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Joint Sparsity

Goal :
Etficient training of jointly sparse models in high
dimensional spaces.

Why? :
Learn from fewer examples.
Build more etficient classifiers.
Interpretability.
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], .- Regularization

How do we promote joint (i.e. row) sparsity ?
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The 1, norm on each row promotes

non-sparsity on each row.

An 1 norm on the maximum absolute
values of the coefficients across tasks

promotes sparsity.

Share parameters

Use few features



Contributions

An efficient projected gradient method for 1 ,, regularization

Our projection works on O(n log n) time, same cost as 1
projection

Experiments in Multitask image classification problems
We can discover jointly sparse solutions

l; ,, regularization leads to better performance than 1, and 1,
regularization



Multitask Application

D Collection of Tasks
D, m
D > I
|
D={Dy,Dy,...,D
- - ‘-- { 1 2 m}

‘ HE Dk:{<x]f7y11€)7"'7($7€kvysk)}
x € RY y e {+1,-1}
Joint Sparse
Approximation

argmmZ% Z L(fr(x +QZH1&X Wi k)

(z,y) €Dy



l; - Regularization: Constrained Convex
Optimization Formulation

— 1
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=1

We use a Projected SubGradient method.
Main advantages: simple, scalable, guaranteed convergence rates.

Projected SubGradient methods have been recently proposed:
1, regularization, i.e. SVM [Shalev-Shwartz et al. 2007]
1, regularization [Duchi et al. 2008]



Fuclidean Projection into the 1, , ball
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Characterization of the solution

Let p be the optimal mazrimums of problem P .
The optimal matrix B of Py ~ satisfies that:

Aij > = Bij=p
Aij <pi = Bij=Ai
w =0 = Bi,j =0
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Characterization of the solution

At the optimal solution of Py  there exists a constant 6 > 0
such that for every i either:

Ly > 0 and Zj(Ai’j — Bi,j) — 0

i = 0 and Z-Ai’j < v
J
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Mapping to a simpler problem

We can map the projection problem to the following problem
which finds the optimal maximums p

Ml,oo . find M, 6

s.t. Z,uz- =C

Z (Ai,j — ,LLZ) =60, Vis.t. u; >0

Jr A 5>

ZAZ'JSQ, Vi s.t. /LZ:O

j
Vi u; >0 ; 6>0

For any matrix A and a constant C' such that C' < [[A|], ,
there is a unique solution p*, 6" to the problem M; .
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Complexity

The total cost of the algorithm is dominated by
sorting the entries of A.

The total cost is in the order of: O(dmlog(dm))



Synthetic Experiments

Generate a jointly sparse parameter matrix W:

tk)

For every task we generate pairs: (2%, y¥)
H where: yf = sign(w;,z;

We compared three different types of

regularization :

I » projection
1, projection

1, projection
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Synthetic Experiments

Tecst Error Feature Selection Pelﬁf‘ormagce
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Dataset: Image Annotation

40 top content words

Raw image representation: Vocabulary Tree
(Nister and Stewenius 20006)

11000 dimensions
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Results
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Most of the differences are statistically significant



Results
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Dataset: Indoor Scene Recognition

67 indoor scenes.

Raw 1image representation: similarities to a set of
unlabeled images.

2000 dimensions.
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Conclusions

We proposed an efficient global optimization
algorithm for 1, ,, regulatization.

A simple an etficient tool to implement an 1,
penalty, similar to standard 1, and 1, penalties.

We presented experiments on image classification
tasks and shown that our method can recover
jointly sparse solutions.
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