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Abstract

In EM and related algorithms, E-step compu-
tations distribute easily, because data items
are independent given parameters. For very
large data sets, however, even storing all of
the parameters in a single node for the M-
step can be impractical. We present a frame-
work that fully distributes the entire EM pro-
cedure. Each node interacts only with pa-
rameters relevant to its data, sending mes-
sages to other nodes along a junction-tree
topology. We demonstrate improvements
over a MapReduce topology, on two tasks:
word alignment and topic modeling.

1. Introduction

With dramatic recent increases in both data scale and
multi-core environments, it has become increasingly
important to understand how machine learning algo-
rithms can be efficiently parallelized. Many computa-
tions, such as the calculation of expectations in the E-
step of the EM algorithm, decompose in obvious ways,
allowing subsets of data to be processed independently.
In some such cases, the MapReduce framework (Dean
& Ghemawat, 2004) is appropriate and sufficient (Chu
et al., 2006). Specifically, MapReduce is suitable when
its centralized reduce operation can be carried out ef-
ficiently. However, this is not always the case. For ex-
ample, in modern machine translation systems, many
millions of words of example translations are aligned
using unsupervised models trained with EM (Brown
et al., 1994). In this case, one quickly gets to the point
where no single compute node can store the model pa-
rameters (expectations over word pairs in this case) for
all of the data at once, and communication required
for a centralized reduce operation dominates computa-
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tion time. The common solutions in practice are either
to limit the total training data or to process manage-
able chunks independently. Either way, the complete
training set is not fully exploited.

In this paper, we propose a general framework for dis-
tributing EM and related algorithms in which not only
is the computation distributed, as in the map and
reduce phases of MapReduce, but the storage of pa-
rameters and expected sufficient statistics is also fully
distributed and maximally localized. No single node
needs to store or manipulate all of the data or all
of the parameters. We describe a range of network
topologies and discuss the tradeoffs between commu-
nication bandwidth, communication latency, and per-
node memory requirements. In addition to a general
presentation of the framework, a primary focus of this
paper is the presentation of experiments in two ap-
plication cases: word alignment for machine transla-
tion (using standard EM) and topic modeling with
LDA (using variational EM). We show empirical re-
sults on the scale-up of our method for both applica-
tions, across several topologies.

Previous related work in the sensor network literature
has discussed distributing estimation of Gaussian mix-
tures using a tree-structured topology (Nowak, 2003);
this can be seen as a special case of the present ap-
proach. Paskin et al. (2004) present an approxi-
mate message passing scheme that uses a junction tree
topology in a related way, but for a different purpose.
In addition, Newman et al. (2008) present an asyn-
chronous sampling algorithm for LDA; we discuss this
work further, below. None of these papers have dis-
cussed the general case of distributing and decoupling
parameters in M-step calculations, the main contribu-
tion of the current work.

2. Expectation Maximization

Although our framework is more broadly applicable,
we focus on the EM algorithm (Dempster et al., 1977),
a technique for finding maximum likelihood param-
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Figure 1: IBM Model 1 word alignment model. The top
sentence is the source, and the bottom sentence is the tar-
get. Each target word is generated by a source word de-
termined by the corresponding alignment variable.

eters of a probabilistic model with latent or hidden
variables. In this setting, each datum di consists of a
pair (xi, hi) where xi is the set of observed variables
and hi are unobserved. We assume a joint model over
P (xi, hi|θ) with parameters θ. Our goal is to find a
θ that maximizes the marginal observed log-likelihood∑m

i=1 logP (xi|θ). Each iteration consists of two steps:

qi(hi)← P (hi|xi, θ) [E-Step]

θ ← arg max
θ

m∑
i=1

Eqi
P (xi|hi, θ) [M-Step]

where the expectation in the M-Step is taken with re-
spect to the distribution q(·) over the latent variables
found in the E-Step. When P (·|θ) is a member of the
exponential family, the M-Step reduces to solving a
set of equations involving expected sufficient statistics
under the distribution. Thus, the E-Step consists of
collecting expected sufficient statistics η = EθP (η|X)
with respect to qi for each datum xi. We briefly
present two EM applications we use for experiments.

2.1. Word Alignment

Word alignment is the task of linking words in a cor-
pora of parallel sentences. Each parallel sentence pair
consists of a source sentence S and its translation T
into a target language.1 The model we present here is
known as IBM Model 1 (Brown et al., 1994).2 In this
model, each word of T is generated from some word
of S or from a null word ∅ prepended to each source
sentence. The null word allows words to appear in the
target sentence without any evidence in the source.
Model 1 is a mixture model, in which each mixture
component indicates which source word is responsible
for generating the target word (see figure 1).

1Sometimes in the word alignment literature the roles
of S and T are reversed to reflect the decoding process.

2Although there are more sophisticated models for this
task, our concern is with efficiency in the presence of many
parameters. More complicated models do not contain sub-
stantially more parameters.
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Figure 2: Latent Dirichlet Allocation model. Each word
is generated from a topic vocabulary distribution and each
topic is generated from a document topic distribution.

The formal generative model is as follows: (1) Select
a length n for the translation T based upon |S| = m
(typically uniform over a large range). (2) For each
j = 1, . . . , n, uniformly choose some source alignment
position aj ∈ {0, 1, . . . ,m}. (3) For each j = 1, . . . , n,
choose target word tj based on source word saj

with
probability θsaj

tj

In the data, the alignment variables a are unobserved,
and the parameters are the multinomial distributions
θs· for each source word s. The expected sufficient
statistics are expected alignment counts between each
source and target word that appear in a parallel sen-
tence pair. These expectations can be obtained from
the posterior probability of each alignment,

P (aj = i|S, T, θ) =
θsitj∑
i′ θsi′ tj

The E-Step computes the above posterior for each
alignment variable; these values are added to the cur-
rent expected counts of (s, t) pairings, denoted by
ηst. The M-Step consists of the following update:
θst ← ηstP

t′ ηst′
. Section 5.1 describes results for this

model on a data set with more than 243 million pa-
rameters (i.e., distinct co-occurring word pairs).

2.2. Topic Modeling

We present experiments in topic modeling via the La-
tent Dirichlet Allocation (Blei et al., 2003) topic model
(see figure 2). In LDA, we fix a finite number of topics
T and assume a closed vocabulary of size V . We as-
sume that each topic t has a multinomial distribution
θt· ∼ Dirichlet(Unif(V ), ψ). Each document draws a
topic distribution φ ∼ Dirichlet(Unif(T ), γ). For each
word position in a document, we draw an unobserved
topic index z from φ and then draw a word from θz·.

Our goal is to find the MAP estimate of θ for the
observed likelihood where the latent topic indicators
and document topic distributions φ have been inte-
grated out. In this setting, we can not perform an
exact E-Step because of the coupling of latent vari-
ables through the integral over parameters. Instead,
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we use a variational approximation of the posterior as
outlined in Blei et al. (2003), where all parameters
and latent variables are marginally independent. The
relevant expected sufficient statistics for θ are the ex-
pected counts ηtw over topic t and word w pairings
under the approximate variational distribution. The
M-Step, as in the case of our word alignment model
in section 2.1, consists of normalizing these counts:
θtw = ηtwP

w′ ηtw′
. Section 5.2 describes results for this

model. We note that the number of parameters in this
model is a linear function of the number of topics T .

3. Distributing EM

Given the amount of data and number of parameters
in many EM applications, it is worthwhile to distribute
the algorithm across many machines. We will consider
the setting in which our data set D has been divided
into k splits {D1, . . . ,Dk}.

3.1. Distributing the E-Step

Distributing the E-Step is relatively straightforward,
since the expected sufficient statistics for each datum
can be computed independently given a current esti-
mate of the parameters. Each of k nodes computes
expected sufficient statistics for one split of the data,

η(i) = Eθ [η|Di] [Distributed E-Step]

where we use the superscript (i) to emphasize that
these counts are partial and reflect only the contribu-
tions from split Di and not contributions from other
partitions. We will also write αi for the set of suffi-
cient statistic indices that have nonzero count in η(i),
and use η[αi] to indicate the projection of η onto the
subspace consisting of just those statistics in αi.

In order to complete the E-Step, we must aggregate
expected counts from all partitions in order to re-
estimate parameters. This step involves distributed
communication of a potentially large number of statis-
tics. We name this phase the C-Step and will examine
how to efficiently perform it in section 4. For the mo-
ment, we assume that there is a single computing node
which accumulates all partial sufficient statistics,

η =
k∑

i=1

η(i)[αi] [C-Step]

where we write η(i)[αi] to indicate that we only com-
municate non-zero counts. This is a simple and effec-
tive way to achieve near-linear speedup in the E-Step;
previous work has utilized it effectively (Blei et al.,
2003; Chu et al., 2006; Nowak, 2003).

3.2. Distributing the M-Step

A further possibility, which to our knowledge has not
been fully exploited, is distributing the M-Step. Often
in EM, it is the case that only a subset of parameters
may ever be relevant to a split Di of the data. For
instance, in the word alignment model of section 2.1,
if a word pairing (s, t) is not observed in some Di, node
i will never need the parameter θst. For our full word
alignment data set, when k = 20, less than 30 million
of the 243 million total parameters are relevant to each
node.

We will use βi to refer to the subset of parameter in-
dices relevant for Di. In order to distribute the M-
Step, each node must receive all expected counts nec-
essary to re-estimate all relevant parameters θ[βi]. In
section 4, we develop different schemes for how nodes
should communicate their partial expected counts, and
show that this choice of C-Step topology can dramat-
ically affect the efficiency of distributed EM.

One difficulty in distributing the M-Step lies in the fact
that re-estimating θ[βi] may require counts not found
in η[αi]. In the case of the word alignment model, θst

requires the counts ηst′ for all t′ appearing with s in
a sentence pair, even if t′ did not occur in Di. Often
these non-local statistics enter the computation only
via normalization terms. This is the case for the word
alignment and LDA models explored here. This obser-
vation suggests an easy way to get around the problem
presented above in the case of discrete latent variables:
we simply augment the set of sufficient statistics η with
a set of redundant sum terms that provide the missing
information needed to normalize parameter estimates.
For the word alignment model, we would include a suf-
ficient statistic ηs· to represent the sum

∑
t:(s,t)∈D ηst.

Then the re-estimated value of θst would simply be
ηst

ηs·
. With these augmented statistics, estimating θ[βi]

requires only ηst and ηs· for all (s, t) ∈ Di. It might
seem counterintuitive, but adding these extra statis-
tics actually decreases the total necessary amount of
communication, by trading a large number of sparse
statistics for a few dense ones.

4. Topologies for Distributed EM

This section will consider techniques for performing
the C-Step of distributed EM, in which a node i ob-
tains the necessary sufficient statistics η[αi] to esti-
mate parameters θ[βi]. We assume that the sets of
relevant count indices αi have been augmented as dis-
cussed at the end of section 3 so that η[αi] is sufficient
to re-estimate θ[βi].
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Figure 3: (a) MapReduce: Each node computes partial statistics in a local E-Step, sends these to a central “Reduce” node,
and receives back completed statistics relevant for completing its local M-Step. (b) AllPairs: Each node communicates
to each other node only the relevant partial sufficient statistics. For many applications, these intersections will be small.
(c) JunctionTree: The network topology is a tree, chosen heuristically to optimize any desired criteria (e.g., bandwidth).

4.1. MapReduce Topology

A straightforward way to implement the C-Step is to
have each node send its non-zero partial counts η(i)[αi]
to a central “Reduce” node for accumulation into η.
This central node then returns only the relevant com-
pleted counts η[αi] to the nodes so that they can inde-
pendently perform their local M-Steps. This approach,
depicted in figure 3(a), is roughly analogous to the
topology used in the MapReduce framework (Dean &
Ghemawat, 2004). When parameters are numerous,
this will already be more bandwidth-efficient than a
naive MapReduce approach, in which the Reduce node
would perform a global M-Step and then send all of the
new parameters θ back to all nodes for the next iter-
ation. To enable sending only relevant counts η[αi],
the actual iterations are preceded by a setup phase in
which each node constructs an array of relevant count
indices αi and sends this to the Reduce node. This
array also fixes an ordering on relevant statistics, so
that later messages of counts can be densely encoded.

This MapReduce topology3 may be a good choice
for the C-Step when nodes share most of the same
statistics. On the other hand, if sufficient statistics are
sparse and numerous, the central reduce node can be
a significant bandwidth and memory bottleneck in the
distributed EM algorithm. Indeed, in practice, with
either Model 1 or LDA, available amounts of train-
ing data can and do easily cause the sufficient statis-
tics vectors to exceed the memory of any single node.
The MapReduce topology for estimation of LDA has

3For the remainder of this paper we will use MapRe-
duce to refer to the topology used by the MapReduce sys-
tem (Dean & Ghemawat, 2004). While the particular de-
tails of our implementation will differ substantially from
the MapReduce system (e.g., we use a single reduce node),
many key results should hold more generally (e.g., the
MapReduce approach uses unnecessarily high bandwidth).

been discussed in related work, notably Newman et al.
(2008), though they do not consider the sparse distri-
bution of the M-step, which is necessary for very large
data sets.

4.2. AllPairs Topology

MapReduce takes a completely centralized approach
to implementing the C-Step, in which the accumula-
tion of η at the Reduce node can be slow or even infea-
sible. This suggests a decentralized approach, in which
nodes directly pass relevant counts to one another and
no single node need store all of η or θ. This section
describes one such approach, AllPairs, which in a
sense represents the opposite extreme from MapRe-
duce. In AllPairs, the network graph is a clique
on the k nodes, and each node i passes a message
mij = η(i)[αi ∩ αj ] to each other node j containing
precisely the statistics j needs and nothing more (see
figure 3(b)). Each node j then computes its completed
set of sufficient statistics with a simple summation:

η[αi] = η(i) +
∑
j 6=i

mji

= η(i) +
∑
j 6=i

η(j)[αi ∩ αj ]

AllPairs requires a more complicated setup phase,
where each node i calculates, for roughly half of the
other nodes, the intersection αi ∩ αj of its parame-
ters with the other node j’s.4 Node i then sends the
contents of this intersection to j.

In each iteration, message passing proceeds asyn-
chronously, and each node begins its local M-Step as

4Note that the C-Step time is now sensitive to how our
data is partitioned. An interesting area for future work is
intelligently partitioning the data so that data split inter-
sections are small.
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soon as it has finished sending and receiving the neces-
sary counts. An important point is that, to avoid dou-
ble counting, a received count cannot be folded into a
node’s local statistics until the local copy of that count
has been incorporated into all outgoing messages.

AllPairs is attractive because it lacks the bandwidth
bottleneck of MapReduce, all paths of communica-
tion are only one hop long, and each node need only
be concerned with precisely those statistics relevant for
its local E- and M-steps. On the down side, AllPairs
needs a full crossbar connection between nodes, and
requires unnecessarily high bandwidth for dense suffi-
cient statistics that are relevant to datums on many
nodes. In particular, a statistic that is relevant to k′

nodes must be passed k′(k′−1) times, as compared to
an optimal value of 2(k′ − 1) (see section 4.3).

4.3. JunctionTree Topology

A tree-based topology related to the junction tree ap-
proach used for belief propagation in graphical models
(Pearl, 1988) can avoid the bandwidth bottleneck of
MapReduce and the bandwidth explosion of All-
Pairs. In this approach, the k nodes are embedded in
an arbitrary tree structure T , and messages are passed
along the edges in both directions (see figure 3(c)). We
are certainly not the first to exploit such structures for
distributing computation; see particularly Paskin et al.
(2004), who use it for inference rather than estimation.

We first describe the most bandwidth-efficient method
for communicating partial results about a single statis-
tic, and then show how this can be extended to pro-
duce an algorithm that works for the entire C-Step.
Consider a single sufficient statistic ηx (e.g., some ηst

for Model 1) which is only relevant to E- and M-Steps
on some subset of machines S. Before the C-Step,
each node has η(i)

x , and after communication each node
should have ηx =

∑
i∈S η

(i)
x . We cannot hope to ac-

complish this goal by passing fewer than 2(|S| − 1)
pairwise messages; clearly, it must take at least |S|−1
messages before any node completes its counts, and
then another |S| − 1 messages for each of the other
|S|−1 nodes to complete theirs too. This is fewer mes-
sages than either MapReduce or AllPairs passes.

This theoretical minimum bandwidth can be achieved
by embedding the nodes of S in a tree. After desig-
nating an arbitrary node as the root, each node accu-
mulates a partial sum from its subtree and then passes
it up towards the root. Once the root has accumu-
lated the completed sum ηx, it is recursively passed
back down the tree until all nodes have received the
completed count, for a total of 2(|S| − 1) messages.

Of course, each node must obtain a set of complete
relevant statistics η[αi] rather than a single statistic
ηx. One possibility is to pass messages for each suffi-
cient statistic on a separate tree; while this represents
the bandwidth-optimal solution for the entire C-step, in
practice the overhead of managing 240 million different
message trees would likely outweigh the benefits.

Instead, we can simply force all statistics to share the
same global tree T . In each iteration we proceed much
as before, designating an arbitrary root node and pass-
ing messages up and then down, except that now the
message mij from node i to j conveys the intersec-
tion of their relevant statistics αi ∩ αj rather than a
single number. For this to work properly, we require
that T has the following running intersection property:
for each sufficient statistic, all concerned nodes form a
connected subtree of T . In other words, for all triples
of nodes (i, x, j) where x is on the path from i to j,
we must have (αi ∩ αj) ⊆ αx. We can assume that
this property holds, by augmenting sets of statistics at
interior nodes if necessary.

When the running intersection property holds, the
message contents can be expressed as

mij = η(Ti)[αi ∩ αj ] towards root
mji = η[αi ∩ αj ] away from root

where Ti is used to represent the subtree rooted at
i, and η(Ti) is the sum of statistics from nodes in this
subtree. Thus, the single global message passing phase
can be thought of as |α| separate single-statistic mes-
sage passing operations proceeding in parallel, where
the root of each such sub-phase is the node in its sub-
tree closest to the global root, and irrelevant opera-
tions involving other nodes and statistics can be ig-
nored. In our actual implementation, we instead use
an asynchronous message-passing protocol common in
probabilistic reasoning systems (Pearl, 1988), which
avoids the need to designate a root node in advance.

The setup phase for JunctionTree proceeds as fol-
lows: (1) All pairwise intersections of statistics are
computed and saved to shared disk. (2) An arbitrary
node chooses and broadcasts a directed, rooted tree T
on the nodes which optimizes some criterion. (3) Each
node (except the root) constructs the set of statistics
that must lie on its incoming edge, by taking the union
of the intersections of statistics (which can be reread
from disk) for all pairs of nodes on opposite sides of the
edge.5 (4) Each node passes the constructed edge set
along its incoming edge, fixing future message struc-
tures in the process. (5) Each node augments its αi to

5More efficient algorithms are possible, but they require
more memory.
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include all statistics in local outgoing messages, thus
enforcing the running intersection property.

To choose a heuristically good topology, we use the
maximum spanning tree (MST) with edge weights
equal to the sizes of the intersections |αi ∩αj |, so that
nodes with more shared statistics tend to be closer to-
gether. This heuristic has been successfully used in the
graphical models literature (Pearl, 1988) to construct
junction trees. However, in general one can imagine
much better heuristics that also consider, e.g., max
degree, tree diameter or underlying network structure.

If statistics tend to be well-clustered within and be-
tween nodes, we can expect this MST to require less
bandwidth than either alternate topology, and (like
AllPairs) there should be no central bandwidth bot-
tleneck. On the other hand, if statistics tend to be
shared between only a few nodes and this sharing is
not appropriately clustered, bandwidth and memory
may increase because many statistics will have to be
added to enforce the running intersection property.6

Furthermore, if the diameter of the tree is large, la-
tency may become an issue as many sequential message
sending and incorporation steps will have to be per-
formed. Finally, the setup phase takes longer because
choosing the tree topology and enforcing the running
intersection property may be expensive. Despite these
potential drawbacks, we will see that MST generally
performs best of the three topologies investigated here
in terms of both bandwidth and total running time.

As a final note, if T is a “hub and spoke” graph, and
the hub’s statistics are augmented to contain all of η,
a MapReduce variant is recovered as a special case of
JunctionTree. This is the version of MapReduce
we actually implemented; it differs from the version
described in section 4.1 only in that the role of reduce
node is assigned to one of the workers rather than a
separate node, which reduces bandwidth usage.

5. Experiments

We performed experiments using the word alignment
model from section 2.1 and the LDA topic model
from section 2.2. For each of these models, we com-
pared the network topologies used to perform the C-
Step and how they affect the overall efficiency of EM.
We implemented the following topologies (described
in section 4): MapReduce, AllPairs, and Junc-
tionTree. Although our implementation was done in
Java, every reasonable care was taken to be time and
memory efficient in our choice of data structures and in

6This could be avoided by using different trees for dif-
ferent sets of statistics; we leave this for future work.

network socket communication. All experiments were
performed on a cluster of identical, load-free 3.0 GHz
32-bit Intel machines. Running times per iteration
represent the median over 10 runs of the maximum
time on any node. We also examine the bandwidth
of each topology, measured by the number of counts
communicated across the network per iteration.

5.1. Word Alignment Results

We performed Model 1 (see section 2.1) experiments
on the UN Arabic English Parallel Text TIDES Ver-
sion 2 corpus, which consists of about 3 million sen-
tences of translated UN proceedings from 1994 until
2001.7 For the full data set, there are more than 243
million distinct parameters.

In table 1(a), we present results where the number
of sentence-pair datums per node is held constant at
145K and the number of nodes (and thus total training
data) is varied. For 10 or more nodes, the MapRe-
duce topology runs out of memory due to the num-
ber of statistics that must be stored in memory at
the Reduce node.8 In contrast, both AllPairs and
JunctionTree complete training for the full data set
distributed on 20 nodes.

We also experimented with the setting where we fix the
total amount of data at 200K sentences, but add more
nodes to distribute the work. Figure 4 gives iteration
times for all three topologies broken down according
to E-, C-, and M-Steps. The MapReduce graph (fig-
ure 4(a)) shows that the C-Step begins dominating
run time as the number of nodes increases. This effect
reduces the benefit from distributing EM for larger
numbers of nodes. Both AllPairs and Junction-
Tree have substantially smaller C-Steps, which con-
tributes to much faster per-iteration times and also
allows larger numbers of nodes to be effective.

On the full dataset, JunctionTree outperforms All-
Pairs, but not by a substantial margin. Although
the two topologies have roughly comparable running
times, they have different network behaviors. Figure 5,
which compares bandwidth usage in billions of counts
transferred over the network per iteration, shows that
AllPairs uses substantially more bandwidth than ei-
ther MapReduce or JunctionTree. This is due
to the O(k2) number of messages sent per iteration.
In contrast, JunctionTree typically has a higher la-

7LDC catalog #LDC2004E13. See http://projects.
ldc.upenn.edu/TIDES/index.html.

8This issue could be sidestepped by using multiple Re-
duce nodes as in the MapReduce system; however, the fun-
damental inefficiency of the MapReduce topology would
remain.
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Figure 4: Speedup of median iteration time for three topologies as a function of the number of nodes, training Model 1
on 200k total sentence pairs. Time for each iteration is broken down into E-, C-, and M-Step time. The M-Step is present
but difficult to see due to its brevity.
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tency due to the fact that nodes must wait to receive
messages before they can send their own. AllPairs
and JunctionTree with the MST heuristic represent
a bandwidth and latency tradeoff, and the choice of
which to use depends on the properties of the partic-
ular network.

5.2. Topic Modeling Results

We present results for the variational EM LDA topic
model presented in section 2.2. Our results are on
the Reuters Corpus Volume 1 (Lewis et al., 2004).
This corpus consists of 804,414 newswire documents,
where all tokens have been stemmed and stopwords
removed.9 There are approximately 116,000 unique
word types after pre-processing. The number of pa-
rameters of interest is therefore 116,000T , where T is
the number of topics that we specify.

We experimented with this model on the entire corpus
and varied the number of topics. The largest num-

9We used the processed version of the corpus provided
by Lewis et al. (2004).
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ber of topics we used was T = 1,000, which yields 116
million unique parameters. Our results on iteration
time are presented in figure 6. Note that the number
of parameters depends linearly on the number of top-
ics, which can roughly be seen in figure 6. This figure
demonstrates that the efficiency of the AllPairs and
JunctionTree topologies as the number of parame-
ters increases. We see that JunctionTree edges out
AllPairs for a larger number of topics.

Table 1(b) shows detailed results for the experiment
depicted in figure 6. Besides the difference in itera-
tion times for the three algorithms as the number of
topics (and statistics) grows, there are at least two
other salient points. First, while the number of to-
tal statistics grows similarly to in the word alignment
experiments, here the number of unique statistics is
significantly smaller (i.e., each statistic, on average, is
relevant to more nodes). This leads to significantly
worse performance, especially in terms of bandwidth,
for AllPairs. A second point is that setup times are
much lower than for word alignment, because sets of
relevant words can be determined first, and only then
expanded to (word, topic) pairs.
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Model 1, 145k sentence pairs per node LDA, all 804k documents, 20 nodes
# nodes 1 2 5 10 20
# Unique Stats (in M) 29.37 47.84 90.58 147.65 243.01
# Total Stats (in M) 29.37 58.18 146.96 297.30 597.95
Opt Bandwidth (M of stats) 0.00 20.68 112.76 299.31 709.88

MapReduce
Setup Time (s) 138.37 185.01 458.72 * *
E-Step Time (s) 149.66 177.73 196.45 * *
C-Step Time (s) 0.002 8.41 282.43 * *
M-Step Time (s) 3.18 5.48 10.65 * *
Iteration Time (s) 152.85 191.62 489.54 * *
Max Hops 0 1 2 * *
Bandwidth (M of stats) 0.00 58.75 233.18 * *
Bottleneck (M of stats) 0.00 58.75 233.18 * *

AllPairs
Setup Time (s) 138.37 262.98 332.52 584.08 1003.11
E-Step Time (s) 149.66 163.37 166.99 168.66 204.63
C-Step Time (s) 0.002 2.91 17.64 56.51 594.18
M-Step Time (s) 3.18 3.43 3.53 3.49 3.61
Iteration Time (s) 152.85 169.71 188.16 228.66 802.43
Max Hops 0 1 1 1 1
Bandwidth (M of stats) 0.00 20.68 207.64 915.35 3615.97
Bottleneck (M of stats) 0.00 10.34 42.13 93.68 189.04

JunctionTree
Setup Time (s) 138.37 262.98 393.77 868.22 2392.72
E-Step Time (s) 149.66 163.37 167.32 196.00 222.14
C-Step Time (s) 0.002 2.91 24.73 51.89 536.80
M-Step Time (s) 3.18 3.43 4.20 6.05 8.85
Iteration Time (s) 152.85 169.71 196.25 253.94 767.79
Max Hops 0 1 3 6 13
Bandwidth (M of stats) 0.00 20.68 142.51 475.82 1424.26
Bottleneck (M of stats) 0.00 10.34 54.50 92.84 171.12

# topics 10 50 100 500 1000
# Unique Stats (in M) 1.16 5.82 11.64 58.18 116.36
# Total Stats (in M) 5.03 25.17 50.34 251.71 503.43
Opt Bandwidth (M of stats) 7.74 38.71 77.41 387.07 774.15

MapReduce
Setup Time (s) 3.90 14.17 23.58 96.50 225.85
E-Step Time (s) 9.36 24.65 47.16 260.44 524.09
C-Step Time (s) 5.18 26.37 51.91 599.32 993.60
M-Step Time (s) 0.20 2.69 6.51 39.19 89.88
Iteration Time (s) 14.73 53.72 105.58 898.95 1607.56
Max Hops 2 2 2 2 2
Bandwidth (M of stats) 9.52 47.60 95.20 475.99 951.98
Bottleneck (M of stats) 9.52 47.60 95.20 475.99 951.98

AllPairs
Setup Time (s) 20.44 29.72 35.19 213.49 549.89
E-Step Time (s) 9.15 23.19 46.97 265.74 518.71
C-Step Time (s) 2.62 13.09 24.23 146.24 572.00
M-Step Time (s) 0.05 0.49 1.45 8.85 20.01
Iteration Time (s) 11.82 36.78 72.65 420.83 1110.72
Max Hops 1 1 1 1 1
Bandwidth (M of stats) 52.29 261.43 522.87 2614.33 5228.65
Bottleneck (M of stats) 2.68 13.40 26.80 134.00 268.01

JunctionTree
Setup Time (s) 22.92 25.15 25.16 67.54 124.36
E-Step Time (s) 8.99 23.25 68.59 256.60 514.02
C-Step Time (s) 3.81 19.10 30.58 173.23 330.98
M-Step Time (s) 0.11 1.18 3.13 20.66 43.62
Iteration Time (s) 12.91 43.53 102.30 450.49 888.62
Max Hops 14 14 14 14 14
Bandwidth (M of stats) 12.85 64.23 128.46 642.30 1284.60
Bottleneck (M of stats) 1.39 6.93 13.87 69.33 138.67

(a) (b)

Table 1: (a) Results for scaling up number of nodes, training Model 1 with 145k sentence pairs per node. (b) Results
for scaling up number of topics, training LDA with all 804k documents on 20 nodes. All times are measured in seconds,
statistics are counted in millions, and bandwidths are measured in millions of statistics passed per iteration. # unique
stats measures |α|, whereas # total stats measures

P
i |αi|. Opt bandwidth is theoretically optimal bandwidth (see section

4.3). Setup time includes all time until all nodes started the first E-Step. Median total time per iteration is given, as well
as a breakdown into E-, C-, and M-Steps. Max hops is the diameter of the graph. Bottleneck is maximum bandwidth in
and out of any single node. (*) indicates an out-of-memory error.

We note that the total bandwidth is actually lower
for MapReduce than JunctionTree since the MST
only heuristically minimizes the number of discon-
nected statistic components, rather than the true cost
of enforcing the running intersection property. Despite
this, the bandwidth bottleneck for JunctionTree is
still much lower than for MapReduce.

6. Conclusion

We have demonstrated theoretically and empirically
that a distributed EM system can function success-
fully, allowing for both significant speedup and scaling
up to computations that would be too large to fit in
the memory of a single machine. Future work will con-
sider applications to other machine learning methods,
alternative junction tree heuristics, and more general
graph topologies.
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