Problem:

Efficient training of jointly sparse models in high dimensional
spaces.

Approach:

The 1; . norm has been proposed for jointly sparse regularization.

Contributions:
We derive an efficient projected gradient method for 1, .

regularization. Our projection works on O(n log n) time, same
cost as 1; projection.

We test our algorithm in a multi-task image annotation problem
and show that our algorithm can discover jointly sparse solutions
and leads to better performance than 1, and 1; regularization.

Joint Regularization Penalty

How do we penalize solutions that use too many features?
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Application: Multitask Learning
Collection of Tasks
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convergence rates.

We use a Projected SubGradient method.
Advantages: simple, scalable, guaranteed

These methods have been proposed for:

Convex constraints

1, regularization [Duchi et al. 2008]

Characterization of the solution:

1, regularization [Shalev-Shwartz et al. 2007]

Let p be the optimal mazimums of problem Py .

The optimal matriz B of Py o satisfies that:
Aij = = Bij=p
Aij<p = Bij=A
=0 = B;j;=0

At the optimal solution of Py o there exists a constant 6 > 0

such that for every i either:

u; >0 and Z(Ai’j —B;j)=10
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Mapping to a simpler problem

For any matrix A and a constant C such that C' < ||4]

there is a unique solution p*, 6* to the problem M; .
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The total cost of the algorithm is dominated by a
sort of the entries of A

The total cost is in the order of: O(dmlog(dm))

1,007

Dataset: Image Annotation

40 top content words

Image representation: Vocabulary Tree (Nister 2006)
11000 dimensions
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Dataset: Indoor Scene Recognition

67 indoor scenes.

Image representation: Similarities to a set of unlabeled images.
2000 dimensions.
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