An Efficient Projection for $l_{1,\infty}$ Regularization

Ariadna Quattoni Xavier Carreras

Michael Collins

Trevor Darrell

MIT CSAIL

Joint Sparsity

Goal:

Efficient training of jointly sparse models in high dimensional spaces.

Why?:

- □ Learn from fewer examples.
- Build more efficient classifiers.
- □ Interpretability.

Church	Airport	Grocery Store	Flower-Shop
$W_{1,1}$	<i>W</i> _{1,2}	<i>W</i> _{1,3}	W _{1,4}
W _{2,1}	W _{2,2}	W _{2,3}	W _{2,4}
W _{3,1}	W _{3,2}	W _{3,3}	W _{3,4}
<i>W</i> _{4,1}	W _{4,2}	W _{4,3}	W _{4,4}
W _{5,1}	W _{5,2}	W _{5,3}	W _{5,4}

Church	Airport	Grocery Store	Flower-Shop
	R THE REAL		
$w_{1,1}$	<i>W</i> _{1,2}		<i>W</i> _{1,4}
W _{2,1}	W _{2,2}	W _{2,3}	W _{2,4}
W _{3,1}	W _{3,2}	The second	W _{3,4}
<i>W</i> _{4,1}	W _{4,2}	W _{4,3}	W _{4,4}
<i>W</i> _{5,1}	<i>W</i> _{5,2}	W _{5,3}	W _{5,4}

 $l_{1,\infty}$ Regularization

□ How do we promote joint (i.e. row) sparsity ?

Contributions

 \Box An efficient projected gradient method for $\mathbf{l}_{1,\infty}$ regularization

 \square Our projection works on O(n log n) time, same cost as \mathbf{l}_1 projection

Experiments in Multitask image classification problems

□ We can discover jointly sparse solutions

 $\Box \ l_{1,\infty}$ regularization leads to better performance than l_2 and l_1 regularization

Multitask Application

Collection of Tasks

$$\mathbf{D} = \{D_1, D_2, \dots, D_m\}$$
$$\mathbf{D}_k = \{(x_1^k, y_1^k), \dots, (x_{n_k}^k, y_{n_k}^k)\}$$
$$\mathbf{x} \in \mathbb{R}^d \ y \in \{+1, -1\}$$

$$\arg\min_{W} \sum_{i=1}^{m} \frac{1}{|D_k|} \sum_{(x,y)\in D_k} L(f_k(x), y) + Q \sum_{i=1}^{d} \max_k(|W_{i,k}|)$$

$l_{1,\infty}$ Regularization: Constrained Convex Optimization Formulation

$$\arg\min_{W} \sum_{i=1}^{m} \frac{1}{|D_k|} \sum_{(x,y)\in D_k} L(f_k(x), y)$$

A convex function

s.t.
$$\sum_{i=1}^{d} \max_{k}(|W_{i,k}|) \le C$$

Convex constraints

We use a Projected SubGradient method.
Main advantages: simple, scalable, guaranteed convergence rates.

Projected SubGradient methods have been recently proposed:

- l₂ regularization, i.e. SVM [Shalev-Shwartz et al. 2007]
- l₁ regularization [Duchi et al. 2008]

Euclidean Projection into the $l_{1-\infty}$ ball

$$\mathbf{P_{1,\infty}}: \quad \min_{B,\mu} \quad \frac{1}{2} \sum_{i,j} (B_{i,j} - A_{i,j})^2$$

s.t.
$$\forall i, j \ B_{i,j} \le \mu_i$$
$$\sum_i \mu_i = C$$
$$\forall i, j \ B_{i,j} \ge 0$$
$$\forall i \ \mu_i \ge 0$$

Characterization of the solution

Let μ be the optimal maximums of problem $P_{1,\infty}$. The optimal matrix B of $P_{1,\infty}$ satisfies that:

$$A_{i,j} \ge \mu_i \quad \Rightarrow \quad B_{i,j} = \mu_i$$
$$A_{i,j} \le \mu_i \quad \Rightarrow \quad B_{i,j} = A_{i,j}$$
$$\mu_i = 0 \quad \Rightarrow \quad B_{i,j} = 0$$

Characterization of the solution

At the optimal solution of $P_{1,\infty}$ there exists a constant $\theta \ge 0$ such that for every *i* either:

$$\mu_i > 0$$
 and $\sum_{j} (A_{i,j} - B_{i,j}) = \theta$
 $\mu_i = 0$ and $\sum_{j} A_{i,j} \le \theta$

Mapping to a simpler problem

 \Box We can map the projection problem to the following problem which finds the optimal maximums μ :

$$\begin{split} \mathbf{M}_{1,\infty}: & \text{find} \quad \boldsymbol{\mu} \ , \ \boldsymbol{\theta} \\ & \text{s.t.} \quad \sum_{i} \mu_{i} = C \\ & \sum_{j:A_{i,j} \ge \mu_{i}} (A_{i,j} - \mu_{i}) = \boldsymbol{\theta} \ , \ \forall i \ \text{s.t.} \ \mu_{i} > 0 \\ & \sum_{j} A_{i,j} \le \boldsymbol{\theta} \ , \ \forall i \ \text{s.t.} \ \mu_{i} = 0 \\ & \forall i \ \ \mu_{i} \ge 0 \ ; \ \ \boldsymbol{\theta} \ge 0 \end{split}$$

For any matrix A and a constant C such that $C < ||A||_{1,\infty}$, there is a unique solution μ^*, θ^* to the problem $M_{1,\infty}$.

Efficient Algorithm

Efficient Algorithm

Complexity

□ The total cost of the algorithm is dominated by sorting the entries of **A**.

□ The total cost is in the order of: $O(dm \log(dm))$

Synthetic Experiments

Generate a jointly sparse parameter matrix W:

□ For every task we generate pairs: (x_i^k, y_i^k) where: $y_i^k = \text{sign}(w_k^t x_i^k)$

• We compared three different types of regularization :

> l_{1,∞} projection
> l₁ projection
> l₂ projection

Synthetic Experiments

Dataset: Image Annotation

□ 40 top content words

Raw image representation: Vocabulary Tree (Nister and Stewenius 2006)

□ 11000 dimensions

Results

Most of the differences are statistically significant

Results

Dataset: Indoor Scene Recognition

□ 67 indoor scenes.

Raw image representation: similarities to a set of unlabeled images.

□ 2000 dimensions.

Results

Conclusions

□ We proposed an efficient global optimization algorithm for $l_{1,\infty}$ regularization.

□ A simple an efficient tool to implement an $l_{1,\infty}$ penalty, similar to standard l_1 and l_2 penalties.

We presented experiments on image classification tasks and shown that our method can recover jointly sparse solutions.