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Abstract lows significantly improved learning in cases where only a

few labeled examples are available.
Current methods for learning visual categories work  More specifically, we propose to use the meta-data to in-
well when a large amount of labeled data is available, but duce a representation that reflects an underlying part-struc

can run into severe difficulties when the number of labeled tyre in an existing, high-dimensional visual represeatati 070
examples is small. When labeled data is scarce it may beThe new representation groups together synonymous vi- 070
beneficial to use unlabeled data to learn an image repre- sual features—features that consistently play a similr ro -
sentation thatis low-dimensional, but nevertheless aastu  across differentimage classification tasks. We describeho

the information required to discriminate between image cat the structural learning framework of Ando and Zhany [

egories. This paper describes a method for learning repre- can be used to leverage the image meta-data to learn such a,
sentations from large quantities of unlabeled images which representation.

have associated captions; the aim is to learn a representa- o approach exploits learning fraauxilliary problems 078
tion thataids learning in image classification problems: EX \\ich can be created from images with associated captions. ;o
periments show that the method significantly outperforms 50 quxilliary problem involves taking an image as input, g0
a fully-supervised baseline model as well as a model that 4 predicting whether or not a particular contentword,(e.g g,
ignores the captions and learns a visual representation by 4 official, or celebrateis in the caption associated with (g5
performing PCA on the unlabeled images alone. Our Cur- 4 image. In structural learning, a separate linear clas- oqs
rent work concentrates on captions as the source of metagjfier is trained for each of the auxilliary problems; mani- oz,
data, but more generally other types of meta-data could be |4 |earning (e.g., SVD) is then applied to the resulting se  ogs
used (e.g., video sequences with accompanying speech). ot parameter vectors, in essence finding a low-dimensional g
space which is a good approximation to the space of pos- g7

1. Introduction sible parameter vectors. If features in f[he high-di.mera!io.n 088
space correspond to the same semantic part, their assbciate (g

Current methods for learning visual categories work well classifier parameters (weights) across different aurfilia g
when a large amount of labeled data is available, but canproblems may be correlated in such a way that the basis (g,
run into severe difficulties when the number of labeled ex- functions learned by the SVD step collapse these two fea- 5,
amples is small—for example when a user defines a newtures to a single feature in a new, low-dimensional feature- 95
category and provides only a few labeled examples. Imagevector representation. 094
representations are typically of high dimension, themfor  |n a first set of experiments, we use synthetic data ex- 095
requiring relatively large amounts of training data. When amples to illustrate how the method can uncover latent part 096
labeled data is scarce it may be beneficial to use unla-structures. We then describe experiments on classification 097
beled data to learn an image representation that is low-of news images into different topics. We compare a baseline 098
dimensional, but nevertheless captures the informatien re model that uses a bag-of-words SIFT representation of im- 099
quired to discriminate between image categories. age data, to our method, which replaces the SIFT represen- 100
In some cases unlabeled data may contain useful metatation with a new representation that is learned from 8,000 101
data that can be used to learn a low-dimensional representaimages with associated captions. In addition, we compare 102
tion that reflects the semantic content of an image. As oneour method to a baseline model that ignores the meta-data 103
example, large quantities of images with associated natu-and learns a new visual representation by performing PCA 104
ral language captions can be found on the web. This papeion the unlabeled images. Note that our goal is to build clas- 105
describes an algorithm that uses images with captions orsifiers that work on images alone (i.e., images wiiomot 106
other meta-data to derive an image representation that alhave captions), and our experimental set-up reflects this, i 107
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that training and test examples for the topic classification images has made use of meta-data and structure learning. 162

tasks include image data only. The experiments show that Several authors have considered the use of images with 163
our method significantly outperforms both baseline models. associated text data. Fergus et &l} developed a method

The new representation reduces the number of labeled exusing Google’s image search to learn visual categories, and 169
amples required by a large margin: a model trained with just report results comparable to fully supervised paradigms.

a single positive example using the new representation per-Other work that has made use of image and/or video caption o7
forms as well as models trained with betweesind 16 pos- data includes CMU’s Infomedia systénand Berkeley’s

itive examples for the baseline models; a new model trainedobject-recognition as machine-translaticé#, [and names- 169
with 4 positive examples performs as well as models trained and-faces in the news efforts7]. L0
with betweenl6 and32 positive examples for the baseline 1;;
models. 3. Learning Visual Representations s
2. Previous work A good choice of representation of images will be cru- 174

cial to the success of any model for image classification. 175

When few labeled examples are available most currentThe central focus of this paper is a method for automati- 176
supervised learning methodsi] 9, 11, 17, 19 for image  cally learning a representation from images which are un- 177
classification may work poorly. To reach human perfor- |apeled, but which have associated meta-data, for example 178
mance, it is clear that knowledge beyond the supervisednatural language captions. We are particularly intereisted 179
training data needs to be leveraged. learning a representation that allows effective learnihg o 180
There is a large literature on semi-supervised learningimage classifiers in situations where the number of training 181
approaches, where unlabeled data is used in addition texamples is small. The key to the approach is to use meta- 162
labeled data. We do not aim to give a full overview of gata associated with the unlabeled images to form a set of 183
this work, for a comprehensive survey article se€]l[  ayxilliary problems which drive the induction of an image 184

Most semi-supervised learning techniques can be broadlyrepresentation. We assume the following scenario: 185
grouped into three categories depending on how they make 4 \ne have labeled (supervised) data for some image clas- 186
use of the unlabeled data: density estimation, dimensional gjfication task. We will call this theore task. For ex- 187

ity reduction via manifold learning and function regulariz ample, we might be interested in recovering images rele- 188
tion. Generative models trained via EM can naturally incor- yant to a particular topic in the news, in which case the la- 189
porate unlabeled data for classification task§ P]. In the beled data would consist of images labeled with a binary 190
context of discriminative category learning, Fisher késne gistinction corresponding to whether or not they were rele- 191
[10] have been used to exploit a learned generative modekant to the topic. We denote the labeled examples as the set 192
of the data space in an SVM classifier. (21,51), - - (Tn, yn) Where(z;, y;) is thei'th image/label 193

Our work is related to work irtransfer or multi-task  pair. Note that test data points for the core task contain im- 194
learning, where training data in related tasks is used to aidage data alone (these images do not have associated caption' 9

learning in the problem of interest. Transfer and multktas  gata, for example). 196

learning have a relatively long history in machine learning 4 \we have N auxilliary training sets, 7, = 197

[19, 4, 15, 1]. Our work builds on the structure learning ap- (i yi) . (2% yi )} fori = 1...N. Herez! is the 198

proach of Ando and Zhand], who describe an algorithm by o700 e e it . P 199
i - Jj'th image in thei’th auxilliary training sety; is the label

for transfer learning, and suggest the use of auxilliaryopro 200

. for that image, ana; is the number of examples in thh
lems on unlabeled data as a method for constructing relateqraining set. The auxilliary training sets consist of binar 201

tasks. In vision a Bayesian transfer learning approach has, assification problems, distinct from the core task, where 202

been proposed for object recognitiof] {vhere a common eachy’ isin {—1,+1}. Shortly we will describe a method 203
prior over visual classifier parameters is learnt, theiuitss for co%structing 7auxi||iary training sets using imageshwit 204
show a significant improvement when learning from a few captions. 205
labeled examples. In the context of multi-task learning, ap 206

s e The aim is to learn a representation of images, i.e., a
proaches that learn a shared part structure among differenf . i that maps images to feature vector§(z). The 207

classes hgve .a'?o peen proposed. 2@]_[I’orra|ba intro- auxilliary training sets will be used as a source of informa- 208
duced a discriminative (boosted) learning framework that tion in learning this representation. The new represeoati 209
learns common structure. The paper demonstrated faSte5vi|| be applied when learning a classification model for the 210

learning with better generalization when parts are sharedCore task 211
gmongdctlﬁ_sses. | Epshte|tr_1 and Ullma? [lﬁvehglﬁqdad:[_f_ In the next section we will describe a method for induc- ~ “

ressed this goal, presenting an approach which ident Ieﬁng a representation from a set of auxilliary training sets. 218
functional parts by virtue of shared context. To the best of 214
our knowledge, no previous approach to learning parts in  http://www.informedia.cs.cmu.edu/ 215
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The intuition behind the method is to find a representation
which is relatively simple (i.e., of low dimension), yet al-
lows strong performance on the auxilliary training sets. If
the auxilliary tasks are sufficiently related to the corétas
the learned representation will allow effective learning o

the core task, even in cases where the number of training

examples is small.
A central question is how auxilliary training sets can be
created for image data. A key contribution of this paper is to

show that unlabeled images which have associated text cap-bew; = arg miny, L;(w) where

tions can be used to create auxilliary training sets, and tha
the representations learned with these unlabeled example
can significantly reduce the amount of training data reqlire
for a broad class of topic-classification problems. Noté tha
in many cases, images with captions are readily available,
and thus the set of captioned images available may be con
siderably larger than our set of labeled images.

Formally, denote a set of images with associated cap-
tionsaga),c1),. .., (x),, cm) Where(z}, ¢;) is thei'th im-
age/caption pair. We base olf auxilliary training sets
on N content words(ws,...,wy). A natural choice for
these words would be to choose tiWemost frequent con-
tent words seen within the captiofsY auxilliary training
sets can then be created as follows. Defifle] to bel if
word w; is seen in captior, and—1 otherwise. Create a
training setZ; = {(«}, L;[c1]), ..., (¢}, I;[c:n])} for each
i = 1...N. Thus thei'th training set corresponds to the
binary classification task of predicting whether or not the
word w; is seen in the caption for an imagé

3.1. Learning Visual Representations from Auxil-
liary Tasks

This section describes an algorithm for learning a repre-
sentation from a set of auxilliary training sets. We adopt th
framework described inl]. We assume thatlaaselinerep-
resentation of images(x) € R? is available. In the experi-
ments in this papeg(z) is a SIFT histogram representation
[19. In generalg(x) will be a “raw” representation of im-
ages that would be sufficient for learning an effective clas-
sifier with a large number of training examples, but which
performs relatively poorly when the number of training ex-
amples is small. For example, with the SIFT representation
the feature vectorg(x) are of relatively high dimension
(we used = 1,000), making learning with small amounts
of training data a challenging problem without additional
information.

Note that one method for learning a representation
from the unlabeled data would be to use PCA—or some
other density estimation method—over the feature vectors
g(x1),...,g(x,) for the set of unlabeled images (we will
call this method thelata-PCAmethod). The method we

2In our experiments we define a content word to be any word which
does not appear on a “stop list” of common function words iglih.
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— P P ) 270
Input:  Training sets{(x,vi), ..., (), y,,)} fori = -
1...N. Herez; is the;j'th image in thei'th training set, -
y; is the label for thatimager; is the number of examples 273
in the¢’th training set. We consider binary classification
problems, where eaaft is in {—1, +1}. Each imager is 975
represented by a feature vecigir:) € R?. 276
Step 1: Train N linear classifiers. Fori = 1...N, 207
choose the optimal parameters on itk training set tq 278
279
280
ni 281
S Liw) = D lw s + 5wl 282
j=1 283
(See sectio.1for more discussion.) ;Zg
Step 2: Perform SVD on the Parameter VectorsForm 286
a matrixW of dimensiond x N, by taking the parameter 287
vectorsw? for i = 1...N. Compute a projection matr|x 288
A of dimensiom x d by taking the first, eigenvectors of 289
WWwW’. 290
Output: The projection matrixA € R"*<, 291
Figure 1. The structural learning algorithm. izg
describe differs significantly from PCA and similar meth- 294
ods, in its use of meta-data associated with the images, for 295
example captions. Later we will describe synthetic experi- 296
ments where PCA fails to find a useful representation, but 297
our method is successful. In addition we describe experi- 293
ments on real image data where PCA again fails, but our 299
method is successful in recovering representations which 300
significantly speed learning. 301
Given the baseline representation, the new representation 302
is defined af(x) = Ag(x) whereA is a projection matrix 303
of dimensionh x d.® The value ofh is typically chosen 304
such thath <« d. The projection matrix is learned fromthe 305
set of auxilliary training sets, using ths¢ructural learning 306
approach described if]. Figurel shows the algorithm. 307
In a first step, linear classifiexs! are trained for each of 308
the N auxilliary problems. In several parameter estimation 309
methods, including logistic regression and support vector 310
machines, the optimal parametevs$ are taken to bev* = 311
arg miny, L(w) whereL(w) takes the following form: 312
313
- C 314
L(w) =Y _Uw-glz).p) + 5 wlP @ F
=t 316
Here{(x1,vy1),. .., (xn,yn)} is a set of training examples, 317
where eachy; is an image and eaajj is a label. The con- 318
stantC' > 0 dictates the amount of regularization in the 319
N 3Notg that the restriction to Iinear projgcti(_)ns is not neaeity Ii_m- 22(1)
iting. It is possible to learn non-linear projections usthg kernel trick;
i.e., by expanding feature vectqgéz) to a higher-dimensional space, then 322
taking projections of this space. 323
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924 model. The functiori(w - g(z,),y,) is some measure ¢ B i Y i mi—= w ADIA 378
925 the loss for the parametevs on the exampléz;, y;). For A iAlAL A i 379
926 example, in support vector machinés [ is the hinge-loss » A B A 980
sl defined ag(m, y) = (1—ym) where(z) isz if z >=0, . iaial - ol
2;2 and isO otherwise. In logistic regression the loss functior s 222
330 exp{ym w 384
331 I(m,y) = —log H%g{y?}:n}' (2) « 385
332 £c iAi Al I 386
333 Throughout this paper we use the loss function inEqnd Pr, Poi 387
331 classify examples witkign(w - g(x)) wheresign(z) is 1 P - 388
335 if z >0, —1 otherwise. @ G E ﬂ [ﬁ] q Lﬁ—‘ 389
336 In the second step, SVD is used to identify a matkix W LD P TE PT 390
337 of dimension: x d. The matrix defines a linear subspace 391
333 dimensionk which is a good approximation to the space o1 Figure 2. Concept figure illustrating how manifold learniimg 392
339 induced weight vectorsvi, ..., w%. Thus the approach classifier weight space can group featureg correspondmggal 393
340 amounts tomanifold learning in classifier weight space parts. Parts (eyes, nose, mouth) of an object (face) may diave 394
. o . tict visual appearances (the top row of cartoon part appeas).
341 Note that there is a crucial dlﬁgrence between th|§ apyroac A specific face (e.g., a or b) is represented with the booledica- 395
342 and the data-PCA approach: in data-PCA SVD is run over y, yector as shown. Matrix D shows all possible faces givis t 396
343 the data space, whereas in this approach SVD is run oveimple model; PCA on D is shown row-wise in PD (first principal 397
344 the space of parameter values. This leads to very differentcomponent is shown also above in greetPd3;.) No basis in PD 398
345 behavior of the two methods. groups together eyes or mouth appearances; different paeta: 399
346 Ando and Zhang1] describe the following method that ances never co-occur in D. However, idealized classifiansed to 400
347 makes use of the projection matéxwhen training a model  recognize, e.g., faces with a particular mouth and any ey®, (], 401
348 for a new problem. The parameter values are chosen to ber a particular eye given and mouth (LL,LC,LR,EC), will leao 402
349 w* = A’v* wherev* = argmin, L(v) and group_featgres into parts. Maf[r_ix T a_nd blue ve_ctors _ab(_)mvsh 403
these idealized boolean classifier weights; the first goadaiom-
950 n C ponent of T is shown in red aB8T3, clearly grouping together the a0
ol L(v) = Z I(A'V) - g(z;),y5) + =V (3) four cartoon eye and the three cartoon mouth appeararies. 405
352 j=1 o 2 would be a very useful feature for future learning tasksteel@o 406
353 faces in this simple domain. 407
354 This essentially corresponds to constraining the paramete 408
355 vectorw* for the new problem to lie in the sub-space de- Will then become correlated in the weight space, and tech- 409
356 fined by A. Hence we have effectively used the auxilliary nigques such as PCA will be able to discover them. In prac- 410
357 training problems to learn a sub-space constraint on the sefice the ability to obtain such ideal classifiers is critital 411
358 of possible parameter vectors. our method’s success. Next we will describe a synthetic ex- 412
359 If we definef(z) = Ag(z), it is simple to verify that ample where the method is successful; in the following sec- 413
360 tion we present real-world examples where auxillary tasks 414
361 n C are readily available and yield features that speed legrnin 415
362 L(v) = Z Uv - £(z)), y5) + EHVHQ (4) of future tasks. 416
363 =1 We now describe experiments on synthetic data that il- 417
364 and also thatign(w* - g(z)) = sign(v* - f(z)). Hence an Iustrat_e the approach. To generate the d_ata,_ we assume that41s
35 alternative view of the algorithm in figutis that it induces ~ there is a set of0 possibleparts Eachobjectin our data 419
366 a new representatiof(z). In summary, the algorithm in c_onS|sts. of 3 dlsynct parts; hence there (#é = 120 pos- _ 420
367 figurel derives a matriA that can be interpreted either as  SiPI€ objects. Finally, each of the 10 parts has 5 possible 421
368 a sub-space constraint on the space of possible parameté}bservat!onsg|V|ng 50 possible _opservauons in total (the 422
369 vectors, or as defining a new representafior) = Ag(z). observatlpns for each part are Q|st|nct). _ 423
370 As a simple example (see figugg, the 10 parts might 424
371 4. Examples lllustrating the Approach corre_spondto _1Q letters of the alphabet. Each “objept" then 425
372 consists of 3 distinct letters from this set. The 5 possibleo 426
373 Figure2 shows a concept figure illustrating how PCA in servations for each part (letter) correspond to visualéy di 427
374 a classifier weight space can discover functional part struc tinct realizations of that letter; for example, these caxdd 428
375 tures given idealized auxillary tasks. When the tasks arerespond to the same letter in different fonts, or the same 429
376 defined such that to solve them they need to learn to groupletter with different degrees of rotation. The assumptoni 430
377 different visual appearances, the distinct part appeasanc that each observation will end up as a distinct visual word, 431
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432 e s e o 486
s a A A A A NS - - : se7
c|AbD o o8 .
434 b b B Db b b bd . S0 T 488
C ¢ c¢c c (b)ac a
435 ()] ¢ AdE | bcf g . . S 409
436 _ ADE | Bcf - o Sl o 490
437 b33 3 ADe | bC T R e : . 491
438 Figure 3. Synthetic data involving objects constructedtetters. Tae . 492
439 (a) There are 10 possible parts, corresponding to the firgtds .. ) 493
440 of the alphabet. Each part has 5 possible observationsgmond- B T T T e 494
441 ing to different fonts). (b) Each object consists of 3 distiparts; 495
442 the observation for each part is drawn uniformly at randoomfr ~ Figure 4. The representations learned by PCA on the synttfata 496
443 the set of possible observations for that part. A few randeawd ~ problem. The first figure shows projections 1 vs. 2; the second -
444 for 4 different objects are shown. figure shows projections 2 vs. 3. Each plot shows 50 po?nts cor g
e ) . responding to the 50 observations in the model; obsenaton 190
and therefore that there are 50 possible visual words. responding to the same part have the same color. There isno di
446 The goal in learning a representation for object recogni- cernable structure in the figures. The remaining dimensicere 500
st tion in this task would be to learn that different observasio ~ found to similarly show no structure. o01
448 from the same part are essentially equivalent—for example, 002
449" that observations of the letter “a” in different fonts stbul . OR—— T R o03
450" pe collapsed to the same point. This can be achieved by.. =~ = * B 004
451 Jearning a projection matriA of dimensionl0 x 50 which . } 005
452 correctly maps the 50-dimensional observation space to the " ) 506
453 10-dimensional part space. We show that the use of auxil- "~ |- . - o07
454 liary training sets, as described in sectln, is successful .| © T - - 008
455 inlearning this structure, whereas PCA fails to find any use- «f . . .o . 509
456 ful structure in this domain. I v 510
457 I e T ] 511

To generate the synthetic data, we sanigl@instances

458 ; ; ; 512
459 of ea(_:h of thel20 objects as follows. For a given Obj_eCt Figure 5. The representations learned by structural legrom the 513
460 y, defineP, to be the set of parts that make up that object. gynthetic data problem. The first figure shows projections. 2y -
161 For each parp € P,, generate a single observation uni- the second figure shows projections 2 vs. 3. Each plot shows 50 .
P formly at random from the set of possible observations for points corresponding to the 50 observations in the modaleeb 1
p. Each data point generated in this way consists of an ob-vations corresponding to the same part have the same cdiere T
463 ject labely, together with a set of three observations\Ve is clear structure in features 2 and 3, in that observationse€ oL
a4 can represent by a 50-dimensional binary feature vector sponding to the same part are collapsed to nearby pointsein th o8
465 g(z), where only 3 dimensions (corresponding to the three Projected space. The remaining dimensions were found te sho 519
466 observations i) are non-zero. similar structure to those in dimensions 2 and 3. 520
aer To apply the auxilliary data approach, we create 120 aux- o2l
468 - i~ > S 522
illiary training sets. The'th training set corresponds to the
469 L _ . 523
70 problem of discriminating between thigh object and all s
1 other 119 objects. A projection matriX is learned from .
o the auxilliary training sets. In addition, we can also con- e
struct a projection matrix using PCA on the data pog(ts)
473 . o 527
o alone. Figureg and5 show the projections learned by PCA s
and the auxilliary tasks method. PCA fails to learn useful
475 L . 529
P structure; in contrast the auxilliary task method corgectl 20
i collapses observations for the same part to nearby points. oy
478 i . . 532
479 5. Experiments on Images with Captions 533
%9 5.1, Data o
481 o ) Figure 6. Example images from the figure skating, ice hockey, 535
482 We collected a data set consisting of 10,576 images.olden Globes and Grammy topics. 536
483 These images were collected from the Reuters news web- 537

484 site htt p: //t oday. reut ers. conynews /) during a titioned intostoriesor topics which correspond to different 538
485 period of one week. Images on the Reuters website are partopics in the news. Thus each image has a topic label—in 539
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040 our case, the images fell into 130 possible topics. Figure g(x) in training and test data replaced bydimensional 004
o4t shows some example images. feature vector§(z) = Ag(x) whereA was derived using 299
042 The experiments involved predicting the topic variaple PCA. A matrixF of dimensionl, 000 x 8, 000 was formed o9
o43 for test images. We reserved000 images as a source of by taking the feature vectoggz) for the8, 000 data points; 297
oad training data, and an additional000 images as a potential the projection matrixA was constructed from the firgt 598
45 source of development data. The remaining 1,576 imageseigenvectors oFF’. The PCA model has free parameters 099
046 were used as a test set. Multiple training sets of different h andC. These were optimized using the method described 600
o4l sizes, and for different topics, were created as follows. We in section5.5. We call this model thelata-PCAmodel. oul
048 created training sets, , forn = {1, 2,4, 8,16, 32,64} and 602
049 y=4{1,2,3,...,15}, whereT,, , denotes a training set for 5.4, A Model with Predictive Structure 603
o850 topicy which hash positive examples from topig, and4n ) ) - 604
551 5 We ran experiments using the structure prediction ap- 605

negative examples. The 15 topics corresponded to the 1 hd bed i ) in a logisti .
552 most frequent topics in the training data. The positive and Proach described in secti@ We train a logistic-regression 606

553 negative examples were drawn randomly from the training C/assifier on feature vectof¢z) = Ag(x) whereA is de- eur
oo set of size8, 000. We will compare various models by train- _r|ved using the method n SeCt!dhl The ma_ltr_le_ IS ous
555 ing them on each of the training sefs,,, and evaluating induced in two steps. Fl_rst, using tl8e000 training im- 609
556 the models on the 1,576 test images. ages, we created 1@Quxilliary training sets porrespondlng 610
557 In addition, each of th&, 000 training images had as- to the 100 most frequent content words in t.he captions. 611
558 sociated captions, which can be used to derive an imageEaCh trammg set involves prg_dw'gon of a particular comtg 612
559 representation (see sectidrl). Note that we make no use word. _The input to the cla_ssmer_ is the SIFT_representatlon 613
560 of captions on the test or development data sets. Insteag®f an image. _Next, we trained Im_ear classifiers on each of 614
561 we will use thes, 000 training images to derive represen- the 100 auxilliary training sets to md_uce p_arame_ter vector 615
062 tations that are input to a classifier that uses images alone¥'! - - - W100- Each parameter vectoris of_dlmensmm)oo; ole
563 In summary, our experimental set-up corresponds to a Sceyve_W|II useW to refer to the matrix of size, 0_00 X 100 _ 617
564 nario where we have a small amount of labeled data for aWhICh c_ontalns all p_arameter va_Iu?is. T_he projection matrix 618
565 core task (predicting the topic for an image), and a large A consists of 'Fhéz elgenvectors/mR which correspond to 619
:2? amount of unlabeled data with associated captions. theh largest eigenvalues GV W". 2;2
568 5.2. The Baseline Model 5.5. Cross-Validation of Parameters 622
:33 A baseline model was trained on all training sBfs,. In There are two free parameters in the data-PCA and the 222

571 each case the resulting model was tested onl th&6 test predictive structure models: the dimensionality of the-pro

C . . X 625
572 examples. The baseline model consists of a logistic regresjectionh, and the constart used in Eql. A single topic— 626
573 sion model over the SIFT features: to train the model we the 7th most frequent topic in the training data—was used
574 used conjugate gradient descent to find the parameaters  to tune these parameters for both model types. For each . .

575 which maximize the regularized log-likelihood, see equa- model type the model was trained on all training sEts 629
576 tions 1 and2. When calculating equal-error-rate statistics for n = 1,2,4,8, ..., 64, with values forh taken from the 630
577 on test data, the value fd?(y = +1|z; w*) can be calcu-  set{2,5,10, 20, 30,40, 200,400} and values foC' chosen

. 631
578 lated for each test image this score is then used to rank from {0.00001, 0.0001, .. .,1000}. DeflneE,’;Vc to be the 632
579 the test examples. equal-error-rate on the development set for topic 7, when ..
580 The paramete€ in Eq. 1 dictates the amount of regu- trained on the training séf, ; using parameters andC'. 634
581 larization used in the model. For the baseline model, we We choose the value* for all experiments on the remain- 635
582 used the development set f000 examples to optimize  ing 14 topics as 636
583 the value ofC for each training sef’, ,. Note that this . 637
584 will in pract_ice give an upper b(?und on the performance h* = argmhin Z mcin E} ¢ 638
585 of the baseline model, as assumin@00 development ex- i=1,2,...,64 639
586 amples is almost certainly unrealistic (particulary cdesi . . _ 640
g, ing that we are considering training sets whose size is atThis corresponds to making a choice/of that performs
con most 320). The values of that were tested wer)*, for well on average across all training set sizes. In addition, o
coo k=—5—4,..., 4. when training a model on a training set witlpositive ex- s
o0 amples, we chos€; = argminge EZC as the regulariza- i
o1 5.3. The Data-PCA Model tion constant. The motivation for using a single topic as a cae
592 As an additiopgl base"nf:-'y we ag?-i'j‘ trained a logistic-  4content words are defined as any words which do not appear on a 646
593 regression classifier, but with the original feature vextor “stop” list of common function words. 647
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Reuters Dataset: 14 topics
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Figure 7. Equal error rate averaged across topics, wittdatan
deviations calculated from ten runs for each topic. The kguar
rates are averaged across 14 topics; the 7th most frequeat$o
excluded as this was used for cross-validation (see sestipn

validation set is that it is realistic to assume that a festlfp-
stantial validation set (1,000 examples in our case) can be
created for one topic; this validation set can then be used to
choose values di* andC; for all remaining topics.

5.6. Results

Figure 7 shows the mean equal error rate and standard
deviation over ten runs for the experiments on the Reuters
dataset. For all training set sizes the structural learning
model leads to improved performance. The average per-
formance with one positive training example is around 62%
with the structural learning method; to achieve similar-per

8
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T
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Figure 9. Roc Curves for the “Australian Open” topic.
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Winter Olympics: Trained with 4 examples.

Figure 10. Roc Curves for the “Winter Olympics” topic.
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formance with the baseline model requires between foursmall number of training examples, this topic exhibits a 734
and eight positive examples. Similary, the performancewit Slow learning curve; i.e. there is no significant improve- 735
4 positive examples for the structural learning method is ment in performance as we increase the size of the labeled 736
around 67%; the baseline model requires between 32 andraining set; this suggests that this is an inherently harde 737
64 positive examples to achieve this performance. PCAs class.

performance is lower than the baseline model for all train- 6. Conclusions

ing sizes and the gap between the two increases with the

size of the training set.

738
739
740

We have described a method for learning visual repre- 741

Figure8 shows mean equal error rates over the ten runssentations from large quantities of unlabeled images which 742
for each topic. Structural learning improves performance have associated captions. The method makes use of aux- 743

for all but three of the topics. Figur&and 10 show equal
error rates for two different topics. The first topic, “Aus-

illiary training sets corresponding to different words et
captions, and structural learning, which learns a manifold

744
745

tralian Open”, is one of the topics that exhibits the most parameter space. The induced representations significantl 746
improvement from structural learning. The second topic, speed up learning of image classifiers applied to topic clas- 747
“Winter Olympics”, is one of the three topics for which sification. Our results show that when meta-data labels are 748

structural learning does not improve performance. As cansuitably related to a target (core) task, the structuranlagr

749

be observed from the Australian Open curves the use ofmethod can discover feature groupings that speed learning 750

structural features speeds the generalization abilityhef t

of the target task. Future work includes exploration of auto

751

classifier. The structural model trained with only two pos- matic determination of relevance between target and auxil- 752

itive examples performs comparably to the baseline modelliary tasks, and experimental evaluation of the effectasn
trained with sixty four examples. For the Winter Olympics of structure learning from more weakly related auxillary do

topic the three models perform similarly. At least for a mains.

753
754
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Figure 8. Mean equal error rates per topic computed over A€ fiar the three models; blue corresponds to the structeaahing model,
green to the baseline model and red to pca. The topics arérafime Open, Ariel Sharon, Female Skating, Figure Skatwden Globes,
Grammy Awards, Ice Hockey, Irag, Men Sky, Olympic Games, IMuprotest, Oscars, SuperBowl, Winter Olympics, Women@umard.

Note that the 7th most frequent topic, “Oscars”, was useddssevalidate parameters in the approach (see settipn
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