
1.2 Discussion of Model . 16

1.2.1 Cycles . 16
1.2.2 Rate . 17

1.3 Two Restricted Network Coding Problems 18
1.3.1 Multicast Problem . 19
1.3.2 k-Pairs Communication Problem 19

1.4 Characteristics of a Solution . 20
1.4.1 Alphabet Size . 20
1.4.2 Linearity of a solution . 22

1.5 History of Network Coding . 22
1.5.1 Prehistory of Network Coding . 22
1.5.2 The Dawn of Network Coding . 24

1.6 Our Results . 25
1.6.1 Alphabet Size . 25
1.6.2 Complexity of Linear Network Coding 25
1.6.3 The Capacity of an Information Network 26
1.6.4 Models for Graphs with Cycles 27
1.6.5 Thek-Pairs Communication Problem in Undirected Graphs 27

2 Alphabet Size 29
2.1 Lower Bound for Multicast . 30
2.2 Hardness for Multicast . 31

2.2.1 General Codes . 32
2.3 Lower Bound for General Problem . 33

2.3.1 Construction . 34
2.3.2 Analysis . 35
2.3.3 A Lower Bound on Alphabet Size 39
2.3.4 Operating Below Capacity . 40

7

2.4 Discussion and Open Problems . 41
2.5 References . 41

3 Complexity of Linear Network Coding 43
3.1 Taxonomy of Network Coding Problems 43

3.1.1 Easy Problems . 44
3.1.2 Polynomial Time Solvable Linear Coding Problems 45
3.1.3 Hard Linear Network Coding Problems 46

3.2 Insufficiency of Field Linear Codes . 51
3.3 Discussion . 53
3.4 References . 53

4 Entropy Based Upper Bounds 55
4.1 Definitions . 56
4.2 Sparse Edge Cuts . 58
4.3 Meagerness . 59
4.4 The Split Butterfly . 60
4.5 Entropy Based View of Network Coding 62
4.6 Downstreamness . 64
4.7 Entropy-based axioms . 67
4.8 The General Network Coding Problem . 69
4.9 Definitions . 69
4.10 Extension of Techniques . 70
4.11 Open Questions . 71
4.12 References . 71

5 Graphs with Cycles 73
5.1 Models for Graphs with Cycles . 74

5.1.1 Delay Variables . 74
5.2 Straight-Line Program . 75

5.2.1 Time-Expanded Graph . 76
5.2.2 Equivalence of Models . 77

5.3 Rate of a Network Coding Solution . 81
5.4 Entropy Interpretation of Rate . 81
5.5 Extending Techniques to Graphs with Cycles 82

5.5.1 Directed cycles . 83
5.6 Open Questions . 85
5.7 References . 86

8

6 k-Pairs Communication in Undirected Graphs 87
6.1 Motivation . 87

6.1.1 The Okamura-Seymour example 88
6.1.2 The 5-commodity Okamura-Seymour example 91

6.2 Operational Downstreamness . 92
6.2.1 A Motivating Example . 92
6.2.2 Definition of Operational Downstreamness 93
6.2.3 Applying Operational Downstreamness to the Example 94

6.3 Characterization of Operational Downstreamness 95
6.3.1 Basins of Influence Decomposition 96
6.3.2 Basins of Influence and Operational Downstreamness: Part I 97
6.3.3 Basins of Influence and Operational Downstreamness: Part II . . . 100

6.4 Okamura-Seymour with Five Commodities 102
6.5 Special Bipartite Graphs . 107
6.6 Open Problems . 108
6.7 References . 109

7 Future Work 111

A Entropy 113

9

10

Chapter 1

Introduction

How much information can be transmitted through a network? This fundamental question
has recently received renewed attention.

Information in a network is often viewed as an immutable commodity. Data packets
in a network are modeled in the same way as cars in a highway system or water in a sys-
tem of pipes. However, information is fundamentally different from traffic or a fluid in
two respects. A car reaching an intersection can proceed along only one road. In con-
trast, information can be duplicated and transmitted across many channels in a network
simultaneously. In addition, information can also be manipulated in ways with no physical
analogue. For example, if a network router receives bitsx andy, then it can transmit a
function, sayx⊕ y, of the two bits.

Doescoding information in this way provide any advantage? The example in Figure
1-1 shows that it can [1]. In this example, the nodea has two bits of information,x andy.
Nodesf andg both want these two bits. Each directed edge represents a channel that can
transmit one bit of information.

Let’s first look for a naive solution. Suppose each edge transmits one of the two bits.
Then, in particular, edge(d, e) transmits eitherx or y. In both cases, one of the two sinks
receives one bit twice and the other bit not at all. Apparently we are stuck.

However, Figure 1-1 shows a way around this difficulty. The label on each edge speci-
fies the function ofx andy transmitted over that edge. Nodea sends bitx on one out-edge
and bity on the other. Nodesb andc copy the bit they receive to both out-edges. The key
is that edge(d, e) transmits the functionx ⊕ y rather than either bitx or y alone. Finally,
nodee copies the bit it receives to both out-edges. As a result, nodef receives bothx and
x ⊕ y and so it cancomputethe value ofy as well. Similarly, nodeg can computex from
y andx⊕ y and thus also obtain both bits.

This example reinvigorated the field of network information theory. The generaliza-
tion of this technique is now callednetwork coding. Evidently, allowing edges to transmit
functions can increase the amount of information that can be sent through a network. This

11

x⊕y

x

x

y

y

yx

x and y
Source with

Requests Requests
x and y x and y

x⊕y x⊕y

a

b c

d

e

f g

Figure 1-1: The nodea is a source with two bits,x andy, of information. The two bottom
nodes,f andg, need to each receive both bits. The shown solution sends the exclusive or
of the two bits down the middle edge fromd to e.

observation raises some interesting questions. We give preliminary answers here and pro-
vide more detail throughout the thesis.

How useful is network coding? When is it useful to transmit functions on the edges of
a network? How much more information can be sent in this way? The benefit can
be huge. In some instances network coding can increase the amount of informa-
tion transmitted through a network by a factor ofΩ(n) wheren is the number of
nodes [11, 25].

Do we need to use more complicated functions?In the example, each edge transmits a
single bit, and the only nontrivial function is xor. Could more complex schemes be
required for more complicated networks? As it turns out, working with bits is not suf-
ficient for some problems; we must use an alphabet larger than{0, 1}. Furthermore,
functions more complex than xor may be required.

How hard is finding suitable edge functions?Many traditional routing problems are
computationally hard [2, 16, 20]. In contrast, for some interesting classes of prob-
lems, appropriate edge functions can be found efficiently [19, 15, 10]. In these cases,
network coding not only increases the throughput, but also makes the problem effi-
ciently solvable. However, determining whether suitable edge functions exist for the
general problem could be anywhere from easy (in P) to undecidable [22].

12

What are the node requirements?How computationally powerful must nodes be in or-
der to implement network coding? What are the memory requirements? In our ex-
ample, noded must be able to computex⊕y, whereas a traditional router only copies
and forwards data. Furthermore, nodef must be able to store bothx andx ⊕ y in
order to computey. For some restricted versions of the problem, upper bounds on
computational requirements are known but no bounds have been found for the gen-
eral problem. We present evidence that computational requirements may be large.

What about more general networks? The network in Figure 1-1 is directed and acyclic,
but most real networks are not. Is network coding useful if the graph contains di-
rected cycles? What if the network is undirected? Even formulating these questions
rigorously requires considerable care. For directed graphs with cycles, the answer
is yes. Network coding in undirected graphs is less understood and a major topic of
this thesis.

In the remainder of this chapter, we define a model for network coding and discuss
some of its aspects. Next, we define two restricted problems of particular interest. We then
consider the history of network coding and conclude by outlining the main contributions of
this thesis.

1.1 Definitions

In this section we define a model for network coding in directed acyclic graphs. There
are three parts to our model. First, we define the type of communication problem that we
consider. Then we define the concept of a network code. Lastly, we define what it means
for a network code to be a solution to a communication problem. The model presented in
this section is relatively simple but adequate for Chapters 2 and 3. In Section 1.2 we discuss
the limitations of this model, and in Chapters 4 and 5 we introduce more general models.

Definition 1 (Instance of the Network Coding Problem) An instance of the network
coding problem is specified by the following:

• A directed acyclic graphG = (V, E).

• A nonnegative integer capacityc(e) for each edgee.

• A setI consisting ofk commodities.

• For each commodityi ∈ I, a set of sourcesS(i) ⊆ V and a set of sinksT(i) ⊆ V .

13

In the example in Figure 1-1, each edge has capacity1. There are two commodities and
nodea is the source for both. Therefore,S(1) = S(2) = {a}. Nodesf andg are the sinks
for both commodities. Thus,T(1) = T(2) = {f, g}.

Let’s take a minute to discuss the model in terms of an actual communication problem.
The graphG represents the network with routers or computers represented by nodes in
V and communication channels between some computers, represented by edges. Each
commodity models a file that must be transmitted through the network. Nodea represents
a computer that has a copy of two files, one file for each commodity. Nodesf and g
represent two other computers that want copies of both files.

Definition 2 (Network Code) A network code is defined by:

• An alphabetΣ.

• For each edgee ∈ E, a functionfe : Σk → Σc(e).

Note that a network code is just an alphabet and a set of edge functions. In a moment we
will define anetwork coding solution, which incorporates the requirements that a network
code must satisfy if it “solves” the given instance.

In Figure 1-1 the alphabet isΣ = {0, 1} and the label next to an edge specifies the
function associated with that edge. For example, the functionf(b,d) : Σ2 → Σ associated
with edge(b, d) is defined byf(b,d)(x, y) = x.

We return to our physical interpretation of this example. The files associated with
each commodity are represented as a sequence of symbols fromΣ. It is important to note
that in designing a network code, we choose the alphabetΣ. In this way, the problem of
transferring files is reduced to the problem of transferring a single symbol from each file.
We call these single symbolsmessages.

Formally, if the network code uses an alphabetΣ, then associated with each commodity
i is a symbolMi ∈ Σ which must be transmitted from the sources to the sinks. We refer
to Mi as the message for commodityi, and letM = (M1, M2 . . . Mk) be thek-tuple
of messages associated with thek commodities. For convenience, we say a source for
commodityi is asource for messageMi and a sink for commodityi requests messageMi.

The domain for each edge function is the set of all possiblek-tuples of messages. The
functionfe specifies, for each possible combination of messagesM , thec(e) symbols from
Σ sent over edgee.

Note that the definition of a network code does not require that the code be imple-
mentable or that sinks receive the requested information. For example, Figure 1-2 depicts a
different network code for the same instance. The code in Figure 1-2 has two flaws. First,
nodeb cannot compute the functionx ∧ y, which it must transmit on edge(b, d), from the
information it receives. Second, the sinks do not receive enough information to determine
uniquely both messages. For example, ifx = 0 then nodef cannot determine the value of

14

x ! y

y

y

y

x and y
Source with

Requests Requests
x and y x and y

a

b c

d

e

f g

x Λ y

x

x Λ y

x

x Λ y

Figure 1-2: The sourcea has two bits of information,x andy, and the nodesf andg need
to receive both bits. The edges are labeled with functions which determine a network code
which is not a network coding solution.

y from x andx ∧ y. We define a network code to be a solution if it possesses neither of
these flaws.

Definition 3 (Network Coding Solution) A network code is asolution to an instance of
the network coding problem if for everyk-tuple of messagesM = (M1, M2 . . . Mk):

• For every edge(u, v) ∈ E, the functionf(u,v) is computable from the functions on
in-edges tou and messages for whichu is a source.

• For every sinkv for commodityi, the functions on in-edges tov together with the
messages for whichv is a source are sufficient to determine the value ofMi.

Our intuition is that the code in Figure 1-1 is a solution. To verify this, we must check
that every edge functionf(u,v) is computable from the information on the in-edges tou and
the messages for whichu is a source. Nodea is the only source and it is a source for both
messages. Therefore the edges(a, b) and(a, c) can be assigned any function ofx andy.
Nodesb, c ande copy the message received on the single in-edge to both out-edges. Node
d receives bothx andy on in-edges and therefore can transmit any function ofx andy on
edge(d, e). Next we check that each sink can compute the requested information. Node
f receivesx unencoded on edge(b, f) and the functionx ⊕ y on edge(e, f). From this
information it can computey. Similarly for nodeg. Therefore this network code meets the
definition of a network coding solution.

15

1.2 Discussion of Model

This model has been used in almost all work to date on network coding and is the model
we use for the next two chapters. However, it has two drawbacks. First, the model requires
that the communication network be directed and acyclic. Second, for the general network
coding problem there is no notion of the rate of a solution. These drawbacks are discussed
more extensively below. A contribution of this thesis is a clarification of these issues and
more general models that address them.

1.2.1 Cycles

We model a communication network as a directed acyclic graph. Why is this necessary?
Without this restriction, a solution, under our definition, may be meaningless in practice.

M1

M1

M1

Source with
message M1

Requests
messagea b c

Figure 1-3: The functions on the edges in the graph meet the definition for a network coding
solution. However, there is actually no way to transmit a message from nodea to nodec.

As an example, consider the instance in Figure 1-3. MessageM1 must be sent from
nodea to nodec. A “solution” is to sendM1 along both edge(b, c) and edge(c, b). This
network code meets the definition of a network coding solution. Nodesb andc can each
compute the function on their out-edge from the function on their in-edge. However, there
isn’t even a path from the sourcea to the sinkc. Therefore, there is no practical way to
implement this so-called solution.

There is a natural suggestion to address this issue. Suppose we impose a total order on
the edges inG and require that the function assigned to edge(u, v) be computable from
the in-edges tou that come before edge(u, v) in the ordering. This restriction does remove
the issue of cyclic dependencies between edge functions. However, this is too restrictive a
condition because it also rules out obvious solutions in other instances. For example, the
instance in Figure 1-4 has four commodities each with a single source and single sink. Each
edge has capacity two which means that two symbols can be transmitted on each edge. As
a practical matter, this problem can be solved. As indicated in the diagram, there is enough
capacity for each message to be sent two hops clockwise to its destination. However, in
this scheme, every edge function depends on the preceding edge in the cycle. Therefore
there is no total order of edges under which this scheme is allowed.

16

M1 M4

M1 M2

M3 M4

M2 M3

a

bc

d
Source for M1
Requests M3

Source for M2
Requests M4

Source for M3
Requests M1

Source for M4
Requests M2

Figure 1-4: In the example, each edge has capacity two. There are four commodities. For
each commodity there is a single source and a single sink two hops clockwise from the
source. There is no ordering on the edges which allows one to define a solution for this
instance.

The examples in Figures 1-3 and 1-4 suggest some of the difficulties in extending our
simple definition for a network code and network coding solution in a directed acyclic graph
to graphs with cycles. One solution is to associate a non-zero delay with each edge and
consider the behavior of the network over time. We address these issues more extensively
in Chapter 5.

1.2.2 Rate

The questions posed within this model are feasibility questions: does an instance have a
solution? To clarify the issue, consider the instance in Figure 1-5, which is similar to the
example in Figure 1-1. Now there are four commodities, but each edge still has capacity1.

Is there a solution? In our model, no. There are two out-edges from the nodea. Therefore,
a network coding solution would need to encode the value of four messages using just two
symbols. Clearly this is impossible.

On the other hand, in practice it is possible. Let’s reconsider our physical interpretation
of network coding. Nodea represents a computer which receives four files, and nodesf
andg want copies of these files. We know nodea can sendtwo files tof andg using the
solution in Figure 1-1. Therefore, in practice, it can send four files, it just takes twice as
long.

In Chapter 4, we extend our model to define the rate of a solution. For example, under
the extended model, there exists a rate1/2 solution to the instance in Figure 1-5. In the

17

Source

Requests Requests

a

b c

d

e

f g

M1, M2, M3 and M4 M1, M2, M3 and M4

M1

with
Source

M2

with
Source

M3

with
Source

M4

with

Figure 1-5: In the example, each edge has capacity one. There are four commodities each
with their own source. Nodesf andg are the sinks.

next section we discuss the one situation in which the current model includes (implicitly) a
notion of rate of a solution.

1.3 Two Restricted Network Coding Problems

In this section we define two restricted versions of the network coding problem. Both are
fundamental problems in network communication. The first, the multicast problem, has
been the focus of much of the work in network coding. All positive network coding results,
such as efficient network coding algorithms, apply only to the multicast problem and small
generalizations. The second problem we define is thek-pairs communication problem,
which is closely related to the classical multicommodity flow problem. The applicability
of network coding to thek-pairs communication problem is not well understood and will
be the focus of Chapters 4 and 6.

18

1.3.1 Multicast Problem

In an instance of themulticastnetwork coding problem, there is a single source for all
messages and a set of sinks which request all messages. Figure 1-6 is an example of the
multicast problem. Nodea is a source for four messages and nodesb, c andd are the sinks,

M1, M2, M3 and M4
Source with

Requests Requests

a

M1, M2, M3 and M4 M1, M2, M3 and M4

Requests
M1, M2, M3 and M4

b

dc

Figure 1-6: This is an example of the multicast problem. Nodea is the source for all four
messages. Nodesb, c andd are the sinks, which request all the messages.

which request all messages. Since all messages have the same source and same set of sinks,
one can rephrase the feasibility of a multicast problem as an optimization problem in which
the source is trying to send as many messages as possible to all sinks. This is important
because rephrasing the multicast problem in these terms means that one can consider the
rate of a multicast solution within the model presented in this chapter. However, in general
when commodities have different sets of sources and different sets of sinks, the model
needs to be adapted to consider the rate of a solution.

In a small generalization of the multicast problem, each sink still requests all messages
but there is no restriction on the sources. This generalization is interesting because essen-
tially all results that hold for the multicast problem also hold for this generalization.

1.3.2 k-Pairs Communication Problem

Another important problem in network communication is supportingk different point-to-
point connections. In an instance of thek-pairs communication problem, there arek com-

19

modities, each with a single source and single sink for each commodity. In the example in

x⊕y

x y

yx

Requests Requests

x⊕y x⊕y

a b

c

d

e f

Source
with x

Source
with y

y x

Figure 1-7: This is an example of thek-pairs communication problem. For messagex,
nodea is the source and nodef is the sink. For messagey, nodeb is the source and nodee
is the sink. A solution over the alphabet{0, 1} is given in the labels next to the edges.

Figure 1-7, there are two commodities. For the one commodity, nodea is the source and
nodef is the sink. For the other, nodeb is the source and nodee is the sink.

The k-pairs communication problem is interesting because it is closely related to the
classical multicommodity flow problem. On an abstract level, instances of the two prob-
lems are defined in exactly the same way. However, commodities in a multicommodity
flow problem can only “flow”. In contrast, commodities in thek-pairs communication
problem are information and thus can be copied and encoded. A fundamental question is
the extent to which network coding is beneficial for thek-pairs communication problem.
This question is the focus of Chapters 4 and 6.

1.4 Characteristics of a Solution

In this section we discuss some characteristics of a network coding solution of particular
importance in this thesis: the size of the alphabet and the types of edge functions.

1.4.1 Alphabet Size

The first network coding problem we considered in Figure 1-1 has a solution over a binary
alphabet. But sometimes a larger alphabet is required. For example, Figure 1-8 shows an

20

instance and a solution using the finite fieldF3 as the alphabet. However, there is no so-
lution with an alphabet of size2. Roughly, every pair of out-edges from the source needs
to carry enough information to determine both messages. Over a binary alphabet there are
only a small number of different choices of edge functions. Therefore, using a binary al-
phabet, some pair of out-edges from the source is forced to transmit redundant information
and the corresponding sink is unable to determine both messages. We generalize this idea
and provide a formal proof in Chapter 2.

x and y
Source with

x and y
Requests

x and y
Requests

x and y
Requests

x and y
Requests

x and y
Requests

x and y
Requests

xy x + 2yx + y

Figure 1-8: An instance in which there is a solution overF3 but not over a binary alphabet.
The top node is a source forx andy. For each pair of nodes in the middle layer there is a
sink in the bottom layer requesting both messages.

A large alphabet is undesirable for three reasons:

Latency. In practice, transmitting a symbol from a large alphabet takes longer than trans-
mitting a symbol from a smaller alphabet. If a network coding solution uses a large
alphabet, then a sink may need to wait a long time before it even begins decoding a
message. Therefore, the network latency could be large.

Memory. Second, if nodes within the network need to compute functions over a large
alphabet, then they may need a significant amount of storage even to remember the
last alphabet symbol received on each edge.

Function Complexity. A small alphabet limits the complexity of edge functions. With a
large alphabet, we lose this guarantee.

Fault Tolerance. A network failure during the transmission of a symbol from a large al-
phabet would cause a significant loss of data.

21

Although none of these issues is critical for the alphabet sizes we’ve seen so far (2 or
3), some instances require an extremely large alphabet (doubly exponential in the size of
the network and number of commodities). We discuss this further in Chapter 2.

1.4.2 Linearity of a solution

How complicated do edge functions need to be? Ideally, a network code would use func-
tions that are easy to represent and implement. Three restricted classes of codes using such
simple functions have received special attention in the literature.

• A network code istrivial if edges transmit only unencoded messages. Traditional
routing solutions are trivial codes.

• A network code inlinear if the alphabet is a finite field and edges transmit only linear
combinations of the messages. The code in Figure 1-1 is linear overF2 and the code
in Figure 1-8 is linear overF3.

• A network code isvector linearif the alphabet is a finite vector space over a finite
field. Furthermore, every component of every transmitted vector is a linear combina-
tion of the components of the message vectors. Every linear code is vector linear.

1.5 History of Network Coding

Network coding is a relatively new field that has strong connections to some classical prob-
lems in information theory and graph theory. In this section we describe the history of
network coding, beginning with a review of these connections. We then describe the most
influential early research in network coding. At the end of each chapter, we discuss the
previous work related to its topic.

1.5.1 Prehistory of Network Coding

The field of network coding has roots in information theory as well as connections to two
classic graph problems: Steiner tree packing and multicommodity flow.

Information Theory

Information theorists have concentrated on communication over a single (possibly noisy)
channel. In the closest approach to network coding, a set of senders wishes to transmit
information across a channel to a set of receivers. (See [5].) This work has led to a thorough
understanding of data compression and error-tolerance.

22

However, a network cannot be accurately modeled as a single channel. The physical
structure of a network introduces tremendous complexities not present in the single channel
case. For example, in a network communication problem, different receivers may have
access to different channels in a network. Characterizing the capacity of an information
network has remained an open problem for decades.

Steiner Tree Packing

In a traditional view of communication in a network (predating network coding) data can
be replicated at nodes but not encoded together with other data. The problem of packing
fractional Steiner trees in a graph can be used to model this type of communication.

We begin by defining a Steiner tree and then discuss the fractional Steiner tree packing
problem. Given a directed graphG, a specified noder and a subsetS of the vertices, a
Steiner treeis a tree rooted atr containingS. A fractional Steiner tree is a Steiner tree
along with a weight between0 and1. Given a directed capacitated graphG, a noder and
a subset of verticesS, a fractional Steiner tree packingis a set of fractional Steiner trees
such that for every edge inG the total weight of trees containing that edge is no more than
the capacity of the edge. The objective of the fractional Steiner tree packing problem is to
maximize the total weight of the set of Steiner trees.

The problem of multicasting from a source to a set of sinks has traditionally been stud-
ied as a fractional Steiner tree packing problem. Suppose a noder needs to transmit data
to a set of nodesS. Each tree in a fractional Steiner packing can be used to send a fraction
of the data, given by its weight.

Generally, optimal fractional Steiner packing in undirected graphs is hard. Jain, Mah-
dian and Salavatipour [16] showed that the problem in undirected graphs is APX-hard [16].
This implies that the optimal value cannot be found efficiently unless P= NP. However,
they gave a polynomial time algorithm to find a1.598-approximation.

Multicommodity Flow

The communication problem in which there is a single source and single sink for each com-
modity has traditionally been viewed as amulticommodity flow problem. In this perspective
data is modeled as a fluid: the amount of data leaving a node must exactly equal the amount
entering except at sources and sinks.

In an instance of the multicommodity flow problem, there is a directed capacitated
graphG andk commodities. For each commodityi, there is a single sources(i), a single
sink t(i), and a demanddi. In a multicommodity flow, the total flow of all commodities
across an edge inG must be no more than the capacity of that edge. The objective is to
find the largest fractionr such that for every commodityi, at leastrdi units of commodity
i flow from sources(i) to sink t(i). This problem can be solved optimally using linear
programming [34]. For further details see [34, 35, 23, 4].

23

The multicommodity flow problem is most closely related to thek-pairs communica-
tion problem. Understanding the relationship between these two problems is the focus of
Chapters 4 and 6.

1.5.2 The Dawn of Network Coding

The field of network coding is only five years old; it was introduced by Ahlswede et al. [1]
in 2000. Their work focused on the multicast problem and proved that a source can mul-
ticastk messages to a set of sinks provided the min-cut between the source and each sink
has capacityk. This was the first major progress in understanding the capacity of a com-
munication network.

Li, Yeung and Cai showed that the maximum achievable rate for the multicast problem
can always be achieved using a linear code [24]. This focused attention on linear codes and
in particular raised the question of whether they can be used to solve a wider array of net-
work coding problems. Their proof of the existence of a linear solution can be viewed as the
first deterministic algorithm for network coding. However, its running time is exponential
in the size of the network.

Koetter and Ḿedard devised an algebraic framework for network coding [19]. This
reduced the problem of finding a linear solution for a general network coding problem to
finding a non-zero point for a multivariate polynomial. Using their algebraic framework,
Koetter and Ḿedard where able to extend the study of linear network coding to directed
graphs with cycles. For the special case of multicasting, Ho et al. [14] used the additional
structure of the problem to construct an efficient randomized algorithm. Their algorithm
has the nice property that it can be implemented in a distributed fashion without coordina-
tion between nodes in the network.

Jaggi et al. devised a polynomial-time implementation of the Li, Yeung and Cai mul-
ticast algorithm [15]. We refer to this procedure as the Jaggi-Li algorithm. It always finds
a linear solution over a fieldF such that|F| = O (#sinks). This raised the question of
whether an even smaller alphabet would suffice. A second important contribution of Jaggi
et al. was an instance onn nodes in which network coding achieves a rateΩ(log n) times
larger than the best rate achievable with fractional Steiner tree packing [15].

Up to this point, all research in network coding assumed the network was directed. In
2004, Li et al. [27] considered network coding in undirected graphs. They showed that
fractional Steiner tree packing techniques can achieve at least1/2 the maximum possible
multicast rate. This put an upper bound on the usefulness of network coding in undirected
graphs for the multicast problem. Furthermore, it showed a drastic difference between
network coding in the directed and undirected cases. It has been conjectured that for the
k-pairs communication problem in an undirected graph the optimal rate can be achieved
without network coding [27, 25, 11]. This open question is one of the motivations for the
work in Chapter 6.

24

The applications of network coding now extend well beyond maximizing capacity to
areas such as error-correction, wire-tapping protection and detection, and distributed net-
work management. The Network Coding Home Page [18] provides a bibliography for the
topics not covered in this thesis. Ho’s dissertation [13] is also an excellent reference for
many of these topics.

1.6 Our Results

We now outline the contributions of this thesis to the area of network coding chapter by
chapter. Network coding is a young field with many exciting open questions. We discuss
these at the end of each chapter.

1.6.1 Alphabet Size

An important measure of a network code is the size of the alphabet; a smaller alphabet is
better. In Chapter 2 we show:

• Determining the smallest alphabet size for which there is a solution is NP-hard. This
work initiated the study of complexity questions related to network coding.

• There are multicast instances requiring an alphabet of sizeΩ
(√

#sinks
)
. (Recently,

this was shown to be tight by Fragouli and Soljanin [8].)

• For the general network coding problem, we show a periodicity effect. There are
instances which only admit a solution if the alphabet size is a perfectkth power.

• Building on this, we show a doubly-exponential lower bound on alphabet size for
certain instances.

• For these instances, slightly increasing the capacity of a single edge exponentially
reduces the required alphabet size. This is a motivation for refining the model in
Section 1.1 to consider the rate of a solution. We do this in Chapter 4.

The results in this chapter appeared in [21, 22].

1.6.2 Complexity of Linear Network Coding

Positive results for the multicast problem suggested that solvable instances might always
admit a linear solution. Furthermore, there was hope that the multicast algorithms could be
extended to general network coding problems.

In Chapter 3 we classify network coding problems based on the configuration of sources
and sinks. We show that

25

• For some classes of problems, every solvable instance admits a trivial solution, which
can be found efficiently using traditional flow techniques.

• The multicast problem and a generalization with multiple sources are the only re-
stricted network coding problems for which network coding is necessary and linear
codes suffice. The known multicast algorithms can be extended to solve instances of
the generalization [15, 10, 14].

• We show that it is NP-hard to determine if a linear solution exists if sinks are allowed
to request different subsets of the messages.

• As a corollary, we obtain an instance of the general network coding problem that
admits a vector linear solution but not a linear solution.

The work in Chapter 3 appeared in [21].

1.6.3 The Capacity of an Information Network

In Chapter 4 we define a model for network coding in a directed acyclic graph in which the
rate of the solution is a parameter. Our goal is to find necessary and sufficient conditions for
the existence of a solution of rater for an instance of the general network coding problem.
This remains an open question; however, we make the following advances:

• We define the sparsity of an edge-cut, a natural condition to consider. We show this
is neither necessary nor sufficient.

• We then define an improved cut condition calledmeagerness. We show that the
capacity of the most meager edge-cut is an upper bound on the achievable rate.

• We present an example in which the maximum achievable rate is2/3, but the most
meager cut has capacity1. This shows that meagerness is a necessary but not suffi-
cient condition.

• The proof of this gap leads to a tighter entropy-based upper bound on the maximum
achievable rate. (This condition was independently discovered by Song, Yeung and
Cai [36] and is discussed in [39] as well.)

Preliminary results appeared in [11]. The work in this chapter is joint with Nicholas
Harvey and Robert Kleinberg.

26

1.6.4 Models for Graphs with Cycles

Our objective in Chapter 5 is to extend the techniques from the preceding chapter to graphs
with cycles and to undirected graphs. We consider three possible models for network cod-
ing in directed graphs (which may have cycles) and prove their equivalence. Unlike the
work of Koetter and Ḿedard [19], we do not restrict our attention to linear coding solution.

We model an undirected graph, roughly, with a directed graph by replacing each undi-
rected edge with two oppositely-directed edges. Under this model, we let a network code
split the capacity of an undirected edge in any possible way between the two oppositely-
directed edges.

With these models in hand, we then extend our entropy-based upper bounds on the
maximum rate of a network coding solution to this new setting. It is important to note that
undirected graphs present considerable challenges beyond directed graphs. A contribution
of this chapter is the introduction of a framework for studying network coding in undirected
graphs.

The work in this chapter is joint with Nicholas Harvey, Robert Kleinberg and Eric
Lehman.

1.6.5 Thek-Pairs Communication Problem in Undirected Graphs

Recall that in thek-pairs communication problem there arek commodities, each with a
single source and single sink. This problem is closely related to the multicommodity flow
problem and understanding this relationship in undirected graphs is the focus of Chapter 6.

The target of this investigation is an open conjecture: for any instance in an undirected
graph, the maximum rate of a network coding solution can be achieved using multicom-
modity flow techniques. In undirected graphs, the value of the sparsest cut is an upper
bound on the maximum achievable rate with and without network coding. However, it is
well known that the maximum multicommodity flow in a network can be much smaller than
the value of the sparsest cut [32, 23]. In a limited sense, we extend this result to network
coding. In particular, we prove the first gap between the maximum rate of a network coding
solution and the value of the sparsest cut. In fact, we show such a gap exists for an infinite
class of instances using a new entropy-based necessary condition for the existence of a net-
work coding solution. For all of these instances, we prove the conjecture is true; namely,
the maximum rate of a network coding solution can be achieved using multicommodity
flow techniques.

The work in this chapter is joint with Nicholas Harvey and Robert Kleinberg.

27

28

Chapter 2

Alphabet Size

In this chapter we consider the sizeq of the alphabetΣ. There are a number of reasons why
alphabet size is interesting. First, a small alphabet implies that the edge functions are simple
and efficiently computable. Second, the alphabet size is related to the network latency. In
a network implementing a network code each symbol from the alphabet for the code is
mapped to a sequence of symbols from the alphabet the network is using. The encoding of a
symbol from a large alphabet is larger and therefore takes longer to pass through a network
than the encoding of a symbol from a small alphabet. Third, a naive implementation of a
network code requires nodes to store alphabet symbols in order to compute edge functions.
Thus a larger alphabet might require more storage at nodes. Finally, there is a connection
between understanding the alphabet size and understanding the computational complexity
of network coding. Currently, the general network coding problem is not known to be
decidable. An upper bound on the size of the alphabet admitting a solution would imply
decidability.

In this chapter we present two lower bounds on the alphabet size required for there to
exist a solution. The first lower bound is for the multicast problem. We show that the size of
the alphabet for some instances must beΩ(

√
m) wherem is the number of sinks. We then

prove that determining the minimum alphabet size that admits a solution for an instance of
the multicast problem is NP-hard. This hardness result initiated the study of complexity
issues related to network coding.

For the general network coding problem we demonstrate a periodicity effect. Specifi-
cally, we show instances of the network coding problem with2k messages andO(k2) nodes
for which there only exists a solution if the alphabet size is a perfectkth power. Combining
these instances we create an instance of the network coding problem withk messages that
only admits a solution if the alphabet size is doubly-exponential ink. Lastly, we consider
solutions that use slightly larger alphabets for the edges than for the sources. We show that
these solutions avoid the periodicity effect for the previously considered instances. This in-
troduces the idea of solutions which operate at rates other than1. In Chapter 4 we consider

29

this concept in far greater depth.

2.1 Lower Bound for Multicast

We show that there exist solvable multicast problems requiring an alphabet of sizeΩ(
√

m)
wherem is the number of sinks. This has recently been shown to be a tight bound [8].

We begin with a technical lemma that gives some insight into why a larger alphabet
may be necessary to solve a network coding problem. Letfi andfj be functions mapping
Σ2 to Σ. Then we can form a functiongij : Σ2 → Σ2 defined by:

gij(α, β) = (fi(α, β) , fj(α, β))

If gij is invertible, then we say that functionsfi andfj are independent. Equivalently,fi

andfj are independent if and only if there do not exist distinct points(α1, β1) and(α2, β2)
in Σ2 such thatfi(α1, β1) = fi(α2, β2) andfj(α1, β1) = fj(α2, β2).

In short, the messagesα andβ can be determined fromfi(α, β) andfj(α, β) if and
only if the functionsfi andfj are independent. But the following lemma says we can not
construct a large set of pairwise independent functions over a small alphabet. The main
idea of our subsequent theorems is that some information flow problems are not solvable
with a small alphabet because one “runs out” of independent functions.

Lemma 1 If f1, . . . , fn are pairwise independent functions of the formfi : Σ2 → Σ, then
n ≤ q + 1.

Proof. First, we show that each functionfi must be aq-to-1 mapping. Suppose not. Then
fi must take on some valueγ ∈ Σ at more thanq points(α, β) ∈ Σ2. By the pigeonhole
principle, the functionfj (wherej 6= i) must take on some valueδ ∈ Σ for at least two of
those points; call them(α1, β1) and(α2, β2). Thus, we havefi(α1, β1) = fi(α2, β2) and
fj(α1, β1) = fj(α2, β2), contradicting the assumption thatfi andfj are independent.

Now define anagreementof the functionfi to be a pair of distinct points(α1, β1)
and (α2, β2) in Σ2 such thatfi(α1, β1) = fi(α2, β2). Each functionfi hasq2(q − 1)/2
agreements; for each of theq elementsγ ∈ Σ, we can chooseq(q − 1)/2 pairs of distinct
points from among theq points in(α, β) ∈ Σ2 such thatfi(α, β) = γ. In all, there are
q2(q2 − 1)/2 pairs of distinct points inΣ2. Therefore, again by the pigeonhole principle,
there must exist two different functionsfi andfj that share an agreement if:

n · q2(q − 1)/2 > q2(q2 − 1)/2

n > q + 1

30

But if fi and fj share an agreement(α1, β1) and (α2, β2), then we havefi(α1, β1) =
fi(α2, β2) and fj(α1, β1) = fj(α2, β2), contradicting the assumption thatfi and fj are
independent. Therefore, we must haven ≤ q + 1 as claimed.2

Conversely, constructing a set ofq+1 pairwise independent functions is a simple matter
whenq is a prime power. RegardΣ as a finite field, and take all functionsf(x, y) of the
form x + αy whereα ∈ Σ together with the functiony.

Theorem 2 There exist solvable instances of the multicast network coding problem that
require an alphabet of sizeΩ(

√
m).

Proof. Consider an instance of the multicast network coding problem defined as follows.
There is a single sources and intermediate nodesv1, . . . , vp. There is a directed edge(s, vi)
from the source to each intermediate node. For each pair of distinct intermediate nodesvi

andvj, create a sinktij and add directed edges(vi, tij) and(vj, tij). Note that the number of
intermediate nodesp is Θ(

√
m), wherem is the number of sinks. There are two messages,

M1 andM2 available at the source, and these two messages are demanded by every sink.
First, we show that this problem is solvable. LetM1 andM2 represent the two messages

which must be multicast from the source to all sinks. If the alphabet size is a prime power
greater than the number of intermediate nodes, then the edges(s, v1), . . . , (s, vp) may carry
functions ofM1 andM2 that are pairwise independent. If each intermediate node then re-
lays its input directly to its outputs, then each sink receives pairwise independent functions
of M1 andM2 and can therefore reconstruct messagesM1 andM2 as desired.

Now, we show that the problem is not solvable if the alphabet is too small. Suppose
that the number of intermediate nodes is greater thanq + 1. Then by Lemma 1 the edges
(s, vi) can not carry functions ofM1 andM2 that are all pairwise independent. In particular,
suppose that intermediate nodesvi andvj receive functions that are not independent. Then
messagesM1 andM2 can not be determined from the values of these functions. Therefore,
these messages can not be computed at sinktij, which receives no other information. Thus,
in general, an alphabet of sizeΩ(

√
m) is required to solve some instances of the multicast

network coding problem.2

2.2 Hardness for Multicast

We have seen that some multicast network coding problems can only be solved by using a
large alphabet. In this section, we show that it is computationally hard to determine exactly
how large an alphabet is required.

The following two reductions rely on the hardness of graph coloring and a general-
ization of graph coloring calledH-coloring. In both cases, we map an undirected graph
G′ = (V ′, E ′) to an instance of the multicast network coding problem on a graphG as
follows. The nodes ofG consist of a single sources, an intermediate nodevi for each

31

vertexv′i ∈ V ′, and a sinktij for each edge{v′i, v′j} ∈ E ′. There is an edge(s, vi) ∈ E
for each vertexv′i ∈ V ′, and there are edges(vi, tij) ∈ E and (vj, tij) ∈ E for each
edge{v′i, v′j} ∈ E ′. Two messages,M1 andM2 are available at the source, and these two
messages are demanded by every sink.

Theorem 3 Deciding whether there exists a linear network code with alphabet sizeq for a
multicast network coding instance is NP-hard whenq is a prime power.

Proof. We use a reduction from vertex coloring on undirected graphs.
Let G′ = (V ′, E ′) be an undirected graph. Construct an instance of the network coding

problem defined on a graphG as described above.
We show thatG′ is q + 1 colorable if and only if the instance is solved by a linear

network code with an alphabet of sizeq. First, suppose thatG′ is (q +1)-colorable in order
to show that this implies the existence of a linear network code that solves the instance of
the network coding problem. Letc(i) ∈ {1, . . . , q + 1} denote the color of vertexv′i. As
noted after the proof of Lemma 1, there exist pairwise independent functionsf1, . . . , fq+1

of the formfi : Σ2 → Σ. Along each edge(s, vi) and all edges(vi, tij), send the symbol
fci

(M1, M2). Then each sinktij receivesfc(i)(M1, M2) andfc(j)(M1, M2). Since colors on
adjacent vertices are distinct,c(i) 6= c(j), and so the functionsfc(i) andfc(j) are indepen-
dent. Thus, each sink can reconstruct messagesM1 andM2 as desired.

Next, suppose that there exists a linear solution to the network coding instance with
an alphabet of sizeq. We show that this implies that there exists aq + 1 coloring of
G′. Each edge(s, vi) then carries a nonzero linear combinationαM1 + βM2. We can
partition the set of all such linear combinations intoq + 1 equivalence classes; the nonzero
multiples ofM1 + αM2 form one class for eachα ∈ Σ and the nonzero multiples ofM2

form the remaining class. This places every pair of independent linear combinations into
different classes. Assign each class a distinct color. Now assign vertexv′i ∈ V ′ the color of
the class containing the function associated with edge(s, vi). The endpoints of each edge
{v′i, v′j} ∈ E ′ are then colored differently, because the functions for edges(s, vi) and(s, vj)
must be independent so that sinktij can reconstruct messagesM1 andM2. Therefore, this
gives a validq + 1 coloring ofG′. 2

2.2.1 General Codes

We now consider general codes and show that minimizing the alphabet size remains hard.
We use a reduction fromH-coloring. AnH-coloring of an undirected graphG is a homo-
morphismh : G → H such thath(v) andh(u) are adjacent vertices ofH if v andu are
adjacent vertices ofG. Hell and Něseťril showed thatH-coloring is NP-hard wheneverH
is not bipartite and is solvable in polynomial time ifH is bipartite[12].

Theorem 4 Deciding if there exists a network code with alphabet sizeq for a instance of
the multicast network coding problem is NP-hard whenq is a prime power.

32

Proof. Define a graphH as follows. The vertices ofH are all the functionsf : Σ2 → Σ.
There is an edge between verticesf andg if they are independent functions. Note thatH
is not bipartite for all prime powersq, since there exists a set of three pairwise independent
functions.

Let G′ = (V ′, E ′) be an arbitrary undirected graph. Construct an instance of the multi-
cast network coding problem onG as described above. We show thatG′ is H-colorable if
and only if there exists a solution to the network coding instance over an alphabet of sizeq.

Suppose thatG′ has anH-coloring,h. Then we can solve the instance of the network
coding problem by sending each vertexvi the symbolf(M1, M2), wheref = h(v′i). Each
sink receives inputs from two verticesvi and vj such thatv′i and v′j are adjacent inG′.
This means thath(v′i) andh(v′j) are adjacent inH and are therefore independent functions.
Thus, the sink can reconstruct messagesM1 andM2.

On the other hand, suppose that there is a solution to the network coding instance. Then
we can construct anH-coloringh of the graphG′ as follows. For each vertexvi in G, let
h(v′i) be the function ofM1 andM2 transmitted on the out-edge ofvi. If verticesv′i andv′j
are adjacent inG′, then the corresponding verticesvi andvj in G share a sink. Since the
sink can reconstructM1 andM2, the functionsh(v′i) andh(v′j) must be independent and
thus adjacent inH. Therefore,h is a validH-coloring ofG′. 2

Interestingly, some multicast problems can be solved with a smaller alphabet by using
nonlinearcodes. For example, letΣ be an alphabet of size 3. LetG′ be a graph whose
vertices are all functionsf : Σ2 → Σ and whose edges are all pairs of independent func-
tions. Then consider the instance of the network coding problem on a graphG derived as
before. This problem can be solved using alphabetΣ by sendingf(M1, M2) to the vertex
corresponding to the functionf . On the other hand, suppose that we want a linear solution.
This requires coloring the vertices ofG′ using independent linear functions. A computation
shows that the chromatic number ofG′ is 6, which implies an alphabet of size at least 5.
We conjecture that there can be a very large gap between the absolute smallest alphabet
size for a multicast problem and the smallest possible alphabet size using linear coding.

2.3 Lower Bound for General Problem

We now turn our attention to the general network coding problem. In this section, we
show aperiodicity effect: for every integerk ≥ 2, there exists an instance of the network
coding problem that admits a solution if and only if the alphabet size is a perfectkth power.
Building on this result, we construct an instance withO(k) messages andO(k) nodes that

admits a solution if and only if the alphabet size is an enormous2exp(Ω(k1/3)). In other
words, if we regard each message as a length-d vector over the binary field, thend must
be exponentialin the size of the network. For this same instance, we show that if edge
capacities are slightly larger than the message size, then there is a solution with a modest

33

alphabet size ofO(2k). In light of these results, we suggest that a more appropriate model
would assume that the network operates at slightly under capacity.

We present the following results in this section:

• The power of network codes does not strictly increase with alphabet size, but rather
increases as the size of the set of perfect roots of the alphabet size increases. Thus,
an alphabet size of26, which is a perfect square, a perfect cube, and a6th power is
strictly better than a size of22or 23, but an alphabet of size27, which is only a7th

power is not. In practice, one might be tempted to use an alphabet size of232 or 264

so that a single alphabet symbol fits into a machine word. However, our construction
suggests that these would actually be poor choices, since32 and 64 have so few
divisors.

• When linear coding is used to solve the multicast problem, an alphabet of sizeO(m)
suffices if there arem sinks. The situation with the general network coding problem
is dramatically different. By placing many of our constructions in parallel, we ob-
tain an instance of the general network coding problem withO(k) nodes, including
sinks, that requires an alphabet of size2exp(Ω(k1/3)). Thus, there exist instances of
the network coding problem that are solvable, but require extremely large alphabets.
Naively, even describing the solution takes space exponential in the problem size.

• We show that our lower bound on the alphabet size does not hold if we slightly
increase the capacity of the edges. In particular, the instance described above admits
a vector-linear solution where messages are vectors of lengthq provided each edge

can transmit a vector of lengthn
(
1 + 1

q1/3

)
.

In light of these results, we suggest that a better model for the study of network coding
problems would allow the network to operate at slightly under capacity, since this may
avoid an exponential blowup in the solution complexity. In Chapter 4 we consider a more
general definition of a network coding solution which allows each edge and message to use
a different alphabet.

2.3.1 Construction

First we describe the construction of an instance of the network coding problem that we
denoteIk. We then prove that instanceIk admits a solution if and only if the alphabet size
is akth power. The construction is shown fork = 3 in Figure 2-1.

There is a single source with2k messagesM1, M2 . . . M2k and a single middle-layer
node. There is an edgeC of capacity2 from the source to the middle layer node. There
areO(k2) sinks. There is an edge of capacity2 from the middle-layer node to each sink.
One sinkt∗ requests all2k messages and all other sinks requestk messages. LetP =

34

C

M4,
M5,
M6

M1,
M4,
M5

M1,
M4,
M6

M1,
M5,
M6

M2,
M4,
M5

M2,
M4,
M6

M2,
M5,
M6

M3,
M4,
M5

M3,
M4,
M6

M3,
M5,
M6

M1,
M2,
M3

All

tPtP t* t16 t15 t14 t26 t25 t24 t36 t35 t34

S

M1

Source with

M2 and, , M3 , M4 , M5 M6,

Figure 2-1: In this instance of the network coding problem, all edges are directed down-
ward. All edges have capacity2, except for the thick, curved edge, which has capacity4.
There are six messages,M1, M2, . . . ,M6. The top node is the only source and has every
message. The bottom layer of nodes is the sinks, whose requests are listed below each
node. The complementary sinkstij are not shown.

{M1, M2 . . . Mk} andP = {Mk+1, Mk+2 . . . M2k}. The sinktP requests all messages in
P , and the sinktP requests all messages inP . For all i andj such that1 ≤ i, j ≤ k there
is a sinktij that requests thek messages(P ∪ {Mi})−{Mk+j} and a complementary sink
tij that requests thek messages(P ∪ {Mk+j}) − {Mi}. From the source tot∗ there is an
edge of capacity2k−2, and from the source to every other sink there is an edge of capacity
k − 1.

2.3.2 Analysis

The analysis of the networkIk relies on understanding the functionF : Σ2k → Σ2 that
describes the two symbols transmitted over edgeC. We first prove a preliminary fact about
the functionF .

35

Lemma 5 The functionF : Σ2k → Σ2, which determines the symbol sent over edgeC, is
q2k−2-to-1.

Proof. Sinkt∗ must recover all the messages from the symbol sent on edgeC and the2k−2
other alphabet symbols it receives on the direct edge from the source. Letg : Σ2k → Σ2k−2

be the function that determines the2k − 2 symbols sent along the direct edge. IfF is not
q2k−2-to-1, thenF must map more thanq2k−2 points inΣ2k to some pair of symbols in
Σ2. Theng necessarily maps two of these points to the same value inΣ2k−2. Thus, sinkt∗

receives identical symbols for two different sets of sent messages and can not distinguish
them.2

We now consider restrictions placed on the functionF by a sink requesting a set ofk
messages. In particular, we consider the set of assignments to the2k messages that are
mapped byF to the same value. For the remainder of this section we letβ ∈ Σ2 be a fixed
value sent byF down edgeC andB ⊆ Σ2k denote the subset of sizeq2k−2 thatF maps
to β. Thus,B is the set of assignments to messages such that the edgeC carries the value
β. Consider a subset of the2k messagesA = {Ms1 , Ms2 . . . Msr}. The set of assignments
to the messages inA such that there exists an assignment to the remaining messages on
which F takes on the valueβ is the projection of each point inB onto the coordinates
s1, s2 . . . sr. We denote this set asπs1,s2...sr(B) or equivalentlyπA(B). For example, if
A = {M1, M2, M3}

πA(B) = {(x1, x2, x3) | (x1, x2, x3, y4, . . . y2k) ∈ B

for some(y4, y5 . . . y2k)}

Lemma 6 Let t be a sink requesting the setA of k messages. Then|πA(B)| = qk−1.

Proof. In addition to the point inΣ2 sent to the middle-layer node, the sinkt also receives
k − 1 symbols on a direct edge from the source. If the sinkt receives the valueβ ∈ Σ2

from the middle-layer node, then the assignment to thek messages inA must be according
to one of the points inπA(B). Each point inπA(B) represents a different assignment to the
messages inA. Therefore, the sinkt must receive a different set ofk − 1 symbols along
the direct edge from the source for each of the points inπA(B). Since there are onlyqk−1

different assignments to thek − 1 symbols sent down the direct edge from the source, we
must have|πA(B)| ≤ qk−1. Otherwise, the messages inA can not be uniquely determined
from the information received at the sink.

By construction, there is a complementary sinkt requesting the subsetA consisting of
the otherk messages. By the same argument as above,|πA(B)| ≤ qk−1. The number of
different points inΣ2k on whichF takes on the valueβ is at most|πA(B)| · |πA(B)|. By
Lemma 5,F is aq2k−2-to-1 function. Therefore,

36

q2k−2 ≤ |πA(B)| · |πA(B)|
≤ |πA(B)| · qk−1

qk−1 ≤ |πA(B)|

Therefore,|πA(B)| = qk−1. 2

We learn more about the structure of the set of pointsB on which F takes on the
valueβ by applying the above lemma to sinkt requesting the setA of k messages and its
complementary sinkt requesting the otherk messages.

Lemma 7 Lett be a sink requesting the setA ofk messages, and lett be the sink requesting
the otherk messagesA. Then

B = πA(B)× πA(B)

Proof. Consider an assignmentz ∈ B to the messages. Supposez assigns thek messages in
A according to an assignmentzA and assigns the messages inA according to an assignment
zA. Then, zA ∈ πA(B) and zA ∈ πA(B) by the definition of projection. Therefore,
B ⊆ πA(B) × πA(B). By Lemma 6,|πA(B) × πA(B)| = |πA(B)| · |πA(B)| = q2k−2.
Since|B| = q2k−2 by Lemma 5,B has the same size as the set containing it. Therefore,
B = πA(B)× πA(B). 2

The next lemma shows that for at least one sink, the projection of the setB onto the
messages requested by that sink is “large”. The proof makes use of the discrete Loomis-
Whitney inequality relating the size of a set to the product of the sizes of projections of
the set [28, 3, 38, 37] . Roughly, the discrete Loomis-Whitney inequality generalizes the
intuition that a massive statue must look big from the front, the side, or the top; that is, a
big region must have some big projection.

Theorem 8 (Discrete Loomis-Whitney Inequality) LetQ ⊆ Σh andr ≤ h,

|Q| ≤
∏

1≤s1<...<sr≤h

|πs1,...,sr(Q)|hr−1(h
r)

−1

Lemma 9 There exists a set ofk messagesA = (P∪{Mi})−{Mk+j} such that|πA(B)| ≥⌈
q

k−1
k

⌉ ⌈
q

(k−1)2

k

⌉
.

Proof. We prove this in three steps. First we show that there exists a messageMi ∈ P

such that|πi(B)| ≥
⌈
q

k−1
k

⌉
. Then we show that there exists a set ofk − 1 messages,

37

P −{Mk+j} = {Ms1 , Ms2 . . . Msk−1
} such that|πs1,s2...sk−1

(B)| ≥
⌈
q

(k−1)2

k

⌉
. To finish the

proof, we use Lemma 7 to show that

|πi,s1,s2...sk−1
(B)| ≥ |πi(B)| · |πs1,s2...sk−1

(B)|

Using the Loomis-Whitney Inequality forr = 1,∏
1≤i≤k

|πi(B)| ≥ |πP (B)|

= qk−1

Therefore, there exists at least one messageMi ∈ P for which |πi(B)| ≥
⌈
q

k−1
k

⌉
.

Similarly, by the Loomis-Whitney Inequality forr = k − 1,

∏
k+1≤s1<s2<...<sk−1≤2k

|πs1,s2...sk−1
(B)|

1
k−1 ≥ |πP (B)|

= qk−1∏
k+1≤s1<s2<...<sk−1≤2k

|πs1,s2...sk−1
(B)| ≥ q(k−1)2

Since there arek terms in the product on the left, there exist a subset ofk − 1 messages

{Ms1 , Ms2 . . . Msk−1
} ⊆ P such that|πs1,s2...sk−1

(B)| ≥
⌈
q

(k−1)2

k

⌉
.

For eachxi ∈ πi(B), there existsx ∈ πP (B) that assigns messageMi the valuexi.
Similarly, for each(ys1 , . . . ysk−1

) ∈ πs1,s2...sk−1
(B) there existsy ∈ πP (B) that corre-

sponds to assigning the messages{Ms1 , Ms2 , . . . Msk−1
} the values(ys1 , ys2 . . . ysk−1

). By
Lemma 7,B = πP (B) × πP (B), and so there is a point inB that assigns the valuexi to
messageMi and the valuesys1 , ys2 , . . . , ysk−1

to messagesMs1 , Ms2 , . . . Msk−1
. Therefore,

|πi,s1,s2...sk−1
(B)| ≥ |πi(B)| · |πs1,s2...sk−1

(B)|

≥
⌈
q

k−1
k

⌉⌈
q

(k−1)2

k

⌉
2

Theorem 10 There exists a solution to networkIk if and only if the alphabet sizeq is a
perfectkth power.

38

Proof. There are two steps. We first show how to construct a solution with an alphabet of
sizeq = `k for any ` ≥ 2. Then we show that the network only admits a solution if the
alphabet size is a perfectkth power.

Let Γ be a set of sizè. We regard each message as a length-k vector of symbols drawn
from Γ. Recall that edgeC has capacity2. Therefore, we can send2k symbols fromΓ
across edgeC. We use these2k symbols to transmit the first coordinate of each of the2k
messages. The sinkt∗, which requests all2k messages, must receive2k length-k vectors.
Via edgeC, it receives the first coordinate of each of these2k vectors. Along the direct
edge of capacity2k − 2 from the source tot∗, we send the remainingk − 1 coordinates
of each of the2k messages. Now consider a sinkt requesting a subsetA of k messages.
Sink t receives the first coordinate of each message inA from edgeC. The remaining
k − 1 coordinates of each of the messages inA can be transmitted across the direct edge
of capacityk − 1 from the source tot. Thus, each sink receives every coordinate of the
messages it requests. The alphabet size isq = `k.

Next, we show that the alphabet size must be akth power. Lemma 9 says that there

exists a setA = (P ∪ {Mi}) − {Mk+j} of k messages with|πA(B)| ≥
⌈
q

k−1
k

⌉ ⌈
q

(k−1)2

k

⌉
.

On the other hand, since there is a sinktij for every1 ≤ i, j ≤ k requesting the set of
messages(P ∪ {Mi})− {Mk+j}, we must have|πA(B)| = qk−1 by Lemma 6. These two
relationships can hold simultaneously only ifq is akth power.2

2.3.3 A Lower Bound on Alphabet Size

We now construct an instance,Jn, of the network coding problem withΘ(n) nodes that
admits a solution if and only if the alphabet size isq = 2exp(Ω(n1/3)). The construction
is as follows. For each prime numberp ≤ n1/3, we take the instanceIp of the preced-
ing construction, which forces the alphabet size to be apth power. We place all of these
constructions in parallel in order to create instanceJn.

Corollary 11 InstanceJn with Θ(n) nodes admits a solution if only if the alphabet size is

2exp(Ω(n1/3)).

Proof. The number of nodes inJn is at most:

n1/3∑
i=1

2i2 + 1 = Θ(n)

InstanceIp, is solvable if and only if the alphabet size if apth power. Thus, instanceJn

is solvable if and only if the alphabet size is apth power for every primep less thann1/3.

39

The product of primes less thanx is e(1+o(1))x (see [9]). Therefore, the minimum alphabet

size isq = 2exp(Ω(n1/3)). 2

The fact thatJn is made up of a collection of disjoint networks is not critical to the
proof. In fact, one can add some sinks that join the networks and force some degree of
coding. More generally, one can imagine problems in which the various instances requiring
different vector sizes are embedded in a larger network and may not be easily detectable.

While the instanceJn requires a very large alphabet, not much storage is actually
needed at the nodes. Also, the solution presented in Section 2.3.2 can be described con-
cisely without resorting to a particularly powerful description language. An interesting
question is whether other instances admit only solutions with not only enormous alphabets,
but also comparable storage requirements and description complexity.

2.3.4 Operating Below Capacity

We now consider the effect of allowing the network to operate at slightly below full ca-
pacity. We model this using vector linear codes in which the edges are allowed to transmit
vectors that are longer than the message vectors. In particular, suppose that each message
is a length-k vector, but vectors transmitted over edges have length(1 + ε)k. We show
that for vanishingly smallε, the networkJn in Corollary 11 admits a solution over any
field with a vector length linear in the size of the network. Using a constant-size field, this
corresponds to a vector-linear solution with an alphabet that is only exponential (instead of
doubly exponential) in the size of the network.

Theorem 12 There exists a vector linear solution over the fieldF2 to the networkJn on
Θ(n) nodes with message-vector lengthn and edge-vector length

(
1 + n−2/3

)
n.

Proof. Recall thatJn is constructed by placing instancesI2, I3, I5 . . . Is in parallel, where
s is the largest prime less thann1/3. Consider primep and the subnetworkIp in Jn. In

our solution, we send
⌈

n
p

⌉
unencoded bits of each message across edgeC in Ip. A sink

requestingp messages must receive a total ofpn message bits. A total ofp
⌈

n
p

⌉
of these

message bits are sent via edgeC. The remaining at most

pn− p ·
⌈

n

p

⌉
≤ (p− 1)n

message bits can be transmitted along the direct edge from the source to the sink. Similarly

the sinkt∗ requesting all the messages receives2p ·
⌈

n
p

⌉
message bits from edgeC and can

receive the other at most(2p− 2)n message bits via the direct edge with capacity2p− 2.

40

We can upper bound the lengthk′ of the two vectors transmitted across edgeC as

follows. For each of the2p messages, we transmit
⌈

n
p

⌉
bits on edgeC. Therefore, we

have:

2k′ = 2p

⌈
n

p

⌉
≤ 2n + 2p

= 2n
(
1 +

p

n

)
≤ 2n

(
1 + n−2/3

)
Therefore the length of each vector sent across edgeC is at most

(
1 + n−2/3

)
n. We make

no use of the extra capacity along any other edge.2

2.4 Discussion and Open Problems

The work in this chapter raises two interesting open problem.

• For an instance of the network coding problem, find an integerq such that either
there exists a solution to the instance using an alphabet of size at mostq or the
instance is not solvable.This is closely related to the question of whether the general
network coding problem is decidable. For a specific alphabet size, it is possible to
search all network codes over that alphabet and check is any of them are network
coding solutions. However, in light of Theorem 10 it is not clear which alphabet
sizes should be tried.

• Does every solvable instance admit a solution with a moderate alphabet size,
provided the network operates just below capacity?Our results suggest that using
a network at full capacity may be undesirable; even if a solution exists, an enormous
alphabet may be required. On the other hand, slightly increasing the network capacity
eliminates this problem, at least for the instance we propose. This points toward an
exploration of network coding in a model where the network has a small amount of
surplus of capacity. Proving that under such a model, every solvable instance admits
a solution with a moderate alphabet size is an interesting open question.

2.5 References

Theorems 2, 3 and 4 appeared in [21] and are joint work with Eric Lehman. Theorem 2,
which shows that an alphabet of size(

√
#sinks) sometimes necessary, was independently

41

proved by Feder, Ron and Tavory[29]. Recently it was shown to be tight by Fragouli and
Soljanin[8]. All three algorithms for the multicast problem, the Jaggi-Li algorithm [15], the
randomized algorithm due to Ho et al. [14] and the deterministic algorithm due to Harvey
et al. [10], require an alphabet of size at mostO(#sinks). Therefore, in terms of the
encoding length of an alphabet symbol, all is within an additive constant of optimal.

Dougherty, Freiling, and Zeger[6] independently showed that a problem solvable with
a smaller alphabet (say, size5), may not be solvable with a larger alphabet (size6). By
relating the network coding problem to orthogonal Latin squares, they created an instance
of the multicast problem that has a solution as long as the alphabet size is not2 or 6.

Theorems 10 and 12 and Corollary 11 appeared in [22] and are joint work with Eric
Lehman.

42

Chapter 3

Complexity of Linear Network Coding

In this chapter, we explore the applicability and limitations of linear network coding to a
breadth of network coding problems beyond multicast. Our main contribution is a taxon-
omy of network coding problems based on the connectivity of sources and sinks to the rest
of the graph. We describe a three-way partition of possible network coding problems. For
the first class, we prove that network coding adds nothing; if sink demands can be satis-
fied at all, traditional flow techniques provide a solution in polynomial time that does not
involve coding. Then we exhibit a second class of network coding problems for which
coding is advantageous. In this case, linear solutions can be obtained in polynomial time
by adapting the Jaggi-Li multicast algorithm. For the third class of problems, we show that
determining whether there exists a solution using linear codes— as in the Jaggi-Li algo-
rithm [15, 24]— is NP-hard. Finally, the techniques developed to prove hardness also yield
solvable instances of the network coding problem that do not admit linear solutions.

3.1 Taxonomy of Network Coding Problems

For our purposes, a network coding problem is defined by four attributes: single or multiple
sources, single or multiple sinks, message distribution at sources, and message distribution
at sinks. Thus a class of network coding problems is defined by a four-tuple (α, β, γ, δ),
which is interpreted as follows:

• α is 1 if there is a single source andn if there are multiple sources.

• β is 1 if there is a single sink andm if there are multiple sinks.

• γ is I if all messages are available at every source, D if the sources have available dis-
joint sets of messages, and A if there are no specific guarantees about the availability
of messages at sources. In the case of a single sourceγ is I.

43

• δ is I if every sink demands every message, D if sinks demand disjoint sets of mes-
sages, and A if there are no specific demand guarantees. In the case of a single source
γ is I.

We show that each of the resulting classes of network coding problems falls into one of
the following three categories.

Trivial codes suffice:The simplest problems can be solved with a trivial network code,
one in which every edge carries an unencoded message. There are two types of problems in
this class. The first type is problems with a single sink regardless of the number of sources
and distribution of information at the sources. The second type is problems in which each
message is available at every source but requested by exactly one sink.

Linear codes suffice:The next set consists of problems for which nontrivial network
coding is sometimes necessary. For this class of problems, linear network coding always
suffices, if a solution exists. Furthermore, a solution can be found in polynomial time by
adapting the Jaggi-Li algorithm. Problems in this class have the property that every sink
requests the entire set of available messages. Thus problems in this class may have multiple
sources with no guarantees on the distribution of information between sources.

Hard: Finally, the remaining problems sometimes require nontrivial network coding,
but determining if a linear solution exists is NP-hard. For this last class of problems, there
are instances that do not permit linear solutions but are solvable with vector linear codes.

In the next three subsections, we justify this classification. The following table
summarizes these results.

Problem difficulty # of sources # of sinks Information at
sources

Information at
sinks

Trivial codes
suffice

1 or n 1 I, D or A I
1 or n m I D

Linear codes suffice 1 or n m I, D or A I

Hard to find linear
codes, may need
general codes

1 orn m I A
n m D or A D or A

3.1.1 Easy Problems

Theorem 13 An instance of network coding problem, (n, m, I, D), with multiple sources,
multiple sinks and each message available at every source but requested by exactly one

44

sink has a solution if and only if there is a trivial network coding solution.

Proof. We show that such an instance can be solved by augmenting the associated graph
G and finding an appropriate flow. Letk be the number of number of commodities and
s1, s2 . . . s` be the` nodes which are the sources. We add a super-sources∗ and addk
edges froms∗ to each sourcesi, creating a multigraphG′. We also add a super-sinkt∗. For
each nodev let q be the number of commoditiesi for whichv ∈ T(i). Add q edges fromv
to t∗. In G′ the original sources and sinks are now intermediate nodes and all messages are
available only at the super sources∗ and requested by only the super-sinkt∗.

Since the super-source can transmit every message unencoded to each node that was a
source, if the original problem was solvable, then so is the new one. If the new problem
is solvable, then the maximum flow froms∗ to t∗ must be at leastk units; by a counting
argument, we can not transmitk messages across a cut with capacity less thank. This
implies that there existk edge-disjoint flow paths froms∗ to t∗. Our construction ensures
that every flow path traverses a former-sourcesi and that exactlyq paths through nodev if
v was a sink forq commodities. Therefore, in the original problem, each message can be
routed from a source to the appropriate sink on a path that is edge-disjoint from the paths
taken by all other messages. Consequently, no coding is necessary.2

Next we turn our attention to network coding problems with a single sink and show that
regardless of the number of sources there always exists a trivial network coding solution
whenever the instance is solvable.

Theorem 14 An instance of the network coding problem with a single sink has a solution
if and only if there is a trivial network coding solution.

Proof. Let G = (V, E) be the graph representing the underlying network of the instance
with the single sinkt for all k commodities. Create graphG′ = (V ′, E ′) by adding toG a
super sources∗. In addition, for each commodityi, add a node,µi, an edge froms∗ to µi

and add an edge from nodeµi to v if v ∈ S(i).
Since a network code for the new problem can transmit messageMi unencoded to each

nodev ∈ S(i), if the original problem was solvable, then so is the new one. Now we show
that if the new problem is solvable, then the maximum flow froms∗ to t must be of size at
leastk; by a counting argument, we can not transmitk messages across a cut with capacity
less thank. If the maximum flow froms∗ to t is of sizek, then one unit of flow passes
through each nodeµi. Therefore we can use the edge-disjoint paths from the maximum
flow to route each message tot without using coding.2

3.1.2 Polynomial Time Solvable Linear Coding Problems

Jaggi et al. [15] presented a deterministic polynomial time algorithm for solving the mul-
ticast network coding problem. This algorithm can be easily adapted to also solve the

45

network coding problem with multiple sources provided that all sinks request to receive all
messages. Ho et al. [14] provided an efficient randomized algorithm for finding solutions
to this class of problems.

The Jaggi-Li algorithm was initially presented in terms of the multicast problem in
which every sink wants to receive all available messages from a single source. The first
step of the algorithm is to find a flow of sizek from the source to each sink. Label the sinks
t1, t2 . . . tm. Let Fi be the flow associated with sinkti. The edges are then considered in
topological order. For each sinkti, there are a setE(i) of K edges that are the last edge
in each flow path ofFi considered by the algorithm. The Jaggi-Li algorithm maintains the
invariant that for each sink the set of symbols sent on edges inE(i) are linearly independent
combinations of the messages.

Theorem 15 An instance of the network coding problem with every message requested by
every sink is polynomial time solvable.

Proof. Consider an instance of the network coding problem in which every message is re-
quested by all the sinks. LetG = (V, E) represent the associated network. Lett1, t2 . . . tm
be them sinks requesting every message. Create a graphG′ by adding a super sources∗.
In addition, for each messageMi, add a nodeµi, an edge froms∗ to µi. In addition, for a
nodev ∈ S(i), add an edge fromµi to v.

For each sinkti find a flow Fi of sizek in G′. Using the corresponding portions of
these flow paths inG and the Jaggi-Li algorithm yields a linear network coding solution in
polynomial time.2

Note that in the special case, (1, m, I, I), where there is only a single source the problem
in which every sink requests every message corresponds to the multicast case and therefore
the proof that it is polynomial time solvable is due to Jaggi et al. [15].

3.1.3 Hard Linear Network Coding Problems

We now consider the class of network coding problems (n, m, D, A), where there are
multiple sources with disjoint information and multiple sinks that may demand arbitrary
messages. We show that determining whether there exists a linear network coding solution
to such a problem is NP-hard. This contrasts with the network coding problems considered
previously, for which linear solutions can be found efficiently, provided they exist. We
focus on the class (n, m, D, A) for ease of presentation; similar arguments give hardness
results for more restricted problem classes. We discuss these extensions at the end of the
section.

We begin with a preliminary lemma.

Lemma 16 Let f1, f2, f3, h, and k be linear functions over a field. Ifx1, x2, and x3

are uniquely determined byf1(x1, z1), f2(x2, z2), f3(x3, z3), g(x1, x2, x3, z1, z2, z3) and
h(x1, x2, x3, z1, z2, z3) thenfi(xi, zi) = αxi for somei ∈ {1, 2, 3} andα 6= 0.

46

rj rk rl

ui vi

Mj

Source with

and Mk

Source with

and Ml

Source with

and

Sink for

Mj and Ml,

t(j, k, l)

s(j, j) s(k, k) s(l, l)
Mj Mk

Mk

Ml

Figure 3-1: Portion of the instance derived from a 3-CNF formula. Each of the top boxes
corresponds to a variable gadget. The bottom box corresponds to the clauses gadget for
ci = (xj ∨ xk ∨ xl).

Proof. The values of the five functions can uniquely determine the values of at most five of
the variablesx1, x2, x3, z1, z2 andz3. If xi is determined andfi(xi, zi) depends onzi, then
zi is determined as well. Thus, at least one of the functionsfi does not depend onzi, and
sofi(xi, zi) = αxi as claimed.2

Reduction: We now describe how to map a 3-CNF formula to an instance of the net-
work coding problem in the class(n, m,D,A). Let φ be a 3-CNF formula over variables
x1, x2, . . . xz. For each variablexj in φ, we make the variable gadget shown in the top
three boxes of Figure 3-1. This gadget consists of a source nodes(j, j) which is a source
for commoditiesj andj. The source nodes(j, j) has an outgoing edge to an intermediate
node,rj. For each clauseci = (xj ∨xk ∨xl), we create the clause gadget shown in the bot-
tom box of Figure 3-1. This consists of a sinkt(i, k, l), which demands messagesMj, Mk,
andMl, together with two intermediate nodes,ui andvi. The variable gadget is connected
to the clause gadget as follows. Nodesrj, rk, andrl connect directly to the sinkt(i, k, l).
Nodessj, sk, andsl all connect to bothui andvi. This linkage is illustrated in Figure 3-1.
(Note that all three variable gadgets are connected to the clause gadget in the same way,
even though variablexk is negated in the clause. This negation is reflected in the demands
at the sink.)

Lemma 17 A 3-CNF formulaφ is satisfiable if and only if the corresponding network
coding problem has a linear network coding solution.

47

Proof. Suppose thatφ is satisfied by some assignmentπ. If a variablexj is true inπ,
then sources(j, j) sends messageMj to rj and sends messageMj on all other outgoing
edges. Ifxj is false, thens(j, j) sendsMj to rj and sendsMj on all other edges. Node
rj passes its input to its output. Now consider the gadget associated with a clause such as
ci = (xj ∨ xk ∨ xl). Sinceπ is a satisfying assignment, at least one literal in the clause is
true and so at most two literals are false. Each message corresponding to a true literal is
sent to the sink from anr-node. Each message corresponding to a false literal is sent from
a source node to bothui andvi. Since there are at most two such messages,ui andvi can
relay them both to the sink. (For example, suppose that assignmentπ makesxj true and
bothxk andxl false. Then the sink receives messageMj via noderj, messageMk via node
ui, and messageMl via nodevi.) Thus, all sink demands are satisfied, and the instance of
the network coding problem has a linear solution.

In the other direction, suppose that there is a linear solution to the instance of the net-
work coding problem. We construct an assignmentπ as follows. If the output ofrj is a
function of onlyMj, then setxj true. If the output is a function of onlyMj, then setxj

false. Otherwise, setxj arbitrarily. Now consider a clauseci = (xj ∨xk∨xl). Letfj, fk, fl

denote the values output byrj, rk, andrl, and letg andh denote the values output byui and
vi. Since the sink can determine messagesMj, Mk, andMl, Lemma 16 implies that either
fj depends only onMj, fk depends only onMk, or fl depends only onMl. Therefore, at
least one of the literalsxj, xk, or xl is true, and the clause is satisfied by assignmentπ.
Therefore,π is a satisfying assignment for the 3-CNFφ. 2

Lemma 17 establishes the hardness of network coding problems in the class (n, m, D,
A). We conclude this section by describing minor adjustments to the reduction which yield
the following more general result.

Theorem 18 Determining whether there exist linear network coding solutions to network
coding problems in the classes (1, m, I, A), (n, m, D or A, D or A), and (n, m, I, A) is
NP-hard.

We’ve shown how to map a 3-CNF formula to an instance in the class (n, m, D, A).
We now describe extensions of this result to the remaining classes in Theorem 18. We start
with the class (1,m, I, A). For this problem we show how to use sinks to fix the way that
messages are distributed from a common source. We then turn to the class (n, m, D, D).
We only sketch the reduction here. The key elements in both of these reductions are found
in the preceding discussion about the class (n, m, D, A). Finally, since (n, m, I, A) contains
(1, m, I, A) and (n, m, A, A) contains (n, m, D, A) the theorem follows.

Lemma 19 A 3-CNF formulaφ is satisfiable if and only if the corresponding instance of
the network coding problem (1, m, I, A) has a linear network coding solution.

Proof. Instances in the class (1, m, I, A) have a single source with all the messages. There
are no restrictions on the demands at the sinks. LetG be the graph obtained from the

48

reduction given above for a 3-CNF formulaφ. We augmentG with a super-sources∗

and an edge of capacity2 from s∗ to s(j, j) for each nodes(j, j) ∈ G. In addition, we
change nodes(j, j) from being a source for messagesMj andMj to being a sink for both
messages. Each nodes(j, j) can receive the two messages it now requests unencoded.
Therefore, if the original instance had a linear solution, the augmented instance does as
well. Now suppose the augmented instance has a linear solution, thens(j, j) receives two
linear functions of the messages and is able to decodeMj andMj. Therefore the linear
functions that nodes(j, j) receives do not depend on any messages other thanMj andMj.
A linear solution for the new instance can be mapped to a linear solution for the original
instance. The result follows from Lemma 17.2

Augmenting the reduction to create an instance in the class (1, m, I, A) was straightfor-
ward. The next lemma deals with the class (n, m, D, D). While the heart of the reduction
is the same as given for the class (n, m, D, A) we need to insure that each message is
requested by exactly one sink. This restriction adds some complexity to the structure of the
instance produced by the reduction. Figure 3-2 shows the main changes to the reduction.

Lemma 20 A 3-CNF formulaφ is satisfiable if and only if the corresponding instance of
the network coding problem (n, m, D, D) has a linear network coding solution.

Proof. Instances in the class (n, m, D, D) have a single source for each message and a single
sink requesting each message. In the reduction given for the class (n, m, D, A) for each
clause with variablexj there was a sink requesting messageMj. We alter the reduction
given above in order to insure each message is requested by exactly one sink. Figure 3-2
shows most of the additions to the reduction. LetG be the graph obtained according to the
reduction given for (n, m, D, A) from 3-CNF formulaφ. For variablexj let C(j) be the
set of clauses in which the literalxj appears. LetC(j) be the clauses in whichxj appears.
Without loss of generality assume that for all variablesxj, there are no clauses with both
xj andxj.

For each variablexj, we add two sourcess(j) ands(j) and an edge from each of these
new sources to nodes(j, j). Nodes(j, j) is no longer a source. We also add two sinkst(j)
andt(j) which are the only sinks requestingMj andMj respectively.

For each clauseci = (xj ∨ xk,∨xl) there are three new messagesYij, Yik andYil with
new sourcesσ(ij), σ(ik) andσ(il). We add a single sinkτ(i) requesting all three messages
associated with clauseci. We create the remainder of the network to insure thatτ(i) must
also receiveM(j), M(k) andM(l) in order to decodeYij, Yik andYil.

For each variablexj, we add a pathqj of length three froms(j) to t(j). We also add
a single pathpij from σ(ij) to τ(i) of length three. The middle edge onpij is the middle
edge fromqj. This common edge must transmit a linear function which depends on both
Mj andYij. Therefore, sinkτ(i) will need to receive messageMj in order to recoverYij.
We add an edge of capacity three from the nodet(i, k, l) to τ(i). We construct similar paths
for the other variables and clauses.

49

rj rk rl

ui vi

t(j, k, l)

s(j, j) s(k, k) s(l, l)

Yil

Yik

s(j) s(j) s(k) s(k) s(l) s(l)

Source
with

Yij

Source
with

Source
with

 σ(ij)

σ(ik)

 σ(il)

qj
qk

ql

τ(i)

Source
with
Mj Mj

Source
with

Source
with

Source
with

Source
with

Source
with

Mk Mk Ml Ml

Sink for

Yij Yik Yiland,

Figure 3-2: The gray portion corresponds with the part of the graph derived according to
the reduction for (n, m, D, A). The black nodes and edges are the alterations to the instance
which put it in the class (n, m, D, D).

50

Lastly, we need to add some direct edges from sources to sinks for other messages.
The middle edge on the pathqj is the middle edge on all pathsp`j such thatc` ∈ C(j).
Therefore, we add an edge from sources(`j) to sinkτ(i) for all ` 6= i andci, c` ∈ C(j).
We also add an edge from sources(ij) to sinkt(j) for all ci ∈ C(j). We add similar edges
for the other messages.

We now show that the augmented instance has a linear solution if an only if the original
instance did. By construction, each message associated with a variable can be decoded by
its sink. This is because there is a pathqj from s(j) to t(j) and direct edges tot(j) from
every source for a message whose only path to a sink uses the middle edge inqj.

Similarly, for a sinkτ(i) associated with a clauseci, the messages receive along the
pathpij will be a linear combination ofYij, Mj and messagesY`j such thatc` ∈ C(j).
Since there is a direct edge from every sources(`j) to τ(i) such that̀ 6= i, τ(i) can recover
a linear combinationYij andMj. Note that this linear combination must depend on both
Yij andMj. Likewise, for the other messages whichτ(i) requests. Therefore, there exists a
linear solution to this instance if an only ifτ(i) can receiveMj, Mk andMl from t(i, k, l).
Therefore the augmented instance has a linear solution if and only if the original instance
admits a linear solution.2

3.2 Insufficiency of Field Linear Codes

If we do not insist on a linear solution, then the coding problems generated by 3-CNF
formulas arealwayssolvable— even if the 3-CNF formula was not satisfiable. This is in
stark contrast to the multicast case where a linear solution exists if any solution exists. At
the end of this section we present a simple solvable network with no linear solution.

Theorem 21 There are solvable network coding problems in the classes (1, m, I, A), (n,
m, D or A, D or A), and (n, m, I, A) for which there is no linear network coding solution.

Proof. [for the class (n, m, D, A)] Let φ be an unsatisfiable3-CNF formula. By Lemma 17,
there does not exist a linear solution to the corresponding network coding problem. How-
ever, we can construct a nonlinear network coding solution to this network coding problem
as follows. Take the alphabetΣ = Γ × Γ, whereΓ is an arbitrary alphabet. Thus, each
message is a pair of symbols drawn fromΓ. Each sources(j, j) sends the first symbol
of messagesMj andMj to noderj and sends the second symbol of these two messages
on all other outgoing edges. Noderj relays its input to its output. Now consider a clause
ci = (xj ∨ xk ∨ xl). The sinkt(j, k, l) requests the three messagesMj, Mk, andMl. From
nodesrj, rk, andrl, thet(j, k, l) receives the first symbol of all six messagesMj, Mj, Mk,
Mk, Ml, andMl. Furthermore, the nodesui andvi receive the second symbol of all six
messages. Since each of these nodes can send two symbols fromΓ to thet(j, k, l), they can
together provide the second symbol of the three messagesMj, Mk andMl. 2

51

Mj
Source with

Mj Mk Mk

Sink for
Mj Mk Mk Mjand

u v

Source with
and and

Sink for Sink for Sink for
and and and

s(j, j) s(k, k)

t(j, k)t(j, k) t(j, k)t(j, k)

Mj Mj MkMk

Figure 3-3: A network coding instance with a vector linear solution but no field linear
solution.

The above theorem demonstrates that linear codes do not suffice for a large class of
general network coding problems. For concreteness, we present a simple network which
does not have a linear solution but does have a vector linear solution.

The example network presented in Figure 3-3 is derived by considering the unsatisfiable
2-CNF formula(xj ∨ xk)∧ (xj ∨ xk)∧ (xj ∨ xk)∧ (xj ∨ xk). First consider a vector linear
solution overΣ = Γ× Γ. Nodes(j, j) sends the first symbol fromMj and the first symbol
from Mj to nodeu. Nodes(j, j) sends the second symbol fromMj andMj to the four
unlabeled intermediate nodes. Similarly fors(k, k). It is check that all sinks receive both
requested messages.

Now suppose their is a linear solution. Letfu(Mj, Mj) andfv(Mk, k) be the linear
functions sent tou andv respectively. Nodet(j, k) receives three linear functions. Sincefu

is a function ofMj andMj andfv is a function ofMk andMk, one of these functions must
depend on only one of its inputs. Without loss of generality, assumefu(Mj, Mj) = Mj.
Then nodet(j, k) must receiveMj unencoded and therefore must also receiveMk unen-
coded. This implies thatfv(Mk, Mk) = αMk for some non-zeroα. Therefore, regardless
of the third linear function transmitted to nodet(j, k), it cannot possibly reconstruct mes-
sagesMj andMk. Hence there is no linear solution.

52

3.3 Discussion

There are two, very important, open questions related to the work in this chapter.

• What is the computational complexity of the general network coding problem?
It is not even known if the general network coding problem is decidable.

• Find an algorithm for any class of problems for which linear codes are not suffi-
cient. For the classes of problems for which linear solutions are not sufficient, there
are no known algorithms (regardless of efficiently). This set of problems represents
the majority of network communication problems. All known algorithms for the
multicast problem use the fact that any solvable instance admits a linear solution.
Therefore, a algorithm, regardless of efficiency, for any class of problems for which
linear codes are not sufficient would necessarily introduce new techniques.

3.4 References

There are now three efficient algorithms for the multicast problem. Ho et al. [14] presented
a randomized algorithm which can be implemented in a distributed fashion[19]. Jaggi et al.
found a fast implementation for the algorithm due to Li, Yeung and Cai [24]. In addition,
Harvey, Karger and Murota [10], building on the framework of Koetter and Médard [19],
used matrix completion techniques to derive an entirely different deterministic algorithm.
Each of these algorithms can be used to solve all the network coding problems for which
linear codes are sufficient.

Koetter and Ḿedard conjectured that any solvable network coding problem would have
a linear solution. Theorem 21 answered this conjecture in the negative. However, the net-
works used in the proof of the theorem admit vector linear solutions. Effros et al. presented
a similar example to the network in Figure 3-3 and conjectured that linearity, in some form,
is always sufficient. In [6], Doughtery, Freiling and Zeger showed that every instance with
two commodities that admits a solution over the alphabet{0, 1} admits a linear solution.
However, if the instance has three or more commodities, a solution over{0, 1} does not
imply the existence of a linear solution.

A series of papers have further explored the uses and limits of codes which satisfy some
linearity condition [21, 33, 7, 24, 31].

53

,

54

Chapter 4

Entropy Based Upper Bounds

The k-pairs communication problem represents an important class of problems in terms
of both theory and practice. The problem of allowingk point-to-point connections in a
communication network arises in many practical situations. In addition, this problem has a
strong connection to the classical multicommodity flow problem. The primary motivation
for the work in the next three chapters is understanding this fundamental communication
problem. For this reason, we present the results in terms of thek-pairs communication
problem. However, many of them apply directly or are easily extended to general network
coding problems. At the end of each of of this chapter we discuss the straightforward
extensions of these ideas to the general network coding problem.

In this chapter we consider a definition of a network code that allows us to consider
questions about the maximum rate of a network coding solution. In the previous two chap-
ters, network codes used the same alphabet for all messages and all edges. Suppose that
we used a much larger alphabet on the edges. Some instances that previously did not have
a solution, now would have solutions. However, these solutions seem “worse” than a solu-
tion which uses the same size alphabet for all sources and all edges. We quantify this by
defining the rate of a network coding solution.

We then consider the problem of determining the maximum rate at which every source
can simultaneously transmit information to its sink. For the multicast problem there is a
min-cut condition which determines this rate[24]. For thek-pairs communication problem,
we consider two possible cut conditions. The first is the value of the sparsest edge cut in the
graph. For directed graphs network codes can achieve much higher rates than suggested by
the value of the sparsest edge cut.

We define a quantity called themeagernessof a cut. We show that while meagerness
is an upper bound on the maximum rate achievable in a directed graph, it is not a lower
bound. To prove this, we present an instance of thek-pairs communication problem in
which the most meager cut has value1 but the maximum coding rate is2/3. The proof of
this result relies on information theoretic arguments and leads to general upper bounds on

55

t(1) t(2)

S(1) S(2)

T(1) T(2)

σ (1)

τ(1)

s(2)s(1)

σ (2)

τ(2)

Figure 4-1: In black is an instance of thek-pairs communication problem. The gray edges
and nodes are added to create the augmented graph.

the maximum achievable rate.

4.1 Definitions

We redefine a network code and a network coding solution. These definitions rely on an
augmented grapĥG. By augmented the graph, we can treats source messages and sym-
bols transmitted on edges in a similar way. Figure 4-1 shows the underlying graph and
augmented graph for an instance of thek-pairs communication problem.

Definition 4 (Augmented Graph Ĝ) Given a instance of thek-pairs communication
problem on underlying directed graphG, theaugmented grapĥG = (V̂ , Ê) is obtained by
applying the following transformation toG.

• For each commodityi, we add a new vertexσ(i) with one outgoing edgeS(i) =
(σ(i), s(i)) and no incoming edges. The set of all edgesS(i) is denoted byS.

• For each commodityi, we add a new vertexτ(i) with one incoming edgeT (i) =
(t(i), τ(i)) and no outgoing edges. The set of all edgesT (i) is denoted byT .

A generalized edgeof G is an edge ofĜ. If e = (u, v) is such an edge, the set of all
incoming edges tou will be denoted byIn(e).

We now redefine a network code and network coding solution. For the remainder of this
thesis, network codes will be specified on the augmented graphĜ. Note that the augmented
graph is acyclic if the underlying graph is acyclic.

56

Definition 5 (Network Code) Given a network coding instance with underlying acyclic
graph G and augmented grapĥG, a network code is given by specifying the following
data:

• Anedge alphabetΣ(e) for each generalized edgee.

• A functionfe for each generalized edgee.

For a specified network code and setA of generalized edges, let

• Σ(A) =
∏

e∈A Σ(e).

• fA : Σ(S) → Σ(A) such that for everyk-tuple of messagesM ,

fA(M) = {fe1(M), fe2(M) . . . fe|A|(M)}

• In(A) = ∪e∈AIn(A).

Definition 6 (Network Coding Solution) A network code defined on an augmented di-
rected acyclic grapĥGis asolutionto an instance of thek-pairs communication problem if
it meets the following conditions. LetM be thek-tuple of messages.

• For every edgeS(i) ∈ S, fS(i)(M) = Mi.

• For every generalized edgee ∈ Ê \ S, the functionfe :
∏

i Σ(S) → Σ(e) is com-
putable from the functions on edges inIn(e).

• For every edgeT (i) ∈ T , fT (i)(M) = Mi.

Our new definition of a network coding solution does not restrict the amount of infor-
mation sent across an edge. Intuitively in a solution which uses much larger edge alphabets
than source alphabets the sources communicate at a much lower information rate than the
rate of the links in the network. To precisely capture this, we define the rate of a network
coding solution.

Definition 7 (Rate) We say a network coding solution defined on the augmented graphĜ
achieves rater if there exists a constantb such thatlogb |Σ(e)| ≤ c(e) for eache ∈ E, and
logb |Σ(S(i))| ≥ rdi for each commodityi.

The constantb in the definition of rate is chosen to allow a network code to use any
choice of alphabet size. The idea is that a network code can use a large alphabet on the
edges but if the rate of the solution is still good then the alphabet for each commodity must
also be large.

57

s(1) s(2) s(3) s(k)

t(1) t(2) t(3) t(k)

u

v

Figure 4-2: In this example, sources(i) has an edge to every sink other thant(i) and an
edge tou. Sink t(i) has an in-edge fromv and an in-edge from every source excepts(i).
Without network coding the maximum rate is1/k. A rate1 network coding solution sends
M1 ⊕M2 ⊕ . . . Mk over edge(u, v). Sinks(i) also receivesMj directly froms(j) for all
j 6= i.

In this chapter we focus on thek-pairs communication problem and consider various
necessary and sufficient conditions. We first consider some natural cut-based conditions
and show that while some are necessary conditions, none are sufficient conditions. The
proofs of these results lead to conditions based on the structure of the underlying graph and
properties of the entropy function. We can prove that a network coding solution for any
generalinstance must satisfy these conditions. It is an open question as to whether these
are sufficient conditions.

4.2 Sparse Edge Cuts

In our search for necessary and sufficient conditions, it is natural to consider the capacity of
any edge set whose removal disconnects a number of source-sink pairs. However, consider
a modification of the canonical example in Figure 4-2. (This example is due to Nick Harvey
and was noticed independently by Li and Li [26].) The middle vertical edge has capacity
1. Removing this edge from the graph disconnects all sources from their respective sinks.
Therefore, the sparsestedgecut in the graph has sparsity1/k. At first glance it appears that
the best possible rate requires that all source-sink pairs share the capacity of the middle

58

vertical edge. Using coding over a finite field, a rate1 network coding solution sends
the exclusive or of all messages across the middle vertical edge. Each sink also receives
unencoded every message other than the one it requests. Since a rate1 solution exists, it is
clear that the capacity of a set of edges disconnecting each source from its respective sink
is not an upper bound on the achievable coding rate.

It is worthwhile to consider why there exists a solution of rate1 when the sparsity of
this graph is1/k. The network coding solution sends sinks information that they didn’t
request but that enables them to decode the message they want. This motivates the next
cut-based condition. Specifically, we consider cuts that separate an entire set of sources
from an entire set of sinks. We require that such a cut separate sources even from sinks for
other commodities.

4.3 Meagerness

Given a set of edgesA, we define the capacity ofA to be the sum of the capacities of the
edges inA.

c(A) =
∑
e∈A

c(e)

In light of the above example, consider edge cuts which separate a set of sources entirely
from a set of sinks.

Definition 8 (Isolation) Given an edge setA ⊆ E and a subset of commoditiesP ⊂ I,
we sayA isolatesP if for all i, j ∈ P , every path froms(i) to t(j) intersectsA.

A cut A that isolates a set of commoditiesP must disconnect each source for a com-
modity in P from the sink foreverycommodity inP . The demand of the commodities in
P is writtend(P).

Consider again the example in Figure 4-2. Suppose the set of commoditiesP contains
all commodities. A cutA which isolatesP must separate the sources(1) from all sinks.
This implies that all the gray out-edges froms(1) must be inA. Similarly, all the gray
out-edges froms(2) must be inA. Therefore, cuts which isolate a setP may need to be
much larger than a cut that separates every source inP from its corresponding sink.

Definition 9 (Meagerness)Themeagernessof a cutA is defined to be∞ if A does not
isolate any commodities and otherwise is defined as:

M(A) = min
P :A isolatesP

{
c(A)

d(P)

}
For a graphG, the value of most meager cut inG is denoted by

59

MG = min
A⊆E

A

Note that the meagerness of a graphG is defined in terms ofG itself and notĜ. Consider
again our example in Figure 4-2. If we chooseP to be a single commodity, sayP = {1},
then we only need to ensure thatA separates the source for that one commodity from its
sink. Removing the middle edge separatess(1) from t(1) and therefore isolates the set
P = {1}. Therefore, the meagerness of the graph in Figure 4-2 is1.

The following lemma upper bounds the achievable rate by the meagerness ofG.

Lemma 22 Consider an instance of thek-pairs communication problem on a directed
graphG = (V, E). The maximum rate achievable by a network code is at mostMG.

Proof. Let A be the most meager cut inG and letP be the set of commodities isolated by
A. Every path from the sources for a commodity inP to a sink for any commodity inP
must intersectA. Therefore, the information transmitted on edges inA must be sufficient
to uniquely determine the|P |-tuple of messages set from sources for commodities inP .

Let Ĝ be the augmented graph. The symbols on edges inA can take on|Σ(A)| =∏
e∈A |Σ(e)| different values. There are

∏
i∈P |Σ(S(i))| different |P |-tuples of messages

for the commodities inP . ∏
i∈P

|Σ(S(i))| ≤
∏
e∈A

|Σ(e)|

Let r be the rate of this solution. Then there exists a constantb such thatlogb |Σ(e)| ≤ c(e)
for all e ∈ E andlogb |Σ(S(i))| ≥ rdi.

logb

(∏
i∈P

|Σ(S(i))|

)
≤ logb

(∏
e∈A

|Σ(e)|

)
∑
i∈P

logb |Σ(S(i))| ≤
∑
e∈A

logb |Σ(e)|

The left side is at least
∑

i∈P rdi = rd(P) and the right-hand side is at most
∑

e∈A c(e) =
c(A). 2

4.4 The Split Butterfly

In the previous section we proved that the meagerness of a graph is an upper bound on
the maximum achievable network coding rate. In this section we introduce an example,

60

e1 e2

s(a) s(b)

s(c)

t(b) t(c) t(a)

Figure 4-3: The meagerness of this graph is1 but the maximum rate at which all three
sources can communicate with their respective sinks is2/3.

called the split butterfly, in which the maximum achievable rate using network coding is
strictly smaller than the meagerness of the graph. In the next section we introduce the
new techniques which are used to prove that the maximum achievable rate is less than the
meagerness. We then prove the gap between the meagerness of the graph and the maximum
achievable coding rate for the example.

Consider the instance depicted in Figure 4-3. LetG = (V, E) be the graph correspond-
ing to this instance. The set of commodities isI = {a, b, c} and the demand for each
commodity is1. Each edge inG has capacity1.

We show that the value of the most meager cut inG is 1. We also give a solution of rate
2/3. Later, we will show that there does not exist a network coding solution for any rate
r > 2/3.

Lemma 23 The value of the most meager cut inG is 1.

Proof. For each subset of the commodities, we determine the meagerest cut separating
them. Since all edges have capacity1 a cut that must cut̀ edge-disjoint paths to isolateP
must have capacity at least`. By considering all possible sizes forP , we show there are at
least|P | edge-disjoint paths which need to be cut in order to isolateP .

SupposeP has one commodityi. For alli, there is a path froms(i) to t(i) with capacity
1. Now supposeP has two commodities. Ifc ∈ P , then the two edge-disjoint paths from
s(c) to t(c) must be cut. IfP = {a, b}, then the edges(s(a), t(b)) and(s(b), t(a)) must be
cut. Finally, ifP = {a, b, c} then the two edge-disjoint paths froms(c) to t(c) must be cut.
In addition the two edges(s(a), t(b)) and(s(b), t(a)) must be cut. Therefore the capacity
of a cutA isolatingP is at least|P |. Since each commodity has demand1, this proves the
claim. 2

61

A rate 2/3 solution for the instance in Figure 4-3 is the following. LetΣ(S(i)) =
{0, 1}2 for all i andΣ(e) = {0, 1}3 for all e. The messageMa is transmitted on the only
path froms(a) to t(a). Similarly, the messageMb is transmitted on the only path froms(b)
to t(b). Each of the bits for messageMc are transmitted on one of the two paths froms(c)
to t(c). Therefore, edgese1 ande2 must transmit3 bits each. Every other edge transmits
fewer than3 bits.

Our next step is to prove an upper bound of2/3 on the maximum network coding
rate for the graph in Figure 4-3. This will show that the meagerness of this graph is not
equal to the maximum achievable rate. Intuitively, the edgese1 ande2 must transmit all
the information from the three sources to the three sinks. The proof of this result is based
on tighter necessary conditions. To derive the tighter conditions we take an information
theoretic perspective on the problem of network coding. We first present the necessary
definitions and conditions and then return to considering this example.

4.5 Entropy Based View of Network Coding

We describe the entropy based view of network coding for thek-pairs communication
problem. LetĜ be the augmented graph for an instance of thek-pairs communication
problem. Suppose for each source edgeS(i) we chose a message uniformly at random
from Σ(S(i)). We assume the messages are chosen independently. For each generalized
edgee, we associate withe a random variableYe.

Pr (Ye = α) = Pr (fe(M) = α)

whereM is chosen uniformly at random fromΣ(S). For a setA = {e1, e2 . . . e|A|} of
generalized edges,YA = {Ye1 , Ye2 . . . Ye|A|}. We use the standard definition of the joint
entropy of a set of random variables (See Appendix A for definitions and statements of
basic results). As a shorthand, we useH(A) to refer toH(YA) for any setA of generalized
edges.

The following Lemma applies to any network coding solution on a directed acyclic
graph.

Lemma 24 LetA be a set of generalized edges. Given a network coding solution,

H(S, A) = H(S)

and for all i ∈ I

H(S(i), A) = H(T (i), A)

The above lemma follows directly from the definition of a network coding solution. The
following lemma relates the entropy of sources and edges in a rater solution.

62

Lemma 25 Given a network coding solution defined on an augmented graphĜ of rater,
there exists a constantb such that the following hold. For all edgese ∈ E,

H(e) ≤ c(e) log2 b

and for all commoditiesi ∈ I,

H(S(i)) ≥ rdi log2 b

Proof. By the definition of a rater code, there exists a constantb such thatlogb |Σ(e)| ≤
c(e) for all e ∈ E andlogb |Σ(S(i))| ≥ rdi for all i ∈ I. Therefore,

|Σ(e)| ≤ bc(e)

|Σ(S(i))| ≥ brdi

Since we choose each source message uniformly at random fromΣ(S(i)),

H(S(i)) = −
∑

α∈Σ(S(i))

Pr
(
fS(i)(M) = α

)
log2 Pr

(
fS(i)(M) = α

)
= −

∑
α∈Σ(S(i))

1

|Σ(S(i))|
log2

1

|Σ(S(i))|

= log2 |Σ(S(i))|
≥ log2(b

rdi)

= rdi log2 b

For edgee ∈ E,

H(e) = −
∑

α∈Σ(e

Pr (fe(M) = α) log2 Pr (fe(M) = α)

≤ −
∑

α∈Σ(e)

1

|Σ(e)|
log2

1

|Σ(e)|

= log2 |Σ(e)|
≤ log2(b

c(e))

= rdi log2 b

63

Where the second inequality follows from the fact that the entropy function is maximized
by the uniform distribution.2

4.6 Downstreamness

We now consider a relationship between the entropy of edge sets inĜ. We begin by defining
a relationship between edge sets called downstreamness. We then show that if edge setB
is downstream of edge setA, H(A) ≥ H(B). This will be a key to analyzing the example
in Figure 4-3.

Definition 10 (Downstreamness)Let Ĝ be the augmented graph for an instance of the
k-pairs communication problem. Given two setsA andB of generalized edges, we sayB
is downstream ofA if for all edgese in B, every pathp such thate ∈ p andp ∩ S 6= ∅
satisfiesp ∩ A 6= ∅. We writeA ; B if B is downstream ofA.

As an example, consider the instance in Figure 4-4. The edgeT (b) is downstream from
the pair of edges{S(a), e1}. Similarly, {S(b), e2} ; T (a). Note that our definition of
A ; B allows for the possibility thatA = ∅. A set of edgesB is downstream from the
empty set when there is no path from a source to an edge inB in Ĝ.

Lemma 26 For any setsA and B of generalized edges, ifA ; B, then there exists a
functionhAB : Σ(A) → Σ(B) such that

fA ◦ hAB = fB

Proof. Let D be the set of all generalized edges that are downstream ofA. The setB is a
subset ofD. We prove for each edgee ∈ D, there exists a functionhAe : Σ(A) → Σ(e)
such that

fA ◦ hAe = fe

Order the edges inD in topological order so that every edge inIn(e) is either not inD
or comes beforee in the ordering. For the base case, lete be the first edge in the ordering.
Then every edge inIn(e) is not in D. If e ∈ A then the claim follows immediately.
Otherwise, by the definition of downstreamness,e is an edge with no in-edges in̂G. In this
casefe must be a constant function since there is no path from any source toe. Therefore,
the claim follows.

Now assume the claim is true for edgese0, e1 . . . ek−1 ∈ D. Let

Dk−1 = {e0, e1, . . . ek−1}

64

Supposẽe is an in-edge toek. If ẽ /∈ D, then there is a path from a source toẽ and therefore
also a path from a source toek. Thus every edge inIn(ek) is in Dk−1. By the definition of a
network coding solution, there exists a functiongek

:
∏

e∈In(ek) Σ(e) → Σ(ek) which maps
the functions on edges inIn(ek) to fek

. Usinggek
and the functionshAei

for ei ∈ Dk−1 we
can constructhAek

. 2

The definition of downstreamness implies a relationship between theH(A) andH(B)
if A ; B. We prove this relationship in the following lemma. Downstreamness can be
viewed as a structural relationship which implies that the corresponding random variables
form a Markov chain.

Lemma 27 For sets of generalized edgesA andB, if A ; B, then

H(A) ≥ H(B)

Proof.
Let YU refer to the random variable associated with a setU of generalized edges. By

downstreamness,YS → YA → YB forms a Markov chain. By the data-processing inequal-
ity, I(YS , YA) ≥ I(YS , YB). Equivalently,

H(YA)−H(YA|YS) ≥ H(YB)−H(YB|YS)

SinceYS is the random variable representing the choice of messages transmitted on all
out-edges from sources,H(YA|YS) = 0 andH(YB|YS) = 0. Therefore,H(YA) ≥ H(YB).
2

Using downstreamness and the properties of the entropy function, we now prove that
the maximum rate achievable with network coding for the instance in Figure 4-3 is2/3.
Figure 4-4 shows the augmented graph for this instance.

Lemma 28 In the instance depicted in Figure 4-3 the maximum achievable rate with net-
work coding is2/3.

Proof. We use the following three downstreamness relationships:

{S(a), e1} ; {S(a), T (b), e1}
{S(b), e2} ; {T (a), S(b), e2}

{S(a), S(b), e1, e2} ; {S(a), S(b), T (c), e1, e2}

The first downstreamness relationship implies

H(S(a), e1) ≥ H(S(a), T (b), e1)

≥ H(S(a), S(b), e1)

65

e1 e2

s(a) s(b)

s(c)

t(b) t(c) t(a)

S(a) S(b)

S(c)

σ(a) σ(b)

σ(c)

τ(b) τ(c) τ(a)

T(a)T(b) T(c)

Figure 4-4: The augmented graph for the instance in Figure 4-3. The edges in gray are
the edges added in the augmentation process. The meagerness of this instance is1 but the
maximum rate at which all three sources can communicate with their respective sinks is
2/3.

where the second inequality follows by Lemma 24. Similarly,

H(S(b), e2) ≥ H(S(a), S(b), e2)

Adding these two inequalities together we get

H(S(a), e1) + H(S(b), e2) ≥ H(S(a), S(b), e1) + H(S(a), S(b), e2)

We combine the two terms on the right side using the submodularity of entropy.

H(S(a), e1) + H(S(b), e2) ≥ H(S(a), S(b), e1, e2) + H(S(a), S(b))

On the left side, we can upper boundH(S(a), e1) by H(S(a)) + H(e1) and likewise for
H(S(b), e2).

H(S(a)) + H(S(b)) + H(e1) + H(e2) ≥ H(S(a), S(b), e1, e2) + H(S(a), S(b))

66

Using the fact that the sources are independent, we can cancelH(S(a)) + H(S(b)) on the
left with H(S(a), S(b)) on the right.

H(e1) + H(e2) ≥ H(S(a), S(b), e1, e2)

By the third downstreamness relationship,

H(S(a), S(b), e1, e2) ≥ H(S(a), S(b), T (c), e1, e2)

Using this inequality and replacingT (c) with S(c),

H(e1) + H(e2) ≥ H(S(a), S(b), S(c), e1, e2)

The term on the right contains all sources in the instances. Therefore,

H(e1) + H(e2) ≥ H(S(a), S(b), S(c))

≥ H(S(a)) + H(S(b)) + H(S(c))

where the second inequality follows because the sources are independent. Finally, we apply
Lemma 25 to the last inequality. If rater is achievable, then there exists a constantb such
that

(c(e1) + c(e2)) log b ≥ (da + db + dc)r log b

(c(e1) + c(e2)) ≥ (da + db + dc)r
2

3
≥ r

The last inequality follows because all edges have capacity1 and all commodities have
demand1. 2

4.7 Entropy-based axioms

Examining the proof of Lemma 28 carefully, it uses only the following entropy based ax-
ioms.

Submodularity of entropy: H is a non-negative, non-decreasing, submodular set func-
tion.

Downstreamness:If A ; B, thenH(A) ≥ H(B).

Independence of sources:For any setS(i1), S(i2), . . . , S(ij) of sources,

H(S(i1), . . . , S(ij)) = H(S(i1)) + . . . + H(S(ij))

67

Correctness: The random variablesYS(i) andYT (i) are equal. Consequently, for any set of
generalized edgesU , H(U ∪ {S(i)}) = H(U ∪ {T (i)}).

Rate: The entropy of a random variable is maximized when the random variable is
distributed uniformly over its sample space. Therefore

H(e) ≤ c(e) log b

and
H(S(i)) ≥ rdi log b

in a rater solution with constantb.

For any instance of a network coding problem there is a finite (but exponentially large)
set of constraints which can be derived from these axioms. All of these constraints are
linear, which leads to the following linear program for computing an upper bound on the
maximum rater achievable via network coding. We ignore the constantlog b which arises
in the rate constraint.
LP - Acyclic

max r

s.t. H(U) ≥ 0 (∀U ⊆ Ê)

H(U ∪ {e}) ≥ H(U) (∀U ⊆ Ê, e ∈ Ê)

H(U) + H(W) ≥ H(U ∪W) + H(U ∩W) (∀U,W ⊆ Ê)

H (U ∪ S(i)) = H (U ∪ T (i)} (∀U ⊆ Ê, ∀i ∈ I)

H(U) ≥ H(U ′) (∀ U,U ′ ⊆ Ê : U ; U ′)

H (e) ≤ c(e) (∀ e ∈ Ê\{S ∪ T })
H (S(i)) ≥ r di (∀ S(i) ∈ S)

H(S) =
k∑

i=1

H(S(i))

For every subsetU ⊆ E, there is a variableH(U). The intuition is thatH(U) represents
the joint entropy of the functions associated with edges inU . Note that by interpreting
H(·) as the baseb entropy function, ignoring thelog b arising in the rate constraints does
not effect the admissibility of a rater solution. The first three constraints ensure that the
assignments to variables are non-negative, non-decreasing and submodular. The fourth
constraint ensures that a solution to the LP obeys correctness. The fifth constraint ensures
that the downstreamness axiom holds. The sixth constraint says that edgee has capacity
c(e). The seventh constraint is that every source transmits at rate at leastr. The last
constraint specifies that the sources are independent.

68

We put forth the following conjecture for directed acyclic graphs:

Conjecture 29 The maximum achievable network coding rate is equal to the optimal value
of the linear programLP-acyclic.

It was shown by Song, Yeung and Cai in [36, 39] that the maximum rate found by a similar
LP is an upper bound on the maximum network coding rate. (See [36] and Chapter 15 of
[39]).

4.8 The General Network Coding Problem

Although we described all of our results in terms of thek-pairs communication problem,
it is easy to extend them to general network coding problems defined on directed acyclic
graphs. In this section we describe an augmented graph for a general network coding
problem. The definitions of a network coding solution and rate follow. Downstreamness,
as defined for thek-pairs communication problem, also applies to the general network
coding problem. Finally we discuss the extensions of Lemma 24 to the general problem
and the applicability of Lemmas 25, 26 and 27.

4.9 Definitions

Definition 11 (Augmented GraphĜ) Given a network coding instance on underlying di-
rected acyclic graphG, the augmented grapĥG = (V̂ , Ê) is obtained by applying the
following transformation toG.

• For each commodityi, we add a new vertexσ(i) with one outgoing edgeS(i, v) =
(σ(i), v) for every nodev ∈ V which was a source for commodityi. The set of out-
edges fromσ(i) is denotedS(i) and the set of all edgesS(i, v) for all commoditiesi
is denoted byS.

• For each commodityi and each nodev ∈ V that was a sink fori, we add a new
vertexτ(i, v) with one incoming edgeT (i, v) = (v, τ(i, v)) and no outgoing edges.
LetT (i) = {T (i, v) : v ∈ V } andT = ∪iT (i).

A generalized edgeof G is an edge ofĜ. If e = (u, v) is such an edge, the set of all
incoming edges tou will be denoted byIn(e).

We can use the same definition of a network code given for thek-pairs communication
problem but need to redefine a network coding solution.

69

Definition 12 (Network Coding Solution) A network code defined on an augmented di-
rected acyclic grapĥG is asolutionto an instance of the network coding problem if it meets
the following conditions. LetM be the|I|-tuple of messages.

• For every commodityi, for every edgeS(i, v) ∈ S(i), fS(i,v)(M) = Mi.

• For every generalized edgee ∈ Ê \ S, the functionfe :
∏

i Σ(S) → Σ(e) is com-
putable from the functions on edges inIn(e).

• For every commodityi, for every edgeT (v, i) ∈ T (i), fT (v,i)(M) = Mi.

Notice that this definition of a network coding solution requires that every edge inS(i) or
T (i) uses the same alphabet and transmits the same message. For commodityi, letΣ(i) be
this alphabet.

Definition 13 (Rate) We say a network coding solution defined on the augmented graph
Ĝ achieves rater if there exists a constantb such thatlogb |Σ(e)| ≤ c(e) for eache ∈ E,
and logb |Σ(i)| ≥ rdi for each commodityi.

4.10 Extension of Techniques

Using similar ideas as in Section 4.5, we can define the entropy of a source and the random
variable associated with an edge. First we extend Lemma 24 to the general problem.

Lemma 30 Let A be a set of generalized edges. Given a network coding solution for an
instance of the general network coding problem,

H(S, A) = H(S)

For all i ∈ I, let B ⊂ S(i), C ⊂ T (i), S(i, v) ∈ S(i) andT (u, i) ∈ T (i),

H(B, A) = H(S(i, v), A) = H(T (u, i), A) = H(C, A)

This lemma follows directly from the definition of a network coding solution. Lemmas
25, 26 and 27 did not rely on any special structure of thek-pairs communication problem.
Together with Lemma 30 and the properties of the entropy function, these lemmas imply
that under the appropriate modifications, the linear program given in the previous section
provides an upper bound on the maximum achievable rate for a general network coding
problem defined on a directed acyclic graph.

70

4.11 Open Questions

There is one important open question related to the work in this chapter.

• For an instance of the network coding problem, what is the maximum achievable
rate? Is the optimal value of the linear program in Section 4.7 equal to the maxi-
mum achievable network coding rate? A similar question was raised in [39, 36].
This linear program can be thought of as combining some conditions that the joint
entropies of subsets of a set of random variables must satisfy with some conditions
that the structure of the graph impose. The conditions that specify that entropy is a
submodular, non-negative and non-decreasing function are known asShannon type
information inequalities. Recently, what are known asnon-Shannon type informa-
tion inequalitieshave been found [30, 39]. These are not fully understood and may
be required to correctly characterize the maximum achievable rate.

4.12 References

The results in this chapter are joint work with Nicholas Harvey and Robert Kleinberg.
For the multicast problem, necessary and sufficient conditions for the existence of a rate

r solution were given by Ahlswede et al. [1]. The example in Figure 4-2 is due to Nicholas
Harvey and was independently discovered by Li and Li [25].

The linear program in Section 4.7 is similar to an upper bound presented by Song,
Yeung and Cai [36]. The actual linear programming formulation is presented in Chapter 15
of [39].

71

72

Chapter 5

Graphs with Cycles

How should one define network coding solutions in undirected graphs, or in graphs with
cycles? In Chapter 4 we define a network code to be a solution only if the following
condition is satisfied:

• The functionfe : Σ(S) → Σ(e) is computable from the functions on edges inIn(e).

In graphs with cycles, using this local condition is insufficient. Consider the following
graph. The label next to each edge specifies the symbols transmitted over that edge.

s(1)

t(1)
M1

M1

M1
M1

σ(1) τ(1)

Clearly, this shouldn’t be allowed as a network coding solution. We consider three methods
for defining a network coding solution that avoid these foundational problems. We show
that all three are equivalent. Once a sound model has been established, we extend the
techniques from the previous chapter to graphs with cycles. We define and prove all our
results in terms of thek-pairs communication problem. The results can be extended to
the general network coding problem using ideas similar to those presented at the end of
Chapter 4.

For consistency, all three models assume thatĜ, the graph obtained by augmenting the
underlying graph, is a directed graph. We extend the definition of the augmented graphĜ
to instances in which the underlying graphG is undirected. Recall that our definition of a
k-pair communication instance in Chapter 1 was not specific to any type of graph.

73

Definition 14 (Augmented GraphĜ) Given ak-pairs communication problem on under-
lying graphG, the augmented grapĥG = (V̂ , Ê) is obtained by applying the following
transformation toG.

• If G is undirected, replace each undirected edge{u, v} with two oppositely directed
edges(u, v) and(v, u).

• For each commodityi, we add a new vertexσ(i) with one outgoing edgeS(i) =
(σ(i), s(i)) and no incoming edges. The set of all edgesS(i) is denoted byS. We also
add a new vertexτ(i) with one incoming edgeT (i) = (t(i), τ(i)) and no outgoing
edges. The set of all edgesT (i) is denoted byT .

A generalized edgeof G is an edge ofĜ. If e = (u, v) is such an edge, the set of all
incoming edges tou will be denoted byIn(e).

5.1 Models for Graphs with Cycles

The first model we discuss was introduced by Koetter and Médard[19] and uses polynomi-
als in a formal variable to represent the messages transmitted across an edge in the graph.
The second model we describe is a straight-line program formulation. Each line in the
straight-line program is required to be computable from only the previous lines in the pro-
gram. Multiple lines in the straight-line program can specify information to be transmitted
over the same edge so long as the total capacity of the edge is not exceeded. The last model
expands the underlying graph overt time steps. The functions on edges between layersi
andi + 1 represent the information transmitted throughout the graph at theith time-step.

5.1.1 Delay Variables

Koetter and Ḿedard[19] considered network coding in a directed graph with cycles. Their
approach was to use a formal variableD and to associate with each directed edgee ∈ Ê a
polynomial inD:

ge(D) =
∞∑

j=0

ae,jD
j

Thus, the coefficient ofDj in the polynomialge(D) represents the information trans-
mitted across edgee at timej. The coefficientsae,j are actually functions of thek-tuple of
messages transmitted from the sources. Therefore

ge(D, M) =
∞∑

j=0

ae,j(M)Dj

74

When we consider undirected graphs, we allow the designer of the code to split the
capacity between a forward and backward edge. We do not require that this split be done
in the same way at every time step. To allow for this flexibility, the image of the function
ae,j is a time dependent alphabetΣ(e, j).

Definition 15 (Network Code) Given an instance of the network coding problem on un-
derlying graphG, a network code is specified a maximum degreet and by defining for each
edgee ∈ Ê and time0 ≤ j ≤ t the following:

• An alphabetΣ(e, j).

• A functionae,j : Σ(S) → Σ(e, j).

The functiong(D, M) is no longer a polynomial because the image ofae,j is not the
same for allj. For convenience, we still refer tog(D, M) as a polynomial inD.

Without loss of generality, we alter Koetter and Médard’s model by requiring that the
polynomials inD be of degree at mostt− 1 for e /∈ T and degreet for e ∈ T .

Definition 16 (Delay Variable Network Coding Solution) We say a network code
defined in the delay variable model is asolutionif

• For all S(i) ∈ S, gS(i)(D, M) = Mi

• For all e ∈ Ê \ S and j ≥ 0, ae,j is computable from the coefficients of terms of
degree less thanj in the polynomials associated with edges inIn(e).

• For all T (i) ∈ T , gT (i)(D, M) = MiD
t

Koetter and Ḿedard were able to make elegant use of this formulation. In particular,
using other algebraic techniques they were able to extend their results for multicast coding
to directed graphs with cycles. We will show that the next two models are equivalent to
the delay variable model. The graph over time model is extremely cumbersome to work
with but the natural model in which to extend our techniques from directed acyclic graphs
to graphs with cycles. Given the equivalence of the three models, once we have extended
our techniques to graphs with cycles using the graph over time model, it is possible to use
any of the three for proving new results.

5.2 Straight-Line Program

We now describe a straight-line program formulation of a network code. LetG = (V, E)
be a graph and̂G be the augmentation ofG. The information transmitted on each edge in
G is determined by a finite set of rules. Each rule is associated with an edge(u, v) ∈ Ê. A

75

rule maps thek-tuple of messages to some information to be transmitted across edgee. We
denote a rule byrulee,j to indicate it is thejth rule and is associated with edgee. If a rule
in the straight-line program specifies information to be transmitted on directed edgee, then
this information should be computable from the preceding rules for edges inIn(e). The one
exception is out-edges from sources. We require that there is exactly one rule associated
with an out-edge of a source and this rule specifies that the edge transmits the message for
that commodity (i.e.ruleS(i),j = Mi).

A network code defined by a straight-line program is asolutionif all in-edges to sinks
for commodityi transmit the messageMi. Without loss of generality we require that there
is only one rule for an in-edge to a sink.

5.2.1 Time-Expanded Graph

Our third method for defining a network coding solution in a graph with cycles is to insist
that it must be possible to implement such a network coding solution over time. This notion
is made precise below by specifying a leveled directed acyclic graphGt representing the
flow of information inG over a sequence oft time steps, and requiring that a network cod-
ing solution inG should come from a network coding solution inGt. A similar approach
was advocated in [11], but that paper proposed a “memoryless” model of network coding
based on a slightly different definition ofGt. Here, in contrast, we advocate a model which
implicitly treats each node ofG as having infinite memory.

Definition 17 (Time Expanded GraphGt) Given an instance of the network coding
problem in a directed graphG, thetime-expanded graphGt = (Vt, At) is a directed acyclic
graph obtained using the following transformation.

• The vertex setVt includes the setV × {0, 1, 2, . . . , t}. The vertex ofVt represented
by the ordered pair(v, s) will be denoted byvs.

• For each edgee = (u, v) ∈ E there aret edges(us−1, vs). Let es = (us−1, vs) for
1 ≤ s ≤ t.

• For eachv ∈ V and eachs ∈ {0, 1, 2, . . . , t}, there is an edge(vs−1, vs) ∈ E. These
edges are referred to asmemory edges.

• For each commodityi, we add a new source vertexσ(i) and we add the directed edge
S(i) = (σ(i), s(i)0) to Et

• Similarly, for each commodityi, we add a new sinkτ(i) to VT and a directed edge
T (i) = (t(i)t, τ(i)) to Et.

76

If a network coding instance is defined on an undirected graphG, then the graphGt is
obtained fromG by first replacing each undirected edge ofG by two oppositely directed
edges and then performing the above transformation.

SinceGt is a directed acyclic graph, the definition of a network code and network
coding solution from Chapter 4 are still appropriate.

5.2.2 Equivalence of Models

We show these three models are equivalent by describing a mapping between network codes
defined in the three models. We start with a code specified in the delay variable formulation
and map it into a code specified in the time-expanded graph model. We then map a code in
the time-expanded graph model to a straight-line program formulation for a code. Finally
we map a code defined by a straight-line program into a code defined using a formal delay
variable.

Lemma 31 Given an augmented grapĥG for an instance of the network coding problem
and a network coding solution specified with edge polynomialsg = {ge(D, M) : e ∈ Ê},
there exists a network code solution specified with a time-expanded graphGt and edge
functionsf = {fe(M) : e ∈ Et}.

Proof. Suppose we are given a network code specified in the delay variable formulation and
let t be the maximum degree of the polynomials for edgese such thate /∈ T . If e ∈ T then
the degree ofge is t+1. We map this network code to edge functions in the time-expanded
graphGt. We describe this mapping for each type of edge inEt.
Source edges:In both models the functions transmitted on an out-edgeS(i) from the
source for commodityi must be equal toMi. Therefore, in the delay variable model
gS(i)(D, M) = Mi and in the graph over time model we letfS(i)(M) = Mi.
Edges ofG: Let e be an edge in̂e that is not an out-edge from a source or an in-edge
to a sink. InGt the edges{e1, e2 . . . et} are associated with edgee. In the delay variable
model the polynomialge(D, M) =

∑t
j=0 ae,j(M)Dj specifies the information transmitted

on edgee over time. By definition,ae,0 = 0. Forj ≥ 1, let fej
= ae,j.

Memory edges:If e = (vs, vs+1) is a memory edge inGt then it has infinite capacity in the
time-expanded graph model. In this case we use the function assigned to edgee to “hold”
all the information received at nodev in previous time steps. Specifically, ifIn(e) is the set
of in-edges toe in Et, thenfe = fIn(e).
Sink edges: If e = T (i) is an in-edge to a sinkτ(i) then the delay variable formulation
requiresge(D, M) = MiD

t+1 and is computable from the functions for coefficients of
terms of degree at mostt in the polynomials on in-edges toe. We assign the function
fT (i)(M) = Mi.

We now show that the network code specified forGt is a network coding solution. First,
an edgeS(i) transmits the messageMi. Second, by definition, a memory edgee just copies

77

all the information transmitted on in-edgesIn(e) and therefore its function is computable
from the functions onIn(e).

Let Ẽ = {e ∈ Ê : e /∈ S ∪ T }. We prove by induction onj thatf(ej) is computable
from the functions inIn(ej) for e ∈ Ẽ. The edgee1 computes the functionfe1 = ae,1.
By definition, this function must be computable from the coefficients of terms of degree
0 in the polynomials on edges inIn(e). The only polynomials with non-zero coefficients
for D0 are the polynomials associated with out-edges from sources. Therefore,ae,1 must
be computable from the in-edges toe that are out-edges from sources. IfS(i) ∈ In(e) in
Ĝ, then by the definition ofGt, S(i) ∈ In(e1). Therefore, ifae,1 is computable thenfe1 is
computable.

Now assume for alle ∈ Ẽ and allj′ < j, fej′
= ae,j′ is computable from the edges

in In(ej′). We need to show that the functionfej
= ae,j is computable from the functions

on edges inIn(ej). Let ej = (uj−1, vj). The function associated with the memory edge
(uj−2, uj−1) computes the value of all functions associated with terms of degree less than
j−1 in the polynomials on edges inIn(e). If e′ ∈ In(e), thenfe′j−1

= ae′,j−1. Therefore the
functions associated with edges inIn(ej) compute the values of all the coefficients of terms
of degree at mostj − 1 in polynomials associated with edges inIn(e) in the delay variable
formulation. Sinceae,j must be computable from these coefficients,fej

is computable from
the functions on edges inIn(ej). By a similar argument, for each commodityi, the function
fT (i) is computable from edges inIn(i). 2

Having mapped network coding solutions specified using delay variables to network
coding solutions in the time-expanded graph model we now map solutions in the time-
expanded graph model to straight-line program formulations.

Lemma 32 Given an augmented grapĥG for an instance of the network coding problem
and a network coding solution specified on a time-expanded graphGt with edge functions
f = {fe(M) : e ∈ Et}, there exists a network coding solution specified with a straight-line
program and rulesrule = {rulee,i : e ∈ Ê}.

Proof. Suppose we are given a network coding solution specified in a time-expanded graph
Gt. We map this network code to rules in a straight-line program. First, in both models the
functions transmitted on an out-edge from a source for commodityi must be equal toMi.
Therefore, the first set of rules are

for 1 ≤ i ≤ k ruleS(i),i : TransmitMi

For the remaining rules, choose a topological ordering of the edges inEt that are not
out-edges of sources or in-edges to sinks. We consider each edge in turn according to this
ordering. If edgee is a memory edge then we do nothing. Otherwise, edgeej is associated
with an edgee ∈ Ê. Let fe,j(M) be the function associated withej. We create a rule
rulee,h(e,j)(M) which transmits the same function asfe,j(M).

78

rulee,h(e,j) : Transmitfe,j(M)

The functionh(e, j) = k + order(ej) where order(e) is the position of edgee in the
chosen topological ordering.

Finally, for each in-edge to a sink a network coding solution in the time-expanded
graph model requires thatfT (i)(M) = Mi. Similarly, in the straight-line program model
the single rule associated withT (i) must specifyMi.

ruleT (i),`(i) : Transmitft(i)(M)

where`(i) = k + t ∗ |E|+ i.
We now show that each rule for an edgee is computable from the rules preceding it

associated with edges inIn(e). Let e = (u, v) be an edge ofE and let{e1, . . . et} be the
t edges inGt associated withe. By the definition of a network code in a time-expanded
graphGt, fes(M) must be computable from the edge functions forIn(es) for all s. Included
in In(es) is a memory edge(us−1, us). The function on this memory edge is computable
from the information received atu at prior time steps. Therefore, once we have specified
a rule in the straight-line program for all non-memory edges inIn(ej) for all j < s, the
rule rulee,h(e,s)(M) = fe,s(M) is guaranteed to be computable from the preceding rules.
A similar argument shows that the rule for an edgeT (i) is computable from the previous
rules for edges inIn(T (i)). 2

Finally, we demonstrate how to transform a straight-line program formulation for a
network coding solution into a delay variable formulation.

Lemma 33 Given an augmented grapĥG for an instance of the network coding problem
and a network coding solution specified with a straight-line program and rulesrule =
{rulee,j : e ∈ Ê} there exists a network coding solution specified with edge polynomials
g = {ge(D, M) : e ∈ Ê}.

Proof. Suppose we are given a network coding solution specified by a straight-line program.
We map this network code to polynomials in a delay variableD. First, in both models the
functions transmitted on an out-edge from a source for commodityi must be equal toMi.
If S(i) is an out-edge from a source, thengS(i)(D, M) = Mi.

Let Ẽ = {e ∈ Ê : e /∈ S ∪ T }. For each edgee ∈ Ẽ, we create the polynomial
ge(D, M) =

∑t
j=0 ae,jD

j term by term. Forj = 0, for all edgese ∈ Ẽ, ae,0 = 0.

Assume that we have determinedae,j′ for all j′ < j and alle ∈ Ẽ. For an edgee ∈ Ẽ, let
{rulee,i1 , rulee,i2 . . . rulee,ik be the rules in the straight-line program that have not been
mapped to coefficients and are computable from rules in the straight-line program that have
been mapped to coefficients. Let

ae,j(M) = (rulee,i1(M), rulee,i2(M) . . . rulee,ik(M))

79

Since{rulee,i1 , rulee,i2 . . . rulee,ik} are rules that are computable from rules we al-
ready mapped to coefficients,ae,j(M) is computable from the coefficients of terms of de-
gree less thanj in the polynomials associated with edges inIn(e). Since each rule in the
straight-line program is definable from preceding rules, as long as there are rules in the
straight-line program that have not been mapped to coefficients, we will be able to find a
new rule which can be mapped to a coefficient. Since there are a finite number of rules,
this process will terminate. Assume that the maximum degree of a polynomial associated
with an edge inẼ is t. By the definition of a network coding solution in the straight-
line program model, for each in-edge to a sink there is a rule which specifies that the
edge transmits the messageMi. In this special case, we map this rule to the polynomial
gT (i)(D, M) = MiD

t+1. 2

These three Lemmas show that all three models of network coding in graphs with cycles
are equivalent and hence prove the following theorem.

Theorem 34 The delay variable, straight-line program and time-expanded graph models
of network coding are equivalent.

These three models resolve the foundational issues of defining a network coding solu-
tion in a graph with cycles. By construction, a network code in any of these three models
specifies the function to be transmitted across an edge for everyk-tuple of messages. How-
ever, it is often easier to reason about the augmented graphĜ directly. For this purpose it
is convenient to have a notion of a network coding solution defined onĜ.

Definition 18 (Consise Network Coding Solution)Given an instance of the network
coding problem and a solution defined in the time-expanded graph model, we define a
conciserepresentation of this solution as follows.

• For e ∈ S ∪ T , let Σ(e) andfe be equal to the edge alphabet and function defined
for the edgee ∈ Gt.

• For e ∈ Ê \ {S ∪ T }, let {e1, e2 . . . et} in Gt be the edges associated withe and
fe1 , fe2 . . . fet be the functions assigned to these edges in the network coding solution.

– Theedge alphabetis defined asΣ(e) =
∏

j Σ(ej).

– Theedge functionis defined asfe : Σ(S) → Σ(e)

fe(M) = (fe1(M), fe2(M), . . . fet(M))

Although we defined a concise network coding solution in terms of a time-expanded
graph, the mappings given in this section preserveΣ(e) andfe. Therefore, starting from
any definition of a network coding solution, the above transformation will produce the same
concise representation.

80

5.3 Rate of a Network Coding Solution

Using the concise representation of a network coding solution, we define the rate of a
solution.

Definition 19 (Rate(Directed)) Given an instance of the network coding problem with un-
derlying directed graphG, we say a network coding solution achieves rater if there exists
a constantb such thatlogb |Σ(e)| ≤ c(e) for eache ∈ E, andlogb |Σ(S(i))| ≥ rdi for each
commodityi.

Definition 20 (Rate(Undirected)) Given an instance of the network coding problem with
underlying undirected graphG, we say a network coding solution achieves rater if there
exists a constantb such that

• for each edgee ∈ E represented by oppositely directed edges
→
e and

←
e in Ĝ,

logb

(
|Σ(
→
e)| · |Σ(

←
e)|
)
≤ c(e)

• and for each commodityi,
logb |Σ(S(i))| ≥ rdi

Our definition of a rater code, allows the code designer to split the use of an undirected
edge in any possible way. It should be noted that there could be other interpretations for
an undirected edge. For example, one could assume that an undirected edge(u, v) with
capacityc can be used, at each time step, as either a capacityc channel fromu to v or as
a capacityc channel fromv to u. Our definition is more general than this. Since we are
interested in upper bounding the maximum achievable rate, we choose this more general
definition. Another possibility would be to interpret this edge as allowing a channel of
capacityc from u to v anda channel of capacityc from v to u. This at most doubles the
maximum achievable rate and would be more restrictive than just using our definition with
doubled edge capacities.

5.4 Entropy Interpretation of Rate

When bounding the rate of a network coding solution, we use the entropy-based view
of network coding defined in Chapter 4. Recall that we defined the entropy of random
variables associated with generalized edges. For a graph with cycles, we define the entropy
of an edge in terms of concise network coding solutions. In particular, for edgee ∈ Ê, let
Ye be the random variable such thatPr(Ye = α) = Pr(fe(M) = α) for all α ∈ Σ(e). As in
Chapter 4 we useH(e) as short-hand forH(Ye).

81

Lemma 35 Given a concise network coding solution defined on an augmented graphĜ of
rate r, there exists a constantb such that the following hold. For all edgese ∈ E,

H(e) ≤ c(e) log2 b

and for all commoditiesi ∈ I,

H(S(i)) ≥ rdi log2 b

The proof of this result closely mimics the proof of Lemma 25 in Chapter 4 and is
therefore omitted. Using similar techniques, we can also prove the following lemma for
undirected graphs.

Lemma 36 Let G be an undirected graph and let̂G be the augmented graph. Given a
concise network coding solution of rater, there exists a constantb such that the following
hold. For any pair

→
e and

←
e of edges corresponding to an undirected edgee,

H(
→
e) + H(

←
e) ≤ c(e) log2 b

and for any edgeS(i)

H(S(i)) ≥ rdi log2 b

5.5 Extending Techniques to Graphs with Cycles

We can also extend our techniques from the Chapter 4 to graphs with cycles. We start
by extending the concept of downstreamness to sets of generalized edges in a graph with
cycles.

Lemma 37 LetA, B be sets of generalized edges inG, and letAt, Bt be the corresponding
sets of generalized edges inGt. If A ; B thenAt ; Bt.

Proof. Let p be a path inGt which intersectsBt andS. Deleting the memory edges from
p and mapping each remaining edge to the corresponding edge ofG, we obtain a pathp′

which intersectsB andS. SinceA ; B, it follows thatp′ intersectsA. Thusp intersects
At. 2

Corollary 38 Given a concise network coding solution in augmented graphĜ and sets of
generalized edgesA, B such thatA ; B, there exists a functiongA,B : Σ(A) → Σ(B)
such thatfB = gA,B ◦ fA.

82

Corollary 39 Given a concise network coding solution in augmented graphĜ, for any
pair of generalized edge setsA, B such thatA ; B, we haveH(A) ≥ H(B).

Note that Corollary 39 ensures that the downstreamness axiom specified in Chapter 4
is still satisfied in the context of concise network codes in general graphs. It is trivial to
verify that all of the other axioms in that section also remain valid in general graphs. We
restate them here in terms of general graphs.

Submodularity of entropy: H is a non-negative, non-decreasing, submodular set func-
tion.

Downstreamness:If A ; B, thenH(A) ≥ H(B).

Independence of sources:For any setS(i1), S(i2), . . . , S(ij) of sources,

H(S(i1), . . . , S(ij)) = H(S(i1)) + . . . + H(S(ij)).

Correctness: The random variablesYS(i) andYT (i) are equal. Consequently, for any set of
generalized edgesU , H(U ∪ {S(i)}) = H(U ∪ {T (i)}).

Rate: The entropy of a random variable is maximized when the random variable is dis-
tributed uniformly over its sample space. Therefore in an instance defined on a di-
rected graph,H(e) ≤ c(e) log b andH(S(i)) ≥ rdi log b in a rater solution with
constantb. In an instance define on an undirected graph,H(

→
e) + H(

←
e) ≤ c(e) log b

andH(S(i)) ≥ rdi log b in a rater solution with constantb.

These axioms constitute a powerful technique for proving upper bounds on the rate
achievable by network coding in general graphs. To illustrate, we consider thek-pairs
communication problem on a directed cycle.

5.5.1 Directed cycles

The maximum flow is equal to the sparsest edge cut in a directed cycle. Letr be the rate of
the maximum multicommodity flow. We can use the axioms given above to show that the
maximum achievable rate with coding is alsor.

We begin by finding the sparsest edge cut. For the directed cycle, the sparsest edge cut
contains a single edge. For a single edgeu, the sparsity of the edge is given by the number
of commodities whose shortest path froms(i) to t(i) on the cycle useu. For edgeu, let
I(u) be the set of commodities whose shortest path froms(i) to t(i) uses edgeu. Let e be
an edge such that

83

c(e)∑
i∈I(e) di

= r

In other words, the edge cut consisting ofe is a sparse cut. Now we use downstreamness
to show thatH(e) ≥

∑
i∈I(e) H(S(i)). We index the commodities inI(e) = {i1, i2 . . . iq}

according to the order in which their sink is encountered on the directed cycle starting at
the head of edgee.

Lemma 40 For all 1 ≤ j ≤ q, starting at the head ofe and traversing around the directed
ring, t(ij′) appears strictly befores(ij) for j′ ≤ j .

Proof. For the purposes of obtaining a contradiction, assume that traversing around the
directed cycle starting at the head ofe, s(ij) is encountered beforet(ij′) and j′ ≤ j.
Sinceij ∈ I(e), the shortest path froms(ij) to t(ij) traverses edgee. Thereforet(ij)
is encountered befores(ij) and therefore also beforet(ij′). This contradicts the definition
of the indexing of the commodities.2

Let S(I(e)) = {S(i) : i /∈ I(e)}. Using induction onj, we will show that

H(e,S(I(e))) ≥ H(e,S(I(e), S(i1), S(i2), . . . S(ij))

For the base case,j = 1. By the above lemma, starting at the head ofe, all nodess(ij) for
ij ∈ I(e) are encountered aftert(i1). Therefore the only path from an edgeS(ij) to T (i1)
is throughe. This implies the following downstreamness relationship

{e,S(I(e))} ; {e,S(I(e)), T (i1)

By the downstreamness and correctness axioms,H(e,S(I(e))) ≥ H(e,S(I(e)), S(i1)).
Now suppose that

H(e,S(I(e))) ≥ H(e,S(I(e), S(i1), S(i2), . . . S(ij′))

for all j′ < j. By Lemma 40, for allp ≥ j the only path fromS(ip) to T (ij) traverses edge
e. Therefore,

{e, Si1 , Si2 . . . Sij−1
,S(I(e))} ; {e, Si1 , Si2 . . . Sij−1

,S(I(e)), T (ij)}

Combining this with the inductive hypothesis,

H(e,S(I(e))) ≥ H(e,S(I(e), S(i1), S(i2), . . . S(ij−1))

≥ H(e,S(I(e), S(i1), S(i2), . . . S(ij−1), S(ij))

84

Where the second inequality follows by the downstreamness and correctness axioms. Using
the submodularity of the entropy function and the Independence of sources,

H(e) + H(S(I(e))) ≥ H(S(I(e))) +
∑

ij∈I(e)

H(S(ij))

H(e) ≥
∑

ij∈I(e)

H(S(ij))

If r∗ is the rate of this concise solution, then by Lemma 35 there exists a constantb such

c(e) log b ≥ H(e)

≥
∑

ij∈I(e)

H(S(ij))

≥
∑

ij∈I(e)

r∗di log b

Therefore,

r∗ ≤ c(e)∑
ij∈I(e) di

The above argument proves the following theorem.

Theorem 41 Let G be a directedn-cycle with vertex setV = {v1, . . . , vn}. For anyk-
pairs communication problem inG, the maximum rate achievable by network coding is
equal to the maximum flow.

5.6 Open Questions

In this chapter we defined three equivalent models for network coding in graphs with cycles.
There are two open questions related to this work.

• Are these models general enough?The time-expanded graph model makes clear
that a network coding solution in that model is implementable in a graph with cycles.
However, are there network coding solutions which are ruled out by the models in
this chapter?

85

• Are there other models for network coding in undirected graphs?When taking
an information theoretic view of network coding, we require, roughly, that

H
(→

e
)

+ H
(←

e
)
≤ c(e)

where the undirected edgee is modeled by two oppositely directed edges
→
e and

←
e .

What happens if, instead, we require

H
(→

e ,
←
e
)
≤ c(e)?

Is this more appropriate in some situations? Another option would be to allow, at
each time step, the edgee to be used in one of the two directions at full capacity.
What solutions are possible under this model?

5.7 References

The delay variable model for network coding in a directed graph with cycles is due to
Koetter and Ḿedard[19]. The time-expanded graph model was sketched by Li, Cai and
Yeung[24]. Both of these models were generalized for the purposes of our work.

The other results in this chapter are joint work with Nicholas Harvey, Robert Kleinberg
and Eric Lehman.

86

Chapter 6

k-Pairs Communication in Undirected
Graphs

At the end of Chapter 5, we extended our techniques for upper bounding the maximum rate
of a solution to graphs with cycles. In this chapter we focus on thek-pairs communication
problem in undirected graphs. We begin with some motivation and consider a small graph
of interest. We use our techniques from the previous chapter to prove a gap between the
sparsest edge-cut in this graph and the maximum rate achievable with network coding. This
is the first result of its kind. We then consider a modification to this example that motivates
the introduction of a new technique. Using these techniques we prove that the maximum
achievable rate can be obtained using multicommodity flow techniques alone for a infinite
class of interesting graphs.

6.1 Motivation

Our objective is to understand the relationship between multicommodity flow and network
coding in undirected graphs. Network coding in undirected graphs is very different from
network coding in directed graphs. To understand this we must review the definition of
sparsity of a graph.

Definition 21 (Sparsity) For a k-pairs communication problem on an undirected graph
G, let I(A) be the set of commodities whose source and sink are in different connected
components ofG′ = (V, E \ A). Thesparsityof a set of edgesA is given by

sparsity(A) =

∑
e∈A c(e)∑
i∈I(A) di

and thesparsityof G is equal tominA⊂E sparsity(A).

87

A pigeonhole argument shows that the sparsity of an undirected graphG is an upper
bound on the maximum achievable network coding rate. In contrast, we saw in Chapter 4
that the sparsity of a set of edges in a directed graph has no relationship to the maximum
achievable rate.

The sparsity of the graph is also an upper bound on the maximum multicommodity flow
value. Therefore, in instances in which there exists a multicommodity flow of rate equal
to the value of the sparsity of the graph, there is no advantage to using network coding;
the maximum rate achievable with network coding is equal to the maximum rate achiev-
able with flow techniques in these instances. The interesting open question is whether the
maximum rate achievable with network coding is always equal to the maximum multicom-
modity flow rate for instances of thek-pairs communication problem on undirected graphs.

We start with two interesting examples in which there is a gap between the value of
the sparsest cut and the maximum multicommodity flow rate. These examples lead to an
infinite class of graphs for which the maximum achievable rate with coding is equal to the
maximum multicommodity flow rate. This class includes an infinite number of instances
in which the maximum multicommodity flow rate is less than the sparsity of the graph.

6.1.1 The Okamura-Seymour example

We consider a small example due to Okamura and Seymour[32] in which the maximum
multicommodity flow rate is less than the value of the sparsest cut. This example is a 4-
commodity flow problem in an undirected graph with 5 vertices. Each source has demand
1 and each edge has capacity1.

a

b

c

ed

s(a) t(c)

s(b) t(a)

s(c) t(b)

s(d) t(d)

Figure 6-1: The Okamura-Seymour Example.

88

The maximum concurrent flow in this graph is3/4, achieved when each of the com-
moditiesa, b, c sends half of its flow on each of the two-hop paths from its source to its
sink, and commodityd sends one-third of its flow on each of the two-hop paths from its
source to its sink.

In this section we prove that the maximum rate achievable by network coding is also
3/4. We use the axioms from Chapter 5 to prove that no rate greater than3/4 is achievable.
The multicommodity flow demonstrates that this rate is achievable.

We consider three different edge cuts and prove an entropy inequality based on each.
For each of these edge cuts, we exploit the symmetry of the problem to obtain two anal-
ogous inequalities. Combining the resulting nine inequalities together yields the desired
bound.

a

b

c

ed

S(a) T(c)

S(c)

S(b)

T(a)

S(d) T(d)

1

2

2

Figure 6-2: The first edge cut consists of the black generalized edges. The gray sinks are
the ones that are downstream from the edge cut. The number beside a sink indicates in
which downstreamness relationship it is involved.

First consider Figure 6-2. This illustrates the following downstreamness relations, in
which we refer to an edge by naming its head and its tail, e.g.ad refers to the edge froma
to d:

{da, db, ce, eb, S(b)} ; {da, db, ce, eb, S(b), T (a)} (1)
{da, db, ce, eb, S(b), S(a)} ; {da, db, ce, eb, S(b), S(a), T (c), T (d)} (2)

These in turn imply the following series of entropy inequalities, using the downstream-

89

ness and correctness axioms.

H(da, db, ce, eb, S(b)) ≥ H(da, db, ce, eb, S(b), T (a))

= H(da, db, ce, eb, S(b), S(a))

≥ H(da, db, ce, eb, S(b), S(a), T (c), T (d))

= H(da, db, ce, eb, S(b), S(a), S(c), S(d)) (6.1)

The submodularity axiom implies

H(da) + H(db) + H(ce) + H(eb) + H(S(b)) ≥ H(da, db, ce, eb, S(b))

while independence of sources implies

H(S(a), S(b), S(c), S(d)) = H(S(a)) + H(S(b)) + H(S(c)) + H(S(d)).

Combining these two inequalities with (6.1), and canceling the termH(S(b)) on both sides,
we obtain

H(da) + H(db) + H(ce) + H(eb) ≥ H(S(a)) + H(S(c)) + H(S(d)). (6.2)

The Okamura-Seymour graph has an automorphism which fixesd ande while cyclically
permutinga, b, c, so there are two other such entropy inequalities:

H(db) + H(dc) + H(ae) + H(ec) ≥ H(S(b)) + H(S(a)) + H(S(d)) (6.3)

H(dc) + H(da) + H(be) + H(ea) ≥ H(S(c)) + H(S(b)) + H(S(d)) (6.4)

Let

Din = H(ad) + H(bd) + H(cd)

Dout = H(da) + H(db) + H(dc)

Ein = H(ae) + H(be) + H(ce)

Eout = H(ea) + H(eb) + H(ec).

Summing (6.2), (6.3), and (6.4), we obtain

2Dout + Ein + Eout ≥ 2(H(S(a)) + H(S(b)) + H(S(c))) + 3H(S(d)). (6.5)

Figures 6-3 and 6-4 lead, via a similar sequence of steps, to the following inequalities:

Din + Dout + 2Ein ≥ 2(H(S(a)) + H(S(b)) + H(S(c))) + 3H(S(d)) (6.6)

2Din + 2Eout ≥ 2(H(S(a)) + H(S(b)) + H(S(c))). (6.7)

90

a

b

c

ed

S(a) T(c)

S(c) T(b)

S(b)S(d) T(d)

1

1

2

Figure 6-3: The second cut.

Summing (6.5–6.7), we obtain:

3(Din + Dout + Ein + Eout) ≥ 6(H(S(a)) + H(S(b)) + H(S(c)) + H(S(d))). (6.8)

Using Lemma 36 we may interpret equation (6.8) as saying:

3
∑

e∈E(G)

c(e) ≥ 6r
∑
i∈I

di.

Since all 6 edges have capacity 1, and all 4 commodities have demand 1, this reduces to
18 ≥ 24r, or r ≤ 3/4, as desired.

Lemma 42 The maximum achievable rate for thek-pairs communication problem de-
picted in Figure 6-1 is3/4.

In Section 6.4 we will re-derive this result using a different technique.

6.1.2 The 5-commodity Okamura-Seymour example

Suppose that we enhance the Okamura-Seymour example by adding a fifth commodity with
sourcee and sinkd. It is easy to check that the maximum concurrent flow now has rate3/5.
Later, we will present a proof that this is also the maximum rate achievable by a network
coding solution. In the following section we develop the additional techniques which are
used to prove this upper bound on the maximum network coding rate.

91

a

b

c

ed

S(a)

S(c) T(b)

S(b)

T(a)

S(d)

1

2

Figure 6-4: The third cut.

6.2 Operational Downstreamness

In this section we present a stronger condition than downstreamness. We first discuss a
motivating example. We then defineoperational downstreamnessand prove an entropy
inequality which holds when a set of edges is operationally downstream from another set
of edges. Using this, we reanalyze our motivating example. In the next section we present
a combinatorial characterization of operational downstreamness.

6.2.1 A Motivating Example

Suppose we are given ak-pairs communication problem in a graphG. It is tempting to
conjecture that, given any functionh satisfying the axioms specified in Section 5.5, there
exists a concise network coding solution whose entropy function ish. However this is not
the case. This is best illustrated with an example. Consider the augmented graphG in
Figure 6-5 with edges(u, v), (v, u), S(a), S(b), T (a) andT (b). Let H(uv) andH(vu) be
the entropy of the random variable associated with edges(u, v) and(v, u).

We can use the axioms to prove lower bounds onH(uv) andH(vu).

92

u v

S(a)

T(b)

S(b)

T(a)

Figure 6-5: An instance of the network coding problem consisting of two verticesu andv
and the edges(u, v) and(v, u). Vertexu is the source fora and sink forb. Vertexv is the
source forb and the sink fora. The augmented graph is depicted above.

H(uv) ≥ H(uv, S(b))−H(S(b)) submodularity of entropy
≥ H(uv, S(b), T (a))−H(S(b)) {(u, v), (S(b), v)} ; {(v, t(a))}
= H(uv, S(b), S(a))−H(S(b)) correctness
= H(S(b), S(a))−H(S(b))
= H(S(a)) Independence of sources

By symmetry,H(vu) ≥ H(S(b)). Now consider the joint entropyH(uv, vu). Using
downstreamness relations, we can only prove a lower bound on the joint entropy of the ran-
dom variables associated with a set of edges if at least one in-edge to a sink is downstream
of the set of edges. However, edgeT (a) is only downstream of edge sets containingS(b).
Similarly, edgeT (b) is only downstream of edge sets containingS(a). Therefore, using
downstreamness the strongest lower bound we can derive isH(uv, vu) ≥ H(S(i)) where
H(S(i)) is the entropy of one of the two sources.

Intuitively, the pair of edges(u, v) and(v, u) need to send two sources worth of infor-
mation between the nodesu andv. To prove this we need to define a stronger condition
than downstreamness and consider the time-expanded graph.

6.2.2 Definition of Operational Downstreamness

We present a definition of a relationship called operational downstreamness. We then prove
an entropy inequality that holds if a set of edges is operationally downstream of another set
of edges. Although it is not clear from the definition, there is a combinatorial condition
that can be used to test if the relationship holds. We delay a discussion of the combinatorial
characterization of operational downstreamness until the next section.

Definition 22 (Operational Downstreamness)Let G be a directed graph. For general-
ized edge setsU,U ′ ⊆ Ê, we sayU ′ is operationally downstream ofU , writtenU ◦; U ′,

93

if for all network coding solutions onGt, there exists a functiongUt,U ′
t

mapping the symbols
transmitted on edges inUt to the symbols transmitted on edges inU ′t.

Note that ifU ; U ′ thenU ◦; U ′.

Lemma 43 If U ′ ⊂ Ê is operationally downstream fromU ⊂ Ê, then

H(U) ≥ H(U ′)

Proof. Let X = {Ye : e ∈ S}. Let YU andYU ′ be the random variables associated with
the edge setsU andU ′. By the definition of operational downstreamness and causality,
X → YU → YU ′ forms a Markov chain. By the data-processing inequality,I(X,YU) ≥
I(X, YU ′). Equivalently,

H(YU)−H(YU |X) ≥ H(YU ′)−H(YU ′|X)

SinceX is the random variable representing the messages transmitted on all out-edges from
sources,H(YU ′|X) = 0 andH(YU |X) = 0. Therefore,H(YU) ≥ H(YU ′). 2

6.2.3 Applying Operational Downstreamness to the Example

To understand the difference between downstreamness and operational downstreamness,
we reconsider the graph in Figure 6-5. We will prove that{(u, v), (v, u)} ◦; {S(a), S(b)}.
Using Lemma 43 this proves thatH((u, v), (v, u)) ≥ H(S(a)) + H(S(b)). There is no
corresponding downstreamness relationship that proves this inequality.

Let Ĝ be the augmented graph in Figure 6-5 and letGt be the time-expanded graph.
Suppose that the relationship

{(u, v), (v, u)} ◦; {S(a), S(b)}

does not hold. LetUt be the2t edges inĜ associated with(u, v) and(v, u). If the op-
erational downstreamness relationship does not hold, then there exists a network coding
solution onGt such that there does not exist a function mapping the symbols transmit-
ted on edges inUt to the symbols transmitted on{S(a), S(b)}. The edgesS(a) andS(b)
transmit the two messagesMa andMb. If there does not exist a function mapping the
symbols transmitted on edges inUt to Ma andMb then there are two2-tuples of messages
that induce the same symbols on edges inUt. Let (x, y) and(x′, y′) be two assignments to
(Ma, Mb) such that(x, y) 6= (x′, y′) but fUt(x, y) = fUt(x

′, y′). Assume without loss of
generality thatx 6= x′.

Lemma 44 For each edgee ∈ Ê with tail us (0 ≤ s ≤ t),

fe(x
′, y) = fe(x

′, y′) = fe(x, y). (6.9)

94

For each edgee ∈ Ê with tail vs (0 ≤ s < t),

fe(x
′, y) = fe(x, y) = fe(x

′, y′). (6.10)

Proof. In each of (6.9) and (6.10), the second equality follows from our assumption that
fUt(x, y) = fUt(x

′, y′), so we need only prove the first equality in each. The proof is
by induction ons. The base cases = 0 holds because every edge with tailu0 satisfies
In(e) = {S(a)} and therefore the value offe is completely determined by the message
sent by sources(a); the corresponding claim for edges with tailv0 is established similarly.
For the induction step, assumes > 0 and letA = In(e). By the induction hypothesis,
fA(x′, y) = fA(x, y) = fA(x′, y′). Since the functions{fe} form a network coding solution
on Gt, there exists a functionge which maps the symbols transmitted on edges inA to the
symbol transmitted one. Now

fe(x
′, y) = ge(fA(x′, y)) = ge(fA(x, y)) = fe(x, y).

2

Applying the lemma to the edgeT (a) = (vt, τ(a)), we conclude thatfT (a)(x
′, y) =

fT (a)(x, y). This violates the correctness of the network coding solution, which requires
thatfT (a)(x

′, y) = x′ andfT (a)(x, y) = x.

Lemma 45 Let G be the graph consisting of two verticesu, v and two directed edges
e1 = (u, v) ande2 = (v, u), with two commoditiesa, b satisfyings(a) = u, t(a) = v and
s(b) = v, t(b) = u, as in Figure 6-5. Then{e1, e2} ◦; {S(a), S(b)} = S.

This lemma confirms our intuition that the two edges(u, v) and (v, u) have at least
enough capacity as the sum of the demands betweenu andv. Next we extend this argument
to a general directed edge cut in an undirected graph.

6.3 Characterization of Operational Downstreamness

The definition of operational downstreamness is convenient for proving the entropy in-
equality in Lemma 43. However, it isn’t clear from the definition that given a set of edges
A it is easy to determine which edges are operationally downstream ofA.

In this section we present a combinatorial characterization of operational downstream-
ness. Given a set of generalized edgesA, we are interested in determining the set of edges
whose edge functions are completely determined by the symbols transmitted on edges in
A for all network coding solutions. In order to do this we break the graph intobasins of
influence. The initial step in this decomposition is to determine for each source not inA
thebasin of reachabilityof the source. Roughly, for a source edge not inA, the basin of
reachability with respect to edge setA is the subgraph reachable from the source without

95

crossing an edge inA. Once each source’s basin of reachability is determined, we group
overlapping basins of reachability into a single basin of influence.

We prove that the source edge for a commodity whose source and sink are in different
basins of influence with respect to an edge setA is operationally downstream of the edge
setA. If for all commodities whose source edge is not inA the source and sink are in the
same basin of influence, then the set of edgesA does not operationally downstream any
additional source edges.

For the rest of this section, we are given an instance of thek-pairs communication
problem. Let ˆG = = (V̂ , Ê) be the augmented graph for this instance. LetA be a set of
generalized edges of̂G.

6.3.1 Basins of Influence Decomposition

We define the decomposition of the augmented graphĜ into basins of reachability and then
basins of influence with respect to the setA of generalized edges. Note that operational
downstreamness can be applied in directed as well as undirected graphs. The figures that
illustrate the combinatorial decomposition use a directed graph as the example.

For a source edgeS(i), the nodes and edges ofĜ reachable fromS(i) without crossing
an edge inA is thebasin of reachabilityof sourceS(i) with respect toA. We denote this
Basin(S(i), A). The following figure shows a basins of reachability decomposition.

S(a)

T(b)

S(b)

T(a)

S(a) S(b)

T(a)T(b)

Cut A Basin of Reachability
of S(a) with respect

to cut A

Basin of Reachability
of S(b) with respect

to cut A

Let G̃ be the union of the basins of reachability. The weakly connected components ofG̃
form the basins of influence. For the same graph and cutA, the following figure shows the
basins of influence with respect toA.

96

S(a)

T(b)

S(b)

T(a)

S(a) S(b)

T(a)T(b)

Cut A Basins of Influence decompositon
with respect to cut A

Note that edgese ande′ are in the same basin of influence if there exists a sequence of
source edgesS(i1), S(i2) . . . S(i`) such that

• e ∈ Basin(S(i1), A)

• e′ ∈ Basin(S(i`), A).

• for 1 ≤ q < `, the basins of reachabilityBasin(S(iq), A) andBasin(S(iq+1), A)
share at least one node.

6.3.2 Basins of Influence and Operational Downstreamness: Part I

Understanding the combinatorial characterization of operational downstreamness is a two
step process. We start by showing that the source edge for a commodity is operationally
downstream of a set of generalized edgesA if the source and sink for that commodity are
in different basins of influence with respect toA.

Suppose source edgeS(i) and sink edgeT (i) are in different basins of influence with
respect to edge setA. Our goal is to prove thatA ◦; S(i).

The argument is by contradiction. We assume thatS(i) is not operationally downstream
of A. Let At be the set of edges inGt associated withA. By definition,A ◦; S(i) if for
all network coding solutions, the symbols transmitted on edges inAt determine the symbol
transmitted onS(i). Since we are assuming this relationship does not hold, there must exist
a network coding solution such that

1. There exists two differentk-tuples of messages.

2. The edgeS(i) transmits different symbols for the two differentk-tuple of messages.

97

3. The edges inAt transmit the same symbols under bothk-tuples of messages.

Let z andz′ be two suchk-tuples of messages. LetfAt be the function for this net-
work coding solution that mapsk-tuples of messages to symbols transmitted on edges in
At. Our assumption is that thek-tuples of messagesz andz′ assign different messages to
commodityi andfAt(z) = fAt(z

′).
Our argument begins by breaking the graph into two parts. LetB be the basin of

influence containingS(i) andB be Ĝ \ B. Let Bt be the part ofGt associated with the
basinB. We partition the commodities based on which part of the graph they are in. Let
S(B) andS(B) be the source edges inB andB respectively. Now, fromz andz′ we create
four k-tuples of messages.

• x = πz(S(B))

• y = πz(S(B))

• x′ = πz′(S(B))

• y′ = πz′(S(B))

The fourk-tuples of messages which we use in our argument arez = (x, y), z′ = (x′, y′),
(x, y′) and(x′, y). By assumptionx 6= x′.

We now outline the argument. We start by considering the time expanded graph. In
this graph we prove a set of downstreamness relationships. The first set of downstreamness
relationships show that every edge inBt is downstream of the sourcesS(B) and the edges
in At. Similarly, we show that every edge inBt is downstream of the edges inAt and the
sourcesS(B). These allow us to show that the edges inAt transmit the same symbols
under allfour k-tuples of messages. In particular, we prove that the edges inAt transmit
the same symbols for the message tuple(x, y) and the message tuple(x′, y). Since the edge
T (i) is downstream from the edges inAt and the sources inS(B), it must also transmit the
same symbol under the twok-tuples of messages. This creates a contradiction since we
assumed thatx andx′ assign different messages to commodityi.

For 0 ≤ s ≤ t, let As = {ei ∈ A : i ≤ s}. ThereforeA0 is the empty set,A1 is the set
of edges inAt between the first two layers of the time-expanded graphGt and so on.

Lemma 46 For an edge(us, vs+1) with us ∈ Bt

{As−1 ∪ S(B)} ; (us, vs+1)

For an edge(us, vs+1) with us ∈ Bt

{As−1 ∪ S(B)} ; (us, vs+1)

98

Proof. Supposeu ∈ B. By assumption, every path from a source edgeS(j) ∈ B to
u intersectsA. Therefore, inGt every path fromS(j) to us intersectsAs−1. Therefore
(us, vs+1) is downstream ofAs−1 ∪ S(B). A similar argument proves the claim ifu ∈ B.
2

Lemma 47 For an edgee = (us, vs+1) ∈ At with us ∈ Bt

fe(x, y′) = fe(x, y) = fe(x
′, y′) (6.11)

For an edge(us, vs+1) ∈ At with us ∈ Bt

fe(x, y′) = fe(x
′, y′) = fe(x, y) (6.12)

Proof. In each of (6.11) and (6.12), the second equality follows from our assumption that
fAt(x, y) = fAt(x

′, y′). We prove this claim by induction ons. Let es = (us, vs+1). For the
base case,s = 0. Supposeu ∈ B, thenIn(e0) ∈ S(B). Since(x, y′) and(x, y) send the
same message on edges inS(B), fe0(x, y′) = fe0(x, y). Similarly for u ∈ B.

Now assume the claim is true for alli < s. Let u ∈ B and lete = (us, vs+1). The
message tuples(x, y) and(x, y′) transmit the same messages on edges inS(B). By the
inductive hypothesis they also induce the same symbols on edges inAs−1. LetC = {As−1∪
S(B)}.

fC(x, y) = fC(x, y′)

By Lemma 46,C ; e. Therefore, there exists a functionhCe which maps the symbols on
edges inC to the symbol on edgee.

fe(x, y) = hCe(fC(x, y)) = hCe(fC(x, y′)) = fe(x, y′)

A similar argument proves the claim ifu ∈ B. 2

Applying the above Lemma to edgeT (i) yields

fT (i)(x
′, y) = fT (i)(x, y)

However, we assumed thatx andx′ transmit different functions on edgeS(i). Therefore,
this is not a network coding solution.

Lemma 48 For a k-communication problem, letG = (V, E) be the underlying graph If
S(i) and T (i) are in different basins of influence with respect to a setA of generalized
edges, thenA ◦; S(i).

99

6.3.3 Basins of Influence and Operational Downstreamness: Part II

We now show that the basins of influence condition in the previous Lemma is also a neces-
sary condition if the underlying graph is undirected. Specifically, given a setA of general-
ized edges, if for all commoditiesi such thatS(i) /∈ A, the edgesS(i) andT (i) are in the
same basin of influence, then the setA does not operationally downstream any additional
sources.

Lemma 49 For a k-communication problem, letG = (V, E) be the underlying undirected
graph andĜ be the augmented graph. GivenA ⊂ Ê if for all S(i) /∈ A, S(i) andT (i) are
in the same basin of influence, thenA does not operationally downstream any edgeT (i)
with S(i) /∈ A.

Proof. Without loss of generality, ifA contains an edgeT (j) then we replace it with edge
S(j). We construct a network coding solution and twoI-tuples of messagesx andx′ such
that

• the edges inA transmit the same symbols on inputsx andx′,

• and for alli such thatS(i) /∈ A, xi 6= x′i.

We construct a network coding solution in the straight-line program formulation. For all
commoditiesj with S(j) ∈ A, we fix Σ(S(j)) = 1. For commoditiesj with S(j) ∈ A, let
Σ(S(j)) = {0, 1} andxj = 0 andx′j = 1.

In defining the straight-line program, letM be a variable which represents the|I|-tuple
of messages (i.e. if the|I|-tuple of messages isx, thenMi = xi and if the|I|-tuple of
messages isx′, thenMi = x′i). The firstk rules of the straight-line program specify that
S(i) ∈ S transmits the messageMi.

We define the remaining straight-line program in blocks. For edgeS(i) /∈ A, the
ith block specifies a code which allowsT (i) to receiveMi. We describe this block for
commodityi. By the conditions of the lemma,S(i) andT (i) are in the same basin of
influence. Therefore, there exists an alternating pathP of edges connectingS(i) to T (i).
(What is meant by alternating path is that the path uses some edges in the reverse direction
but we do not require that the direction of the edges strictly alternate.) Without loss of
generality, we assume the first edge inP is an out-edge from nodes(i). In addition, we
assume the pathP can be decomposed as:

P = Qi, Pi+1, Qi+1, Pi+2, Qi+2 . . . Pi+h−1, Qi+h−1, Pi+h

where the pair of pathsPj andQj are both directed paths that start at a nodes(j) where
S(j) /∈ A. The following figure shows what the pathP may look like.

100

s(i) s(i+1)

v(i, i+1)

Qi

Pi+1
v(i+1, i+2)

Qi+1 ...Pi+2

s(i+h)

v(i+ h-1, i+h)

Pi+h

Qi+h-1 t(i)

Note that the nodet(i) which is the head ofT (i) is contained in the pathPi+h but may not
be the first node on that path. To simplify notation, reorder the commodities according to
the appearance ofs(j) in pathP .

For a pair of pathsQj andPj+1, let v(j,j+1) be the first node in common to the paths.
For eachj such that there is a sub-pathPj in P , we create a set of rules which sends the
messageMj from the sources(j) alongPj to v(j−1,j).

Consider the nodev(i,i+1). There are rules in the network coding solution which have
sentMi to v(i,i+1) alongQi. There are also rules which have sentMi+1 alongPi+1 to v(i,i+1).
Now we use a path̃Pi+1 to sendMi ⊕Mi+1 from nodev(i,i+1) to nodes(i + 1). Since the
underlying graph is undirected and there is a pathPi+1 from nodes(i + 1) to nodev(i,i+1),
there must exist a path̃Pi+1 from v(i,i+1) to s(i + 1). The next figure depicts these paths.

s(i) s(i+1)

v(i, i+1)

Pi+1
v(i+1, i+2)

...Pi+2

s(i+h)

v(i+h-1, i+h)

Pi+h

t(i)

After this set of rules has been specified, there are rules which have transmittedMi⊕Mi+1

to nodes(i + 1). The source edgeS(i + 1) is an in-edge tos(i + 1). Therefore, there
are already rules that have sent messageMi+1 to nodes(i + 1). Using the information in
previously specified rules, the node is able to compute the value of the messageMi. We
then create a set of rules which transmitMi along pathQi+1 to nodevi+1,i+2.

The remaining rules in this block are specified as follows.
For j = i + 2 to j = i + h− 1

• Create a set of rules to transmitMi ⊕Mj from vj−1,j to nodes(j) along pathP̃j.

101

• Create a set of rules to transmitMi from s(j) to vj,j+1 along pathQj.

Lastly, a set of rules sendsMi ⊕Mi+h from v(i+h−1,i+h) to t(i) along part of path̃Pi+h.
The last rule the block for commodityi sendsMi from t(i) to τ(i) on edgeT (i).

For each commodityi such thatS(i) /∈ A we create a block of rules as described above
which transmitMi to T (i). It is not difficult to check that every rule can be computed from
previously specified rules. Since edges inA always send0 ⊕ 0 or 1 ⊕ 1, they transmit the
same symbol underx andx′. Therefore, edgeS(i) is not operationally downstream ofA if
T (i) is in the same basin of influence with respect toA. 2

If G is an undirected graph andA ⊂ E is a set ofundirectededges, then the set of
commodities which are operationally downstream fromA is exactly the set of commodi-
ties whose source and sink are in different connected components ofG′ = (V, E \ A).
Therefore, as a corollary of Lemmas 48 and 49, we arrive at an alternate proof that the
sparsity ofG is an upper bound on the maximum rate achievable with network coding.

Corollary 50 Given an instance of thek-pairs communication problem on an undirected
graphG, the maximum achievable rate is at most the sparsity ofG.

Similarly, for an undirected cutA in G, operational downstreamness says thatH(A) ≥
H(I(A)) whereI(A) is the set of commodities whose source and sink are in different
connected components ofG′ = (V, E \A). Recall the linear program at the end of Chapter
5. Suppose instead of considering directed cuts inG, we only consider undirected cuts and
use operational downstreamness. If the optimal value for this LP is equal to the maximum
multicommodity flow, then combining sparse cuts using the submodularity of the entropy
function is sufficient to determine the maximum multicommodity flow. Such a relationship
would shed new light on the gaps that can exist between the sparsity ofG and the maximum
multicommodity flow.

6.4 Okamura-Seymour with Five Commodities

Recall that the 5-commodity Okamura-Seymour example is the 5-node, 5-commodity in-
stance depicted in Figure 6-6. We will name the edges of this graph by simply listing their
tail and head, in that order. For instance,ad refers to the edge from nodea to noded. Now
consider the first half of Figure 6-7, which illustrates the downstreamness relation

{da, ea, S(a)} ; {da, ea, S(a), T (c)}.

This implies the entropy inequality

H(da, ea, S(a)) ≥ H(da, ea, S(a), T (c)) = H(da, ea, S(a), S(c)). (6.13)

102

a

b

c

ed

s(a) t(c)

s(b) t(a)

s(c) t(b)

s(d)
t(e)

s(e)
t(d)

Figure 6-6: The 5-commodity Okamura-Seymour Example.

a

ed

S(a) T(c)
e

S(e)

T(d)

a

b

c

Figure 6-7: Two downstreamness relations.

Similar cuts using the incoming edges of nodesb andc lead to the corresponding inequali-
ties:

H(db, eb, S(b)) ≥ H(db, eb, S(b), S(a)) (6.14)

H(dc, ec, S(c)) ≥ H(dc, ec, S(c), S(b)). (6.15)

Summing (6.13) and (6.14), and using submodularity, we obtain

H(da, ea, S(a)) + H(db, eb, S(b)) ≥ H(da, ea, db, eb, S(a), S(b), S(c)) + H(S(a)).
(6.16)

Summing (6.15) and (6.16), and using submodularity and independence of sources, we

103

obtain

H(da, ea, S(a)) + H(db, eb, S(b)) + H(dc, ec, S(c))

≥ H(da, ea, db, eb, dc, ec, S(a), S(b), S(c)) + H(S(b), S(C)) + H(S(a)).

(6.17)

a

b

c

ed

S(a) T(c)

S(c) T(b)

S(b)

T(a)

T(d)

T(e)

Figure 6-8: An operational downstreamness relation.

We now use operational downstreamness. Figure 6-8 illustrates the operational down-
streamness relation

{da, ea, db, eb, dc, ec, S(a), S(b), S(c)} ◦; {S(a), S(b), S(c), S(d), S(e)}

because the basin of influence of each source is a singleton set. This implies the entropy
inequality

H(da, ea, db, eb, dc, ec, S(a), S(b), S(c)) ≥ H(S(a), S(b), S(c), S(d), S(e)).

Combining this with (6.17) and using independence of sources, we obtain

H(da, ea, S(a)) + H(db, eb, S(b)) + H(dc, ec, S(c))

≥ 2H(S(a)) + 2H(S(b)) + 2H(S(c)) + H(S(d)) + H(S(e)). (6.18)

104

Submodularity of entropy implies that

H(da) + H(ea) + H(S(a)) ≥ H(da, ea, S(a))

and similarly for the other two terms on the left side of (6.18). Expanding out the left side
using these inequalities, and canceling the termH(S(a)) + H(S(b)) + H(S(c)) on both
sides, we arrive at:

H(da) + H(ea) + H(db) + H(eb) + H(dc) + H(ec)

≥ H(S(a)) + H(S(b)) + H(S(c)) + H(S(d)) + H(S(e)). (6.19)

The second half of Figure 6-7 illustrates the downstreamness relation:

{ae, be, ce, S(e)} ; {ae, be, ce, S(e), T (d)}.

Similarly,
{ad, bd, cd, S(d)} ; {ad, bd, cd, S(d), T (e)}.

These lead to the entropy inequalities

H(ae, be, ce, S(e)) ≥ H(ae, be, ce, S(e), T (d)) = H(ae, be, ce, S(e), S(d))

H(ad, bd, cd, S(d)) ≥ H(ad, bd, cd, S(d), T (e)) = H(ad, bd, cd, S(d), S(e)).

Adding and using submodularity, we derive:

H(ae, be, ce, S(e)) + H(ad, bd, cd, S(d))

≥ H(ae, be, ce, ad, bd, cd, S(d), S(e)) + H(S(d), S(e)). (6.20)

Figure 6-9 illustrates the operational downstreamness relation

{ae, be, ce, ad, bd, cd, S(d), S(e)} ◦; {S(a), S(b), S(c), S(d), S(e)}

because the basin of influence of each source is a singleton set. This implies the entropy
inequality

H(ae, be, ce, ad, bd, cd, S(d), S(e)) ≥ H(S(a), S(b), S(c), S(d), S(e)).

Combining this with (6.20) we obtain

H(ae, be, ce, S(e)) + H(ad, bd, cd, S(d))

≥ H(S(a), S(b), S(c), S(d), S(e)) + H(S(d), S(e)).

105

a

b

c

ed

T(c)

T(b)

T(a)

S(d)

S(e)

T(d)

T(e)

Figure 6-9: An operational downstreamness relation.

If we expand both terms on the left side using submodularity as we did with equation (6.18),
expand the right side using independence of sources, and cancel the termsH(S(d)) +
H(S(e)) which appear on both sides, we obtain:

H(ae) + H(be) + H(ce) + H(ad) + H(bd) + H(cd)

≥ H(S(a)) + H(S(b)) + H(S(c)) + H(S(d)) + H(S(e)). (6.21)

Summing (6.19) and (6.21), we find that the sum of the entropies of all 12 directed edges
(i.e. the sum of the entropies of all 6 undirected edges) is at least twice the sum of the
entropies of all 5 sources. Using Lemma 36, this implies that∑

e∈E(G)

c(e) ≥ 2
∑
i∈I

rdi. (6.22)

In the 5-commodity Okamura-Seymour example, all undirected edges have capacity 1, and
all commodities have demand 1, so (6.22) reduces to6 ≥ 10r, i.e. r ≤ 3/5, as desired.
In the 4-commodity Okamura-Seymour example, all undirected edges have capacity 1, and
da = db = dc = dd = 1 while de = 0. Thus (6.22) reduces to6 ≥ 8r, i.e. r ≤ 3/4, as
desired.

106

6.5 Special Bipartite Graphs

The analysis of the 5-commodity Okamura-Seymour example extends to an infinite family
of graphs. Specifically, supposeG is a bipartite graph whose vertex set is partitioned into
two independent setsV, W . Consider an instance of thek-pairs communication problem in
G with the property that for every commodity, the source and sink both belong toV or they
both belong toW . Let S(V) denote the set of sources inV , andS(W) the set of sources
in W . For a vertexv, let In(v) denote the set of incoming edges ofv in Ĝ, and letT (v)
denote the set of edges inT whose tail isv. We have a downstreamness relation

In(v) ; In(v) ∪ T (v).

Summing over all elements ofV , and repeatedly applying the submodularity axiom, we
derive ∑

v∈V

H(In(v)) ≥ H(In(V)) + H(S(V)).

Using operational downstreamness, we derive

H(In(V)) ≥ H(S).

Combining these two inequalities and rearranging some terms using submodularity and
independence of sources, ∑

e∈E(W,V)

H(e) ≥ H(S).

HereE(W, V) denotes the set of directed edges fromW to V in Ĝ. Similarly, we may
derive ∑

e∈E(V,W)

H(e) ≥ H(S).

Summing these two inequalities, we obtain an entropy inequality which implies∑
e∈E

c(e) ≥ 2
∑
i∈I

rdi,

i.e.

r ≤
∑

e c(e)

2
∑

i di

.

This inequality is tight in instances where each source-sink pair is joined by a 2-hop path,
and a dual-optimal length function assigns length1 to every edge ofG, as was the case with
the4-commodity and5-commodity Okamura-Seymour examples. It is not hard to come up
with infinitely many other bipartite graphs satisfying this property.

107

Theorem 51 Multicommodity flow achieves the same maximum rate as network coding in
any instance of thek-pairs communication problem defined on an underlying undirected
bipartite graphG where a dual-optimal length function assigns1 to every edge and every
source-sink pair is distance2 apart.

6.6 Open Problems

There are three fundamental open questions related to the work in this chapter.

• What is the maximum rate achievable for an instance of the network coding
problem defined on an undirected graph? Our proofs in this chapter made use
of the properties of the entropy function and the concepts of downstreamness and
operational downstreamness. Are these the essential ingredients in determining the
maximum achievable rate? These conditions can be specified as a linear program,
which is extremely large even for small instances. Is the optimal value of this linear
program equal to the maximum achievable network coding rate?

• For an instance of thek-pairs communication problem on an undirected graph,
do multicommodity flow techniques always achieve the maximum rate?The an-
swer is yes for all instances in which the maximum multicommodity flow value is
equal to the value of the sparsest cut. In addition, we’ve found an infinite class of
instances for which the answer is yes even though there is a gap between the maxi-
mum multicommodity flow value and the value of the sparsest cut. Does this result
extend to all instances of thek-pairs communication problem on undirected graphs?
A related question is to understand the relationship between the polytope of feasible
multicommodity flows and the polytope characterizing the entropies associated with
network coding solutions for a given instance of thek-pairs communication problem.

• Do sparse cuts and submodularity characterize the maximum multicommodity
flow value? It is well known that there are instances of the multicommodity flow
problem for which there is a large gap between the value of the sparsest cut and
the maximum flow value. Suppose that the maximum rate achievable with network
coding is also achievable using flow techniques. Then techniques which characterize
the maximum network coding rate also characterize the maximum multicommodity
flow.

Theorem 50 provides an information theoretic characterization of the sparsity of an
undirected cut. Is there a way to combine the resulting inequalities together and
use the submodularity of the entropy function to prove a tight upper bound on the
maximum multicommodity flow rate?

108

6.7 References

This chapter explores the gap between the maximum rate achievable with and without
coding. In directed acyclic graphs, network coding can achieve a rateΩ(n) times larger,
wheren is the number of nodes in the graph, than multicommodity flow techniques. Li
et al. [27] showed that for the multicast problem inundirectedgraphs, an optimal tree
packing exists which achieves at least half the maximum rate achievable with network
coding. This result showed that communication problems in directed and undirected graphs
have different properties.

Li and Li [26] and Harvey et al. [11] conjectured that for undirected graphs, the maxi-
mum rate for an instance of thek-pairs communication problem is achievable with multi-
commodity flow techniques.

The results in this chapter are joint work with Nicholas Harvey and Robert Kleinberg.
Very similar results have been independently discovered [17].

109

110

Chapter 7

Future Work

We now consider four broad directions for future work. More specific questions were listed
at the end of each chapter.

Where can network coding be used?Optimal solutions for multicast network cod-
ing problems can be found efficiently. For general communication problems beyond
multicast, network coding can substantially increase the amount of information that
can be transmitted through a network. An algorithm for finding high rate network
codes for the general network coding problem would be very useful but none is cur-
rently known. Even approximation algorithms could result in more efficient use of
network bandwidth.

What is the complexity of the network coding problem? The multicast problem
is known to be in efficiently solvable. However, determining if there exists a solution
of a given rate for the general network coding problem could be undecidable. One
issue is that there is no known upper bound on the sizes of the alphabets that need
to be considered. Suppose we knew a functionp(n) such that for every solvable
instance on a network withn nodes, there exists a solution in which every edge uses
an alphabet of size at mostp(n). Then we could determine if an instance is solvable,
at any rate, by checking all network coding solutions with alphabets of size at most
p(n) for each edge. Another possibility for showing decidability is to prove that
the optimal values of the linear programs presented in Chapters 4 and 5 define the
maximum achievable rate.

Does there exist a subset of all functions that are sufficient for all network coding
problems? All the known algorithms for the multicast problem make use of the fact
that any solvable instance admits a linear solution over some finite fieldF. Can
we find a restricted class of functions such that any solvable instance of the general
network coding problem admits a solution using only functions from that class? If

111

this class of functions had a nice enough structure, then efficient algorithms might
follow from its characterization.

What is the capacity of an information network? This is the $64,000 dollar ques-
tion. Prior to the paper by Ahlswede et al. [1], the capacity of information networks
was not well understood. Their characterization of the feasible rate region for the
multicast problem was the first significant progress on this important open question.
In Chapters 4 and 5, we presented some upper bounds on the maximum achievable
rate. Are these upper bounds tight? Do we need additional techniques to understand
the capacity of information networks? In thek-pairs communication problem on
undirected graphs, how does the maximum achievable rate compare to the maximum
multicommodity flow?

112

Appendix A

Entropy

We review the definition of Shannon entropy and some of its properties.

Definition 23 Entropy: Let Xi be a random variable taking on values inΣi. LetPr (αi)
be the probability thatXi = αi. The Shannonentropyof Xi is given by

H(Xi) = −
∑

αi∈Σi

Pr (αi) log2 Pr (αi)

= −Ex(log2 Pr (αi))

Let X = {X1, X2 . . . Xn} be a set of random variables taking on values inΣ = Σ1 ×
Σ2 . . . Σn. Let Pr (α) = Pr (α1, α2 . . . αn) be the joint probability thatXi = αi for all i.
Thejoint entropyH(X) = H(X1, X2 . . . Xn) is defined as follows.

H(X1, X2 . . . Xn) = −
∑

(α1,α2...αn)∈Σ

Pr (α1, α2 . . . αn) log Pr ((α1, α2 . . . αn))

= −Ex(log Pr (α1, α2 . . . αn))

For a pair of random varaiblesX andY , we can also define the conditional entropy
H(X|Y) = −Ex(log Pr (x|y)). The joint entropy of a pair of random variables can be
written in terms of conditional entropies:H(X, Y) = H(X) + H(Y |X).

The mutual information between two random variables, writtenI(X, Y), can be ex-
pressed as

I(X, Y) = H(X) + H(Y)−H(X, Y)

= H(X)−H(X|Y)

= H(Y)−H(Y |X)

113

Random varaiblesX, Y , andZ are said to form a Markov chain,X → Y → Z if X is
conditionally independant ofZ|Y . In the special case whereZ = g(Y) for any functiong,
X → Y → Z always holds.

Theorem 52 Data Processing Inequality[5] If X → Y → Z, thenI(X; Y) ≥ I(X; Z).

A few other charateristics of the entropy function are also useful. (See page 297 in
[39].)
Nonegativity: For any random varaibleX,

H(X) ≥ 0

Nondecreasing: For a set of random variablesX = {X1, X2 . . . Xn} and any random
variableXn+1,

H(X ∪ {Xn+1}) ≥ H(X)

Submodularity: For any two sets of random variablesX = {X1, X2 . . . Xn} andY =
{Y1, Y2, . . . Ym},

H(X) + H(Y) ≥ H(X ∪ Y) + H(X ∩ Y)

114

Bibliography

[1] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung. Network
information flow. IEEE Transactions on Information Theory, 46(4):1204–1216, July
2000.

[2] M. Bern and P. Plassman. The steiner problem with edge lengths 1 and 2.Information
Processing Letters, 32:171–176, 1989.

[3] Yu. D. Burago and V. A. Zalgaller. Geometric inequalities. InGrundlehren der
mathematischen Wiseenchaften. Spinger-Verlag, 1988. Number 285.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein.Intro-
duction to Algorithms. MIT Press, Cambridge, MA, 2001.

[5] Thomas M. Cover and Joy A. Thomas.Elements of Information Theory. Wiley, 1991.

[6] R. Dougherty, C. Freiling, and K. Zeger. Linearity and solvability in multicast net-
works, December 2003.

[7] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of linear coding in network
information flow, February 2004.

[8] Christina Fragouli and Emina Soljanin. Information flow decomposition for network
coding, 2004.

[9] G.H. Hardy and E.M. Wright.An Introduction to the Theory of Numbers, 5th Edition.
Clarendon Press, Oxford, England, 1979.

[10] Nicholas J. A. Harvey, David R. Karger, and Kazuo Murota. Deterministic network
coding by matrix completion. InProceedings of the Sixteenth Annual Symposium on
Discrete Algorithms (SODA 05), page To Appear, 2005.

[11] Nicholas J. A. Harvey, Robert D. Kleinberg, and April Rasala Lehman. Comparing
network coding with multicommodity flow for thek-pairs communication problem.
Technical Report 964, M.I.T. LCS, September 2004.

115

[12] Pavol Hell and Jaroslav Nešeťril. On the complexity ofh-coloring. Journal of Com-
binatorial Theory, Series B, 48:92–110, 1990.

[13] Tracey Ho.Networking from a network coding perspective. PhD thesis, MIT, 2004.

[14] Tracey Ho, Ralf Koetter, Muriel Ḿedard, David R. Karger, and Michelle Effros. The
benefits of coding over routing in a randomized setting. InProceedings of the IEEE
International Symposium on Information Theory, 2003.

[15] Sidharth Jaggi, Peter Sanders, Philip A. Chou, Michelle Effros, Sebastian Egner, Ka-
mal Jain, and Ludo Tolhuizen. Polynomial time algorithms for multicast network
code construction.IEEE Transactions on Information Theory. Submitted July 2003.

[16] K. Jain, M. Mahdian, and M.R. Salavatipour. Steiner trees. InProceedings of the four-
teenth annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 266–
274, 2003.

[17] Kamal Jain. Private communication, January 2005.

[18] Ralf Koetter. Network coding home page.http://tesla.csl.uiuc.edu/
˜koetter/NWC/ .

[19] Ralf Koetter and Muriel Ḿedard. An algebraic approach to network coding.
IEEE/ACM Transactions on Networking, 11:782–795, October 2003.

[20] Lap Chi Lau. An approximate max-steiner-tree-packing min-steiner-cut theorem. In
Proceedings of the 45th annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS 2004, pages 61–70, 2004.

[21] April Rasala Lehman and Eric Lehman. Complexity classification of network infor-
mation flow problems. InProceedings of the ACM-SIAM Symposium on Discrete
Algorithms, January 2004.

[22] April Rasala Lehman and Eric Lehman. Network coding: Does the model need tun-
ing? In Proceedings of the Sixteenth Annual Symposium on Discrete Algorithms
(SODA 05), page To Appear, 2005.

[23] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms.Journal of the ACM, 46(6):787–
832, November 1999.

[24] S.-Y. R. Li, Raymond W. Yeung, and Ning Cai. Linear network coding.IEEE Trans-
actions on Information Theory, 49(2):371–381, 2003.

116

[25] Zongpeng Li and Baochum Li. Network coding: the case of multiple unicast sessions.
In Proceedings of the 42nd Allerton Annual Conference on Communication, Control,
and Computing, 2004.

[26] Zongpeng Li and Baochun Li. Network coding in undirected networks. InPro-
ceedings of the 38th Annual Conference on Information Sciences and Systems (CISS
2004),, 2004.

[27] Zongpeng Li, Baochun Li, Dan Jiang, and Lap Chi Lau. On achieving throughput
with network coding. InProceedings of INFOCOM 2005, March 2005.

[28] L. H. Loomis and H. Whitney. An inequality related to the isoperimetric inequality.
Bulletin of the American Mathematical Society, 1949.

[29] D. Ron M. Feder and A. Tavory. Bounds on linear codes for network multicast.
Electronic Colloquium on Computational Complexity (ECCC), 10(033), 2003.

[30] K. Makarychev, Y. Makarychev, A. Romashchenko, and N. Vereshchagin. A new
class of non shannon type inequalities for entropies.Communications in Information
and Systems, 2(2):147–166, December 2002.

[31] Muriel Médard, Michelle Effros, Tracey Ho, and David Karger. On coding for non-
multicast networks. In41st Annual Allerton Conference on Communication Control
and Computing, 2003.

[32] H. Okamura and P.D. Seymour. Multicommodity flows in planar graphs.Journal of
Combinatorial Theory, Series B, 31:75–81, 1981.

[33] Soren Riis. Linear versus non-linear boolean functions in network flow. InConference
on Information Sciences and Systems (CISS), March 2003.

[34] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer-Verlag, 2003.

[35] D. B. Shmoys. Approximation algorithms for cut problems and their applications to
divide-and-conquer. In D.S. Hochbaum, editor,Approximation Algorithms for NP-
hard problems, pages 192–235. Course Technology, 1997.

[36] Lihua Song, Raymond Yeung, and Ning Cai. Zero-error network coding for acyclic
networks. IEEE Transactions on Information Theory, 49:3129–3139, December
2003.

[37] Alexandre Tiskin. A generalization of the Cauchy and Loomis-Whitney inequalities.
http://www.dcs.warwick.ac.uk/˜tiskin/pub/ .

117

[38] Vorlesungen̄uber Inhalt. Oberfl̄ache and isoperimetrie. InGrundlehren der mathe-
matischen Wissenchaften. Springer-Verlag, 1957. Number 93.

[39] Raymond W. Yeung.A First Course in Information Theory. Kluwer, 2002.

118

