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Motivation

We want to be able to build classifiers 
for thousands of visual categories.

We want to exploit rich and 
complex feature representations.

Problem:

Goal:

We might only have a few labeled samples 
per category.

Solution:

Transfer Learning, leverage labeled data from 
multiple related tasks.
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Thesis Contributions

Learn an image representation using supervised data from auxiliary tasks 
automatically derived from unlabeled images + meta-data.

A transfer learning model based on joint regularization and an efficient 
optimization algorithm for training jointly sparse classifiers in  high 
dimensional feature spaces.

We study efficient transfer algorithms for image classification which
can exploit supervised training data from a set of related tasks:
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A method for learning image representations from
 unlabeled images + meta-data

Large dataset of 
unlabeled images + meta-data

Create auxiliary
problems

Structure Learning
[Ando & Zhang, JMLR 2005] h:F I R→

Visual 
Representation
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Structure Learning:

Task specific parameters Shared Parameters
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A method for learning image representations from
 unlabeled images + meta-data
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Outline

An overview of transfer learning methods.

A joint sparse approximation model for transfer learning.

Asymmetric transfer experiments.

An efficient training algorithm.

Symmetric transfer image annotation experiments.
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Transfer Learning: A brief overview

The goal of transfer learning is to use labeled data from related
tasks to make learning easier. Two settings:

Asymmetric transfer: 
Resource: Large amounts of supervised data for a set of related tasks. 
Goal: Improve performance on a target task for which training 
data is scarce.

Symmetric transfer:
Resource: Small amount of training data for a large number of 
related tasks. 
Goal: Improve average performance over all classifiers.
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Transfer Learning: A brief overview

Three main approaches:

Learning intermediate latent representations:
[Thrun

 

1996, Baxter 1997, Caruana

 

1997, Argyriou

 

2006, Amit

 

2007]

Learning priors over parameters: [Raina 2006, Lawrence et al. 2004 ]

Learning relevant shared features [Torralba 2004, Obozinsky 2006]
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Feature Sharing Framework:

Work with a rich representation:
Complex features, high dimensional space
Some of them will be very discriminative (hopefully)
Most will be irrelevant

Related problems may share relevant features.

If we knew the relevant features we could:
Learn from fewer examples
Build more efficient classifiers

We can train classifiers from related problems together using a 
regularization penalty designed to promote joint sparsity.

Presenter�
Presentation Notes�
Here is our framework for image recognition tasks.

Something that works well is to use unlabeled data to generate
a large set of features, some of which might be complex. The advantage
Is that in such a representation we expect to find features that are discriminative. However since the features where generated without regads
to the classification tasks at hand many of them will be irrelevant. �
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Related Formulations of Joint Sparse Approximation

Obozinski et al. [2006] proposed L1-2 joint penalty and developed a 
blockwise boosting scheme based on Boosted-Lasso. 

Torralba et al. [2004] developed a joint boosting algorithm based on the
idea of learning additive models for each class that share weak learners. 
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Our Contribution

Previous approaches to joint sparse approximation have relied on greedy 
coordinate descent methods.

We propose a simple an efficient global optimization algorithm with 
guaranteed convergence rates. 

A new model and optimization algorithm for training jointly sparse classifiers:

We test our model on real image classification tasks where we observe 
improvements in both asymmetric and symmetric transfer settings.

Our algorithm can scale to large problems involving hundreds of problems 
and thousands of examples and features. 
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Outline

An overview of transfer learning methods.

A joint sparse approximation model for transfer learning.

Asymmetric transfer experiments.

An efficient training algorithm.

Symmetric transfer image annotation experiments.
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Notation
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Single Task Sparse Approximation
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Consider learning a single sparse linear classifier of the form:

We want  a few  features with non-zero coefficients

Recent work suggests to use L1 regularization:

Classification
error

L1

 

penalizes
non-sparse solutions

Donoho [2004] proved (in a regression setting) that the solution with 
smallest L1 norm is also the sparsest solution.
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Joint Sparse Approximation
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Setting :  Joint Sparse Approximation

Average Loss
on Collection D

Penalizes 
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utilize too 
many features 
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Joint Regularization Penalty
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How do we penalize solutions that use too many features?

Coefficients for
for feature 2

Coefficients for
classifier 2

Would lead to a hard combinatorial problem .
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Joint Regularization Penalty

We will use a L1-∞ norm [Tropp 2006]
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The combination of the two norms results in a solution where only a few 
features are used but the features used will contribute in solving many 
classification problems.

This norm combines: 

An L1

 

norm  on the maximum absolute 
values of the coefficients across tasks 
promotes sparsity.

Use few features 

The L∞

 

norm on each row promotes non-

 
sparsity

 

on each row.
Share features
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Joint Sparse Approximation
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Using the L1-∞ norm we can rewrite our objective function as:

For the hinge loss:
the optimization problem can be expressed as a linear program. 
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For any convex loss this is a convex objective.
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Joint Sparse Approximation

Objective:
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Outline

An overview of transfer learning methods.

A joint sparse approximation model for transfer learning.

Asymmetric transfer experiments.

An efficient training algorithm.

Symmetric transfer image annotation experiments.
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Setting: Asymmetric Transfer
SuperBowl Danish CartoonsSharon

Australian

 

Open Trapped Miners Golden globes

Grammys Figure Skating 

Academy Awards 

Iraq

Learn a representation using labeled data from 9 topics.

Train a classifier for the 10th

held out topic using the relevant
features R

 

only.

}0|)(|max:{ >= rkk wrRDefine the set of relevant features to be:

Learn the matrix W using our transfer algorithm.
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Outline

An overview of transfer learning methods.

A joint sparse approximation model for transfer learning.

Asymmetric transfer experiments.

An efficient training algorithm.

Symmetric transfer image annotation experiments.
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The LP formulation is feasible for small problems but becomes 
intractable for larger data-sets with thousands of examples and 
dimensions.

We might want a more general optimization algorithm that can handle 
arbitrary convex losses.

Limitations of the LP formulation

The LP formulation can be optimized using standard LP solvers. 



28 / 46

L1-∞

 

Regularization: Constrained Convex Optimization 
Formulation
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We will use a Projected SubGradient method.
Main advantages: simple, scalable, guaranteed convergence rates.

A convex function

Convex constraints

Projected SubGradient methods have been recently proposed:
L2 regularization, i.e. SVM [Shalev-Shwartz et al. 2007] 
L1 regularization [Duchi et al. 2008]
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Euclidean Projection into the L1-∞

 

ball
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Characterization of the solution

1
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Characterization of the solution

Feature I Feature IIIFeature II Feature VI
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Mapping to a simpler problem
We can map the projection problem to the following problem which 

finds the optimal maximums μ:
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Efficient Algorithm for:               , in pictures
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Presenter�
Presentation Notes�
It turns out that if we give a Theta we can compute the new maximums of each group of parameters.

For example, if Theta=8, this would be the new maximum for the first group, because it cuts three
units in the first parameter, two units in the second and third, and one unit in the fourth parameter. 
It sums to eight. A similar thing for the second group. Now, for the third group, �the parameters sum to 7, so the new maximum would go to 0 (which is the special condition). 

Now say that we have this functions (that go from Theta to the maximums). If we sum them,
we get the L1-Infinity norm of the new matrix B. So we have a function that goes from a 
Theta to the new norm.

So the algorithm is as follows. It starts with Theta at zero (mu at the original maximums), 
and it keeps increasing theta and decreasing the maximums until they sum to C.

IT turns out that mu as function of theta
is a piece wise linear function, so is their sum.

To compute this function the dominant computational
cost involves sorting the entries of A to obtain
the intervals of the function.

�
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Complexity

The total cost of the algorithm is dominated by a sort of 

The total cost is in the order of:

the entries of A.

))log(( dmdmO
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Outline

An overview of transfer learning methods.

A joint sparse approximation model for transfer learning.

Asymmetric transfer experiments.

An efficient training algorithm.

Symmetric transfer image annotation experiments.
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Synthetic Experiments

Generate a jointly sparse parameter matrix W:
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where

We compared three different types of regularization
(i.e. projections):

L1−∞ projection
L2 projection
L1 projection 
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Synthetic Experiments

10 20 40 80 160 320 640
15

20

25

30

35

40

45

50

# training examples per task

E
rro

r

Synthetic Experiments Results: 60 problems 200 features 10% relevant

 

 

L2
L1
L1-LINF

Test Error
Performance on predicting

relevant features

10 20 40 80 160 320 640
10

20

30

40

50

60

70

80

90

100

# training examples per task

Feature Selection Performance

 

 

Precision L1-INF
Recall L1
Precision L1
Recall L1-INF



38 / 46

Dataset: Image Annotation

40 top content words
Raw image representation: Vocabulary Tree

(Grauman

 

and Darrell 2005, Nister

 

and Stewenius

 

2006)

11000 dimensions

president actress team
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Results

The differences are statistically significant
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Results
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Dataset: Indoor Scene Recognition

67 indoor scenes.

Raw image representation: similarities to a set of unlabeled images.

2000 dimensions.

bakery bar Train station
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Results:



43
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Summary of Thesis Contributions

A method that learns image representations using unlabeled images + 
meta-data. 

A transfer model based on performing a joint loss minimization over 
the training sets of related tasks with a shared regularization.

Previous approaches used greedy coordinate descent methods. We 
propose an efficient global optimization algorithm for learning jointly sparse
models.

We presented experiments on real image classification tasks for both 
an asymmetric and symmetric transfer setting.

A tool that makes implementing an L1−∞ penalty as easy and almost 
as efficient as implementing the standard L1 and L2 penalties.
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Future Work

Task Clustering.

Online Optimization.

Generalization properties of L1−∞ regularized models.

Combining feature representations.
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Thanks!
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