
Efficient Consistency Proofs for Generalized Queries on
a Committed Database?

Rafail Ostrovsky1, Charles Rackoff2, and Adam Smith3

1 UCLA Dept. of Computer Science, Los Angeles, CA, USA.rafail@cs.ucla.edu
2 University of Toronto, Toronto, Ontario, Canada.rackoff@cs.toronto.edu

3 MIT Computer Science and AI Lab, Cambridge, MA, USA.asmith@csail.mit.edu

Abstract. A consistent query protocol(CQP) allows a database owner to pub-
lish a very short stringc which commitsher and everybody else to a particular
databaseD, so that any copy of the database can later be used to answer queries
and give short proofs that the answers are consistent with the commitmentc.
Herecommitsmeans that there is at most one databaseD that anybody can find
(in polynomial time) which is consistent withc. (Unlike in some previous work,
this strong guarantee holds even for owners who try to cheat while creatingc.)
Efficient CQPs for membership and one-dimensional range queries are known [4,
11, 16]: given a query paira, b ∈ IR, the server answers with all the keys in the
database which lie in the interval[a, b] and a proof that the answer is correct.
This paper exploresCQPs for more general types of databases. We put forward
a general technique for constructingCQPs for any type of query, assuming the
existence of a data structure/algorithm with certain inherent robustness prop-
erties that we define (called adata robust algorithm). We illustrate our tech-
nique by constructing an efficient protocol fororthogonal range queries, where
the database keys are points inRd and a query asks for all keys in a rectangle
[a1, b1] × . . . × [ad, bd]. Our data-robust algorithm is within aO(log N) factor
of the best known standard data structure (a range tree, due to Bentley [2]).
We modify our protocol so that it is alsoprivate, that is, the proofs leak no infor-
mation about the database beyond the query answers. We show a generic modi-
fication to ensure privacy based on zero-knowledge proofs, and also give a new,
more efficient protocol tailored to hash trees.

1 Introduction

Informally, a consistent queryprotocol (CQP) allows a database owner to publish a
short stringc whichcommitsher to a particular databaseD, so that she can later answer
queries and give short proofs that her answers are consistent withD. Herecommits
means that she cannot change her mind aboutD — there is at most one database she
can find (in polynomial time) which is consistent withc (e.g.c could be a secure hash
of D). Similarly, she can only find valid proofs for query answers which are consistent

? Preliminary work done during the summer of 2000 when all authors were visiting/working at
Telcordia Technologies. Preliminary version appeared as MIT LCS Technical Report TR-887,
Feb. 2003 [20]. Work of the first author at UCLA is partially supported by a gift from Teradata.

with D. The challenge is to make both the commitment and the proofs of consistency
as short and simple as possible.

One may also requireprivacy– that is, the proofs of consistency should not leak any
information on the database beyond the query answers. Privacy is important, for exam-
ple, in settings in which query answers are sold individually, or in which the database
contains personal data. Adding this requirement to aCQP brings it much closer to the
traditional cryptographic notion of a commitment scheme.

Below, we discuss relevant related work and then describe our results in detail.

Related Work We discuss the related work in the context of cryptographic commit-
ment protocols. These have been studied extensively, and part of our contribution is to
tie them in to an algorithmic point of view. A commitment protocol allows Alice to put
a valuea in a virtual envelope and hand it to Bob. Bob learns nothing about the value
(hiding), but Alice can later open the envelope, without being able to reveal a different
valuea′ (binding).
Commitment Schemes for Large Datasets.The notion of commitment has been gen-
eralized considerably to allow revealing only partial information about the committed
data, using very little communication. Merkle [17] proposed the following protocol for
committing to a list ofN valuesa1, ..., aN : Pick a collision-resistant hash-function4 H
(say from2k bits to k bits), pair up inputs(a1, a2), . . . , (aN−1, aN) and applyH to
each pair. Now, pair up the resulting hash values and repeat this process, constructing a
binary tree of hash values, until you get to a single root of lengthk. If the root of the tree
is published (or sent to Bob by Alice), the entire collection of values is now commit-
ted to, though not necessarily hidden—we discuss hiding further below. To reveal any
particular valueai, Alice can reveal a path from the root toai together with all the sib-
lings along the path. This requires onlyk log N bits. This idea has many cryptographic
applications, including efficient signature schemes [17, 5], efficient zero-knowledge ar-
guments [10, 1] and computationally sound proofs [15].

Recently Buldas, Laud and Lipmaa [3], Kilian [11] and Micali and Rabin [16] in-
dependently generalized this idea to allow committing to aset of values. The server
produces a short commitment to her set of(key, value) pairs which is made public.
When a client makes amembership query(i.e. “do you have an entry with keyx?”), the
server returns the answer along with a short proof of consistency. (We call a scheme for
this task aCQP for membership queries.) A very similar data structure (again, a Merkle
tree) also allows one to also answer one-dimensionalrange queries, e.g. “What keys
lie betweenx andy?” [4, 11, 16]. Merkle trees were subsequently modified to allow
efficient updates by changing the structure to resemble a skip list [12]. Our work gen-
eralizes these ideas to more complex queries and data structures, and provides rigorous
proofs of security.
Protocols with a Trusted Committer.There is substantial work onauthenticated data
structures[18], which allow one to guarantee the consistency of many replicated copies
of a database. That work tackles a different problem from ours, since it assumes that the
commitment phase is always performed honestly. As with ordinary commitments, as-
suming a trusted committer allows for simpler, more efficient solutions than are known

4 A hash function familyHκ(·) is collision-resistantif no poly-time algorithm givenκ can find
a pair of inputs that map to the same output for a randomly chosen keyκ (see Section 2).

in our (general) setting; the generic construction in this paper can be viewed as a more
robust version of the generic constructions of authenticated data structures [18, 13, 8].
For discussions of the dangers of assuming a trusted committer, see [3, 12].

Privacy for Committed Databases.Micali, Rabin and Kilian [14] show how to prove
consistency of answers to membership queries while also hiding information about
unanswered queries. They require that consistency proofs leak nothing about the database
except the query answer—not even the size of the database. (They call the primitive a
zero-knowledge set.) They give an efficient protocol based on the DDH assumption,
with proof lengthO(k log M) whereM is an upper bound on the set size (k is the
output length of the hash function). Our techniques achieve this result withpoly(k)
communication under more general assumptions and for more general types of queries.
Subsequent to our work, [9] achieved the results of [14] based on general assumptions.

Our Contributions This paper considersCQPs for types of queries beyond simple
membership and range queries. We give a general framework for designing such proto-
cols based on query algorithms with a certain robustness property, and illustrate our
paradigm fororthogonal range queries, constructing protocols with anO(k log N)
overhead over the fastest known standard query alogrithms. We also show how to make
the protocolsprivatewithout too much loss of efficiency.

A general paradigm forCQPs. We introducedata-robust algorithms(DRAs). These are
search algorithms (paired with data structures) which are robust against corruptions of
the data by an unbounded,maliciousadversary: for any input—essentially, an arbitrary
string— the algorithm will answer all queries consistently with one (valid) database.

Assuming the existence of collision-resistant hash functions, anyDRA which ac-
cesses memory via pointers can be transformed into a consistent query protocol whose
(non-interactive) consistency proofs have length at mostO(kT), wherek is the output
size of the hash function andT is the running time of theDRA.

CQP for Orthogonal Range Queries.We present a consistent query protocol scheme
that allows efficient orthogonal range queries ind dimensions. That is, the database
consists of tuples(key1, ..., keyd, value), a query consists ofd intervals [a1, b1], . . . ,
[ad, bd], and an answer is the set of all database elements whose keys lie inside the
corresponding hypercube. The server not only proves that it has provided all the points
in the database which match the query, but also that no others exist.

Our consistency proofs have sizeO(k(m + 1) logd N), whereN is the database
size,k is the security parameter, andm is the number of keys in the database satisfying
the query (the computation required isO((m+1) logd N) hash evaluations). For range
queries on a single key, our construction reduces essentially to that of [4, 16, 11].

Our protocol is obtained by first constructing aDRA based on range trees, a classic
data structure due to Bentley [2]. Existing algorithms (in particular, the authenticated
data structures of [13]) do not suffice, as inconsistencies in the data structure can lead
to inconsistent query answers. Instead, we show how local checks can be used to ensure
that all queries are answered consistently with a single database. Ford-dimensional
queries, the query time isO((m + 1) logd N), wherem is the number of hits for the
query andN is the number of keys in the database. This is withinlog N of the best
known (non-robust) data structure.

Achieving Privacy Efficiently.Consistent query protocols will, in general, leak infor-
mation about the database beyond the answer to the query. It is possible to add privacy
to anyCQP using generic techniques: one can replace the proof of consistencyπ with
a zero-knowledge proof of knowledge ofπ. Surprisingly, this leads to schemes with
better asymptotic communication complexity, namelyO(poly(k)). This generic trans-
formation can hide the size of the database, as in [14].

However, the use of NP reductions and probabilistically checkable proofs in generic
constructions means that the advantages only appear for extremely large datasets. We
give a simpler zero-knowledge protocol tailored to Merkle trees, which does not hide the
size of the database. The crux of that protocol is to avoid NP reductions when proving
zero-knowledge statements about values of the hash function, and so the result is called
anexplicit-hash Merkle tree. As a sample application, we show how this protocol can
be used to add privacy to one-dimensional range trees.

Organization. Section 2 formally definesCQPs. Section 3 explains data-robust algo-
rithms, and the transformation fromDRAs toCQPs. Section 4 gives ourDRA for orthog-
onal range queries. Section 5 discusses techniques for makingCQPs private. Due to lack
of space, all proofs are deferred to the full version.

2 Definitions

A function f(k) is negligiblein a parameterk if f(k) ∈ O(1
kc) for all integersc > 0.

Assigning the (possibly randomized) output of algorithmA on inputx to variabley is
denoted byy ← A(x). An important component is collision-resistant hash functions
(CRHF). This is a family of length-reducing functions (say from3k bits tok bits) such
that given a randomly chosen functionh from the family, it is computationally infeasible
to find a collision, i.e.x 6= y with h(x) = h(y).

Consistent Query Protocols A query structure is a triple(D,Q, Q) whereD is a set
of valid databases,Q is a set of possible queries, andQ is a rule which associates an
answeraq,D = Q(q, D) with every query/database pairq ∈ Q, D ∈ D.

In a CQP, there is a server who, given a database, produces a commitment which
is made public. Clients then send queries to the server, who provides the query answer
along with a proof of consistency of the commitment. There may also be a public ran-
dom string to be provided by a trusted third party. Though we formulate our definitions
in that context, our constructions mostly do not require the third party.

Syntactically, a query protocol consists several probabilistic poly-time (PPT) algo-
rithms: (1) a server setup algorithmSs, which takes the databaseD, a security parameter
1k and any public randomnessσ, and outputs the commitmentc and some internal state
informationstate; (2) an answering algorithmSa which takesstateand a queryq and
returns an answer-proof pair(a, π); (3) a client verification algorithm which takes a
triple (c, q, a, π) and outputs ”accept” or ”reject;” (4) an algorithmΣ for sampling the
public random string.

Definition 1. A query protocol isconsistentif it is complete and sound:

• Completeness: For every valid databaseD and queryq, if setup is performed cor-
rectly then with overwhelming probability,Sa outputs both the correct answer and a
proof which is accepted byC. Formally, for all q ∈ Q and for allD ∈ D,

Pr[σ ← Σ(1k); (c, state)← Ss(σ,D); (a, π)← Sa(q, state) :
C(σ, c, q, a, π) = “accept” and a = Q(q, D)] ≥ 1− negl(k)

• (Computational) Soundness: For every non-uniform PPT adversaryS̃: run S̃ to ob-
tain a commitmentc along with a list of triples(qi, ai, πi). We sayS̃ acts consistently
if there existsD ∈ D such thatai = Q(qi, D) for all i for whichπi is a valid proof.
The protocol issoundif all PPT adversaries̃S act consistently. Formally:

Pr[σ ← Σ(1k);
(
c, (q1, a1, π1), . . . , (qt, at, πt)

)
← S̃; bi ← C(σ, c, qi, ai, πi) :

∃D̃ such that(ai = Q(qi, D̃) or bi = 0) for all i] ≥ 1− negl(k)

Privacy Informally, we require that an adversarial client interacting with an (honest)
server learn no more information from the answer/proof pairs he receives than what he
gets from the answers alone. specifically, a simulator who has access only to the query
answers should be able to give believable-looking proofs of consistency. The definition
comes from [11, 16, 14], though we use a cleaner formulation due to [9].

Definition 2 (Computational privacy). A consistent query protocol for(D,Q, Q) is
private if there exists a PPT simulatorSim, such that for every non-uniform PPT adver-
saryC̃, the outputs of the following experiments are computationally indistinguishable:

σ ← Σ(1k), σ′, c′, stateSim ← Sim(1k),
(D, stateC̃)← C̃(σ), (D, stateC̃)← C̃(σ′),
(c, state)← Ss(σ,D),
Outputz ← C̃Sa(·,state)(c, stateC̃) Outputz ← C̃Sim(·,stateSim,Q(·,D))(c′, stateC̃)

Here C̃O(·) denotes running̃C with oracle access toO. The simulatorSim has ac-
cess to a query oracleQ(·, D), butasks only queries which are asked toSim by C̃.
Hiding Set Size.In general, a private protocol should not leak the size of the database
[14]. Nonetheless, for the sake of efficiency we will sometimes leak apolynomialupper
boundT on the database size, and call the corresponding protocolssize-T -private[11].
This can be reflected in the definition by giving the simulator an upper boundT on the
size ofD as an additional input. One recovers the original definition by lettingT be
exponential, e.g.T = 2k.
Interactive proofs. The definitions extend to a model where consistency proofs are
interactive (although the access of the simulator to the adversarial client is more tricky).

3 Data-robust algorithms and consistent query protocols

In this section, we describe a general framework for obtaining secure consistent query
protocols, based on designing efficient algorithms which are “data-robust”. Assuming
the availability of a collision-resistant hash function, we show that any such algorithm
which accesses its input by “following” pointers can be transformed into a consistent
query protocol whose (non-interactive) consistency proofs have complexity at most pro-
portional to the complexity of the algorithm.

Data-robust algorithms Suppose a programmer records a database on disk in some
kind of static data structure which allows efficient queries. Such data structures are
often augmented with redundant information, for example to allow searching on two
different fields. If the data structure later becomes corrupted, then subsequent queries
to the structure might be mutually inconsistent: for example, if entries are sorted on
two fields, some entry might appear in one of the two structures but not the other. A
data-robust algorithm prevents such inconsistencies.

Suppose we have a query structure(D,Q, Q). A data-robust algorithm (DRA) for
these consists of two polynomial-time5 algorithms(T,A): First, a setup transformation
T : D → {0, 1}∗ which takes a databaseD and makes it into a static data structure
(i.e. a bit string)S = T (D) which is maintained in memory. Second, a query algorithm
A which takes a queryq ∈ Q and an arbitrary “structure”̃S ∈ {0, 1}∗ and returns an
answer. The structurẽS needn’t be the output ofT for any valid databaseD.

Definition 3. The algorithms(T,A) form adata-robust algorithmfor (D,Q, Q) if:

• Termination A terminates in polynomial time onall input pairs(q, S̃), even wheñS
is not an output fromT .

• SoundnessThere exists a functionT ∗ : {0, 1}∗ → D such thatfor all inputsS̃, the
databaseD = T ∗(S̃) satisfiesA(q, S̃) = Q(q, D) for all queriesq.
(There is no need to give an algorithm forT ∗; we only need it to be well-defined.)

• CompletenessFor all D ∈ D, we haveT ∗(T (D)) = D.
(That is, on inputq andT (D), the algorithmA returns the correct answerQ(q, D).)

We only allowA readaccess to the data structure (although the algorithm may use
separate space of its own). Moreover,A is stateless: it shouldn’t have to remember any
information between invocations.

The running time ofA. There is a naive solution to the problem of designing aDRA:
A could scan the corrupted structurẽS in its entirety, decide which databaseD this
corresponds to, and answer queries with respect toD. The problem, of course, is that
this requires at least linear timeon every query(recall thatA is stateless). Hence the
task of designing robust algorithms is most interesting when there are naturalsub-linear
time algorithms; the goal is then to maintain efficiency while also achieving robustness.
In our setting, efficiency means the running-time of the algorithmA on correct inputs,
in either a RAM or pointer-based model. On incorrect inputs, an adversarially-chosen
structure could, in general, makeA waste time proportional to the size of the structure
S̃; the termination condition above restricts the adversary from doing too much damage
(such as setting up an infinite loop, etc).

Constructing consistent query protocols fromDRAs Given aDRA which works in
a pointer-based memory model, we can obtain a cryptographically secure consistent
query protocol of similar efficiency. Informally, aDRA is pointer-based if it operates by
following pointer in a directed acyclic graph with a single source (see the full version
for details). Most common search algorithms fit into this model.

5 We assume for simplicity that the algorithms are deterministic; this is not strictly necessary.

Proposition 1. (Informally) Let(T,A) be aDRA for query structure(D,Q, Q) which
fits into the pointer-based framework described above. Suppose that on inputsq and
T (D) (correctly formed), the algorithmA examinesb(q, D) memory blocks and a total
of s(q, D) bits of memory, usingt(q, D) time steps. Assuming the availability of a public
collision-resistant hash function, there exists a consistent query protocol for(D,Q, Q)
which has proof lengths(q, D) + kb(q, D) on queryq. The server’s computation on
each query isO(s(q, D) + t(q, D) + kb(q, D)).

To get a consistent query protocol from aDRA, we essentially build a Merkle tree
(or graph, in fact) which mimics the structure of the data, replacing pointers with hashes
of the values they point to. The client runs the query algorithm starting from hash of
the unique source in the graph (that hash value is the public commitment). When the
query algorithm needs to follow a pointer, the server merely provides the corresponding
pre-image of the hash value.

4 Orthogonal Range Queries

In the case of join queries, a databaseD is a set of key/value pairs (entries) where each
key is a point inRd, and each query is a rectangle[a1, b1] × · · · × [ad, bd]. Note that
these are also often called(orthogonal) range queries, and we shall adopt this terminol-
ogy here for consistency with the computational geometry literature. For concreteness,
we consider the two-dimensional case; the construction naturally extends to higher di-
mensions. In two dimensions, each queryq is a rectangle[a1, b1]× [a2, b2]. The query
answerQ(q, D) is a list of all the entries inD whose key(xkey, ykey) lies in q.

4.1 A data-robust algorithm for range queries

Various data structures for efficient orthogonal range queries exist (see [7] for a survey).
The most efficient (non-robust) solutions have query timeO((m + 1) logd−1 N) for d-
dimensional queries. We recall the construction ofmulti-dimensional range trees(due
to Bentley [2]), and show how they can be queried robustly. The query time of the
robust algorithm isO((m + 1) logd N). It is an interesting open question to find a
robust algorithm which does as well as the best non-robust algorithms.

One-dimensional range treesMultidimensional range trees are built recursively from
one-dimensional range trees (denoted1-DRT), which were also used by [4, 16, 11]. In
a 1-DRT, (key, value) pairs are stored in sorted order as the leaves of a (minimum-
height) binary tree. An internal noden stores the minimum (denotedan) and maximum
(denotedbn) keys which appear in the subtree rooted atn. For a leafl, we takeal = bl

to be the value of thekeyl key stored atl. Additionally, leaves store the valuevaluel

associated tokeyl.

Setup. Given a databaseD = {(key1, value1), . . . , (keyN , valueN)}, the setup trans-
formationT1DRT constructs a minimum-height tree based on the sorted keys. All the
intervals[an, bn] can be computed using a single post-order traversal.

Algorithm 1. A1DRT([a, b], n,)
Input: a target range[a, b], a noden in a (possibly misformed)1-DRT.
Output: a set of(key, value) pairs.

1. if n is not properly formed (i.e. does not contain the correct number of fields)then return∅
2. if n is a leaf:if an = bn = keyn andkeyn ∈ [a, b], then return{(keyn, valuen)} elsereturn
∅

3. if n is an internal node:
• l← leftn, r ← rightn

• if an = al ≤ bl < ar ≤ br = bn then returnA1DRT ([a, b], l) ∪A1DRT ([a, b], r)
• elsereturn∅

Robust queries.It is easy to see that a1-DRT allows efficient range queries when it is
correctly formed (given the rootn of a tree and a target interval[a, b], descend recur-
sively to those children whose intervals overlap with[a, b]). However, in our setting we
must also ensure that the queries return consistent answers even when the data struc-
ture is corrupted. The data structure we will use is exactly the one above. To ensure
robustness we will modify the querying algorithm to check for inconsistencies.

Assume that we are given arooted graph where all nodesn have an associated
interval [an, bn], and all nodes have outdegree either 0 or 2. Aleaf l is any node with
outdegree 0. A leaf is additionally assumed to have to extra fieldskeyl and valuel.
Consider the following definitions:

Definition 4. A noden is consistentif its interval agrees with those of its children. That
is, if the children arel andr respectively, then the node is consistent ifan = al ≤ bl <
ar ≤ br = bn. Moreover, we should havean = bn for a node if and only if it is a leaf.

A path from the root to a node isconsistentif n is consistent and all nodes on the
path to the root are also consistent.

Definition 5. A leafl in a 1-DRT is valid if there is a consistent path from the root tol.

In order to query a (possibly misformed)1-DRT in a robust manner, we will ensure
that the query algorithmA returnsexactlythe set of valid leaves whose keys lie in the
target range. Thus for any string̃S, the databaseT ∗(S̃) consists of the data at all the
valid leaves one finds wheñS is considered as the binary encoding of a graph.

The following lemma proves that one-dimensional range trees, along with the algo-
rithm A1DRT, form aDRA for range queries.

Lemma 1. The algorithmA1DRT will return exactly the set of valid leaves whose keys
are in the target range. In the worst case, the adversary can force the queries to take
timeO(s) wheres is the total size of the data structure. Conversely, given a collection of
N entries there is a tree such that the running time of the algorithm isO((m+1) log N),
wherem is the number of points in the target range. This tree can be computed in time
O(N log N) and takesO(N) space to store.

Algorithm 2. A2DRT([a(x), b(x)]× [a(y), b(y)], n)
Input: a target range[a(x), b(x)]× [a(y), b(y)], a noden in a2-DRT.
Output: a set of(xkey, ykey, value) triples.

1. if n is not properly formed (i.e. does not contain the correct number of fields),
then return∅.

2. Check for consistency (if check fails, return∅):
• if n is a leafthen checkan = bn = keyn

• if n is an internal node,then checkan = aleftn ≤ bleftn < arightn ≤ brightn = bn

3. (a) if [an, bn] ∩ [a(x), b(x)] = ∅ then return∅
(b) if [an, bn] ⊆ [a(x), b(x)] then
• B ← A1DRT([a(y), b(y)], treen)
• Remove elements ofB for whichxkey 6∈ [an, bn]
• if n is an internal node:

For each pointp in B, check thatp is 2-valid in eitherleftn or rightn.
If the check fails, removep from B.

• ReturnB
(c) Otherwise

•
B ← A2DRT

“
([a(x), b(x)] ∩ [aleftn , bleftn])× [a(y), b(y)], leftn

”
∪ A2DRT

“
([a(x), b(x)] ∩ [arightn , brightn])× [a(y), b(y)], rightn

”
• Remove elements ofB which are not valid leaves oftreen.
• ReturnB

Two-dimensional range treesHere, the database is a collection of triples(xkey, ykey,
value), where the pairs(xkey, ykey) are all distinct (they need not differ in both com-
ponents). The data structure, a two-dimensional range tree (denoted2-DRT), is an aug-
mented version of the one above. The skeleton is a1-DRT (called theprimary tree),
which is constructed using thexkey’s of the data as its key values. Each node in the
primary tree has an attached1-DRT called itssecondarytree:

• Each leafl of the primary tree (which corresponds to a singlexkey valueal = bl)
stores all entries with thatxkey value. They are stored in the1-DRT treel which is
constructed usingykey’s as its key values.
• Each internal noden (which corresponds to an interval[an, bn] of xkey’s) stores a

1-DRT treen containing all entries withxkey’s in [an, bn]. Again, this “secondary”
tree is organized byykey’s.

The setup algorithmT2DRT creates a2-DRT given a database by first sorting the
data on the keyxkey, creating aprimary tree for those keys, and creating a secondary
tree based on theykey for each of nodes in the primary tree. In a2-DRT, each point is
storedd times, whered is its depth in the primary tree. Hence, the total storage can be
madeO(N log N) by choosing minimum-height trees.

Searching in a2-DRT. The natural recursive algorithm for range queries in this struc-
ture takes timeO(log2 N) [7]: Given a target range[a(x), b(x)] × [a(y), b(y)] and an

internal noden, there are three cases: if[a(x), b(x)]∩ [an, bn] = ∅, then there is nothing
to do; if [a(x), b(x)] ⊇ [an, bn], then perform a search on the second-level tree attached
to n using the target range[a(y), b(y)]; otherwise, recursively exploren’s two children.

Based on the natural query algorithm, we can construct aDRA A2DRT by adding the
following checks:

• All queries made to the 1-D trees (both primary and secondary) are made robustly
following Algorithm 1 (A1DRT), i.e. checking consistency of each explored node.
• For every point which is retrieved in the query, make sure it is present and valid in

all the secondary 1-D trees which are on the path to the root (in the primary tree).

Definition 6. A pointp = (xkey, ykey, value) in a (corrupted)2-DRT is 2-valid if

1. p appears at a valid leaf in the secondary1-DRT treel belonging to aleaf l of the
primary tree with key valuexkey = al = bl.

2. For every (primary) noden on the path tol from the root of the primary tree,n is
consistent andp is a valid leaf in the (one-dimensional) treetreen.

For robust range queries, we obtain Algorithm 2 (A2DRT). As before, the idea is to
return only those points which are 2-valid. Thus, for an arbitrary stringS̃, the induced
databaseT ∗

2DRT(S̃) is the collection of all 2-valid points in the graph represented byS̃.
The following lemma shows that the algorithms(T2DRT, A2DRT) form a DRA for two-
dimensional range queries with query complexityO((m + 1) log2 N) (wherem is the
number of points in the target range).

Lemma 2. Algorithm 2 (A2DRT) will return exactly the set of 2-valid points which are
in the target range. On arbitrary inputs,A2DRT terminates in worst-case timeO(L),
whereL is the total size of the data structure.

Conversely, given a collection ofN entries there is a tree such that the running time
of the algorithmA2DRT is O((m + 1) log2 N), wherem is the number of points in the
target range. This tree can be computed in timeO(N log2 N) and takesO(N log N)
space to store.

One can use similar ideas to make robust range queries ond-dimensional keys,
whered ≥ 2. The structure is built recursively, as in the 2-D case. Although the algo-
rithm is polylogarithmic for any fixed dimension, the exponent increases:

Lemma 3. There exists aDRA for d dimensional range queries such that queries run in
timeO((m + 1) logd N), and the data structure requiresO(N logd N) preprocessing
andO(N logd−1 N) storage.

Using the generic transformation of the previous section, we obtain:

Theorem 1 (Two dimensions).Assuming the existence of collision-resistant hash func-
tions, there is a consistent query protocol for two-dimensional range queries with com-
mitment sizek and non-interactive consistency proofs of length at mostO(k(m +
1) log2 N), wherem is the number of keys in the query range, andk is the security
parameter (output size of the hash function).

For higher dimensions, our construction yields proofs of lengthO(k(m+1) logd N).

5 Privacy for Consistent Query Protocols

One can construct privateCQPs (Definition 2) with good asymptotic complexity using
generic techniques, as follows: Universal arguments [1] allow one to (interactively)
give a zero-knowledge proof of knowledge of an NP statement of arbitrary polynomial
length, using only a fixed,poly(k) number of bits of communication. This allows one to
handle arbitrary query structures (as long as answering queries takes at most polynomial
time). It also hides the set size of the database as in [14], since the universal argument
leaks only a super-polynomial bound on the length of the statement being proven.

The generic technique can be made slightly more efficient by starting from a (non-
private), efficientCQP, and replacing each proof of consistencyπ with a zero-knowledge
argument of knowledge ofπ. With a public random string, one can also use non-
interactive zero-knowledge proofs. This approach will typically leak some bound on
the sizeN of the database. One can avoid that leakage if the original proofs take time
and communicationpoly(log N), as with membership and orthogonal range queries.
ReplacingN with the upper bound2k, we once again again getpoly(k) communica-
tion. (A different proof of the result for membership queries can be found in [9].)

Theorem 2. (a) Assume that there exists a collision-resistant hash family. For any
query structure with polynomial complexity, there exists aprivateCQP with a constant
number of rounds of interaction andpoly(k) communication.

(b) Given a public random string, anyCQPwith proofs of length̀(N) can be made
size-N -private with no additional interaction at apoly(k `(N)) multiplicative cost in
communication, assuming non-interactive zero-knowledge proof systems exist.

Although the asymptotics are good, the use of generic NP reductions and proba-
bilistically checkable proofs in [1] means that the advantages only appear for extremely
large datasets. We therefore construct simpler protocols tailored to Merkle trees.

Explicit-Hash Merkle trees.The Merkle tree commitment scheme leaks information
about the committed values, since a collision-resistant function cannot hide all infor-
mation about its input. At first glance, this seems easy to resolve: one can replace the
valuesai at the leaves of the tree with hiding commitmentsC(ai). However, there is
often additional structure to the valuesa1, ..., aN . In CQPs for range queries, they are
stored in sorted order. Revealing the path to a particular value then reveals its rank in
the data set. The problem gets even more complex when we want to reveal a subset of
the values, as we have to hide not only whether paths go left or right at each branching
in the tree, but whether or not different paths overlap.

When one attempts to solve the problem using generic zero-knowledge proofs, the
main bottleneck lies in proving thaty = H(x), given commitmentsC(x) andC(y)—
the circuit complexity of the statement is too high. The challenge, then, is to provide
zero-knowledge proofs that a seta′1, ..., a

′
t is a subset of the committed values, without

going through oblivious evaluation of such complicated circuits. We present a modifi-
cation of Merkle trees where one reveals all hash-function input-output pairs explicitly,
yet retains privacy. We call our construction anExplicit-Hash Merkle Tree.

Lemma 4. Assuming the existence of collision-resistant hash families and homomor-
phic perfectly-hiding commitment schemes,explicit-hash Merkle treesallow proving (in

zero-knowledge) the consistency oft paths (of lengthd = log N) usingO(d · t2 · k2)
bits of communication, wherek is the security parameter. The protocol uses 5 rounds of
interaction. It can be reduced to a single message in the random oracle model.

To illustrate, we apply this idea to the for one-dimensional range queries. The main
drawback of the resulting protcol is that the server needs to maintains state between
invocations; we denote byt the number of previous queries.

Theorem 3. There exists an efficient,size-N -privateconsistent query protocol for 1-D
range queries. For thet-th query to the server, we obtain proofs of sizeO((t + m) ·
s · k2 · log N), wheres is the maximum length of the keys used for the data, andm
is the total number of points returned on range queries made so far. The protocol uses
5 rounds of interaction and requires no common random string. The protocol can be
made non-interactive in the random oracle model.

Acknowledgements.We thank Leo Reyzin and Silvio Micali for helpful discussions.

References
1. B. Barak and O. Goldreich. Universal Arguments. InProc. Complexity (CCC) 2002.
2. J. L. Bentley. Multidimensional divide-and-conquer.Comm. ACM, 23:214–229, 1980.
3. A Buldas, P. Laud and H. Lipmaa. Eliminating Counterevidence with Applications to Ac-

countable Certificate Management.J. Computer Security, 2002. (Originally inCCS 2000.)
4. A. Buldas, M. Roos, J. Willemson. Undeniable Replies to Database Queries. InDBIS 2002.
5. I. B. Damg̊ard, T. P. Pedersen, and B. Pfitzmann. On the existence of statistically hiding bit

commitment schemes and fail-stop signatures. InCRYPTO ’93, pp. 22–26.
6. A. De Santis and G. Persiano Zero-Knowledge Proofs of Knowledge Without Interaction

(Extended Abstract). InProc. of FOCS 1992, pp. 427-436.
7. J. Goodman and J. O’Rourke, editors.Handbook of Discrete and Computational Geometry.

CRC Press, 1997.
8. M. T. Goodrich, R. Tamassia, N. Triandopoulos and R. Cohen. Authenticated Data Structures

for Graph and Geometric Searching. InProc. RSA Conference, Cryptographers’ Track, 2003.
9. A. Healy, A. Lysyanskaya, T. Malkin, L. Reyzin. Zero-Knowledge Sets from General As-

sumptions. Manuscript, March 2004.
10. J. Kilian. A note on efficient zero-knowledge proofs and arguments. In24th STOC, 1992.
11. J. Kilian. Efficiently committing to databases. Technical report, NEC Research, 1998.
12. P. Maniatis and M. Baker. Authenticated Append-only Skip Lists. ArXiv e-print

cs.CR/0302010, February, 2003.
13. C. Martel, G. Nuckolls, M. Gertz, P. Devanbu, A. Kwong, S. Stubblebine. A General Model

for Authentic Data Publication. Manuscript, 2003.
14. S. Micali, M. Rabin and J. Kilian. Zero-Knowledge Sets. InProc. FOCS 2003.
15. S. Micali. Computationally Sound Proofs.SIAM J. Computing, 30(4):1253–1298, 2000.
16. S. Micali and M. Rabin. Accessing personal data while preserving privacy. Talk announce-

ment (1997), and personal communication with M. Rabin (1999).
17. R. Merkle A digital signature based on a conventional encryption function. InCRYPTO ’87,

pp. 369–378, 1988.
18. M. Naor and K. Nissim. Certificate Revocation and Certificate Update. In7th USENIX Se-

curity Symposium, 1998.
19. M. Naor, M. Yung. Universal One-Way Hash Functions and their Cryptographic Applica-

tions. In21st STOC, 1989.
20. R. Ostrovsky, C. Rackoff, A. Smith. Efficient Consistency Proofs on a Committed Database

MIT LCS Technical Report TR-887. Feb 2003. See http://www.lcs.mit.edu/publications

