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Abstract
In this paper, we introduce a model for sense as-
signment which relies on assigning senses to the
contexts within which words appear, rather than to
the words themselves. We argue that word senses
as such are not directly encoded in the lexicon
of the language. Rather, each word is associated
with one or more stereotypical syntagmatic pat-
terns, which we call selection contexts. Each selec-
tion context is associated with a meaning, which
can be expressed in any of various formal or com-
putational manifestations. We present a formalism
for encoding contexts that help to determine the
semantic contribution of a word in an utterance.
Further, we develop a methodology through which
such stereotypical contexts for words and phrases
can be identified from very large corpora, and sub-
sequently structured in a selection context dictio-
nary, encoding both stereotypical syntactic and se-
mantic information. We present some preliminary
results.

1 Introduction

This paper describes a new model for the acquisi-
tion and exploitation of selectional preferences for
predicates from natural language corpora. Our goal
is to apply this model in order to construct a dic-
tionary of normal selection contexts for natural lan-
guage; that is, a computational lexical database of
rich selectional contexts, associated with procedures
for assigning interpretations on a probabilistic basis
to less normal contexts. Such a semi-automatically
developed resource promises to have applications for
a number of NLP tasks, including word-sense disam-
biguation, selectional preference acquisition, as well
as anaphora resolution and inference in specialized
domains. We apply this methodology to a selected
set of verbs, including a subset of the verbs in the
Senseval 3 word sense discrimination task and report
our initial results.

1.1 Selectional Preference Acquisition:
Current State of the Art

Predicate subcategorization information constitutes
an essential part of the computational lexicon entry.
In recent years, a number of approaches have been
proposed for dealing computationally with selec-
tional preference acquisition (Resnik (1996); Briscoe
and Carroll (1997); McCarthy (1997); Rooth et al.

(1999); Abney and Light (1999); Ciaramita and
Johnson (2000); Korhonen (2002)).

The currently available best algorithms developed
for the acquisition of selectional preferences for pred-
icates are induction algorithms modeling selectional
behavior as a distribution over words (cf. Abney and
Light (1999)). Semantic classes assigned to predi-
cate arguments in subcategorization frames are ei-
ther derived automatically through statistical clus-
tering techniques (Rooth et al. (1999), Light and
Greiff (2002)) or assigned using hand-constructed
lexical taxonomies such as the WordNet hierarchy or
LDOCE semantic classes. Overwhelmingly, Word-
Net is chosen as the default resource for dealing with
the sparse data problem (Resnik (1996); Abney and
Light (1999); Ciaramita and Johnson (2000); Agirre
and Martinez (2001); Clark and Weir (2001); Carroll
and McCarthy (2000); Korhonen and Preiss (2003)).

Much of the work on inducing selectional prefer-
ences for verbs from corpora deals with predicates in-
discriminately, assuming no differentiation between
predicate senses (Resnik (1996); Abney and Light
(1999); Ciaramita and Johnson (2000); Rooth et al.
(1999)). Those approaches that do distinguish be-
tween predicate senses or complementation patterns
in acquisition of selectional constraints (Korhonen
(2002); Korhonen and Preiss (2003)) do not use cor-
pus analysis for verb sense classification.

1.2 Word Sense Disambiguation: Current
State of the Art

Previous computational concerns for economy of
grammatical representation have given way to mod-
els of language that not only exploit generative
grammatical resources but also have access to large
lists of contexts of linguistic items (words), to which
new structures can be compared in new usages.
However, following the work of Yarowsky (1992),
Yarowsky (1995), many supervised WSD systems
use minimal information about syntactic structures,
for the most part restricting the notion of con-
text to topical and local features. Topical features
track open-class words that appear within a cer-
tain window around a target word, and local fea-
tures track small N-grams associated with the tar-
get word. Disambiguation therefore relies on word
co-occurrence statistics, rather than on structural
similarities. That remains the case for most systems



that participated in Senseval-2 (Preiss and Yarowsky
(2001)). Some recent work (Stetina et al. (1998);
Agirre et al. (2002); Yamashita et al. (2003)) at-
tempts to change this situation and presents a di-
rected effort to investigate the impact of using syn-
tactic features for WSD learning algorithms. Agirre
et al (2002) and Yamashita et al. (2003) report re-
sulting improvement in precision.

Stevenson and Wilks (2001) propose a somewhat
related technique to handle WSD, based on inte-
grating LDOCE classes with simulated annealing.
Although space does not permit discussion here, ini-
tial comparisons suggest that our selection contexts
could incorporate similar knowledge resources; it is
not clear what role model bias plays in associating
patterns with senses, however.

In this paper we modify the notion of word sense,
and at the same time revise the manner in which
senses are encoded. The notion of word sense that
has been generally adopted in the literature is an
artifact of several factors in the status quo, notably
the availability of lexical resources such as machine-
readable dictionaries, in which fine sense distinctions
are not supported by criteria for selecting one sense
rather than another, and WordNet, where synset
groupings are taken as defining word sense distinc-
tions. Thus, for instance, Senseval-2 WSD tasks re-
quired disambiguation using WordNet senses (see,
e.g., discussion in Palmer et al. (2004)). The feature
sets used in the supervised WSD algorithms at best
use only minimal information about the typing of ar-
guments. The approach we adopt, Corpus Pattern
Analysis (CPA) (Pustejovsky and Hanks (2001)),
incorporates semantic features of the arguments of
the target word. Semantic features are expressed in
terms of a restricted set of shallow types, chosen for
their prevalence in selection context patterns. This
type system is extended with predicate-based noun
clustering, in the bootstrapping process described
below.

1.3 Related Resources: FrameNet

It is necessary to say a few words about the dif-
ferences between CPA and FrameNet. The CPA
approach has its origins in the analysis of large
corpora for lexicographic purposes (e.g. Cobuild
(Sinclair et al., 1987)) and in systemic-functional
grammar, in particular in Halliday’s notion of ”lexis
as a linguistic level” (Halliday, 1966) and Sin-
clair’s empirical approach to collocational anal-
ysis (Sinclair, 1991). FrameNet (freely avail-
able online in a beautifully designed data base at
http://www.icsi.berkeley.edu/˜framenet/), is an attempt to
implement Fillmore’s 1975 proposal that, instead of
seeking to satisfy a set of necessary and sufficient
conditions, the meanings of words in text should be
analyzed by calculating resemblance to a prototype
(Fillmore, 1975).

CPA (Hanks, 2004) is concerned with establishing
prototypical norms of usage for individual words. It
is possible (and certainly desirable) that CPA norms

will be mappable onto FrameNet’s semantic frames
(for which see the whole issue of the International
Journal of Lexicography for September 2003 (in par-
ticular Atkins et al. (2003a), Atkins et al. (2003b),
Fillmore et al. (2003a), Baker et al. (2003), Fillmore
et al. (2003b)). In frame semantics, the relationship
between semantics and syntactic realization is often
at a comparatively deep level, i.e. in many sentences
there are elements that are potentially present but
not actually expressed. For example, in the sentence
“he risked his life”, two semantic roles are expressed
(the risker and the valued object “his life” that is put
at risk). But at least three other roles are sublim-
inally present although not expressed: the possible
bad outcome (“he risked his death”), the beneficiary
or goal (“he risked his life for her/for a few dollars”),
and the means (“he risked a backward glance”).

CPA, on the other hand, is shallower and more
practical: the objective is to identify, in relation to
a given target word, the overt textual clues that
activate one or more components of its meaning
potential. There is also a methodological differ-
ence: whereas FrameNet research proceeds frame by
frame, CPA proceeds word by word. This means
that when a word has been analysed in CPA the
patterns are immediately available for disambigua-
tion. FrameNet will be usable for disambiguation
only when all frames have been completely analysed.
Even then, FrameNet’s methodology, which requires
the researchers to think up all possible members of
a Frame a priori, means that important senses of
words that have been partly analysed are missing
and may continue to be missing for years to come.
There is no attempt in FrameNet to identify the
senses of each word systematically and contrastively.
In its present form, at least, FrameNet has at least
as many gaps as senses. For example, at the time
of writing toast is shown as part of the Apply Heat
frame but not the Celebrate frame. It is not clear
how or whether the gaps are to be filled systemat-
ically. We do not even know whether there is (or
is going to be) a Celebrate frame and if so what it
will be called. What is needed is a principled fix – a
decision to proceed from evidence, not frames. This
is ruled out by FrameNet for principled reasons: the
unit of analysis for FrameNet is the frame, not the
word.

2 CPA Methodology

The Corpus Pattern Analysis (CPA) technique uses
a semi-automatic bootstrapping process to produce
a dictionary of selection contexts for predicates
in a language. Word senses for verbs are distin-
guished through corpus-derived syntagmatic pat-
terns mapped to Generative Lexicon Theory (Puste-
jovsky (1995)) as a linguistic model of interpreta-
tion, which guides and constrains the induction of
senses from word distributional information. Each
pattern is specified in terms of lexical sets for each
argument, shallow semantic typing of these sets, and



other syntagmatically relevant criteria (e.g., adver-
bials of manner, phrasal particles, genitives, nega-
tives).

The procedure consists of three subtasks: (1) the
manual discovery of selection context patterns for
specific verbs; (2) the automatic recognition of in-
stances of the identified patterns; and (3) automatic
acquisition of patterns for unanalyzed cases. Ini-
tially, a number of patterns are manually formulated
by a lexicographer through corpus pattern analysis
of about 500 occurrences of each verb lemma. Next,
for higher frequency verbs, the remaining corpus oc-
currences are scrutinized to see if any low-frequency
patterns have been missed. The patterns are then
translated into a feature matrix used for identifying
the sense of unseen instances for a particular verb.
In the remainder of this section, we describe these
subtasks in more detail. The following sections ex-
plain the current status of the implementation of
these tasks.

2.1 Lexical Discovery

Norms of usage are captured in what we call selec-
tion context patterns. For each lemma, contexts
of usage are sorted into groups, and a stereotypi-
cal CPA pattern that captures the relevant seman-
tic and syntactic features of the group is recorded.
Many patterns have alternations, recorded in satel-
lite CPA patterns. Alternations are linked to
the main CPA pattern through the same sense-
modifying mechanisms as those that allow for ex-
ploitations (coercions) of the norms of usage to be
understood. For example, here is the set of pat-
terns for the verb treat. Note that these patterns
do not capture all possible uses, and other patterns
may be added, e.g. if additional evidence is found
in domain-specific corpora.

(1) CPA Pattern set for treat:

I. [[Person 1]] treat [[Person 2]] ({at | in} [[Location]])
(for [[Event = Injury | Ailment]]); NO [Adv[Manner]]

II. [[Person 1]] treat [[Person 2]] [Adv[Manner]]

IIIa. [[Person]] treat [[TopType 1]] {{as | like} [[TopType 2]]}

IIIb. [[Person]] treat [[TopType]] {{as if | as though | like}
[CLAUSE]}

IV. [[Person 1]] treat [[Person 2]] {to [[Event]]}

V. [[Person]] treat [[PhysObj | Stuff 1]] (with [[Stuff 2]])

There may be several patterns realizing a single
sense of a verb, as in (IIIa/IIIb) above. Also, there
may be several equivalent alternations or there may
be a stereotype. Note that alternations are different
realizations of the same norm, not exploitations (i.e.,
not coercions).

(2) Alternations for treat Pattern 1 :

[[Person 1]] treat [[Person 2]] ({at | in} [[Hospital]])
(for [[Injury | Ailment]]); NO [Adv[Manner]]

Alternation 1:
[[Person 1 <--> Medicament | Med-Procedure | Institution]]

Alternation 2:
[[Person 2 <--> Injury | Ailment | Bodypart]]

CPA Patterns

A CPA pattern extends the traditional notion of se-
lectional context to include a number of other con-
textual features, such as minor category parsing and
subphrasal cues. Accurate identification of the se-
mantically relevant aspects of a pattern is not an
obvious and straightforward procedure, as has some-
times been assumed in the literature. For example,
the presence or absence of an adverbial of manner in
the third valency slot around a verb can dramatically
alter the verb’s meaning. Simple syntactic encoding
of argument structure, for instance, is insufficient to
discriminate between the two major senses of the
verb treat, as illustrated below.

(3) a. They say their bosses treat them with respect.

b. Such patients are treated with antibiotics.

The ability to recognize the shallow semantic type
of a phrase in the context of a predicate is of course
crucial —for example, in (3a) recognizing the PP as
(a) an adverbial, and (b) an adverbial of manner,
rather than an instrumental co-agent (as in (3b)),
is crucial for assigning the correct sense to the verb
treat above.

In the CPA model, automatic identification of
selection contexts not only captures the argument
structure of a predicate, but also more delicate fea-
tures, which may have a profound effect on the
semantic interpretation of a predicate in context.
There are four constraint sets that contribute to the
patterns for encoding selection contexts. These are:

(4) a. Shallow Syntactic Parsing: Phrase-level recogni-

tion of major categories.

b. Shallow Semantic Typing: 50-100 primitive shal-

low types, such as Person, Institution, Event, Abstract, Ar-

tifact, Location, and so forth. These are the top types se-

lected from the Brandeis Shallow Ontology (BSO), and are

similar to entities (and some relations) employed in Named

Entity Recognition tasks, such as TREC and ACE.

c. Minor Syntactic Category Parsing: e.g., loca-

tives, purpose clauses, rationale clauses, temporal adjuncts.

d. Subphrasal Syntactic Cue Recognition: e.g.,

genitives, partitives, bare plural/determiner distinctions,

infinitivals, negatives.

The notion of a selection context pattern, as pro-
duced by a human annotator, is expressed as a BNF
specification in Table 1.1 This specification relies
on word order to specify argument position, and is
easily translated to a template with slots allocated
for each argument. Within this grammar, a seman-
tic roles can be specified for each argument, but this
information currently is not used in the automated
processing.

English contains only about 8,000 verbs, of which
we estimate that about 30% have only one basic pat-
tern. The rest are evenly split between verbs hav-
ing 2-3 patterns and verbs having more than 4 or

1Round brackets indicate optional elements of the pattern,
and curly brackets indicate syntactic constituents.



CPA-Pattern → Segment verb-lit Segment | verb-lit Segment | Segment verb-lit | CPA-Pattern ’;’ Element

Segment → Element | Segment Segment | ’’ Segment ’’ | ’(’ Segment ’)’ | Segment ’|’ Segment

Element → literal | ’[’ Rstr ArgType ’]’ | ’[’ Rstr literal ’]’ | ’[’ Rstr ’]’ | ’[’ NO Cue ’]’ | ’[’ Cue ’]’

Rstr → POS | Phrasal | Rstr ’|’ Rstr | epsilon

Cue → POS | Phrasal | AdvCue

AdvCue → ADV ’[’ AdvType ’]’

AdvType → Manner | Dir | Location

Phrasal → OBJ | CLAUSE | VP | QUOTE

POS → ADJ | ADV | DET | POSDET | COREF POSDET | REFL-PRON | NEG |
MASS | PLURAL | V | INF | PREP | V-ING | CARD | QUANT | CONJ

ArgType → ’[’ SType ’]’ | ’[’ SType ’=’ SubtypeSpec ’]’ | ArgType ’|’ ArgType | ’[’ SType ArgIdx ’]’ |
’[’ SType ArgIdx ’=’ SubtypeSpec ’]’

SType → AdvType | TopType | Entity | Abstract | PhysObj | Institution | Asset | Location | Human | Animate |
Human Group | Substance | Unit of Measurement | Quality | Event | State of Affairs | Process

SubtypeSpec → SubtypeSpec ’|’ SubtypeSpec | SubtypeSpec ’&’ SubtypeSpec | Role | Polarity | LSet

Role → Role | Role ’|’ Role | Benficiary | Meronym | Agent | Payer

Polarity → Negative | Positive

LSet → Worker | Pilot | Musician | Competitor | Hospital | Injury | Ailment | Medicament | Medical Procedure |
Hour-Measure | Bargain | Clothing | BodyPart | Text | Sewage | Part | Computer | Animal

ArgIdx → <number> verb-lit → <verb-word-form>

literal → word word → <word>

CARD → <number> NEG → not

POSDET → my | your | ... INF → to

QUANT → CARD | a lot | longer | more | many | ...

Table 1: Pattern grammar

more patterns. About 20 light verbs have between
100 and 200 patterns each. This is less alarming
than it sounds, because the majority of light verb
patterns involve selection of just one specific nom-
inal head, e.g., take account, take plunge, take
photograph, with few if any alternations. The pat-
tern sets for verbs of different frequency groups differ
in terms of the number and type of features each pat-
tern requires, the number of patterns in a set for a
given verbs, the number of alternations for each pat-
tern, and the type of selectional preferences affecting
the verb’s arguments.

Brandeis Shallow Ontology

The Brandeis Shallow Ontology (BSO) is a shallow
hierarchy of types selected for their prevalence in
manually identified selection context patterns. At
the time of writing, there are just 65 types, in terms
of which patterns for the first one hundred verbs
have been analyzed. New types are added occasion-
ally, but only when all possibilities of using existing
types prove inadequate. Once the set of manually
extracted patterns is sufficient, the type system will
be re-populated and become pattern-driven.

The BSO type system allows multiple inheri-
tance (e.g. Document v PhysObj and Document v
Information. The types currently comprising the
ontology are listed above. The BSO contains type
assignments for 20,000 noun entries and 10,000 nom-
inal collocation entries.



Corpus-driven Type System

The acquisition strategy for selectional preferences
for predicates proceeds as follows:

(5) a. Partition the corpus occurrences of a
predicate according to the selection contexts
pattern grammar, distinguished by the four
levels of constraints mentioned in (4). These
are uninterpreted patterns for the predicate.

b. Within a given pattern, promote the statisti-
cally significant literal types from the corpus for
each argument to the predicate. This induces
an interpretation of the pattern, treating the
promoted literal type as the specific binding of
a shallow type from step (a) above.

c. Within a given pattern, coerce all lexical
heads in the same shallow type for an argu-
ment, into the promoted literal type, assigned
in (b) above. This is a coercion of a lexical
head to the interpretation of the promoted
literal type induced from step (b) above.

In a sense, (5a) can be seen as a broad multi-
level partitioning of the selectional behavior for a
predicate according to a richer set of syntactic and
semantic discriminants. Step (5b) can be seen as
capturing the norms of usage in the corpus, while
step (5c) is a way of modeling the exploitation
of these norms in the language (through coercion,
metonymy, and other generative operations). To
illustrate the way in which CPA discriminates un-
interpreted patterns from the corpus, we return to
the verb treat as it is used in the BNC. Although
there are three basic senses for this verb, the two
major senses, as illustrated in (1) above, emerge as
correlated with two distinct context patterns, us-
ing the discriminant constraints mentioned in (4)
above. For the full specification for this verb, see
www.cs.brandeis.edu/~arum/cpa/treat.html.

(6) a. [[Person 1]] treat [[Person 2]]; NO [Adv[Manner]]

b. [[Person 1]] treat [[Person 2]] [Adv[Manner]]

Given a distinct (contextual) basis on which to an-
alyze the actual statistical distribution of the words
in each argument position, we can promote statisti-
cally relevant and significant literal types for these
positions. For example, for pattern (a) above, this
induces Doctor as Person 1, and Patient as bound
to Person 2. This produces the interpreted context
pattern for this sense as shown below.

(7) [[doctor]] treat [[patient]]

Promoted literal types are corpus-derived and
predicate-dependent, and are syntactic heads of
phrases that occur with the greatest frequency in ar-
gument positions for a given sense pattern; they are
subsequently assumed to be subtypes of the particu-
lar shallow type in the pattern. Step (5c) above then

enables us to bind the other lexical heads in these po-
sitions as coerced forms of the promoted literal type.
This can be seen below in the concordance sample,
where therapies is interpreted as Doctor, and people
and girl are interpreted as Patient.

(8) a. returned with a doctor who treated the girl till an am-

bulance arrived.

b. more than 90,000 people have been treated for cholera

since the epidemic began

c. nonsurgical therapies to treat the breast cancer, which

may involve

Model Bias

The assumption within GL is that semantic types
in the grammar map systematically to default syn-
tactic templates (cf. Pustejovsky (1995)). These
are termed canonical syntactic forms (CSFs). For
example, the CSF for the type proposition is a
tensed S. There are, however, many possible real-
izations (such as infinitival S and NP) for this type
due to the different possibilities available from gen-
erative devices in a grammar, such as coercion and
co-composition. The resulting set of syntactic forms
associated with a particular semantic type is called
a phrasal paradigm for that type. The model bias
provided by GL acts to guide the interpretation of
purely statistically based measures (cf. Pustejovsky
(2000)).

2.2 Automatic Recognition of Pattern Use

Essentially, this subtask is similar to the traditional
supervised WSD problem. Its purpose is (1) to test
the discriminatory power of CPA-derived feature-
set, (2) to extend and refine the inventory of features
captured by the CPA patterns, and (3) to allow for
predicate-based argument groupings by classifying
unseen instances. Extension and refinement of the
inventory of features should involve feature induc-
tion, but at the moment this part has not been im-
plemented. During the lexical discovery stage, lex-
ical sets that fill some of the argument slots in the
patterns are instantiated from the training exam-
ples. As more predicate-based lexical sets within
shallow types are explored, the data will permit
identification of the types of features that unite ele-
ments in lexical sets.

2.3 Automatic Pattern Acquisition

The algorithm for automatic pattern acquisition in-
volves the following steps:

(9) a. Collect all constituents in a particular argu-
ment position;
b. Identify syntactic alternations;
c. Perform clustering on all nouns that occur in
a particular argument position of a given pred-
icate;
d. For each cluster, measure its relatedness
to the known lexical sets, obtained previously
during the lexical discovery stage and extended



through WSD of unseen instances. If none of
the existing lexical sets pass the distance thresh-
old, establish the cluster as a new lexical set, to
be used in future pattern specification.

Step (9d) must include extensive filtering proce-
dures to check for shared semantic features, look-
ing for commonality between the members. That
is, there must be some threshold overlap between
subgroups of the candidate lexical set and and the
existing semantic classes. For instance, checking if,
for a certain percentage of pairs in the candidate set,
there already exists a set of which both elements are
members.

3 Current Implementation

The CPA patterns are developed using the British
National Corpus (BNC). The sorted instances are
used as a training set for the supervised disambigua-
tion. For the disambiguation task, each pattern is
translated into into a set of preprocessing-specific
features.

The BNC is preprocessed using the Robust Accu-
rate Statistical Parsing system (RASP) and seman-
tically tagged with BSO types. The RASP system
(Briscoe and Carroll (2002)) tokenizes, POS-tags,
and lemmatizes text, generating a forest of full parse
trees for each sentence and associating a probability
with each parse. For each parse, RASP produces a
set of grammatical relations, specifying the relation
type, the headword, and the dependent element. All
our computations are performed over the single top-
ranked tree for the sentences where a full parse was
successfully obtained. Some of the grammatical re-
lations identified by RASP are shown in (10).

(10) subjects: ncsubj, clausal (csubj, xsubj)

objects: dobj, iobj, clausal complement

modifiers: adverbs, modifiers of event nominals

We use endocentric semantic typing, i.e., the head-
word of each constituent is used to establish its se-
mantic type. The semantic tagging strategy is simi-
lar to the one described in Pustejovsky et al. (2002).
Currently, a subset of 24 BSO types is used for se-
mantic tagging.

A CPA pattern is translated into a feature set,
which in the current implementation uses binary fea-
tures. It is further complemented with other dis-
criminant context features which, rather than dis-
tinguishing a particular pattern, are merely likely to
occur with a given subset of patterns; that is, the fea-
tures that only partially determine or co-determine
a sense. In the future, these should be learned from
the training set through feature induction from the
training sample, but at the moment, they are added
manually. The resulting feature matrix for each pat-
tern contains features such as those in (11) below.
Each pattern is translated into a template of 15-25
features.

(11) Selected context features:
a. obj institution: object belongs to the BSO type ’Insti-

tution’

b. subj human group: subject belongs to the BSO type ’Hu-

manGroup’

c. mod adv ly: target verb has an adverbial modifier, with a

-ly adverb

d. clausal like: target verb has a clausal argument intro-

duced by ’like’

e. iobj with: target verb has an indirect object by ’with’

f. obj PRP: direct object is a personal pronoun

g. stem VVG: the target verb stem is an -ing form

Each feature may be realized by a number of RASP
relations. For instance, a feature dealing with
objects would take into account RASP relations
’dobj’, ’obj2’, and ’ncsubj’ (for passives). The
features such as (11a)-(11e) are typically taken di-
rectly from the pattern specification, while features
such as in (11f) and (11g) would typically be added
as co-determining the pattern.

4 Results and Discussion

The experimental trials performed to date are too
preliminary to validate the methodology outlined
above in general terms for the WSD task. Our re-
sults are encouraging however, and comparable to
the best performing systems reported from Senseval
2. For our experiments, we implemented two ma-
chine learning algorithms, instance-based k-Nearest
Neighbor, and a decision tree algorithm (a version
of ID3). For these experiments, kNN was run with
the full training set. Table 2 shows the results on a
subset of verbs that have been processed, also listing
the number of patterns in the pattern set for each of
the verbs.2

verb number of training accuracy
patterns set ID3 kNN

edit 2 100 87% 86%
treat 4 200 45% 52%
submit 4 100 59% 64%

Table 2: Accuracy of pattern identification

Further experimentation is obviously needed to
adequately gauge the effectiveness of the selection
context approach for WSD and other NLP tasks.
It is already clear, however, that the traditional
sense enumeration approach, where senses are asso-
ciated with individual lexical items, must give way
to a model where senses are assigned to the contexts
within which words appear. Furthermore, because
the variability of the stereotypical syntagmatic pat-
terns that are associated with words appears to be
relatively small, such information can be encoded as

2Test set size for each lemma is 100 instances, selected out
of several randomly chosen segments of BNC, non-overlapping
with the training set



lexically-indexed contexts. A comprehensive dictio-
nary of such contexts could prove to be a powerful
tool for a variety of NLP tasks.
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