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Abstract

In this thesis we present a discriminative part-based approach for the recognition
of object classes from unsegmented cluttered scenes. Objects are modelled as flex-
ible constellations of parts conditioned on local observations. For each object class
the probability of a given assignment of parts to local features is modelled by a
Conditional Random Field (CRF). We propose an extension of the CRF framework
that incorporates hidden variables and combines class conditional CRFs into a uni-
fied framework for part-based object recognition. The random field captures spatial
coherence between region labels. The parameters of the CRF are estimated in a max-
imum likelihood framework and recognition proceeds by finding the most likely class
under our model. The main advantage of the proposed CRF framework is that it
allows us to relax the assumption of conditional independence of the observed data
(i.e. local features) often used in generative approaches, an assumption that might
be too restrictive for a considerable number of object classes.

In the second part of this work we extend the detection model and develop a dis-
criminative recognition system which both detects the presence of objects and finds
their regions of support in an image. Our part based model allows joint object detec-
tion and region labelling; in contrast to previous methods ours can be trained with
a combination of examples for which we have labelled support regions and examples
for which we only know whether the object is present in the image. We extend the
detection model by incorporating a segmentation variable; the segmentation variable
is assumed to be observed in the fully labelled data and hidden on the partially la-
belled one. Our latent variable model learns sets of part labels for each image site,
which allows us to merge part-based detection with part-based region labelling (or
segmentation).

Thesis Supervisor: Michael Collins
Title: Associate Professor

Thesis Supervisor: Trevor Darrell
Title: Associate Professor
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Chapter 1

Introduction

1.1 Chapter Overview

In this chapter we describe the main motivation behind the development of our dis-

criminative latent model for object detection and segmentation.

1.2 Motivation: A discriminative latent variable

model

Object class recognition is one of the most important problems in computer vision and

has received significant attention in the last few years. Due to the large inner class

variation in most visual object categories, developing a general model is a challenging

task and has become one of the main focuses of high-level vision research.

Most current object recognition approaches use local feature representations (where

images are represented as sets of features) and can be roughly divided into two sep-

arate groups, according to the main paradigm followed : generative (Weber 2000,

Fergus 2003, Lowe 1999) and discriminative (Torralba 2004, Kumar 2003, 2004, Opelt

submission, Viola 2001).

One of the main advantages of the best performing generative models is that they

can handle missing data (i.e., the correspondence between local features and parts
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in the model) in a principled manner. For this thesis we develop a discriminative

approach for object recognition, that can handle missing correspondences by incor-

porating latent variables into the model.

In the first part of this work we present a latent discriminative model for object

detection, which decides weather an object of a given class is present in the image

or not. The limitation of this model is that while it performs well for detection

it does not necessarily provide an accurate segmentation of the image in terms of

foreground/background. We address this problem in the second part (Chapter 5) by

extending the detection model to perform both detection and foreground/background

segmentation.

1.2.1 Detection Model

We define the detection problem in the following manner: given a training set of n

pairs (xi, yi), where xi is the ith image and yi is the category of the object present

in xi, we would like to learn a model that maps images to object categories. We are

interested in learning to recognize rigid objects such as cars, motorbikes, and faces

from one or more fixed view-points.

The part-based models that we consider represent images as sets of patches, or

local features. These features can be high entropy patches which are detected by

an interest operator such as that described in (Lowe 1999) or segments (i.e.,“blobs”)

obtained with a bottom up segmentation such as that described in (Sharon 2000).

Thus an image xi can be considered to be a vector {xi,1, . . . , xi,m} of m patches or

image regions. Each patch xi,j has a feature-vector representation φ(xi,j) ∈ �d; the

feature vector might capture various features of the appearance of a patch, as well as

features of its relative location and scale.

This scenario presents an interesting challenge to conventional classification ap-

proaches in machine learning, as the input space xi is naturally represented as a set of

feature-vectors {φ(xi,1), . . . , φ(xi,m)} rather than as a single feature vector. Moreover,

the patches underlying the local feature vectors may have complex interdependencies:

for example, they may correspond to different parts of an object, whose spatial ar-
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rangement is important to the classification task.

The most popular approach for part-based object recognition is the generative

model proposed in (Fergus 2003). This classification system models the appearance,

spatial relations and co-occurrence of local parts. However, one of the limitations of

this framework is that to make the model computationally tractable one has to assume

the independence of the observed data (i.e., local features) given their assignment to

parts in the model.

This assumption might be too restrictive for a considerable number of object

classes made of structured patterns. For example when modelling the building ob-

ject category one would expect the data from each local feature or image site to be

dependent on its neighbors because edges at adjoining sites follow some underlying

structured pattern. The same is true for other object classes made of structured

patterns. Some work has been done in the past to model the dependencies in the

observations (Cheng 2001, Wilson 2004). However, modelling such dependencies in a

generative framework is a complex problem and most of the techniques proposed make

simplifying assumptions to get some sort of factored approximation of the likelihood.

A second limitation of generative approaches is that they require a model P (xi,j|hi,j)

of patches xi,j given underlying variables hi,j (e.g., hi,j may be a hidden variable in

the model, or may simply be yi). Accurately specifying such a generative model may

be challenging – in particular in cases where patches overlap one another, or where

we wish to allow a hidden variable hi,j to depend on several surrounding patches.

A preferable approach may be to use a feature-vector representation of patches,

and to use a discriminative learning framework, while at the same time having a

latent variable that allows us to model the hidden correspondences between local

image features and parts in the model. In this thesis we follow an approach of this

type.

Similar observations concerning the limitations of generative models have been

made in previous work which has led to research on discriminative models for se-

quence labelling such as MEMM’s (McCallum 2000) and conditional random fields

(CRFs)(Lafferty 2001). For example, in vision, CRF’s have been applied to the task of
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detecting man made structures in natural images and have been shown to outperform

Markov Random Fields (“MRFs”) (Kumar 2003).

A strong argument for these models as opposed to MRFs concerns their flexibility

in terms of representation, in that they can incorporate essentially arbitrary feature-

vector representations φ(xi,j) of the observed data points.

In this thesis we follow such an approach and propose a new model for object

recognition based on Conditional Random Fields. We model the conditional distri-

bution p(y|x) directly. A key difference of our approach from previous work on CRFs

is that we make use of hidden variables to model missing correspondences.

In previous work on CRFs (Lafferty 2001) each “label” yi is a sequence hi =

{hi,1, hi,2, . . . , hi,m} of labels hi,j for each observation xi,j . The label sequences are

typically taken to be fully observed on training examples. In our case the labels yi

are unstructured labels from some fixed set of object categories, and the relation-

ship between yi and each observation xi,j is not clearly defined. Instead, we model

intermediate part-labels hi,j as hidden variables in the model.

The model defines conditional probabilities P (y,h | x), and hence indirectly

P (y | x) =
∑

h P (y,h | x), using a CRF. Dependencies between the hidden vari-

ables h are modelled by an undirected graph over these variables. The result is a

model where inference and parameter estimation can be carried out using standard

graphical model algorithms such as belief propagation (Pearl 1996).

1.2.2 Extending the model to joint detection and segmenta-

tion

Ideally, a general purpose object recognition system would be able to perform not only

detection (i.e., detecting the presence of the object in the image) but also segmentation

(i.e., determining which regions in the image correspond to the object and which to

the background). The reason for this is that while for some applications like image

retrieval detection might be sufficient (since the user is only interested in images that

contain an object of a certain class) for others, like video surveillance, segmentation

14



might be required. We present such a model that can perform joint detection and

foreground/background segmentation in Chapter 5.

Detection is often an easier task than segmentation because a few discriminative

features can be enough to determine the presence of the object. Also, in many natural

settings the background around the object can be correlated with the class label of the

image (i.e., cars tend to appear in roads and desks tend to appear in offices). In this

case an object recognition system should be able to exploit discriminative contextual

information as long as it is constrained to generate an accurate segmentation.

Object recognition systems that perform both segmentation and detection are

normally trained using fully labelled data (i.e., data for which we know which regions

in the image correspond to the object and which to the background), but obtaining

fully labelled data can be expensive. Thus it would be preferable to have a model

that is able to learn from a combination of a small number of fully labelled and a large

number of partially labelled examples (examples where we only know that the object

is present in the image). In the second part of this thesis we present a discriminative

part based model for joint object detection and segmentation that can be trained

with such a combination of fully-labelled and partially-labelled data.

To integrate fully labelled data into our model and learn both segmentation and

detection we incorporate a segmentation variable, observed in the fully labelled data

and hidden when trained on partially labelled (i.e., unsegmented) data. During train-

ing for the partially labelled examples we maximize the likelihood of the correct

classification and for the fully-labelled examples the joint likelihood of the correct

segmentation and classification. The proposed model captures the intuitive notion

that there is a dependency between the correct segmentation of the image and the

category of the object present in it.

15
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Chapter 2

Background and Related Work

2.1 Chapter Overview

Since the model proposed in this thesis can be regarded a generalization of the Con-

ditional Random Field (CRF) approach that incorporates hidden variables we start

this chapter with a brief overview on CRF’s.

Section 2.3 of this chapter includes a description of one of the most popular gen-

erative part based approaches as well as related discriminative approaches.

2.2 Background: Conditional Random Fields

Some problems in vision can be stated as labelling problems in which the input to the

system is a set of image features and the output or solution is a set of corresponding

labels.

In vision the most common method for solving the labelling problem is the Markov

Random Field approach. An MRF is a generative model that defines a joint prob-

ability distribution P (y,x) over random observations variables x = [x1, x2, . . . , xm]

and corresponding label variables y = [y1, y2, . . . , ym] .

An alternative to the MRF framework is to model the conditional probability

P (y|x) over labels given local observations directly, since such a model does not need

to enumerate all possible observations it has the advantage that it doesn’t need to
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make unwarranted independence assumptions for tractable inference.

A conditional random field is simply a Markov Random Field globally conditioned

on observation x. Formally we define an undirected graph G = (V, E) where each

node v ∈ V corresponds to an element yi of Y. y,x is a conditional random field

if when conditioned on x each random variable yi obeys the Markov property with

respect to graph G. The absence of an edge between two vertices in G implies that the

random variables represented by these vertices are conditionally independent given

all other random variables in the model.

2.3 Related Work: Part-Based Models for Object

Recognition

2.3.1 Generative Approach

In (Fergus 2003) the authors present a framework where each object model consists of

a mixture of parts. For each part there is an associated distribution over appearance

scale and location. This is a generative model where for an image x the appearance

of each local feature given its assignment to a part in the model is assumed to be

independent of all the other local features. In contrast, no independence assumptions

are made about the location of the features, which are modelled as a multivariate

gaussian distribution.

The model is trained with partially-labelled data (i.e., data for which only the

presence or absence of the object in the image is known). The correspondences

between local features and parts in the model are regarded as missing data. The model

handles these missing correspondences by integrating over all possible assignments of

parts to local features.

One of the limitations of this approach is that since it requires to enumerate all

possible hidden assignments its complexity is exponential on the number of model

parts. The other limitation is that as we already mentioned the model assumes the

independence of each local feature given its assignment to a model part, an assumption
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that might be too restrictive for certain object classes.

2.3.2 Discriminative Random Fields Approach

The part based discriminative approach that we use to model objects is more closely

related to the work of Kumar and Herbert (Kumar 2003, Kumar 2004). They train

their model using fully-labelled data where each image region is assigned a part label

from a discrete set of object parts.

A CRF is trained and detection and segmentation are performed by finding the

most likely labelling of the image under the learned model. The main difference

between our approach and Kumar’s is that we do not assume that the part assign-

ment variables are fully observed and are instead regarded as latent variables in our

model. Incorporating hidden variables allows use of the partially labelled data during

training.

2.3.3 “Dictionary” Approaches

Another related discriminative model for object recognition is the one presented in

(Yang 2000). This framework like ours builds a discriminative classifier based on a

part-based feature representation. Such a representation is obtained by measuring

the similarity between image patches (detected with an interest point detector) to a

pre-defined dictionary of parts. The dictionary is built by extracting and clustering

patches from a set of representative images of the target class. The feature represen-

tation also includes geometric relations between every pair of parts. These features

are used to train a Sparse Network of Winnows (SNow Learning Architecture).

Leibe (Leibe 2003) proposes a similar approach in which the model learns a dic-

tionary of parts based on the appearances of local patches obtained with an interest

point detector. This dictionary also incorporates the relative spatial positions of the

parts as features. Their approach uses a voting scheme to combine the output of

different part detectors and classify unseen images.

Dork (Dork submission) proposes a re-ranking approach in which learning is per-
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formed in two stages. In the first stage a set of candidate parts are found by clustering

image patches (obtained with an interest point detector) using a mixture of Gaus-

sians. Each component in the mixture is regarded as a candidate part classifier. In

the second stage the candidate part classifiers are ranked based on the mutual infor-

mation between the object category label and the part classifier. Finally, the top n

classifiers are selected to be used for testing. An image is classified positively if more

than t parts where detected by the top n part classifiers, where t is a threshold chosen

through cross validation.

In (Ullman 2001) the authors propose a fragment based approach. Similar to

Dorko’s work, image patches are first extracted from the training images and repre-

sentative object fragments are chosen based on the mutual information between an

object class and a fragment. Recognition proceeds in two stages, in the first stage

fragments are detected in the image by measuring the distance between image patches

and the stored object fragments. In the second stage the local information from the

fragments is combined in a probabilistic manner to determine weather the object is

present in the image or not.

They propose two frameworks in which local fragment information can be com-

bined. In the first approach they combine the local information with a naive-bayes

classifier that assumes that each fragment in an object is independent of the others.

The second approach tries to relax this independence assumption between fragments

by imposing a hierarchy between them such that the probability of a particular frag-

ment depends on the probability of its parent fragment.

One of the main differences between the above “dictionary” approaches and ours

is that we do not perform a pre-selection of discriminative parts but rather we in-

corporate such a step during training of the classifier. In this way we ensure that

the parts learnt are optimal in a discriminative sense. We believe that the problem

with the pre-selection of parts is that it might cause “error-chaining” that will result

in suboptimal classifiers. In other words, if the preprocessing step does not capture

discriminative parts it might be hard for the classifier to achieve good accuracy even

if it is trained in a discriminative manner.

20



2.3.4 Boosting Approach

In (Opelt submission) Opelt proposes an approach based on boosting weak classifiers.

In this approach an image is represented by a list of local features obtained with a

variety of detectors and represented with different descriptors such as SIFT. The

weak hypothesis of Adaboost are calculated from these features. Intuitively, a weak

hypothesis classifies an example based on the presence of a feature.
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Chapter 3

Latent Conditional Random Fields

for Object Detection

3.1 Chapter Overview

Section 3.2 describes the general form of the model while Section 3.3 gives details

about the specific features used for the experiments in Chapters 4 and 5. Finally,

Section 3.4 shows how the model can be efficiently trained using belief propagation.

3.2 General Form of the Model

Our task is to learn a mapping from images x to labels y. Each y is a member of

a set Y of possible image labels, for example, Y = {background, car}. We take

each image x to be a vector of m “patches” x = {x1, x2, . . . , xm}.1 Each patch xj is

represented by a feature vector φ(xj) ∈ �d. For example, in our experiments each

xj corresponds to a patch that is detected by the feature detector in (Lowe 1999).

Chapter 4 gives details of the feature-vector representation φ(xj) for each patch. Our

training set consists of labelled images (xi, yi) for i = 1 . . . n, where each yi ∈ Y ,

and each xi = {xi,1, xi,2, . . . , xi,m}. For any image x we also assume a vector of

1Note that the number of patches m can vary across images, and did vary in our experiments.
For convenience we use notation where m is fixed across different images; in reality it will vary across
images but this leads to minor changes to the model.

23



“parts” variables h = {h1, h2, . . . , hm}. These variables are not observed on training

examples, and will therefore form a set of hidden variables in the model. Each hj is a

member of H where H is a finite set of possible parts in the model. Intuitively, each

hj corresponds to a labelling of xj with some member of H. Given these definitions of

image-labels y, images x, and part-labels h, we will define a conditional probabilistic

model:

P (y,h | x, θ) =
eΨ(y,h,x;θ)∑

y′,h eΨ(y′,h,x;θ)
. (3.1)

Here θ are the parameters of the model, and Ψ(y,h,x; θ) ∈ � is a potential function

parameterized by θ. We will discuss the choice of Ψ shortly. It follows that

P (y | x, θ) =
∑
h

P (y,h | x, θ) =

∑
h eΨ(y,h,x;θ)∑

y′,h eΨ(y′,h,x;θ)
. (3.2)

Given a new test image x, and parameter values θ∗ induced from a training example,

we will take the label for the image to be arg maxy∈Y P (y | x, θ∗). Following previous

work on CRFs (Kumar 2003, Lafferty 2001), we use the following objective function

in training the parameters:

L(θ) =
∑

i

log P (yi | xi, θ) − 1

2σ2
||θ||2 (3.3)

The first term in Eq. 3.3 is the log-likelihood of the data. The second term is the log

of a Gaussian prior with variance σ2, i.e., P (θ) ∼ exp
(

1
2σ2 ||θ||2

)
. We will use gradient

ascent to search for the optimal parameter values, θ∗ = arg maxθ L(θ), under this

criterion.

We now turn to the definition of the potential function Ψ(y,h,x; θ). We encode

structural constraints with an undirected graph structure, where the hidden variables

{h1, . . . , hm} correspond to vertices in the graph. E denotes the set of edges in the

graph and (j, k) ∈ E denotes that there is an edge in the graph between variables

hj and hk. E can be an arbitrary graph; intuitively it should capture any domain

specific knowledge that we have about the structure of h. For example in our case it

could encode spatial consistency between part labels.
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We will see later that when E is a tree there exist exact methods for inference

and parameter estimation in the model, for example using belief propagation. If E

contains cycles then approximate methods, such as loopy belief-propagation, may be

necessary for inference and parameter estimation. We define Ψ to take the following

form:

Ψ(y,h,x; θ) =

m∑
j=1

∑
l

f 1
l (j, y, hj,x)θ1

l +
∑

(j,k)∈E

∑
l

f 2
l (j, k, y, hj, hk,x)θ2

l (3.4)

where f 1
l , f 2

l are functions defining the features in the model, and θ1
l , θ

2
l are the

components of θ. The f 1 features depend on single hidden variable values in the

model, the f 2 features can depend on pairs of values. Note that Ψ is linear in the

parameters θ, and the model in Eq 3.1 and Eq 3.4 is a log-linear model. Moreover

the features respect the structure of the graph, in that no feature depends on more

than two hidden variables hj , hk, and if a feature does depend on variables hj and hk

there must be an edge (j, k) in the graph E.

Assuming that the edges in E form a tree, and that Ψ takes the form in Eq 3.4,

then exact methods exist for inference and parameter estimation in the model. This

follows because belief propagation (Pearl 1988) can be used to calculate the following

quantities in O(|E||Y|) time:

∀y ∈ Y , Z(y | x, θ) =
∑
h

exp{Ψ(y,h,x; θ)}

∀y ∈ Y , j ∈ 1 . . .m, a ∈ H, P (hj = a | y,x, θ) =
∑

h:hj=a

P (h | y,x, θ)

∀y ∈ Y , (j, k) ∈ E, a, b ∈ H, P (hj = a, hk = b | y,x, θ) =
∑

h:hj=a,hk=b

P (h | y,x, θ)

The first term Z(y | x, θ) is a partition function defined by a summation over the h

variables. Terms of this form can be used to calculate P (y | x, θ) = Z(y | x, θ)/
∑

y′ Z(y′ | x, θ).

Hence inference—calculation of arg maxP (y | x, θ)— can be performed efficiently in

the model. The second and third terms are marginal distributions over individual
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variables hj or pairs of variables hj , hk corresponding to edges in the graph. Later

in this chapter we show that the gradient of L(θ) can be defined in terms of these

marginals, and hence can be calculated efficiently.

3.3 The Specific Form of the Model

We now turn to the specific form for the model used in the experiments in Chapters

4 and 5. We define

Ψ(y,h,x; θ) =
∑

j

φ(xj) · θ(hj) +
∑

j

θ(y, hj) +
∑

(j,k)∈E

θ(y, hj, hk) (3.5)

Here θ(k) ∈ �d for k ∈ H is a parameter vector corresponding to the k’th part label.

The inner-product φ(xj) · θ(hj) can be interpreted as a measure of the compatibility

between patch xj and part-label hj . Each parameter θ(y, k) ∈ � for k ∈ H, y ∈ Y can

be interpreted as a measure of the compatibility between part k and label y. Finally,

each parameter θ(y, k, l) ∈ � for y ∈ Y , and k, l ∈ H measures the compatibility

between an edge with labels k and l and the label y. It is straightforward to verify

that the definition in Eq 3.5 can be written in the same form as Eq 3.4. Hence belief

propagation can be used for inference and parameter estimation in the model.

3.4 Learning and Inference

This section considers estimation of the parameters θ∗ = arg maxL(θ) from a training

sample, where L(θ) is defined in Eq. 3.3. We use a quasi-Newton method to optimize

L(θ) (note that due to the use of hidden variables, L(θ) has multiple local minima,

and our method is therefore not guaranteed to reach the globally optimal point).

In this section we describe how the gradient of L(θ) can be calculated efficiently.

Consider the likelihood term that is contributed by the i’th training example, defined

as:

Li(θ) = log P (yi | xi, θ) = log

( ∑
h eΨ(yi,h,xi;θ)∑

y′,h eΨ(y′,h,xi;θ)
.

)
(3.6)
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We first consider derivatives with respect to the parameters θ1
l corresponding to fea-

tures f 1
l (j, y, hj,x) that depend on single hidden variables. Taking derivatives gives

∂Li(θ)

∂θ1
l

=
∑
h

P (h | yi,xi, θ)
∂Ψ(yi,h,xi; θ)

∂θ1
l

−
∑
y′,h

P (y′,h | xi, θ)
∂Ψ(y′,h,xi; θ)

∂θ1
l

=
∑
h

P (h | yi,xi, θ)
m∑

j=1

f 1
l (j, yi, hj,xi) −

∑
y′,h

P (y′,h | xi, θ)
m∑

j=1

f 1
l (j, y′, hj,xi)

=
∑
j,a

P (hj = a | yi,xi, θ)f
1
l (j, yi, a,xi) −

∑
y′,j,a

P (hj = a, y′ | xi, θ)f
1
l (j, y′, a,xi)

It follows that ∂Li(θ)

∂θ1
l

can be expressed in terms of components P (hj = a | xi, θ) and

P (y | xi, θ), which can be calculated using belief propagation, provided that the graph

E forms a tree structure. A similar calculation gives

∂Li(θ)
∂θ2

l

=
∑

(j,k)∈E,a,b

P (hj = a, hk = b | yi,xi, θ)f2
l (j, k, yi, a, b,xi)

−
∑

y′,(j,k)∈E,a,b

P (hj = a, hk = b, y′ | xi, θ)f2
l (j, k, y′, a, b,xi)

hence ∂Li(θ)/∂θ2
l can also be expressed in terms of expressions that can be calculated

using belief propagation.
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Chapter 4

Detection Experiments

4.1 Chapter Overview

This chapter presents our detection experiments. Section 4.2 describes the data sets

used for the experiments in this chapter and chapter 5. Section 4.3 discusses results

for a model that encodes dependencies between hidden variables with a minimum

spanning-tree. Finally, in Section 4.4 we explore other graph structures for encoding

dependencies and show their effect on detection performance.

4.2 Data sets

For these experiments we used 3 different data sets. The first data set is the Caltech-4

data set which can be obtained from http://www.vision.caltech.edu/html-files/archive.html.

It contains images for 4 object classes each from a single point of view. The object

classes are: Car (rear view), Face (front view), Plane (side view) and Motorbikes (side

view). Each image contains a single instance of the object in diverse natural back-

grounds. In addition, this data set also provides a generic background class which

consists of indoor and outdoor images taken around Caltech campus. We use this

data set for the 2-class (background vs. object) detection experiments described in

section 4.2. We used a subset of this data set (Cars and Motorbikes) for the joint

detection and segmentation experiments described in Chapter 5.
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The second data set consists of images of side views of cars. Each image con-

tains a single instance of the object in natural backgrounds and was obtained from

http://l2r.cs.uiuc.edu/ cogcomp/Data/Car/. This data set was used for the 2-class

detection experiments in section 4.2 as well as for the 3-class detection experiments.

This data set and the car rear data set from Caltech-4 where used for the experiments

in section 4.3.

The third data set (the animal data set) is a subset of the Caltech-101 data set.

Each image contains a single or multiple instances of an animal from different point

of views in a natural background. This data set was used for the 4-class experiments

in section 4.2.

For each image we compute a set of patches which are obtained using the SIFT

detector (Lowe 1999). Each patch xi,j is then represented by a feature vector φ(xi,j)

that incorporates a combination of SIFT and relative location and scale features.

For the experiments in Section 4.3 the tree E is formed by running a minimum

spanning tree algorithm over the parts hi,j, where the cost of an edge in the graph

between hi,j and hi,k is taken to be the distance between the centers of mass of

patches xi,j and xi,k in the image. Note that the structure of E will vary across

different images. Our choice of E encodes our assumption that parts conditioned on

features that are spatially close are more likely to be dependent. For the experiments

in section 4.4 we investigate more complex graph structures that involve cycles and

demand approximate inference methods for parameter estimation and inference.

4.3 Minimum Spanning-Tree Detection Experiments

We carried out three sets of experiments on a number of different data sets. The first

two experiments consisted of training a two class model (object vs. background) to

distinguish between a category from a single viewpoint and background. The third

experiment consisted of training a multi-class model to distinguish between n classes.

The only parameter that was adjusted in the experiments was the scale of the

images upon which the interest point detector was run. In particular, we adjusted the
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scale on the car side data set: in this data set the images were too small and without

this adjustment the detector would fail to find a significant amount of features.

For the experiments we randomly split each data set into three separate data

sets: training, validation and testing. We use the validation data set to set the

variance parameters σ2 of the gaussian prior. For the first and second experiments the

recognition task was a simple object present—absent one. For the third experiment

the task was to determine the presence of an object and its view-point, either rear or

side. The performance figures quoted for the first and second experiments are receiver-

operating characteristic equal error rates, tested against the background data set. For

the third experiment we report recall and precision figures for each object view-point.

4.3.1 Results

Figure 4-1: Examples of the most likely assignment of parts to features for the two
class experiments (car data set).
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Figure 4-2: Examples of the most likely assignment of parts to features for the two
class experiments (plane data set).

In Table 4.1(a) we show how the number of parts in the model affects performance.

In the case of the car side data set, the ten-part model shows a significant improvement

compared to the five parts model while for the car rear data set the performance

improvement obtained by increasing the number of parts is not as significant. Table

(a)
Data set 5 parts 10 parts
Car Side 94 % 99 %
Car Rear 91 % 91.7 %

(b)

Data set Our Model Others [1]
Car Side 99 % -
Car Rear 94.6 % 90.3 %
Face 99 % 96.4 %
Plane 96 % 90.2 %
Motorbike 95 % 92.5 %

Table 4.1: (a) Equal Error Rates for the car side and car rear experiments with
different number of parts. (b) Comparative Equal Error Rates.
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Data set Precision Recall
Car Side 87.5 % 98 %
Car Rear 87.4 % 86.5 %

Table 4.2: Precision and recall results for 3 class experiment.

Data set Leopards Llamas Rhinos Pigeons
Leopards 91 % 2 % 0 % 7 %
Llamas 0 % 50 % 27 % 23 %
Rhinos 0 % 40 % 46 % 14 %
Pigeons 0 % 30 % 20 % 50 %

Table 4.3: Confusion table for 4 class experiment.

4.1(b) shows a performance comparison with previous approaches (Fergus 2003) tested

on the same data set (though on a different partition). We observe a significant

improvement for most data sets.

Tables 4.2 and 4.3 show results for the multi-class experiments. Notice that ran-

dom performance for the animal data set would be 25 % across the diagonal. The

model exhibits best performance for the Leopard data set, for which the presence of

part 1 alone is a clear predictor of the class. Table 4.2 shows results for a multi-view

experiment where the task is two distinguish between two different views of a car and

background.

Figures 4.1 and 4.2 display the Viterbi labelling:

(

h∗ = arg maxh P (h | y,x, θ)(4.1)

where x where is an image and y is the label for the image given by our model)

for a set of example images showing the most likely assignment of local features to

parts in the model. Figure 4.4(a) and 4.4(b) show the mean and variance of each

part’s location for car side images and background images respectively. The mean

and variance of each part’s location for the car side images were calculated in the

following manner: First we find for every image classified as class a the most likely

part assignment under our model. Second, we calculate the mean and variance of
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Figure 4-3: Graph showing part counts for the background (left) and car side images
(right)

positions of all local features that were assigned to the same part. Similarly Figure

4.3 shows part counts among the Viterbi labellings assigned to examples of a given

class.

As can be seen in Figures 4.4(a) and 4.4(b), while the mean location of a given

part in the background images and the mean location of the same part in the car

images are very similar, the parts in the car have a much tighter distribution which

seems to suggest that the model is learning the shape of the object.

As shown in Figure 4.3 the model has also learnt discriminative part distributions

for each class, for example the presence of part 1 seems to be a clear predictor for

the car class. Some part assignments seem to rely on a combination of appearance

and relative location. Part 1, for example, is assigned to wheel-like patterns located

on the left of the object. The parts however, might not carry semantic meaning. It

appears that the model has learnt a vocabulary of very general parts with significant

variability in appearance and learns to discriminate between classes by capturing the

most likely arrangement of these parts for each class.

4.4 Exploring different neighborhood structures

Our approach assumes that parts conditioned on proximate observations are likely to

be dependent and the neighborhood structure of the class conditional CRFs (i.e., the
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Figure 4-4: (a) Graph showing mean and variance of locations for the different parts
for the car side images; (b) Mean and variance of part locations for the background
images.

associated graphs E) models the dependencies between part assignments of proximate

patches.

In the previous experiments we set E to be a minimum spanning tree where the

cost of an edge between two hidden variables was the 2-D distance between the center

of mass of the corresponding image patches. Such dependencies between hidden

part assignments can be encoded using n-neighbor lattices over local observations.

However, increasing connectivity leads to an increase in the computational complexity

of performing inference in such models. When E contains cycles we need to resort to

approximate inference methods for inference and learning in the model.

In this section we evaluate a range of different dependency structures and measure

the effect of different amounts of connectivity on recognition performance under our

model. We demonstrate the importance of encoding local dependencies by comparing

the class conditional CRF model to an equivalent model that assumes the indepen-

dence of hidden part assignments given the object class labels. We also compare the

performance of the minimum spanning-tree and lattice models and show that there

is no significant performance loss due to the minimum spanning-tree approximation.
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Figure 4-5: Connectivity Graphs
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Figure 4-6: Encoding Part Dependencies in the model
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4.4.1 Graph Structure and Inference

The graph E encodes the amount of connectivity between the hidden variables hj .

Intuitively, E determines the ability of our model to capture conditional dependencies

between part assignments, so that is natural to ask what are the effects of the graph

on classification performance. Or in other words, do we loose something by having

less densely connected graphs?

There are several possible ways of defining E. If E has no connectivity (i.e., E

contains no edges) the potential function for our model reduces to:

Ψ(y,h,x; θ) =
∑

j

φ(xj) · θ(hj) +
∑

j

θ(y, hj) (4.2)

This graph might be too poor to capture important dependencies between part

assignments, specially given that our observations contain overlapping image patches.

Another option for defining E is to use a minimum spanning-tree (Figure 4.6, top

right), where the weights on the edges are the distances between the corresponding

image patches. The advantage of using such a graph is that, as we mentioned earlier,

when E contains no cycles, and Ψ takes the form in Eq 3.4, we can perform exact

inference on E, using belief propagation on time: O(|E||Y|).

Another way of encoding useful dependencies is by defining E to be an n-Lattice

over the local observations (Figure 4.6, top left, bottom left and bottom right). We

build an n-neighbor lattice by linking every node to its n closest nodes, (i.e., the nodes

that correspond to the n closest local observations). The downside of such approach

is that when E contain cycles computing exact inference becomes untractable, and

we need to resort to approximate methods. For these experiments we choose to use

loopy-belief propagation since it has been shown to have good convergence properties,

but any other variational method could be applied.
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dashed green (Min S-Tree), dotted blue (2-Lattice) and dot-dash yellow (3-Lattice)
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Figure 4-8: Viterbi labellings for min spanning tree and unconnected model, left and
right respectively
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Comparative Performance - Rear Data Set
0-Connectivity 88%
Min S-Tree 91%
2-Lattice 92%
3-Lattice 91%

Comparative Performance - Side Data Set
0-Connectivity 90%
Min S-Tree 99%
2-Lattice 99%
3-Lattice 99%

Table 4.4: Comparative Results

4.4.2 Local Connectivity Experiments

The goal of our experiments is to evaluate the effect of different neighborhood

structures on recognition performance. We conducted 4 experiments on 2 data sets.

The first data set contained 400 images of side views of car and the second data set

contained 400 image of rear views of cars. We will refer to these data sets as side and

rear respectively.

For each of the 4 experiments we define a neighborhood structure for our model

and train a two class classifier (object vs. background) to distinguish between a

category from a single viewpoint and background. The experiments were carried out

in the following manner: first each data set was split into 3 data sets, a training data

set of 200 images, a validation set of 100 images and a testing set of 100 images. As in

the experiments in Section 4.3 the validation set was used to select the regularization

term (i.e., the variance of the Gaussian prior) and as a stopping criteria for the

gradient ascent.

For the first experiment we define E to be an unconnected graph, for the second

a minimum spanning-tree, for the third a 2-lattice and for the fourth a 3-lattice. For

the first and second experiments gradient ascent is initialized randomly while for the

third and fourth experiments we use the minimum spanning-tree solution as initial

parameters.
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Figure 4.7 shows ROC curves for the 4 variants of the model for the Side and Rear

data set respectively. The red solid curve corresponds to a model with no connectivity,

the green dashed curve to a model with minimum spanning-tree connectivity, the

dotted blue curve to a model with 2-Lattice connectivity and the dot-dash yellow

curve to a model with 3-Lattice connectivity. Table 4.4 shows the corresponding

equal error rates.

From these figures we observe a significant improvement in performance when

some form of part connectivity is incorporated into the model. On the Side data set

the equal error rate increases from 90% to 99% and on the Rear data set from 88%

to 91%. This is not surprising because our local observations contain overlapping

patches and thus it is reasonable to expect the model to gain in performance by

learning smooth part assignments.

Figure 4.8 shows the most likely assignment of parts to features for the min span-

ning tree model and the unconnected model for an example in which the min span-

ning tree model gives a correct classification but the unconnected model fails to do

so. The first thing to notice is that both models give smooth part assignments, this

is because the normalized location is a feature of the patch representation. Given the

low resolution of the images the model relies mainly on the location of the detected

features. However, as we would expect the minimum spanning-tree gives smoother

part assignment than the unconnected one which allows it to classify the example

correctly.

The second thing to notice is that for these data sets the minimum spanning-

tree model shows no worst recognition performance than the models that use more

densely connected graphs. This confirms our hypothesis that the minimum spanning-

tree encodes sufficient dependency constraints.

In (Crandall 2005) Crandall presented a class of statistical generative methods for

part-based object recognition that similarly to ours can be parameterized according

to the degree of spatial structure that they can represent (i.e., dependencies between

parts). Using the same data sets that we used for our experiments they compared

the effects of incorporating different amounts of spatial structure in their model and
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showed that for the object classes tested a relatively small amount of spatial struc-

ture in the model can provide recognition performance as good as the performance

obtained from more complex models that encode more spatial structure. Thus our

results seem to be in accord with theirs though more experiments would be needed

to extend this conclusions to arbitrary object classes.

One possible reason for the lack of improvement is that approximate inference

might make the computation of the gradient unstable. In fact we observed in prelim-

inary experiments that when the lattice model is not initialized with the minimum

spanning-tree it results in poor performance. Thus the relatively good performance of

the min-spanning tree might be due to the fact that is an adequate trade-off between

the benefits of connectivity and exact inference.
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Chapter 5

Joint detection and segmentation

5.1 Chapter Overview

In this chapter we extend the detection model presented in Chapter 3 to make use

of fully-labelled data and perform joint detection and segmentation. Section 5.2

reviews related work on joint detection and segmentation. Section 5.3 shows how

a segmentation variable can be incorporated to our previous model so that we can

perform joint detection and segmentation. Finally, Section 5.4 presents experiments

for the joint detection and segmentation task.

5.2 Previous work on joint detection and segmen-

tation

The idea of using class specific constraints to guide image segmentation has received

some attention in the last few years. Yu (Yu 2002) proposed a spectral graph frame-

work that combines top-down and bottom-up information into a constrained eigen-

value problem. Borenstein (Borenstein 2002) proposed a class-specific, top-down

segmentation which assumes that the object present in the image is known and that

a set of discriminative templates for the class are available (learned from unsegmented

training images). The segmentation task is formulated as finding the optimal match
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between a set of image patches and the object templates. The reliability of a match is

measured in terms of the similarity of individual matches and the overall consistency

of the configuration.

In a more recent work Borenstein (Borenstein 2004) presented a hierarchical ap-

proach for combining top down and bottom up segmentation. They model the space

of possible segmentations as a random field where each image site corresponds to a

region in a hierarchical tree obtained with a bottom-up segmentation. The single

node potentials at each site incorporate class specific top-down constraints and the

pairwise potentials between child and parent nodes in the hierarchical segmentation

enforce bottom-up smoothness constraints. Segmentation is performed by finding the

most likely foreground/background labelling given these constraints, which can be

efficiently computed using belief propagation. These previous approaches integrate

class specific constraints to improve segmentation assuming they know that the object

is present, whereas our method learns to jointly detect and segment the object.

5.3 Extending the Model to perform joint detec-

tion and segmentation

For the joint detection and segmentation task we assume as in Chapters 3 and 4 that

we are given a training set of n partially labelled pairs. Each such example is of the

form (x, y), where y ∈ Y is the category of the object present in image x = [x1, . . . , xm]

and xj is the j-th image region. We will say that t as a partially-labelled example if

t = (x, y).

In addition to the partially labelled pairs we assume that we are given l fully

labelled triples of the form (x, y, s), where s = [s1, . . . , sm] and each sj ∈ Y corre-

sponds to a labelling of xj with some member of Y. This variable is hidden for the

partially-labelled data but observed for the fully-labelled data. We will say that t is

a fully-labelled example if t = (x, y, s).

From this training set we would like to learn models that map images x to labels y
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in the detection task, and that map images x to segmentations s in the segmentation

task.

Our approach decouples the problem of finding the object in the image into two

sub-problems: first deciding if the object is present in the image (modelled by the

presence variable y), and then finding the location of the object in the image or

equivalently determining which image regions correspond to the object (modelled by

the segmentation variable s). As before for any image x we also assume a vector of

hidden “parts” variables h = {h1, h2, . . . , hm} ∈ H.

Finally, we assume we are given a mapping M that maps a variable sj to a non-

empty subset of H. Intuitively, this mapping selects for each category Y a subset

of the hidden parts that is going to be used to model the category. Having this

intermediate mapping is an important part of our approach because it allows us to

model the category of each image region with a set of parts (i.e., a set of hidden

states) rather than a single state so that we can combine part-based object detection

with region labelling.

We say that h is consistent with s if for all j , hj ∈ M(sj). We will denote the set

of consistent hidden variable assignments by const(s).

Given the above definitions, we define a conditional model:

P (y, s| x, θ) =

∑
h∈const(s) eΨ(y,h,x;θ)∑

y′,h eΨ(y′,h,x;θ)
. (5.1)

where as before θ are the parameters of the model and eΨ(y′,h,x;θ) is the potential

function described in Chapter 3. We will be assuming that we have a distribution:

P (y, s,h | x, θ) =
eΨ(y,h,x;θ)∑
y′h eΨ(y′,h,x;θ)

(5.2)

defined over the space of h values such that h ∈ const(s)

To perform segmentation we follow a two step process where we first perform

detection and then compute the best segmentation given the class label Y . For a

new test image x, and parameter values θ∗ induced from a training set, we will
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perform detection, by taking the label for the image to be y∗ = argmaxyP (y| x, θ)

where P (y| x, θ) =
∑

s P (y, s| x, θ). We then label each image region by finding

s∗ = argmaxsP (s|y∗,x; θ) where P (s|y∗,x; θ) =
∑

h∈const(s) P (h|y∗, x; θ)

We approximate this by computing h∗
i = argmaxhi

∑
hi∈h∗

i const(s) P (hi|y∗,x; θ) and

using the deterministic mapping M to obtain s∗i = M−1(h∗
i ). That is once we deter-

mined the best part assignment we map each variable hj to its corresponding y. The

exact computation of argmaxsP (s|x) would require marginalizing over the category

variable y but unfortunately this computation is untractable under our model so we

resort to a commonly used approximation.

We use the following objective function in training the parameters θ of the model:

L(θ) =
∑

t∈ TrainingSet

log P (t|x, θ) − 1

2σ2
‖ θ ‖2 (5.3)

where P (t|x, θ) = P (y|x, θ) if t is a partially-labelled example and P (t|x, θ) =

P (y, s|x, θ) if t is a fully-labelled example

As in Chapter 3 the first term in Eq 5.3 is the log-likelihood of the data and

the second is a regularization term; we use gradient ascent to search for the optimal

parameters values θ∗ = argmaxθL(θ) under this modified joint criterion.

The rest of the model is the same as the one described in Chapter 3, but notice that

different from that model the new likelihood function implies that we are optimizing

for joint detection and segmentation.

5.3.1 Parameter estimation in the joint detection and seg-

mentation model

The gradient for the partially labelled examples is identical to that described in

Chapter 3. Thus in this section we derive the gradient with respect to the fully

labelled examples only. Consider the likelihood term that is contributed by the i’th

fully labelled training example, defined as:
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Li(θ) = log P (yi, si | xi, θ) = log

(∑
h∈const(s) eΨ(yi,h,xi;θ)∑

y′,h eΨ(y′,h,xi;θ)
.

)
(5.4)

We first consider derivatives with respect to the parameters θ1
l corresponding to

features f 1
l (j, y, hj,x) that depend on single hidden variables. Taking derivatives gives

∂Li(θ)

∂θ1
l

=
∑

h∈const(s)

P (h | yi, si,xi, θ)
∂Ψ(yi,h,xi; θ)

∂θ1
l

−
∑
y′,h

P (y′,h | xi, θ)
∂Ψ(y′,h,xi; θ)

∂θ1
l

=
∑

h∈const(h,s)

P (h | yi, si,xi, θ)
m∑

j=1

f 1
l (j, yi, hj,xi) −

∑
y′,h

P (y′,h | xi, θ)
m∑

j=1

f 1
l (j, y′, hj ,xi)

=
∑
j,a

P (hj = a | yi, si,xi, θ)f
1
l (j, yi, a,xi) −

∑
y′,j,a

P (hj = a, y′ | xi, θ)f
1
l (j, y′, a,xi)

where:

P (hj = a | y, s,x, θ) =

∑
hj=a∧h∈const(s)

P (h | y,x, θ)

∑
h∈const(s)

P (h | y,x, θ)

(5.5)

which as before can be shown to be efficiently computed using belief propagation.

Similarly the gradient for the pairwise features can be written in terms of P (hj =

a, hk = b | y, s,x, θ) which can also be efficiently computed using belief propagation.

Thus as in the detection only model we can do efficient inference and parameter

estimation.

5.4 Experiments with joint detection and segmen-

tation

To test the performance of our model on both the detection and segmentation task

we conducted a set of experiments on a subset of the Caltech-4 data set (Cars and

Motorbikes). There are two main goals of these experiments: first we would like to
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show that our model performs accurate detection and segmentation using only a small

set of fully labelled examples. Second, we would like to show the importance of using

a hidden segmentation variable and a mapping M that allows us to model both the

object and background classes with a set of part variables.

We compare our model to a baseline model with no segmentation variables where

both the background and object class are modelled with a single part each. Notice

that for the baseline setting we can regard the part assignment variables h as being

fully observed for the fully labelled examples. Or in other words, since there are

only two parts in the model and each category is modelled using a single part, once

we know the segmentation label for a given image region we automatically know its

hidden part assignment.

In addition to the two part baseline we compare our model to a detection model

trained with partially labelled data only and no hidden segmentation variable. We

show that without constraining the model using some fully-labelled data the parts

assignments learnt do not provide an accurate segmentation of the object in terms of

background/foreground.

While for the experiments in Chapter 4 we used as local features high entropy

patches for the joint detection and segmentation experiments in this chapter we use

as features image regions or ’blobs’ obtained with a bottom-up segmentation (Sharon

2000). The reason for this choice of features is that to perform segmentation we prefer

features that cover the entire image, so it is more natural to use bottom up features.

Every image was pre-segmented by an initial bottom-up segmentation, using the

procedure given in (Sharon 2000) which provides a hierarchical segmentation of the

image. To select the scale of the segmentation we choose the finest scale segmen-

tation subject to the constraint that the total number of segments be less than a

predetermined constant (100).

Each image region xj was represented by a feature vector φ(xj) that consisted of

the normalized location and scale of the region, its eccentricity and orientation as well

as the mean response of a set of Gabor filters at different orientations and scales. As

in the first set of experiments of Chapter 4 E was set to be a minimum spanning-tree
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Figure 5-1: Hidden Part Assignments (FLPT). The first row shows the original image
and the second row shows the optimal part assignment for each image region.

Category P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10
Background 0 % 15% 30% 0% 5 % 10 % % 20 0% 0% 20 %
Object 0 % 20% 20% 0% 2 % 20 % % 23 0% 0% 15 %

Table 5.1: Distribution of region part labels for each category when learning with
partially labelled data.

where the weight between two nodes hi, hj is the 2-D distance between the center of

mass of the corresponding image regions xi, xj.

We trained a two class model to discriminate between the car class and the other

three classes in the Caltec-4 data-set motorbikes, planes and faces as well as the

generic background class. We also conducted experiments on the motorbike data set.

The Fully-Labelled (model FLT) training set consisted of 400 negative images

(100 of each of the other classes) and 30 images of cars where we labelled each image

region obtained by the bottom up segmentation with the corresponding label. If

a region contained both part of the background and part of the car we labelled it

according to the largest area. (Notice that since our setting of the problem is car,

not-car we can regard all the negative images as being fully labelled). The Fully +

Partially labelled dataset (model FLPT) consisted of the FLT dataset plus an extra

170 partially labelled car images where only the presence of the car in the image is

indicated.

For a baseline detection comparison we also trained a model with 200 partially

labelled positive images and 400 partially labelled negative images (model PT). For
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Figure 5-2: Car dataset: (a) shows detection performance, (b) segmentation perfor-
mance with unknown Y, (c) segmentation performance with known Y. The 2-Part
Baseline is shown with a brown dotted line, PT with green dash-dot, FLPT with solid
red, and FLT with blue dashes.

these three models the total number of hidden parts was set to 10, and was defined so

that the first half corresponded to background and the second half to the object class.

We also trained a second baseline model with no hidden segmentation variable (model

B) that used two parts, one for the background class and one for the object class and

was trained with the same combination of fully-labelled and partially-labelled data

as model FLPT.

We evaluated the detection and segmentation performance of our models: for

detection the task was to label the whole image as containing the object or not, and

for segmentation the task was to label each image region as object or background.

Figure 5.2(a) shows detection ROCs for the 4 models, FLT, FLPT, PT, and B. As

we would expect the performance of the FPLT model is significantly better than

that of the FLT, since the later model was trained with 30 positive images only.

This suggests that our model can successfully incorporate partially-labelled data to

improve detection.
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Figure 5-3: Segmentation examples from the car dataset. The first and third rows
show original images, the second and fourth row the segmentation given by our model
(FLPT).

We observe that FLPT performs as well as PT on the detection task. This is

consistent with our assumption that it is possible to perform good detection without

performing accurate localization. Our previous model (which was unable to perform

segmentation) obtained equal error rates of 94.6% for the car dataset and 95% for the

motorbike dataset for detection, which is comparable to the detection performance

95%, 94% for car and motorbike dataset respectively obtained with our new model

FLPT.

Figure 5.2(b) shows ROC curves for segmentation with the FLT and FPLT models.

The FLPT model shows better segmentation performance. Note that this is likely to

be a direct consequence of improved detection performance in the FLPT model. We

also performed experiments to compare segmentation performance in a setting where

the effects of improved detection were factored out. In these experiments we assume

that we know the correct class label y and search for the best segmentation given the

known y. See Figure 5.2(c) for ROCs for these experiments.

For the model trained with partially labelled data only we do not have a direct
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Figure 5-4: Motorbike dataset results (FLPT). (a) shows segmentation examples, (b)
detection performance, and (c) segmentation performance with unknown Y.

way of estimating segmentation performance. Instead we calculate the frequency with

which a part is assigned to a background region and to an object region respectively;

we compute n(Y =object,hi=p)
n(object)

and n(Y =background,hi=p)
n(background)

where n(Y = background, hi = p)

is the number of times the PT model assigns part p to a background region and

n(background) is the total number of background regions (Table 5.1). Since parts

seem to occur with similar frequency in both categories we can see that without

constraining the model with fully labelled (segmented) data it is hard to build a

model that obtains a meaningful segmentation.

Figure 5.2(a) shows how using multiple parts to model both the background and

the object class improves detection accuracy significantly. By using multiple parts the
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model is able to learn discriminative patterns that would be hard to learn otherwise.

Furthermore, Figure 5.2(c) shows that using an intermediate segmentation variable

combined with a hidden part assignment variable is important for performing accu-

rate segmentation, as multiple parts may be needed to model the variability in the

background and object classes.

See Figure 5.1 for evidence that FLPT has learned a part-based model for the car

where the upper and lower section of the car are modelled by different parts and it has

also learned a discriminative pattern of the context surrounding the car. Similarly,

we see that FLPT has learned different parts for the front and back of the motorbike.

Figure 5.4 shows detection and segmentation performance for the motorbike data

set. Comparing the bottom-up segmentation on the car and motorbike data sets

(Figure 5.1), one can see that there seems to be more variability in the shape of the

object regions as well as in the overall configuration for the motorbikes, which may

make segmentation more challenging for that category.
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Chapter 6

Conclusions

In this thesis we have presented a novel approach that incorporates hidden variables

and combines class conditional random fields into an unified framework for object

detection and segmentation. One of the main advantages of the proposed model in

contrast to other object recognition approaches it that ours does not assume the

independence of local observations given their assignments to parts in the model.

In addition, as with other CRFs and other maximum entropy models, our approach

offers a significant amount of representational freedom as it can combine arbitrary

observation features for training discriminative classifiers with hidden variables. By

making some assumptions about the joint distribution of hidden variables we have

shown that one can derive efficient training algorithms based on dynamic program-

ming.

Since an object recognition system should be able to perform both detection and

segmentation in this thesis we also developed a joint model for object detection and

segmentation. The advantage of this model is that it can combine fully labelled

and partially labelled data into a principled discriminative framework for detection

and segmentation. The key difference between our approach and other part based

approaches is that the incorporation of hidden parts and segmentation variables allows

us to naturally combine fully and partially labelled data. The proposed latent variable

model can learn sets of part labels for each image site, which allows us to merge part-

based detection with part-based region labelling (or segmentation).

55



One important limitation of our model is that it is dependent on the feature

detector. Furthermore, our model might learn to discriminate between classes based

on the statistics of the feature detector and not the true underlying data, to which it

has no access. This is not a desirable property since it assumes the feature detector

to be consistent. As future work we would like to incorporate the feature detection

process into the model.
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