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Abstract

Current methods for learning visual categories work
well when a large amount of labeled data is available, but
can run into severe difficulties when the number of labeled
examples is small. When labeled data is scarce it may be
beneficial to use unlabeled data to learn an image repre-
sentation that is low-dimensional, but nevertheless captures
the information required to discriminate between image cat-
egories. This paper describes a method for learning repre-
sentations from large quantities of unlabeled images which
have associated captions; the aim is to learn a representa-
tion that aids learning in image classification problems. Ex-
periments show that the method significantly outperforms
a fully-supervised baseline model as well as a model that
ignores the captions and learns a visual representation by
performing PCA on the unlabeled images alone. Our cur-
rent work concentrates on captions as the source of meta-
data, but more generally other types of meta-data could be
used (e.g., video sequences with accompanying speech).

1. Introduction

Current methods for learning visual categories work well
when a large amount of labeled data is available, but can
run into severe difficulties when the number of labeled ex-
amples is small—for example when a user defines a new
category and provides only a few labeled examples. Image
representations are typically of high dimension, therefore
requiring relatively large amounts of training data. When
labeled data is scarce it may be beneficial to use unla-
beled data to learn an image representation that is low-
dimensional, but nevertheless captures the information re-
quired to discriminate between image categories.

In some cases unlabeled data may contain useful meta-
data that can be used to learn a low-dimensional representa-
tion that reflects the semantic content of an image. As one
example, large quantities of images with associated natu-
ral language captions can be found on the web. This paper
describes an algorithm that uses images with captions or
other meta-data to derive an image representation that al-

lows significantly improved learning in cases where only a
few labeled examples are available.

More specifically, we propose to use the meta-data to in-
duce a representation that reflects an underlying part struc-
ture in an existing, high-dimensional visual representation.
The new representation groups together synonymous vi-
sual features—features that consistently play a similar role
across different image classification tasks. We describe how
the structural learning framework of Ando and Zhang [1]
can be used to leverage the image meta-data to learn such a
representation.

Our approach exploits learning fromauxilliary problems
which can be created from images with associated captions.
Each auxilliary problem involves taking an image as input,
and predicting whether or not a particular content word (e.g,
man, official, orcelebrates) is in the caption associated with
that image. In structural learning, a separate linear clas-
sifier is trained for each of the auxilliary problems; mani-
fold learning (e.g., SVD) is then applied to the resulting set
of parameter vectors, in essence finding a low-dimensional
space which is a good approximation to the space of pos-
sible parameter vectors. If features in the high-dimensional
space correspond to the same semantic part, their associated
classifier parameters (weights) across different auxilliary
problems may be correlated in such a way that the basis
functions learned by the SVD step collapse these two fea-
tures to a single feature in a new, low-dimensional feature-
vector representation.

In a first set of experiments, we use synthetic data ex-
amples to illustrate how the method can uncover latent part
structures. We then describe experiments on classification
of news images into different topics. We compare a baseline
model that uses a bag-of-words SIFT representation of im-
age data, to our method, which replaces the SIFT represen-
tation with a new representation that is learned from 8,000
images with associated captions. In addition, we compare
our method to a baseline model that ignores the meta-data
and learns a new visual representation by performing PCA
on the unlabeled images. Note that our goal is to build clas-
sifiers that work on images alone (i.e., images whichdo not
have captions), and our experimental set-up reflects this, in



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#2820

CVPR
#2820

CVPR 2007 Submission #2820. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

that training and test examples for the topic classification
tasks include image data only. The experiments show that
our method significantly outperforms both baseline models.
The new representation reduces the number of labeled ex-
amples required by a large margin: a model trained with just
a single positive example using the new representation per-
forms as well as models trained with between8 and16 pos-
itive examples for the baseline models; a new model trained
with 4 positive examples performs as well as models trained
with between16 and32 positive examples for the baseline
models.

2. Previous work

When few labeled examples are available most current
supervised learning methods [21, 9, 11, 17, 13] for image
classification may work poorly. To reach human perfor-
mance, it is clear that knowledge beyond the supervised
training data needs to be leveraged.

There is a large literature on semi-supervised learning
approaches, where unlabeled data is used in addition to
labeled data. We do not aim to give a full overview of
this work, for a comprehensive survey article see [16].
Most semi-supervised learning techniques can be broadly
grouped into three categories depending on how they make
use of the unlabeled data: density estimation, dimensional-
ity reduction via manifold learning and function regulariza-
tion. Generative models trained via EM can naturally incor-
porate unlabeled data for classification tasks [14, 2]. In the
context of discriminative category learning, Fisher kernels
[10] have been used to exploit a learned generative model
of the data space in an SVM classifier.

Our work is related to work intransfer or multi-task
learning, where training data in related tasks is used to aid
learning in the problem of interest. Transfer and multi-task
learning have a relatively long history in machine learning
[19, 4, 15, 1]. Our work builds on the structure learning ap-
proach of Ando and Zhang [1], who describe an algorithm
for transfer learning, and suggest the use of auxilliary prob-
lems on unlabeled data as a method for constructing related
tasks. In vision a Bayesian transfer learning approach has
been proposed for object recognition [7] where a common
prior over visual classifier parameters is learnt, their results
show a significant improvement when learning from a few
labeled examples. In the context of multi-task learning, ap-
proaches that learn a shared part structure among different
classes have also been proposed. In [20] Torralba intro-
duced a discriminative (boosted) learning framework that
learns common structure. The paper demonstrated faster
learning with better generalization when parts are shared
among classes. Epshtein and Ullman [6] have also ad-
dressed this goal, presenting an approach which identifies
functional parts by virtue of shared context. To the best of
our knowledge, no previous approach to learning parts in

images has made use of meta-data and structure learning.
Several authors have considered the use of images with

associated text data. Fergus et al. [8] developed a method
using Google’s image search to learn visual categories, and
report results comparable to fully supervised paradigms.
Other work that has made use of image and/or video caption
data includes CMU’s Infomedia system1 and Berkeley’s
object-recognition as machine-translation [3], and names-
and-faces in the news efforts [12].

3. Learning Visual Representations

A good choice of representation of images will be cru-
cial to the success of any model for image classification.
The central focus of this paper is a method for automati-
cally learning a representation from images which are un-
labeled, but which have associated meta-data, for example
natural language captions. We are particularly interestedin
learning a representation that allows effective learning of
image classifiers in situations where the number of training
examples is small. The key to the approach is to use meta-
data associated with the unlabeled images to form a set of
auxilliary problems which drive the induction of an image
representation. We assume the following scenario:

• We have labeled (supervised) data for some image clas-
sification task. We will call this thecore task. For ex-
ample, we might be interested in recovering images rele-
vant to a particular topic in the news, in which case the la-
beled data would consist of images labeled with a binary
distinction corresponding to whether or not they were rele-
vant to the topic. We denote the labeled examples as the set
(x1, y1), . . . , (xn, yn) where(xi, yi) is thei’th image/label
pair. Note that test data points for the core task contain im-
age data alone (these images do not have associated caption
data, for example).

• We have N auxilliary training sets, Ti =
{(xi

1, y
i
1), . . . , (x

i
ni

, yi
ni

)} for i = 1 . . .N . Herexi
j is the

j’th image in thei’th auxilliary training set,yi
j is the label

for that image, andni is the number of examples in thei’th
training set. The auxilliary training sets consist of binary
classification problems, distinct from the core task, where
eachyi

j is in {−1, +1}. Shortly we will describe a method
for constructing auxilliary training sets using images with
captions.

• The aim is to learn a representation of images, i.e., a
function that maps imagesx to feature vectorsf(x). The
auxilliary training sets will be used as a source of informa-
tion in learning this representation. The new representation
will be applied when learning a classification model for the
core task.

In the next section we will describe a method for induc-
ing a representation from a set of auxilliary training sets.

1http://www.informedia.cs.cmu.edu/
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The intuition behind the method is to find a representation
which is relatively simple (i.e., of low dimension), yet al-
lows strong performance on the auxilliary training sets. If
the auxilliary tasks are sufficiently related to the core task,
the learned representation will allow effective learning on
the core task, even in cases where the number of training
examples is small.

A central question is how auxilliary training sets can be
created for image data. A key contribution of this paper is to
show that unlabeled images which have associated text cap-
tions can be used to create auxilliary training sets, and that
the representations learned with these unlabeled examples
can significantly reduce the amount of training data required
for a broad class of topic-classification problems. Note that
in many cases, images with captions are readily available,
and thus the set of captioned images available may be con-
siderably larger than our set of labeled images.

Formally, denote a set of images with associated cap-
tions as(x′

1, c1), . . . , (x
′

m, cm) where(x′

i, ci) is thei’th im-
age/caption pair. We base ourN auxilliary training sets
on N content words,(w1, . . . , wN ). A natural choice for
these words would be to choose theN most frequent con-
tent words seen within the captions.2 N auxilliary training
sets can then be created as follows. DefineIi[c] to be1 if
word wi is seen in captionc, and−1 otherwise. Create a
training setTi = {(x′

1, Ii[c1]), . . . , (x
′

m, Ii[cm])} for each
i = 1 . . .N . Thus thei’th training set corresponds to the
binary classification task of predicting whether or not the
wordwi is seen in the caption for an imagex′.

3.1. Learning Visual Representations from Auxil-
liary Tasks

This section describes an algorithm for learning a repre-
sentation from a set of auxilliary training sets. We adopt the
framework described in [1]. We assume that abaselinerep-
resentation of imagesg(x) ∈ R

d is available. In the experi-
ments in this paperg(x) is a SIFT histogram representation
[18]. In general,g(x) will be a “raw” representation of im-
ages that would be sufficient for learning an effective clas-
sifier with a large number of training examples, but which
performs relatively poorly when the number of training ex-
amples is small. For example, with the SIFT representation
the feature vectorsg(x) are of relatively high dimension
(we used = 1, 000), making learning with small amounts
of training data a challenging problem without additional
information.

Note that one method for learning a representation
from the unlabeled data would be to use PCA—or some
other density estimation method—over the feature vectors
g(x1), . . . ,g(xm) for the set of unlabeled images (we will
call this method thedata-PCAmethod). The method we

2In our experiments we define a content word to be any word which
does not appear on a “stop list” of common function words in English.

Input: Training sets{(xi
1, y

i
1), . . . , (x

i
ni

, yi
ni

)} for i =
1 . . .N . Herexi

j is thej’th image in thei’th training set,
yi

j is the label for that image.ni is the number of examples
in the i’th training set. We consider binary classification
problems, where eachyi

j is in {−1, +1}. Each imagex is

represented by a feature vectorg(x) ∈ R
d.

Step 1: Train N linear classifiers. For i = 1 . . .N ,
choose the optimal parameters on thei’th training set to
bew∗

i = arg minw Li(w) where

Li(w) =

ni
∑

j=1

l(w · g(xi
j), y

i
j) +

C

2
||w||2

(See section3.1for more discussion.)

Step 2: Perform SVD on the Parameter Vectors.Form
a matrixW of dimensiond × N , by taking the parameter
vectorsw∗

i for i = 1 . . .N . Compute a projection matrix
A of dimensionh× d by taking the firsth eigenvectors of
WW′.

Output: The projection matrixA ∈ R
h×d.

Figure 1. The structural learning algorithm.

describe differs significantly from PCA and similar meth-
ods, in its use of meta-data associated with the images, for
example captions. Later we will describe synthetic experi-
ments where PCA fails to find a useful representation, but
our method is successful. In addition we describe experi-
ments on real image data where PCA again fails, but our
method is successful in recovering representations which
significantly speed learning.

Given the baseline representation, the new representation
is defined asf(x) = Ag(x) whereA is a projection matrix
of dimensionh × d.3 The value ofh is typically chosen
such thath ≪ d. The projection matrix is learned from the
set of auxilliary training sets, using thestructural learning
approach described in [1]. Figure1 shows the algorithm.

In a first step, linear classifiersw∗

i are trained for each of
theN auxilliary problems. In several parameter estimation
methods, including logistic regression and support vector
machines, the optimal parametersw∗ are taken to bew∗ =
argminw L(w) whereL(w) takes the following form:

L(w) =
n

∑

j=1

l(w · g(xj), yj) +
C

2
||w||2 (1)

Here{(x1, y1), . . . , (xn, yn)} is a set of training examples,
where eachxj is an image and eachyj is a label. The con-
stantC > 0 dictates the amount of regularization in the

3Note that the restriction to linear projections is not necessarily lim-
iting. It is possible to learn non-linear projections usingthe kernel trick;
i.e., by expanding feature vectorsg(x) to a higher-dimensional space, then
taking projections of this space.

3
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model. The functionl(w · g(xj), yj) is some measure of
the loss for the parametersw on the example(xj , yj). For
example, in support vector machines [5] l is the hinge-loss,
defined asl(m, y) = (1−ym)+ where(z)+ is z if z >= 0,
and is0 otherwise. In logistic regression the loss function is

l(m, y) = − log
exp{ym}

1 + exp{ym}
. (2)

Throughout this paper we use the loss function in Eq.2, and
classify examples withsign(w · g(x)) wheresign(z) is 1
if z ≥ 0, −1 otherwise.

In the second step, SVD is used to identify a matrixA

of dimensionh×d. The matrix defines a linear subspace of
dimensionh which is a good approximation to the space of
induced weight vectorsw∗

1, . . . ,w
∗

N . Thus the approach
amounts tomanifold learning in classifier weight space.
Note that there is a crucial difference between this approach
and the data-PCA approach: in data-PCA SVD is run over
the data space, whereas in this approach SVD is run over
the space of parameter values. This leads to very different
behavior of the two methods.

Ando and Zhang [1] describe the following method that
makes use of the projection matrixA when training a model
for a new problem. The parameter values are chosen to be
w∗ = A′v∗ wherev∗ = arg minv L(v) and

L(v) =

n
∑

j=1

l((A′v) · g(xj), yj) +
C

2
||v||2 (3)

This essentially corresponds to constraining the parameter
vectorw∗ for the new problem to lie in the sub-space de-
fined byA. Hence we have effectively used the auxilliary
training problems to learn a sub-space constraint on the set
of possible parameter vectors.

If we definef(x) = Ag(x), it is simple to verify that

L(v) =

n
∑

j=1

l(v · f(xj), yj) +
C

2
||v||2 (4)

and also thatsign(w∗ · g(x)) = sign(v∗ · f(x)). Hence an
alternative view of the algorithm in figure1 is that it induces
a new representationf(x). In summary, the algorithm in
figure1 derives a matrixA that can be interpreted either as
a sub-space constraint on the space of possible parameter
vectors, or as defining a new representationf(x) = Ag(x).

4. Examples Illustrating the Approach

Figure2 shows a concept figure illustrating how PCA in
a classifier weight space can discover functional part struc-
tures given idealized auxillary tasks. When the tasks are
defined such that to solve them they need to learn to group
different visual appearances, the distinct part appearances

a b
abP D 1HSNL LL CL RE CP T 1 D P D T P T

Figure 2. Concept figure illustrating how manifold learningin
classifier weight space can group features corresponding tovisual
parts. Parts (eyes, nose, mouth) of an object (face) may havedis-
tict visual appearances (the top row of cartoon part appearances).
A specific face (e.g., a or b) is represented with the boolean indica-
tor vector as shown. Matrix D shows all possible faces given this
simple model; PCA on D is shown row-wise in PD (first principal
component is shown also above in green asPD1.) No basis in PD
groups together eyes or mouth appearances; different part appear-
ances never co-occur in D. However, idealized classifiers trained to
recognize, e.g., faces with a particular mouth and any eye (H,S,N),
or a particular eye given and mouth (LL,LC,LR,EC), will learn to
group features into parts. Matrix T and blue vectors above show
these idealized boolean classifier weights; the first principal com-
ponent of T is shown in red asPT1, clearly grouping together the
four cartoon eye and the three cartoon mouth appearances.PT1

would be a very useful feature for future learning tasks related to
faces in this simple domain.

will then become correlated in the weight space, and tech-
niques such as PCA will be able to discover them. In prac-
tice the ability to obtain such ideal classifiers is criticalto
our method’s success. Next we will describe a synthetic ex-
ample where the method is successful; in the following sec-
tion we present real-world examples where auxillary tasks
are readily available and yield features that speed learning
of future tasks.

We now describe experiments on synthetic data that il-
lustrate the approach. To generate the data, we assume that
there is a set of10 possibleparts. Eachobjectin our data
consists of 3 distinct parts; hence there are

(

10

3

)

= 120 pos-
sible objects. Finally, each of the 10 parts has 5 possible
observations, giving 50 possible observations in total (the
observations for each part are distinct).

As a simple example (see figure3), the 10 parts might
correspond to 10 letters of the alphabet. Each “object” then
consists of 3 distinct letters from this set. The 5 possible ob-
servations for each part (letter) correspond to visually dis-
tinct realizations of that letter; for example, these couldcor-
respond to the same letter in different fonts, or the same
letter with different degrees of rotation. The assumption is
that each observation will end up as a distinct visual word,

4
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(a)

a A A A A
b b B b b
c C c c c

. . .
j J J J J

(b)

A b c a bD
A b c A b D
a b c a b d
A d E b c f
A D E B c f
A D e b C f

Figure 3. Synthetic data involving objects constructed from letters.
(a) There are 10 possible parts, corresponding to the first 10letters
of the alphabet. Each part has 5 possible observations (correspond-
ing to different fonts). (b) Each object consists of 3 distinct parts;
the observation for each part is drawn uniformly at random from
the set of possible observations for that part. A few random draws
for 4 different objects are shown.

and therefore that there are 50 possible visual words.
The goal in learning a representation for object recogni-

tion in this task would be to learn that different observations
from the same part are essentially equivalent—for example,
that observations of the letter “a” in different fonts should
be collapsed to the same point. This can be achieved by
learning a projection matrixA of dimension10× 50 which
correctly maps the 50-dimensional observation space to the
10-dimensional part space. We show that the use of auxil-
liary training sets, as described in section3.1, is successful
in learning this structure, whereas PCA fails to find any use-
ful structure in this domain.

To generate the synthetic data, we sample100 instances
of each of the120 objects as follows. For a given object
y, definePy to be the set of parts that make up that object.
For each partp ∈ Py, generate a single observation uni-
formly at random from the set of possible observations for
p. Each data point generated in this way consists of an ob-
ject labely, together with a set of three observations,x. We
can representx by a 50-dimensional binary feature vector
g(x), where only 3 dimensions (corresponding to the three
observations inx) are non-zero.

To apply the auxilliary data approach, we create 120 aux-
illiary training sets. Thei’th training set corresponds to the
problem of discriminating between thei’th object and all
other 119 objects. A projection matrixA is learned from
the auxilliary training sets. In addition, we can also con-
struct a projection matrix using PCA on the data pointsg(x)
alone. Figures4 and5 show the projections learned by PCA
and the auxilliary tasks method. PCA fails to learn useful
structure; in contrast the auxilliary task method correctly
collapses observations for the same part to nearby points.

5. Experiments on Images with Captions

5.1. Data

We collected a data set consisting of 10,576 images.
These images were collected from the Reuters news web-
site (http://today.reuters.com/news/) during a
period of one week. Images on the Reuters website are par-
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Figure 4. The representations learned by PCA on the synthetic data
problem. The first figure shows projections 1 vs. 2; the second
figure shows projections 2 vs. 3. Each plot shows 50 points cor-
responding to the 50 observations in the model; observations cor-
responding to the same part have the same color. There is no dis-
cernable structure in the figures. The remaining dimensionswere
found to similarly show no structure.
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Figure 5. The representations learned by structural learning on the
synthetic data problem. The first figure shows projections 1 vs. 2;
the second figure shows projections 2 vs. 3. Each plot shows 50
points corresponding to the 50 observations in the model; obser-
vations corresponding to the same part have the same color. There
is clear structure in features 2 and 3, in that observations corre-
sponding to the same part are collapsed to nearby points in the
projected space. The remaining dimensions were found to show
similar structure to those in dimensions 2 and 3.

Figure 6. Example images from the figure skating, ice hockey,
Golden Globes and Grammy topics.

titioned intostoriesor topics, which correspond to different
topics in the news. Thus each image has a topic label—in
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our case, the images fell into 130 possible topics. Figure6
shows some example images.

The experiments involved predicting the topic variabley
for test images. We reserved8, 000 images as a source of
training data, and an additional1, 000 images as a potential
source of development data. The remaining 1,576 images
were used as a test set. Multiple training sets of different
sizes, and for different topics, were created as follows. We
created training setsTn,y for n = {1, 2, 4, 8, 16, 32, 64}and
y = {1, 2, 3, . . . , 15}, whereTn,y denotes a training set for
topicy which hasn positive examples from topicy, and4n
negative examples. The 15 topics corresponded to the 15
most frequent topics in the training data. The positive and
negative examples were drawn randomly from the training
set of size8, 000. We will compare various models by train-
ing them on each of the training setsTn,y, and evaluating
the models on the 1,576 test images.

In addition, each of the8, 000 training images had as-
sociated captions, which can be used to derive an image
representation (see section3.1). Note that we make no use
of captions on the test or development data sets. Instead,
we will use the8, 000 training images to derive represen-
tations that are input to a classifier that uses images alone.
In summary, our experimental set-up corresponds to a sce-
nario where we have a small amount of labeled data for a
core task (predicting the topic for an image), and a large
amount of unlabeled data with associated captions.

5.2. The Baseline Model

A baseline model was trained on all training setsTn,y. In
each case the resulting model was tested on the1, 576 test
examples. The baseline model consists of a logistic regres-
sion model over the SIFT features: to train the model we
used conjugate gradient descent to find the parametersw∗

which maximize the regularized log-likelihood, see equa-
tions 1 and2. When calculating equal-error-rate statistics
on test data, the value forP (y = +1|x;w∗) can be calcu-
lated for each test imagex; this score is then used to rank
the test examples.

The parameterC in Eq. 1 dictates the amount of regu-
larization used in the model. For the baseline model, we
used the development set of1, 000 examples to optimize
the value ofC for each training setTn,y. Note that this
will in practice give an upper bound on the performance
of the baseline model, as assuming1, 000 development ex-
amples is almost certainly unrealistic (particulary consider-
ing that we are considering training sets whose size is at
most 320). The values ofC that were tested were10k, for
k = −5,−4, . . . , 4.

5.3. The Data-PCA Model

As an additional baseline, we again trained a logistic-
regression classifier, but with the original feature vectors

g(x) in training and test data replaced byh-dimensional
feature vectorsf(x) = Ag(x) whereA was derived using
PCA. A matrixF of dimension1, 000× 8, 000 was formed
by taking the feature vectorsg(x) for the8, 000 data points;
the projection matrixA was constructed from the firsth
eigenvectors ofFF′. The PCA model has free parameters
h andC. These were optimized using the method described
in section5.5. We call this model thedata-PCAmodel.

5.4. A Model with Predictive Structure

We ran experiments using the structure prediction ap-
proach described in section3. We train a logistic-regression
classifier on feature vectorsf(x) = Ag(x) whereA is de-
rived using the method in section3.1. The matrixA is
induced in two steps. First, using the8, 000 training im-
ages, we created 100auxilliary training sets corresponding
to the 100 most frequent content words in the captions.4

Each training set involves prediction of a particular content
word. The input to the classifier is the SIFT representation
of an image. Next, we trained linear classifiers on each of
the 100 auxilliary training sets to induce parameter vectors
w1 . . .w100. Each parameter vector is of dimension1, 000;
we will useW to refer to the matrix of size1, 000 × 100
which contains all parameter values. The projection matrix
A consists of theh eigenvectors inRd which correspond to
theh largest eigenvalues ofWW′.

5.5. Cross-Validation of Parameters

There are two free parameters in the data-PCA and the
predictive structure models: the dimensionality of the pro-
jectionh, and the constantC used in Eq.1. A single topic—
the 7th most frequent topic in the training data—was used
to tune these parameters for both model types. For each
model type the model was trained on all training setsTn,7

for n = 1, 2, 4, 8, ..., 64, with values forh taken from the
set{2, 5, 10, 20, 30, 40, 200, 400} and values forC chosen
from {0.00001, 0.0001, . . . , 1000}. DefineEn

h,C to be the
equal-error-rate on the development set for topic 7, when
trained on the training setTn,7 using parametersh andC.
We choose the valueh∗ for all experiments on the remain-
ing 14 topics as

h∗ = argmin
h

∑

i=1,2,...,64

min
C

Ei
h,C

This corresponds to making a choice ofh∗ that performs
well on average across all training set sizes. In addition,
when training a model on a training set withi positive ex-
amples, we choseC∗

i = arg minC Ei
h∗,C as the regulariza-

tion constant. The motivation for using a single topic as a

4Content words are defined as any words which do not appear on a
“stop” list of common function words.
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Figure 7. Equal error rate averaged across topics, with standard
deviations calculated from ten runs for each topic. The equal error
rates are averaged across 14 topics; the 7th most frequent topic is
excluded as this was used for cross-validation (see section5.5).

validation set is that it is realistic to assume that a fairlysub-
stantial validation set (1,000 examples in our case) can be
created for one topic; this validation set can then be used to
choose values ofh∗ andC∗

i for all remaining topics.

5.6. Results
Figure7 shows the mean equal error rate and standard

deviation over ten runs for the experiments on the Reuters
dataset. For all training set sizes the structural learning
model leads to improved performance. The average per-
formance with one positive training example is around 62%
with the structural learning method; to achieve similar per-
formance with the baseline model requires between four
and eight positive examples. Similary, the performance with
4 positive examples for the structural learning method is
around 67%; the baseline model requires between 32 and
64 positive examples to achieve this performance. PCA’s
performance is lower than the baseline model for all train-
ing sizes and the gap between the two increases with the
size of the training set.

Figure8 shows mean equal error rates over the ten runs
for each topic. Structural learning improves performance
for all but three of the topics. Figures9 and 10show equal
error rates for two different topics. The first topic, “Aus-
tralian Open”, is one of the topics that exhibits the most
improvement from structural learning. The second topic,
“Winter Olympics”, is one of the three topics for which
structural learning does not improve performance. As can
be observed from the Australian Open curves the use of
structural features speeds the generalization ability of the
classifier. The structural model trained with only two pos-
itive examples performs comparably to the baseline model
trained with sixty four examples. For the Winter Olympics
topic the three models perform similarly. At least for a
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Figure 9. Roc Curves for the “Australian Open” topic.
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Figure 10. Roc Curves for the “Winter Olympics” topic.

small number of training examples, this topic exhibits a
slow learning curve; i.e. there is no significant improve-
ment in performance as we increase the size of the labeled
training set; this suggests that this is an inherently harder
class.

6. Conclusions

We have described a method for learning visual repre-
sentations from large quantities of unlabeled images which
have associated captions. The method makes use of aux-
illiary training sets corresponding to different words in the
captions, and structural learning, which learns a manifoldin
parameter space. The induced representations significantly
speed up learning of image classifiers applied to topic clas-
sification. Our results show that when meta-data labels are
suitably related to a target (core) task, the structure learning
method can discover feature groupings that speed learning
of the target task. Future work includes exploration of auto-
matic determination of relevance between target and auxil-
liary tasks, and experimental evaluation of the effectiveness
of structure learning from more weakly related auxillary do-
mains.
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Figure 8. Mean equal error rates per topic computed over 10 runs for the three models; blue corresponds to the structural learning model,
green to the baseline model and red to pca. The topics are: Australian Open, Ariel Sharon, Female Skating, Figure Skating, Golden Globes,
Grammy Awards, Ice Hockey, Iraq, Men Sky, Olympic Games, Muslim protest, Oscars, SuperBowl, Winter Olympics, Women Snowboard.
Note that the 7th most frequent topic, “Oscars”, was used to cross-validate parameters in the approach (see section5.5)
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