Efficient Consistency Proofs for Generalized Queries on
a Committed Databasé&

Rafail Ostrovsky, Charles Rackoff, and Adam Smith

1 UCLA Dept. of Computer Science, Los Angeles, CA, US#fail@cs.ucla.edu
2 University of Toronto, Toronto, Ontario, Canadackoff@cs.toronto.edu
3 MIT Computer Science and Al Lab, Cambridge, MA, USSmith@csail.mit.edu

Abstract. A consistent query protocdcQp) allows a database owner to pub-
lish a very short string: which commitsher and everybody else to a particular
databasé), so that any copy of the database can later be used to answer queries
and give short proofs that the answers are consistent with the commitment
Herecommitsmeans that there is at most one databaghat anybody can find

(in polynomial time) which is consistent with (Unlike in some previous work,

this strong guarantee holds even for owners who try to cheat while crea}ing
Efficient cQps for membership and one-dimensional range queries are known [4,
11, 16]: given a query paii, b € IR, the server answers with all the keys in the
database which lie in the intervial, b] and a proof that the answer is correct.

This paper exploresQps for more general types of databases. We put forward
a general technique for constructiogprs for any type of query, assuming the
existence of a data structure/algorithm with certain inherent robustness prop-
erties that we define (called data robust algorithin We illustrate our tech-
nique by constructing an efficient protocol forthogonal range queriesvhere

the database keys are pointsRff and a query asks for all keys in a rectangle
[a1,b1] X ... X [aq, ba]. Our data-robust algorithm is within@(log V) factor

of the best known standard data structure (a range tree, due to Bentley [2]).

We modify our protocol so that it is algwivate, that is, the proofs leak no infor-
mation about the database beyond the query answers. We show a generic modi-
fication to ensure privacy based on zero-knowledge proofs, and also give a new,
more efficient protocol tailored to hash trees.

1 Introduction

Informally, a consistent queryprotocol €QP) allows a database owner to publish a
short stringe whichcommitsher to a particular databag# so that she can later answer
queries and give short proofs that her answers are consistentDwithere commits
means that she cannot change her mind alibut there is at most one database she
can find (in polynomial time) which is consistent witi{e.g.c could be a secure hash

of D). Similarly, she can only find valid proofs for query answers which are consistent

* Preliminary work done during the summer of 2000 when all authors were visiting/working at
Telcordia Technologies. Preliminary version appeared as MIT LCS Technical Report TR-887,
Feb. 2003 [20]. Work of the first author at UCLA is partially supported by a gift from Teradata.

with D. The challenge is to make both the commitment and the proofs of consistency
as short and simple as possible.

One may also requinerivacy—that is, the proofs of consistency should not leak any
information on the database beyond the query answers. Privacy is important, for exam-
ple, in settings in which query answers are sold individually, or in which the database
contains personal data. Adding this requirement & brings it much closer to the
traditional cryptographic notion of a commitment scheme.

Below, we discuss relevant related work and then describe our results in detail.

Related Work We discuss the related work in the context of cryptographic commit-
ment protocols. These have been studied extensively, and part of our contribution is to
tie them in to an algorithmic point of view. A commitment protocol allows Alice to put

a valuea in a virtual envelope and hand it to Bob. Bob learns nothing about the value
(hiding), but Alice can later open the envelope, without being able to reveal a different
valuead’ (binding).

Commitment Schemes for Large Dataselfe notion of commitment has been gen-
eralized considerably to allow revealing only partial information about the committed
data, using very little communication. Merkle [17] proposed the following protocol for
committing to a list of N valuesa, ..., ay: Pick a collision-resistant hash-functfofl

(say from2k bits to k bits), pair up input§as,as), ..., (an—1,an) and applyH to

each pair. Now, pair up the resulting hash values and repeat this process, constructing a
binary tree of hash values, until you get to a single root of lekgtfithe root of the tree

is published (or sent to Bob by Alice), the entire collection of values is now commit-
ted to, though not necessarily hidden—we discuss hiding further below. To reveal any
particular valuez;, Alice can reveal a path from the rootdgtogether with all the sib-

lings along the path. This requires orillyog NV bits. This idea has many cryptographic
applications, including efficient signature schemes [17, 5], efficient zero-knowledge ar-
guments [10, 1] and computationally sound proofs [15].

Recently Buldas, Laud and Lipmaa [3], Kilian [11] and Micali and Rabin [16] in-
dependently generalized this idea to allow committing t®etof values. The server
produces a short commitment to her set(kdy, value) pairs which is made public.
When a client makesmembership querfi.e. “do you have an entry with key?"), the
server returns the answer along with a short proof of consistency. (We call a scheme for
this task acQPfor membership queries.) A very similar data structure (again, a Merkle
tree) also allows one to also answer one-dimensicamaje queriese.g. “What keys
lie betweenr andy?” [4, 11, 16]. Merkle trees were subsequently modified to allow
efficient updates by changing the structure to resemble a skip list [12]. Our work gen-
eralizes these ideas to more complex queries and data structures, and provides rigorous
proofs of security.

Protocols with a Trusted CommittelThere is substantial work cauthenticated data
structureq18], which allow one to guarantee the consistency of many replicated copies
of a database. That work tackles a different problem from ours, since it assumes that the
commitment phase is always performed honestly. As with ordinary commitments, as-
suming a trusted committer allows for simpler, more efficient solutions than are known

4 A hash function familyH,. (-) is collision-resistanif no poly-time algorithm given: can find
a pair of inputs that map to the same output for a randomly chosen {&se Section 2).

in our (general) setting; the generic construction in this paper can be viewed as a more
robust version of the generic constructions of authenticated data structures [18, 13, 8].
For discussions of the dangers of assuming a trusted committer, see [3, 12].

Privacy for Committed DatabasedJicali, Rabin and Kilian [14] show how to prove
consistency of answers to membership queries while also hiding information about
unanswered queries. They require that consistency proofs leak nothing about the database
except the query answer—not even the size of the database. (They call the primitive a
zero-knowledge s@tThey give an efficient protocol based on the DDH assumption,

with proof lengthO(k log M) where M is an upper bound on the set siZei§ the

output length of the hash function). Our techniques achieve this resultpoliik)
communication under more general assumptions and for more general types of queries.
Subsequent to our work, [9] achieved the results of [14] based on general assumptions.

Our Contributions This paper considersQprs for types of queries beyond simple
membership and range queries. We give a general framework for designing such proto-
cols based on query algorithms with a certain robustness property, and illustrate our
paradigm fororthogonal range queriesconstructing protocols with a®(k log NV)
overhead over the fastest known standard query alogrithms. We also show how to make
the protocolgrivate without too much loss of efficiency.

A general paradigm focQps. We introducedata-robust algorithmg§brAs). These are
search algorithms (paired with data structures) which are robust against corruptions of
the data by an unboundedaliciousadversary: for any input—essentially, an arbitrary
string— the algorithm will answer all queries consistently with one (valid) database.
Assuming the existence of collision-resistant hash functions,casy which ac-
cesses memory via pointers can be transformed into a consistent query protocol whose
(non-interactive) consistency proofs have length at mi&t7"), wherek is the output
size of the hash function aridis the running time of therA.

cqp for Orthogonal Range QueriesWe present a consistent query protocol scheme
that allows efficient orthogonal range queriesdimlimensions. That is, the database
consists of tuplegkey,, ..., key,, value), a query consists of intervals[aq,b1], .. .,

[aq, bq], @and an answer is the set of all database elements whose keys lie inside the
corresponding hypercube. The server not only proves that it has provided all the points
in the database which match the query, but also that no others exist.

Our consistency proofs have sigik(m + 1)log” N), where N is the database
size,k is the security parameter, andis the number of keys in the database satisfying
the query (the computation requiredd$(im + 1) log? N') hash evaluations). For range
queries on a single key, our construction reduces essentially to that of [4, 16, 11].

Our protocol is obtained by first constructingpaA based on range trees, a classic
data structure due to Bentley [2]. Existing algorithms (in particular, the authenticated
data structures of [13]) do not suffice, as inconsistencies in the data structure can lead
to inconsistent query answers. Instead, we show how local checks can be used to ensure
that all queries are answered consistently with a single database-diorensional
queries, the query time i9((m + 1) log N), wherem is the number of hits for the
query andN is the number of keys in the database. This is witlig/N of the best
known (non-robust) data structure.

Achieving Privacy EfficientlyConsistent query protocols will, in general, leak infor-
mation about the database beyond the answer to the query. It is possible to add privacy
to anycQP using generic techniques: one can replace the proof of consistewith

a zero-knowledge proof of knowledge of Surprisingly, this leads to schemes with
better asymptotic communication complexity, nam@l{poly(k)). This generic trans-
formation can hide the size of the database, as in [14].

However, the use of NP reductions and probabilistically checkable proofs in generic
constructions means that the advantages only appear for extremely large datasets. We
give a simpler zero-knowledge protocol tailored to Merkle trees, which does not hide the
size of the database. The crux of that protocol is to avoid NP reductions when proving
zero-knowledge statements about values of the hash function, and so the result is called
an explicit-hash Merkle treeAs a sample application, we show how this protocol can
be used to add privacy to one-dimensional range trees.

Organization. Section 2 formally definesQps. Section 3 explains data-robust algo-
rithms, and the transformation fronRAs tocQps. Section 4 gives owRA for orthog-
onal range queries. Section 5 discusses techniques for ma&iryprivate. Due to lack
of space, all proofs are deferred to the full version.

2 Definitions

A function f (k) is negligiblein a parametek if f(k) € O(%) for all integersc > 0.
Assigning the (possibly randomized) output of algoritinon inputz to variabley is
denoted byy — A(z). An important component is collision-resistant hash functions
(CRHF). This is a family of length-reducing functions (say fr8inbits to % bits) such
that given a randomly chosen functibrirom the family, it is computationally infeasible
to find a collision, i.ex # y with h(z) = h(y).

Consistent Query Protocols A query structure is a tripl€D, Q, Q) whereD is a set
of valid databasesp is a set of possible queries, agdis a rule which associates an
answeray p = Q(g, D) with every query/database paic Q,D € D.

In a cqQpr, there is a server who, given a database, produces a commitment which
is made public. Clients then send queries to the server, who provides the query answer
along with a proof of consistency of the commitment. There may also be a public ran-
dom string to be provided by a trusted third party. Though we formulate our definitions
in that context, our constructions mostly do not require the third party.

Syntactically, a query protocol consists several probabilistic poly-time (PPT) algo-
rithms: (1) a server setup algorith$y, which takes the databagk a security parameter
1¥ and any public randomness and outputs the commitmentind some internal state
informationstate (2) an answering algorithr§, which takesstateand a query; and
returns an answer-proof paie, 7); (3) a client verification algorithm which takes a
triple (¢, ¢, a, 7) and outputs "accept” or "reject;” (4) an algorithim for sampling the
public random string.

Definition 1. A query protocol isonsistentf it is complete and sound:

e Completeness: For every valid databa3eand queryy, if setup is performed cor-
rectly then with overwhelming probabilit§, outputs both the correct answer and a
proof which is accepted k. Formally, for allg € Q and for allD € D,

Prlo « 2(1%); (¢, statg « S,(o, D); (a,7) «— Sa(gq, state :
C(o,¢,q,a,m) ="“accept’anda = Q(q, D)] > 1 — negl(k)

¢ (Computational) Soundness: For every non-uniform PPT adyeéanyn Sto ob-
tain a commitment along with a list of tripleg¢;, a;, 7;). We says acts consistently
if there existsD € D such thate, = Q(g;, D) for all i for which; is a valid proof.

The protocol issoundif all PPT adversariesS act consistently. Formally:
Prlo « E(lk); (07 (q1,a1,m1),. .., (Qtaatﬂrt)) — 5; b; + C(0, ¢, qi, i, ;)

3D such that(a; = Q(q;, D) or b; = 0) for all i] > 1 — negl(k)
Privacy Informally, we require that an adversarial client interacting with an (honest)
server learn no more information from the answer/proof pairs he receives than what he
gets from the answers alone. specifically, a simulator who has access only to the query
answers should be able to give believable-looking proofs of consistency. The definition
comes from [11, 16, 14], though we use a cleaner formulation due to [9].

Definition 2 (Computational privacy). A consistent query protocol fdD, Q, Q) is
private if there exists a PPT simulatim, such that for every non-uniform PPT adver-
saryC, the outputs of the following experiments are computationally indistinguishable:

o — X(1%), o', ¢, statesim — Sim(1%),

(D, stateg) «— C(o), (D, stateg) « C(a"),

(¢, state) «— Ss(0, D),

Outputz « CSa(5tate) (¢ states) | Outputz « COMC:statesm QD) (¢! states)

HereC®() denotes running with oracle access t@. The simulatoSim has ac-
cess to a query oracl@(-, D), butasks only queries which are askedie by C.

Hiding Set Sizeln general, a private protocol should not leak the size of the database
[14]. Nonetheless, for the sake of efficiency we will sometimes lgadygnomialupper
boundT on the database size, and call the corresponding protsized-private[11].

This can be reflected in the definition by giving the simulator an upper béuonl the

size of D as an additional input. One recovers the original definition by letlinge
exponential, e.gl" = 2*.

Interactive proofs. The definitions extend to a model where consistency proofs are
interactive (although the access of the simulator to the adversarial client is more tricky).

3 Data-robust algorithms and consistent query protocols

In this section, we describe a general framework for obtaining secure consistent query
protocols, based on designing efficient algorithms which are “data-robust”. Assuming
the availability of a collision-resistant hash function, we show that any such algorithm
which accesses its input by “following” pointers can be transformed into a consistent
query protocol whose (non-interactive) consistency proofs have complexity at most pro-
portional to the complexity of the algorithm.

Data-robust algorithms Suppose a programmer records a database on disk in some
kind of static data structure which allows efficient queries. Such data structures are
often augmented with redundant information, for example to allow searching on two
different fields. If the data structure later becomes corrupted, then subsequent queries
to the structure might be mutually inconsistent: for example, if entries are sorted on
two fields, some entry might appear in one of the two structures but not the other. A
data-robust algorithm prevents such inconsistencies.

Suppose we have a query structyfe 9,). A data-robust algorithmpRa) for
these consists of two polynomial-tifalgorithms(T’, A): First, a setup transformation
T : D — {0,1}" which takes a databade and makes it into a static data structure
(i.e. a bit string)S = T'(D) which is maintained in memory. Second, a query algorithm
A which takes a query € Q and an arbitrary “structure e {0,1}" and returns an
answer. The structurs needn’t be the output f for any valid databas®.

Definition 3. The algorithmgT, A) form adata-robust algorithrfor (D, Q, Q) if:

e Termination A terminates in polynomial time aall input pairs(q, S), even wherd
is not an output fronT".

e SoundnessThere exists a functiod™* : {0,1}* — D such thatfor all inputs S, the
databaseD = T*(S) satisfiesA(q, S) = Q(q, D) for all queriesg.
(There is no need to give an algorithm fbi; we only need it to be well-defined.)

e CompletenessFor all D € D, we havel™*(T'(D)) = D.

(Thatis, oninpuy andT'(D), the algorithmA returns the correct answep(q, D).)

We only allow A read access to the data structure (although the algorithm may use
separate space of its own). Moreovaéris statelessit shouldn’t have to remember any
information between invocations.

The running time ofd. There is a naive solution to the problem of designinpra:

A could scan the corrupted structusein its entirety, decide which databage this
corresponds to, and answer queries with respefl.tdhe problem, of course, is that
this requires at least linear tinan every queryrecall thatA is stateless). Hence the
task of designing robust algorithms is most interesting when there are reibrihear

time algorithms; the goal is then to maintain efficiency while also achieving robustness.
In our setting, efficiency means the running-time of the algorithion correctinputs,

in either a RAM or pointer-based model. On incorrect inputs, an adversarially-chosen
structure could, in general, makkwaste time proportional to the size of the structure
S: the termination condition above restricts the adversary from doing too much damage
(such as setting up an infinite loop, etc).

Constructing consistent query protocols frombRrRAs Given abRA which works in

a pointer-based memory model, we can obtain a cryptographically secure consistent
query protocol of similar efficiency. Informally, RA is pointer-based if it operates by
following pointer in a directed acyclic graph with a single source (see the full version
for details). Most common search algorithms fit into this model.

5 We assume for simplicity that the algorithms are deterministic; this is not strictly necessary.

Proposition 1. (Informally) Let(T, A) be aDRA for query structurg D, Q, Q) which
fits into the pointer-based framework described above. Suppose that on inpots

T (D) (correctly formed), the algorithrl examine$(q, D) memory blocks and a total
of s(g, D) bits of memory, using ¢, D) time steps. Assuming the availability of a public
collision-resistant hash function, there exists a consistent query protoc@io®, Q)
which has proof lengtls(q, D) + kb(g, D) on queryq. The server’s computation on
each query i€ (s(q, D) + t(¢q, D) + kb(g, D)).

To get a consistent query protocol fronbaa, we essentially build a Merkle tree
(or graph, in fact) which mimics the structure of the data, replacing pointers with hashes
of the values they point to. The client runs the query algorithm starting from hash of
the unique source in the graph (that hash value is the public commitment). When the
query algorithm needs to follow a pointer, the server merely provides the corresponding
pre-image of the hash value.

4 Orthogonal Range Queries

In the case of join queries, a databdsés a set of key/value pairs (entries) where each
key is a point inR¢, and each query is a rectanglg, b;] x --- x [ag4, bs]. Note that

these are also often call¢orthogonal) range querieand we shall adopt this terminol-

ogy here for consistency with the computational geometry literature. For concreteness,
we consider the two-dimensional case; the construction naturally extends to higher di-
mensions. In two dimensions, each quelig a rectanglga;, b1] x [a2, b2]. The query
answerQ)(q, D) is a list of all the entries iD whose key(xkey, ykey) lies ing.

4.1 A data-robust algorithm for range queries

Various data structures for efficient orthogonal range queries exist (see [7] for a survey).
The most efficient (non-robust) solutions have query t@iém + 1) log?~! N) for d-
dimensional queries. We recall the constructiommilti-dimensional range tregslue

to Bentley [2]), and show how they can be queried robustly. The query time of the
robust algorithm isO((m + 1)log? N). It is an interesting open question to find a
robust algorithm which does as well as the best non-robust algorithms.

One-dimensional range treesMultidimensional range trees are built recursively from
one-dimensional range trees (denoteBRT), which were also used by [4, 16, 11]. In

a 1-DRT, (key, value) pairs are stored in sorted order as the leaves of a (minimum-
height) binary tree. An internal nodestores the minimum (denoteg) and maximum
(denoted,,) keys which appear in the subtree rooted afFor a leafl, we takea; = b;

to be the value of théey, key stored af. Additionally, leaves store the valuelue;
associated tgey;.

Setup. Given a databas® = {(key,, value;),..., (keyy,valueyn)}, the setup trans-
formationTyprt constructs a minimum-height tree based on the sorted keys. All the
intervals|a,,, b,] can be computed using a single post-order traversal.

Algorithm 1. Aiprt([a,b], n,)
Input: a target ranggy, b], @ noden in a (possibly misformed}-DRT.
Output: a set ofkey, value) pairs.

1. if n is not properly formed (i.e. does not contain the correct number of fithds)return(
2. if nis aleafif a, = b, = key,, andkey,, € [a,b], thenreturn{(key,,, value,)} elsereturn
0
3. if nis an internal node:
o [— left,, r < right,
o ifa,=a; <b <a, <b. =b, then returnAlDRT([a, b], 1) U Aiprr ([a, b], r)
e elsereturn(

Robust querieslt is easy to see that xDRT allows efficient range queries when it is
correctly formed (given the root of a tree and a target interval, b], descend recur-

sively to those children whose intervals overlap wWithb]). However, in our setting we

must also ensure that the queries return consistent answers even when the data struc-
ture is corrupted. The data structure we will use is exactly the one above. To ensure
robustness we will modify the querying algorithm to check for inconsistencies.

Assume that we are givenraoted graph where all nodes have an associated
interval [a,,, b,,], and all nodes have outdegree either 0 or 2edf [is any node with
outdegree 0. A leaf is additionally assumed to have to extra figdgsand value;.
Consider the following definitions:

Definition 4. A noden is consistentf its interval agrees with those of its children. That
is, if the children ard andr respectively, then the node is consistemt,if= a; < b; <
a, < b. = b,. Moreover, we should haveg, = b,, for a node if and only if it is a leaf.

A path from the root to a node nsistenif » is consistent and all nodes on the
path to the root are also consistent.

Definition 5. A leafl in a 1-DRT is valid if there is a consistent path from the rootito

In order to query a (possibly misformethDRT in a robust manner, we will ensure
that the query algorithnl returnsexactlythe set of valid leaves whose keys lie in the
target range. Thus for any strirf) the databasé”*(S‘) consists of the data at all the
valid leaves one finds whe#iis considered as the binary encoding of a graph.

The following lemma proves that one-dimensional range trees, along with the algo-
rithm A;pgrt, fOrm aDRA for range queries.

Lemma 1. The algorithmA;prt Will return exactly the set of valid leaves whose keys
are in the target range. In the worst case, the adversary can force the queries to take
timeO(s) wheres is the total size of the data structure. Conversely, given a collection of
N entries there is a tree such that the running time of the algorith®({gn+1) log),
wherem is the number of points in the target range. This tree can be computed in time
O(N log N) and takesD(N) space to store.

Algorithm 2. Asprr([a'™, @] x [a™), 5], n)
Input: a target rangg'™, 5®] x [a¥), 5], a noden in a2-DRT.
Output: a set ofxkey, ykey, value) triples.

1. if nis not properly formed (i.e. does not contain the correct number of fields),
then return().
2. Check for consistency (if check fails, retuin
e if nis aleafthen checka, = b, = key,,
o if nis an internal nodehen checka, = aiet,, < bleft,, < aright,, < bright, = bn
3. (@) if [an,bn] N [a™®,)] = @ then returnf
(b) if [an,bn] C [a®,b®)] then
e B — Aiprr([0, bM)], tree,)
e Remove elements dB for which xkey & [an, bx]
e if nis an internal node:
For each poinp in B, check thap is 2-valid in eitheteft,, or right,,.
If the check fails, remove from B.
e ReturnB
(c) Otherwise

B — A2DRT< (12, 5] N [arefe, , biere,]) % [a@, 6], Ieftn)
U A2DRT(([, 6] N [aright,, , bright,,) x [a¥), 5], rightn)

e Remove elements dB which are not valid leaves afee,,.
e ReturnB

Two-dimensional range treesHere, the database is a collection of trip{ekey, ykey,
value), where the pairgxkey, ykey) are all distinct (they need not differ in both com-
ponents). The data structure, a two-dimensional range tree (deh@Bd), is an aug-
mented version of the one above. The skeleton 1sRT (called theprimary tree),
which is constructed using théey’s of the data as its key values. Each node in the
primary tree has an attach&eDRT called itssecondaryree:

e Each leafl of the primary tree (which corresponds to a singjtey valuea; = b;)
stores all entries with thatkey value. They are stored in tHeDRT tree; which is
constructed usingkey’s as its key values.

e Each internal node (which corresponds to an intervil,, b,,] of xkey's) stores a
1-DRT tree,, containing all entries witlxkey's in [a,, b,]. Again, this “secondary”
tree is organized bykey'’s.

The setup algorithmT,prt creates @2-DRT given a database by first sorting the
data on the keykey, creating gorimary tree for those keys, and creating a secondary
tree based on thgkey for each of nodes in the primary tree. I12eDRT, each point is
storedd times, wherel is its depth in the primary tree. Hence, the total storage can be
madeO(N log N') by choosing minimum-height trees.

Searching in 2-DRT. The natural recursive algorithm for range queries in this struc-
ture takes timeO(log? N) [7]: Given a target rangé(®), b(*)] x [a®®) b®)] and an

internal node, there are three cases{df®, b(*)] N [a,,, b,] = 0, then there is nothing

to do; if [a®),b(*)] D [ay, b,], then perform a search on the second-level tree attached

to n using the target rande¥), b(*)]; otherwise, recursively explorgs two children.
Based on the natural query algorithm, we can constroet/@A,prt by adding the

following checks:

e All queries made to the 1-D trees (both primary and secondary) are made robustly

following Algorithm 1 (41prT), i.€. checking consistency of each explored node.
e For every point which is retrieved in the query, make sure it is present and valid in

all the secondary 1-D trees which are on the path to the root (in the primary tree).
Definition 6. A pointp = (xkey, ykey, value) in a (corrupted)2-DRT is 2-valid if

1. p appears at a valid leaf in the secondayDRT tree; belonging to deafl of the
primary tree with key valugkey = a; = b;.

2. For every (primary) node on the path td from the root of the primary treey is
consistent ang is a valid leaf in the (one-dimensional) treee,,.

For robust range queries, we obtain AlgorithmAggT). As before, the idea is to
return only those points which are 2-valid. Thus, for an arbitrary stinthe induced
databaséF;DRT(S) is the collection of all 2-valid points in the graph represented’by
The following lemma shows that the algorithifi&pr, A2prT) form abra for two-
dimensional range queries with query complexity(m + 1) log® N') (wherem is the
number of points in the target range).

Lemma 2. Algorithm 2 (AoprT) Will return exactly the set of 2-valid points which are
in the target range. On arbitrary inputsd,prt terminates in worst-case time(L),
wherel is the total size of the data structure.

Conversely, given a collection &f entries there is a tree such that the running time
of the algorithmA,prt is O((m + 1) log? N), wherem is the number of points in the
target range. This tree can be computed in tidEV log? N) and takesO(N log N)
space to store.

One can use similar ideas to make robust range queriesdimensional keys,
whered > 2. The structure is built recursively, as in the 2-D case. Although the algo-
rithm is polylogarithmic for any fixed dimension, the exponent increases:

Lemma 3. There exists ®RA for d dimensional range queries such that queries run in
time O((m + 1) log® N), and the data structure requiré3(N log” N) preprocessing
andO(N log?~! N) storage.

Using the generic transformation of the previous section, we obtain:

Theorem 1 (Two dimensions)Assuming the existence of collision-resistant hash func-
tions, there is a consistent query protocol for two-dimensional range queries with com-
mitment sizek and non-interactive consistency proofs of length at m@&t(m +
1)log? N), wherem is the number of keys in the query range, dnis the security
parameter (output size of the hash function).

For higher dimensions, our construction yields proofs of lefth(m+1) log? N).

5 Privacy for Consistent Query Protocols

One can construct privateQprs (Definition 2) with good asymptotic complexity using
generic techniques, as follows: Universal arguments [1] allow one to (interactively)
give a zero-knowledge proof of knowledge of an NP statement of arbitrary polynomial
length, using only a fixecholy (k) number of bits of communication. This allows one to
handle arbitrary query structures (as long as answering queries takes at most polynomial
time). It also hides the set size of the database as in [14], since the universal argument
leaks only a super-polynomial bound on the length of the statement being proven.

The generic technique can be made slightly more efficient by starting from a (non-
private), efficient QpP, and replacing each proof of consistencwith a zero-knowledge
argument of knowledge of. With a public random string, one can also use non-
interactive zero-knowledge proofs. This approach will typically leak some bound on
the sizeN of the database. One can avoid that leakage if the original proofs take time
and communicatiopoly(log V), as with membership and orthogonal range queries.
ReplacingN with the upper boun@”, we once again again ggbly(k) communica-
tion. (A different proof of the result for membership queries can be found in [9].)

Theorem 2. (a) Assume that there exists a collision-resistant hash family. For any
query structure with polynomial complexity, there exisfzigate cQpwith a constant
number of rounds of interaction an@ly(k) communication.

(b) Given a public random string, argQpPwith proofs of lengti(V') can be made
size{V-private with no additional interaction at poly(k ¢(N)) multiplicative cost in
communication, assuming non-interactive zero-knowledge proof systems exist.

Although the asymptotics are good, the use of generic NP reductions and proba-
bilistically checkable proofs in [1] means that the advantages only appear for extremely
large datasets. We therefore construct simpler protocols tailored to Merkle trees.

Explicit-Hash Merkle trees.The Merkle tree commitment scheme leaks information
about the committed values, since a collision-resistant function cannot hide all infor-
mation about its input. At first glance, this seems easy to resolve: one can replace the
valuesa; at the leaves of the tree with hiding commitme6t&:;). However, there is
often additional structure to the values, ..., axn. In CQPs for range queries, they are
stored in sorted order. Revealing the path to a particular value then reveals its rank in
the data set. The problem gets even more complex when we want to reveal a subset of
the values, as we have to hide not only whether paths go left or right at each branching
in the tree, but whether or not different paths overlap.

When one attempts to solve the problem using generic zero-knowledge proofs, the
main bottleneck lies in proving thgt= H(x), given commitment&’(x) andC(y)—
the circuit complexity of the statement is too high. The challenge, then, is to provide
zero-knowledge proofs that a sét ..., a} is a subset of the committed values, without
going through oblivious evaluation of such complicated circuits. We present a modifi-
cation of Merkle trees where one reveals all hash-function input-output pairs explicitly,
yet retains privacy. We call our construction Explicit-Hash Merkle Tree

Lemma 4. Assuming the existence of collision-resistant hash families and homomor-
phic perfectly-hiding commitment schemeglicit-hash Merkle treeallow proving (in

zero-knowledge) the consistencyt gfaths (of lengthi = log V) usingO(d - t - k?)
bits of communication, whefeis the security parameter. The protocol uses 5 rounds of
interaction. It can be reduced to a single message in the random oracle model.

To illustrate, we apply this idea to the for one-dimensional range queries. The main
drawback of the resulting protcol is that the server needs to maintains state between
invocations; we denote bythe number of previous queries.

Theorem 3. There exists an efficierdize4V-privateconsistent query protocol for 1-D
range queries. For the-th query to the server, we obtain proofs of st + m) -

s - k? - log N), wheres is the maximum length of the keys used for the data,rand

is the total number of points returned on range queries made so far. The protocol uses
5 rounds of interaction and requires no common random string. The protocol can be
made non-interactive in the random oracle model.

AcknowledgementdlVe thank Leo Reyzin and Silvio Micali for helpful discussions.

References

1. B. Barak and O. Goldreich. Universal ArgumentsPhoc. Complexity (CCC) 2002
2. J. L. Bentley. Multidimensional divide-and-conqu€omm. ACM23:214-229, 1980.
3. A Buldas, P. Laud and H. Lipmaa. Eliminating Counterevidence with Applications to Ac-
countable Certificate ManagemeditComputer Securify2002. (Originally inCCS 2000
. A. Buldas, M. Roos, J. Willemson. Undeniable Replies to Database Quer2Bl$2002
. 1. B. Damdurd, T. P. Pedersen, and B. Pfitzmann. On the existence of statistically hiding bit
commitment schemes and fail-stop signatureCRYPTO '93pp. 22-26.
6. A. De Santis and G. Persiano Zero-Knowledge Proofs of Knowledge Without Interaction
(Extended Abstract). IRroc. of FOCS 1992pp. 427-436.
7. J. Goodman and J. O’'Rourke, editoandbook of Discrete and Computational Geometry
CRC Press, 1997.
8. M. T. Goodrich, R. Tamassia, N. Triandopoulos and R. Cohen. Authenticated Data Structures
for Graph and Geometric SearchingRroc. RSA Conference, Cryptographers’ Tra2R03.
9. A. Healy, A. Lysyanskaya, T. Malkin, L. Reyzin. Zero-Knowledge Sets from General As-
sumptions. Manuscript, March 2004.
10. J. Kilian. A note on efficient zero-knowledge proofs and argument24tm STOC1992.
11. J. Kilian. Efficiently committing to databases. Technical report, NEC Research, 1998.
12. P. Maniatis and M. Baker. Authenticated Append-only Skip Lists. ArXiv e-print
¢s.CR/0302010, February, 2003.
13. C. Martel, G. Nuckolls, M. Gertz, P. Devanbu, A. Kwong, S. Stubblebine. A General Model
for Authentic Data Publication. Manuscript, 2003.
14. S. Micali, M. Rabin and J. Kilian. Zero-Knowledge SetsPhoc. FOCS 2003
15. S. Micali. Computationally Sound ProofSIAM J. Computing30(4):1253—-1298, 2000.
16. S. Micali and M. Rabin. Accessing personal data while preserving privacy. Talk announce-
ment (1997), and personal communication with M. Rabin (1999).
17. R. Merkle A digital signature based on a conventional encryption functiGdBR¥MPTO '87
pp. 369-378, 1988.
18. M. Naor and K. Nissim. Certificate Revocation and Certificate UpdatéthituSENIX Se-
curity Symposiunl998.
19. M. Naor, M. Yung. Universal One-Way Hash Functions and their Cryptographic Applica-
tions. In21st STOC1989.
20. R. Ostrovsky, C. Rackoff, A. Smith. Efficient Consistency Proofs on a Committed Database
MIT LCS Technical Report TR-887. Feb 2003. See http://www.lcs.mit.edu/publications

(62083

