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Goal : 
Efficient training of  jointly sparse models in high 

dimensional spaces.

Joint Sparsity

Why? :
Learn from fewer examples.
Build more efficient classifiers.
Interpretability.
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l1,∞ Regularization
How do we promote joint  (i.e. row) sparsity ?  

Coefficients for
feature 2

Coefficients for
task 2

An l1 norm  on the maximum absolute 
values of  the coefficients across tasks 
promotes sparsity.

Use few features 

The  l∞ norm on each row promotes 
non-sparsity on each row. Share parameters



Contributions
An efficient projected gradient method for l1,∞ regularization 

Our projection works on O(n log n) time, same cost as l1
projection

Experiments in Multitask image classification problems 

We can discover jointly sparse solutions

l1,∞ regularization leads to better performance than l2 and l1
regularization



Multitask Application
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l1,∞ Regularization: Constrained Convex 
Optimization Formulation

We use a Projected SubGradient method.
Main advantages: simple, scalable, guaranteed convergence rates.

A convex function

Convex constraints

Projected SubGradient methods have been recently proposed:
l2 regularization, i.e. SVM [Shalev-Shwartz et al. 2007] 
l1 regularization [Duchi et al. 2008]



Euclidean Projection into the l1-∞ ball
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Characterization of  the solution
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Characterization of  the solution

Feature I Feature II Feature III Feature IV



Mapping to a simpler problem
We can map the projection problem to the following problem 

which finds the optimal maximums μ:



Efficient Algorithm 
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Efficient Algorithm 
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Complexity

16

The total cost of  the algorithm is dominated by 
sorting the entries of  A.

The total cost is in the order of:



Synthetic Experiments

17

Generate a jointly sparse parameter matrix W:

For every task we generate pairs:
where:

We compared three different types of  
regularization : 

l1,∞ projection 
l1 projection
l2 projection



Synthetic Experiments
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Dataset: Image Annotation
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40 top content words  
Raw image representation: Vocabulary Tree

(Nister and Stewenius 2006)

11000 dimensions

president actress team



Results
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Most of  the differences are statistically significant



Results
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Dataset: Indoor Scene Recognition
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67 indoor scenes.  
Raw image representation: similarities to a set of  

unlabeled images.
2000 dimensions.

bakery bar Train station



Results



Conclusions

We proposed an efficient global optimization 
algorithm for l1,∞ regularization.

We presented experiments on image classification 
tasks and shown that our method can recover  
jointly sparse solutions. 

A simple an efficient tool to implement an l1,∞
penalty, similar to standard l1 and l2 penalties.
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