Transfer Learning Algorithms for Image Classification

Ariadna Quattoni MIT, CSAIL

Advisors: Michael Collins Trevor Darrell

Motivation

Goal:

• We want to be able to build classifiers for thousands of visual categories.

□ We want to exploit rich and complex feature representations.

Problem:

□ We might only have a few labeled samples per category.

Solution:

Transfer Learning, leverage labeled data from multiple related tasks.

We study efficient transfer algorithms for image classification which can exploit supervised training data from a set of related tasks:

□ Learn an image representation using supervised data from auxiliary tasks automatically derived from unlabeled images + meta-data.

A transfer learning model based on joint regularization and an efficient optimization algorithm for training jointly sparse classifiers in high dimensional feature spaces.

A method for learning image representations from unlabeled images + meta-data

Large dataset of unlabeled images + meta-data

Structure Learning:

A method for learning image representations from unlabeled images + meta-data

Outline

An overview of transfer learning methods.

A joint sparse approximation model for transfer learning.

Asymmetric transfer experiments.

An efficient training algorithm.

Symmetric transfer image annotation experiments.

Transfer Learning: A brief overview

□ The goal of transfer learning is to use labeled data from related tasks to make learning easier. Two settings:

Asymmetric transfer:

Resource: Large amounts of supervised data for a set of related tasks. Goal: Improve performance on a target task for which training data is scarce.

Symmetric transfer:

Resource: Small amount of training data for a large number of related tasks.

Goal: Improve average performance over all classifiers.

Transfer Learning: A brief overview

□ Three main approaches:

Learning intermediate latent representations:
 [Thrun 1996, Baxter 1997, Caruana 1997, Argyriou 2006, Amit 2007]

Learning priors over parameters: [Raina 2006, Lawrence et al. 2004]

Learning relevant shared features [Torralba 2004, Obozinsky 2006]

Feature Sharing Framework:

- □ Work with a rich representation:
 - Complex features, high dimensional space
 - □ Some of them will be very discriminative (hopefully)
 - Most will be irrelevant
- □ Related problems may share relevant features.
- □ If we knew the relevant features we could:
 - □ Learn from fewer examples
 - Build more efficient classifiers
- We can train classifiers from related problems together using a regularization penalty designed to promote joint sparsity.

Church	Airport	Grocery Store	Flower-Shop
	R THERE		
W _{1,1}	<i>W</i> _{1,2}	W _{1,3}	W _{1,4}
W _{2,1}	W _{2,2}	W _{2,3}	W _{2,4}
W _{3,1}	W _{3,2}	W _{3,3}	W _{3,4}
W _{4,1}	W _{4,2}	W _{4,3}	W _{4,4}
W _{5,1}	W _{5,2}	W _{5,3}	W _{5,4}

Church	Airport	Grocery Store	Flower-Shop
	R FREE		
<i>W</i> _{1,1}	<i>W</i> _{1,2}		$W_{1,4}$
W _{2,1}	W _{2,2}	W _{2,3}	W _{2,4}
W _{3,1}	W _{3,2}		W _{3,4}
W _{4,1}	W _{4,2}	W _{4,3}	W _{4,4}
W _{5,1}	W _{5,2}	W _{5,3}	W _{5,4}

Related Formulations of Joint Sparse Approximation

□ Torralba et al. [2004] developed a joint boosting algorithm based on the idea of learning additive models for each class that share weak learners.

Obozinski et al. [2006] proposed L₁₋₂ joint penalty and developed a blockwise boosting scheme based on Boosted-Lasso.

Our Contribution

A new model and optimization algorithm for training jointly sparse classifiers:

□ Previous approaches to joint sparse approximation have relied on greedy coordinate descent methods.

□ We propose a simple an efficient global optimization algorithm with guaranteed convergence rates.

Our algorithm can scale to large problems involving hundreds of problems and thousands of examples and features.

□ We test our model on real image classification tasks where we observe improvements in both asymmetric and symmetric transfer settings.

Outline

An overview of transfer learning methods.

- A joint sparse approximation model for transfer learning.
- Asymmetric transfer experiments.
- An efficient training algorithm.
- Symmetric transfer image annotation experiments.

Notation

Single Task Sparse Approximation

Consider learning a single sparse linear classifier of the form:

$$f(x) = w \cdot x$$

□ We want a few features with non-zero coefficients

 \Box Recent work suggests to use L₁ regularization:

 \Box Donoho [2004] proved (in a regression setting) that the solution with smallest L₁ norm is also the sparsest solution.

Joint Sparse Approximation

□ Setting : Joint Sparse Approximation

 $f_k(x) = \mathbf{w}_k \cdot x$

$$\arg\min_{\mathbf{w}_{1},\mathbf{w}_{2},...,\mathbf{w}_{m}} \sum_{k=1}^{m} \frac{1}{|D_{k}|} \sum_{(x,y)\in D_{k}} l(f_{k}(x), y) + QR(\mathbf{w}_{1}, \mathbf{w}_{2},..., \mathbf{w}_{m})$$

Average Loss on Collection **D** Penalizes solutions that utilize too many features

Joint Regularization Penalty

How do we penalize solutions that use too many features?

U Would lead to a hard combinatorial problem .

Joint Regularization Penalty

 \Box We will use a L_{1- ∞} norm [Tropp 2006]

$$\mathsf{R}(W) = \sum_{i=1}^{d} \max_{k}(|W_{ik}|)$$

This norm combines:

□ The combination of the two norms results in a solution where only a few features are used but the features used will contribute in solving many classification problems.

Joint Sparse Approximation

Using the $L_{1-\infty}$ norm we can rewrite our objective function as:

$$\min_{\mathbf{W}} \sum_{k=1}^{m} \frac{1}{|D_{k}|} \sum_{(x,y)\in D_{k}} l(f_{k}(x), y) + Q \sum_{i=1}^{d} \max_{k}(|W_{ik}|)$$

□ For any convex loss this is a convex objective.

□ For the hinge loss: $l(f(x), y) = \max(0, 1 - yf(x))$ the optimization problem can be expressed as a linear program.

Joint Sparse Approximation

Linear program formulation (hinge loss):

- Objective: $\min_{[\mathbf{W}, \boldsymbol{\varepsilon}, \mathbf{t}]} \sum_{k=1}^{m} \frac{1}{|D_k|} \sum_{j=1}^{|D_k|} \varepsilon_j^k + Q \sum_{i=1}^{d} t_i$
 - Max value constraints:

for:
$$k = 1$$
: m and for: $i = 1$: d

$$-t_i \leq W_{ik} \leq t_i$$

Slack variables constraints:

for: k = 1: m and for: j = 1: $|D_k|$

$$y_j^k f_k(x_j^k) \ge 1 - \varepsilon_j^k$$
$$\varepsilon_j^k \ge 0$$

Outline

An overview of transfer learning methods.

A joint sparse approximation model for transfer learning.

Asymmetric transfer experiments.

An efficient training algorithm.

Symmetric transfer image annotation experiments.

Setting: Asymmetric Transfer

Learn a representation using labeled data from 9 topics.

Learn the matrix **W** using our transfer algorithm.

□ Define the set of relevant features to be: $R = \{r : \max_k (|w_{rk}|) > 0\}$

Results

Outline

An overview of transfer learning methods.

A joint sparse approximation model for transfer learning.

Asymmetric transfer experiments.

□ An efficient training algorithm.

Symmetric transfer image annotation experiments.

Limitations of the LP formulation

□ The LP formulation can be optimized using standard LP solvers.

□ The LP formulation is feasible for small problems but becomes intractable for larger data-sets with thousands of examples and dimensions.

□ We might want a more general optimization algorithm that can handle arbitrary convex losses.

 $L_{1-\infty}$ Regularization: Constrained Convex Optimization Formulation

$$\arg\min_{\mathbf{W}} \sum_{k=1}^{m} \frac{1}{|D_k|} \sum_{(x,y)\in D_k} l(f_k(x), y) \quad \text{A convex function}$$

$$s.t.\sum_{i=1}^{d} \max_{k}(|W_{ik}|) \le C$$
 Convex constraints

- We will use a Projected SubGradient method. Main advantages: simple, scalable, guaranteed convergence rates.
- Projected SubGradient methods have been recently proposed:
 L₂ regularization, i.e. SVM [Shalev-Shwartz et al. 2007]
 L₁ regularization [Duchi et al. 2008]

Euclidean Projection into the $L_{1-\infty}$ ball

$$\mathbf{P_{1,\infty}}: \quad \min_{B,\mu} \quad \frac{1}{2} \sum_{i,j} (B_{i,j} - A_{i,j})^2$$

s.t. $\forall i, j \ B_{i,j} \le \mu_i$
 $\sum_i \mu_i = C$
 $\forall i, j \ B_{i,j} \ge 0$
 $\forall i \ \mu_i \ge 0$

Let μ be the optimal maximums of problem $P_{1,\infty}$. The optimal matrix B of $P_{1,\infty}$ satisfies that:

$$A_{i,j} \ge \mu_i \implies B_{i,j} = \mu_i$$
$$A_{i,j} \le \mu_i \implies B_{i,j} = A_{i,j}$$
$$\mu_i = 0 \implies B_{i,j} = 0$$

Characterization of the solution

At the optimal solution of $P_{1,\infty}$ there exists a constant $\theta \ge 0$ such that for every *i* either:

•
$$\mu_i > 0$$
 and $\sum_j (A_{i,j} - B_{i,j}) = \theta$
• $\mu_i = 0$ and $\sum_j A_{i,j} \le \theta$

Mapping to a simpler problem

 \Box We can map the projection problem to the following problem which finds the optimal maximums μ :

$$\mathbf{M}_{1,\infty}: \text{ find } \boldsymbol{\mu}, \theta$$

s.t.
$$\sum_{i} \mu_{i} = C$$
$$\sum_{j:A_{i,j} \ge \mu_{i}} (A_{i,j} - \mu_{i}) = \theta, \forall i \text{ s.t. } \mu_{i} > 0$$
$$\sum_{j} A_{i,j} \le \theta, \forall i \text{ s.t. } \mu_{i} = 0$$
$$\forall i \ \mu_{i} \ge 0 \ ; \ \theta \ge 0$$

For any matrix A and a constant C such that $C < ||A||_{1,\infty}$, there is a unique solution μ^*, θ^* to the problem $M_{1,\infty}$. Efficient Algorithm for: $M_{1,\infty}$, in pictures

4 Features, 6 problems,
$$\mathbf{C}=14$$
 $\sum_{i=1}^{d} \max_{k}(|A_{ik}|) = 29$

□ The total cost of the algorithm is dominated by a sort of the entries of **A**.

 \Box The total cost is in the order of: $O(dm \log(dm))$

Outline

An overview of transfer learning methods.

A joint sparse approximation model for transfer learning.

Asymmetric transfer experiments.

An efficient training algorithm.

Symmetric transfer image annotation experiments.

Synthetic Experiments

Generate a jointly sparse parameter matrix W:

For every task we generate pairs:
$$(x_i^k, y_i^k)$$

where $y_i^k = sign(w_k^t x_i^k)$

□ We compared three different types of regularization (i.e. projections):

L_{1-∞} projection
 L2 projection
 L1 projection

Synthetic Experiments

Test Error

Performance on predicting

relevant features

Dataset: Image Annotation

□ 40 top content words

Raw image representation: Vocabulary Tree
 (Grauman and Darrell 2005, Nister and Stewenius 2006)

11000 dimensions

Results

The differences are statistically significant

Dataset: Indoor Scene Recognition

□ 67 indoor scenes.

Raw image representation: similarities to a set of unlabeled images.

2000 dimensions.

Results:

Summary of Thesis Contributions

A method that learns image representations using unlabeled images + meta-data.

A transfer model based on performing a joint loss minimization over the training sets of related tasks with a shared regularization.

Previous approaches used greedy coordinate descent methods. We propose an efficient global optimization algorithm for learning jointly sparse models.

 \Box A tool that makes implementing an $L_{1-\infty}$ penalty as easy and almost as efficient as implementing the standard L1 and L2 penalties.

□ We presented experiments on real image classification tasks for both an asymmetric and symmetric transfer setting.

Future Work

Online Optimization.

□ Task Clustering.

Combining feature representations.

 \Box Generalization properties of L_{1- ∞} regularized models.

