Efficient Consistency Proofs for Generalized Queries on a
Committed Database

Rafail Ostrovsky Charles Rackoff Adam Smith
UCLA University of Toronto MIT
rafail@cs.ucla.edu rackoff@cs.toronto.edu asmith@csail.mit.edu
July 20, 2004
Abstract

A consistent query protocdcQp) allows a database owner to publish a very short strimghich
commitsher and everybody else to a particular datab@seso that any copy of the database can later
be used to answer queries and give short proofs that the answers are consistent with the conamitment
Here commitsmeans that there is at most one datab@siat anybody can find (in polynomial time)
which is consistent witl. (Unlike in some previous work, this strong guarantee holds even for owners
who try to cheat while creating) EfficientcQps for membership and one-dimensional range queries
are known[[5[17, 22]: given a query pairb € R, the server answers with all the keys in the database
which lie in the intervala, b] and a proof that the answer is correct.

This paper exploresQps for more general types of databases. We put forward a general technique
for constructingcQps for any type of query, assuming the existence of a data structure/algorithm with
certain inherent robustness properties that we define (calliedaarobust algorithh We illustrate our
technique by constructing an efficient protocol ésthogonal range queriesvhere the database keys
are points inR¢ and a query asks for all keys in a rectanfile, b;] x ... x [ag,bgq]. Our data-robust
algorithm is within aO(log V) factor of the best known standard data structure (a range tree, due to
Bentley [2]).

We modify our protocol so that it is algarivate that is, the proofs leak no information about the
database beyond the query answers. We show a generic modification to ensure privacy based on zero-
knowledge proofs, and also give a new, more efficient protocol tailored to hash trees.

Keywords: Commitment, zero-knowledge sets, authenticated data structures, range queries, database pri-
vacy.

*Preliminary work done during the summer of 2000 when all authors were visiting/working at Telcordia Technologies. Pre-
liminary version appeared as MIT LCS Technical Report TR-887, Feb. 2003 [27]. Work of the first author at UCLA is partially
supported by a gift from Teradata. Conference versid€&LP 2004

Contents

[1__Introduction| 2
1.1 RelatedWork e 3
1.2 OurContribufiods e e e e 4
[2_Definitiond 5
2.1 Consistent Query Protocpls e 5
2.1.1 Privacy e e e e e e 6
[3 Data-Robust Algorithms and Consistent Query Protocols 7
[.1 Data-Robust Algorithms e 7
[3.2 Constructing Consistent Query Protocols FmRAs 8
[3.2.1 Pointer-Based Algorithins e 9
3.2.2 Proof of Theorem 1 | 10
[4 Orthogonal Range Queries 11
[4.1 A Data-Robust Algorithm for Range Quefies 11
[4.1.1 One-DimensionalRange Trees 11
[4.1.2 Two-DimensionalRange Trees 13
4.2 Efficient Query Protocpl 16
[5 Privacy tor Consistent Query Protocol$ 16
[>.1 Privacy Via Generic Techniques e 16
6.2 Explicit-Hash Merkle TreesinBrief 17
5.3 Explicit-Hash Merkle TreesinDetail 18
(.3.1 ComplexityoftheProdfs 20
[>.4 Efficient Privacy for Range Queries—Proof of Theof¢m 8. [. 21
(.4.1 Complexity oftheProdfs, 24
[Referenceb 24

1 Introduction

Informally, a consistent queryprotocol €CQP) allows a database owner to publish a short stringhich
commitsher to a particular databage, so that she can later answer queries and give short proofs that her
answers are consistent wifh. Herecommitsmeans that she cannot change her mind albbut there is
at most one database she can find (in polynomial time) which is consistent (@if. ¢ could be a secure
hash ofD). Similarly, she can only find valid proofs for query answers which are consistentiwiffihe
challenge is to make both the commitment and the proofs of consistency as short and simple as possible.
One may also requirgrivacy— that is, the proofs of consistency should not leak any information on the
database beyond the query answers. Privacy is important, for example, in settings in which query answers
are sold individually, or in which the database contains personal data. Adding this requiremerpro a
brings it much closer to the traditional cryptographic notion of a commitment scheme.
Below, we discuss relevant related work and then describe our results in detail.

1.1 Related Work

We discuss the related work in the context of cryptographic commitment protocols. These have been studied
extensively, and part of our contribution is to tie them in to an algorithmic point of view. A commitment
protocol allows Alice to put a value in a virtual envelope and hand it to Bob. Bob learns nothing about

the value fiding), but Alice can later open the envelope, without being able to reveal a different#/alue
(binding).

Commitment Schemes for Large Datasets. The notion of commitment has been generalized consider-
ably to allow revealing only partial information about the committed data, using very little communication.
Merkle [24] proposed the following protocol for committing to a listéfvaluesay, ..., an: Pick a collision-
resistant hash—functiﬂﬂ (say from2k bits to & bits), pair up inputay, az),..., (ax—1,an) and apply

H to each pair. Now, pair up the resulting hash values and repeat this process, constructing a binary tree
of hash values, until you get to a single root of lengthf the root of the tree is published (or sent to Bob

by Alice), the entire collection of values is now committed to, though not necessarily hidden—we discuss
hiding further below. To reveal any particular vakug Alice can reveal a path from the root &g together

with all the siblings along the path. This requires oklipg N bits. This idea has many cryptographic
applications, including efficient signature schenes[24, 6], efficient zero-knowledge arguménis [16, 1] and
computationally sound proofs [21].

Recently Buldas, Laud and Lipmaa [4], Kilien [17] and Micali and Rabin [22] independently generalized
this idea to allow committing to aetof values. The server produces a short commitment to her set of
(key, value) pairs which is made public. When a client makesxembership querfi.e. “do you have an
entry with keyz?”), the server returns the answer along with a short proof of consistency. (We call a scheme
for this task acQpfor membership queries.) A very similar data structure (again, a Merkle tree) also allows
one to also answer one-dimensionaihge queriese.g. “What keys lie between andy?” [5, [17,[22].

Merkle trees were subsequently modified to allow efficient updates by changing the structure to resemble a
skip list [18]. Our work generalizes these ideas to more complex queries and data structures, and provides
rigorous proofs of security.

Protocols with a Trusted Committer—Authenticated Data Structures. There is substantial work on
authenticated data structurg®5], which allow one to guarantee the consistency of many replicated copies

of a database. That work tackles a different problem from ours, since it assumes that the commitment
phase is always performed honestly. The extra assumption is appropriate in many situations (e.g. certificate
revocation with a trusted certification autho@y&nd seems to allow greater efficiency: there are authenti-
cated data structure protocols for answering range queries inai(nﬁlelogd‘1 N) [13], as opposed to the

O(N log? N) time taken by the protocols of this paper. Indeed, our generic construction can be viewed as a
more robust, but possibly less efficient, version of the generic constructions of authenticated data structures
[25,[19/8/13].

Despite the greater efficiency it affords, the assumption of a trusted committer is problematic. As argued
in [4], a dishonest certification authority could not easily be taken to task for providing inconsistent answers
to revocation queries. There are other reasons to distrust the party generating the commitment. With a
pricing database, one may want guarantees against price discrimination by the database owner. Peer-to-peer

A hash function familyH,.(-) is collision-resistanif no poly-time algorithm giverx can find a pair of inputs that map to the
same output for a randomly chosen keysee SectioE]Z).

2More generally, cryptographic commitment schemes with an honest committer have been useful in a variety of contexts, from
simplifying requirements on hash functions for signature schemés [26] to combined signature and encryption protocols [9].

systems, where no individual processor in the network is fully trusted, provide further motivating examples
[18].

Privacy for Committed Databases—Zero-Knowledge Sets. Micali, Rabin and Kilian [20] show how

to prove consistency of answers to membership queries while also hiding information about unanswered
gueries. They require that consistency proofs leak nothing about the database except the query answer—
not even the size of the database. (They call the primitizera-knowledge s@t They give an efficient
protocol based on the DDH assumption, with proof len@t log M) whereM is an upper bound on the

set size k is the output length of the hash function). We show how to achieve the same resyolyith)
communication, under more general assumptions and for more general types of queries. Subsequent to our
work, [15] achieved the results of [20] based on general assumptions.

1.2 Our Contributions

This paper considersQps for types of queries beyond simple membership and range queries. We give a
general framework for designing such protocols based on query algorithms with a certain robustness prop-
erty, and illustrate our paradigm forthogonal range querigsconstructing protocols with a@(k log N)
overhead over the fastest known standard query alogrithms. We also show how to make the potatels
without too much loss of efficiency.

A general paradigm for cQps. We introducealata-robust algorithm¢bRrAS). These are search algorithms
(paired with data structures) which are robust against corruptions of the data by an unbonalitdus
adversary: for any input—essentially, an arbitrary string— the algorithm will answer all queries consistently
with one (valid) database. Although this is trivial for data structures which incorporate no redundancy, it
becomes more challenging for more complex structures. (We do not want the algorithm to have to scan the
entire data structure each time it is run.)

Assuming the existence of collision-resistant hash functionshamwhich accesses memory via point-
ers can be transformed into a consistent query protocol whose (non-interactive) consistency proofs have
length at mosO (kT"), wherek is the output size of the hash function dfids the running time of theraA.

DRAS provide a connection between special data structures and cryptographic protocols. A previous
connection was given by a Micciancio |23], for data structures which forget the order in which a sequence
of updates was performed. This property is quite different from the one we require.

cqpfor Orthogonal Range Queries. We present a consistent query protocol scheme that allows efficient
orthogonal range queries ihdimensions. That is, the database consists of tupes, ..., key,, value), a

query consists ofl intervals|ay, b1], ..., [aq, bg], @nd an answer is the set of all database elements whose
keys lie inside the corresponding hypercube. The server not only proves that it has provided all the points in
the database which match the query, but also that no others exist.

Our consistency proofs have sigdk(m + 1)log? N), whereN is the database sizg,is the security
parameter, aneh is the number of keys in the database satisfying the query (the computation required is
O((m—+1) log? N) hash evaluations). For range queries on a single key, our construction reduces essentially
to that of [5)22] 17].

Our protocol is obtained by first constructingp&A based on range trees, a classic data structure due
to Bentley [2]. Existing algorithms (in particular, the authenticated data structures|of [19]) do not suffice,
as inconsistencies in the data structure can lead to inconsistent query answers. Instead, we show how local
checks can be used to ensure that all queries are answered consistently with a single databdse. For

dimensional queries, the query timed$(m + 1) log? N), wherem is the number of hits for the query and
N is the number of keys in the database. This is withinV of the best known (hon-robust) data structure.

Privacy for Consistent Query Protocols—Generic Techniques. Consistent query protocols will, in gen-

eral, leak information about the database beyond the answer to the query. It is possible to add privacy to
any cQPusing generic techniques: one can replace the proof of consisteniti a zero-knowledge proof

of knowledge ofr. Surprisingly, this leads to schemes with good asymptotic communication complexity,
namelyO(poly(k)). This generic transformation can hide the size of the database, [as in [20]. In partic-
ular, this means that one can buidro-knowledge sqtrotocols [20] (i.e.cQPs for membership queries)

based on general assumptions: for interactive protocols, it is sufficient to assume one-way functions and for
non-interactive protocols, it is sufficient to assume that non-interactive zero-knowledge proof systems exist.

Privacy for Consistent Query Protocols—Efficient Constructions. The generic constructions just men-
tioned are ungainly—the use of NP reductions and probabilistically checkable proofs means that the ad-
vantages only appear for extremely large datasets. We give a simpler zero-knowledge protocol tailored to
Merkle trees, which does not hide the size of the database. The crux of that protocol is to avoid NP reduc-
tions when proving zero-knowledge statements about values of the hash function, and so the result is called
anexplicit-hash Merkle treeAs a sample application, we show how this protocol can be used to add privacy

to one-dimensional range trees.

Organization. Sectior] formally definesQps. Sectioi B explains data-robust algorithms, and the trans-
formation fromDRAS to cQPs. Section j gives oupRA for orthogonal range queries. Sect[dn 5 discusses
techniques for makingQps private. Due to lack of space, all proofs are deferred to the full version.

2 Definitions

We denote by «— A(x) the assignment of the (possibly randomized) output of algorithan inputx to
variabley. A function f (k) is negligiblein a parametek if f(k) € O(%) for all integersc > 0.

A major component in all our constructions is a collision-resistant hash function family (CRHF). This is
a family of length-reducing functions (say frod# bits to k& bits) such that it is computationally infeasible
to find a collision, i.e.x # y with h(z) = h(y) for a random membeés of the family. Such functions can
be constructed assuming the hardness of the discrete logarithm or factoring. Formally, a family of functions
{hsr : {0,1}* — {0,1}*} is a CRHF if the functiong:, ,, can be evaluated in time polynomial in and
there is a probabilistic polynomial time (PPT) key generation algorihsach that for all polynomial-size,
randomized circuit familie§ A, }, the quantityPr[s « X(1%); (z,y) < Ak(1%,s) : hsp(x) = hsi(y)]is
negligible ink.

2.1 Consistent Query Protocols

A query structure is a tripléD, Q, Q) whereD is a set ofvalid databasesQ is a set of possible queries,
andq is a rule which associates an answgp = (g, D) with every query/database paitc Q, D € D.

In acQqpr, there is a server who, given a database, produces a commitment which is made public. Clients
then send queries to the server, who provides the query answer along with a proof of consistency of the
commitment. There may also be a public random string to be provided by a trusted third party. In most of
our protocols, the third party is only required for choosing the collision-resistant hash function (and even
this can be done by the client if he is available before the database commitment is generated).

Definition 1. A (non-interactive)query protocolconsists of three probabilistic polynomial-time (PPT) al-
gorithms: a server setup algorithf, an answering algorithm for the seru§y, and a clienC. In some
settings, there may also be an efficient algoritirfor sampling any required public randomness.

e The setup algorithn®, takes as input a valid datababe a valuel* describing the security parameter,
and the public informatiom < X(1%). It produces a (public) commitmentand some internal state
informationstate Subsequentl\$, may be invoked with a query € Q and the setup informaticstate
as input. The corresponding output is an answer/proof(pair), wherea = Q(q, D).

e The clientC receives as input the unary security paramgfethe public strings, the commitment, a
queryq and an answer/proof paju, 7). C “accepts” or “rejects” the proof.

Definition 2. A query protocol iconsistentf it is complete and sound:

e Completeness: For every valid databdsand queryy, if setup is performed correctly then with over-
whelming probability S, outputs both the correct answer and a proof which is accept€d Bgrmally,
forall ¢ € Q and for allD € D,

Prlo — 2(1%); (¢, state — S,(o, D); (a,7) «— S,(q, state :
C(o,c,q,a,m) = “accept” anda = Q(q, D)] > 1 — negl(k)

¢ (Computational) Soundness: For every non-uniform PPT adveﬁsﬁryung to obtain a commitment
c along with a list of triples(q;, a;, ;). We sayS acts consistentlyf there existsD € D such that
a; = Q(g;, D) for all i for which 7; is a valid proof. The protocol isoundif all PPT adversaries$ act
consistently. Formally:

PI‘[O’ — E(lk)v (C7 (q17a1)7T1)7 teey (qt7 at7ﬂ-t>) — 3, bZ — C(O-v C, qis ai)ﬂ-i) :
3D such thata; = Q(g;, D) orb; = 0) foralli] > 1 — negl(k)

In fact, it is even more natural to require that the adversary “know” the datdbasay by requiring that
D be extractable in polynomial time from the description of the adversary. This is a more subtle property
to capture—we refer the reader to the discussion of proofs of knowledgelin [10].

2.1.1 Privacy

Informally, we require that an adversarial client interacting with an (honest) server learn no more information
from the answer/proof pairs he receives than what he gets from the answers alone. specifically, a simulator
who has access only to the query answers should be able to give believable-looking proofs of consistency.
The definition comes from [17, 22, 20], though we use a cleaner formulation du€ to [15].

Definition 3 (Computational privacy). A consistent query protocol fdiD, Q, Q) is private if there ex-
ists a PPT simulata$im, such that for every non-uniform PPT adversérythe outputs of the following
experiments are computationally indistinguishable:

0ne could imagine protecting agairst adversaries and thus obtaining perfect soundness. We consider computational sound-
ness since much greater efficiency is then possible.

o — N(1%), o', c, statesim < Sim(1%),

(D, states) — C(o), (D, states) — C(d'),
(¢, state) «— Ss(o, D),
Outputz « CSe0+s1at) (¢, state ;) Outputz « CSmC-statesim: QD)) (! states)

HereC®() denotes running with oracle access t@. The simulatoiSim has access to a query oracle
Q(-, D), butasks only queries which are askedSien by C.

Hiding Set Size. In general, a private protocol should not leak the size of the database [20]. Nonetheless,
for the sake of efficiency we will sometimes lealpalynomialupper boundl’ on the database size, and

call the corresponding protocatizeT -private [L7]. This can be reflected in the definition by giving the
simulator an upper boundé on the size ofD as an additional input. One essentially recovers the original
definition by lettingT” be super-polynomial, e.g. = 2*.

Interactive proofs. The definitions extend to a model where consistency proofs are interactive (although
the access of the simulator to the adversarial client is more tricky).

3 Data-Robust Algorithms and Consistent Query Protocols

In this section, we describe a general framework for obtaining secure consistent query protocols, based on
designing efficient algorithms which are “data-robust”. That is for any static data structure — even adver-
sarially corrupted — the algorithm will answer all queries consistently with one (valid) database. Assuming
the availability of a collision-resistant hash function, we show that any such algorithm which accesses its
input by “following” pointers can be transformed into a consistent query protocol whose (non-interactive)
consistency proofs have complexity at most proportional to the complexity of the algorithm. (In fact, the
transformation works for arbitrary algorithms at an additional multiplicative cokigolV, whereN is the

size of the database).

3.1 Data-Robust Algorithms

Suppose a programmer records a database on disk in a static data structure which allows efficient queries.
The data structure might contain redundant information, for example to allow searching on two different
fields. If the data structure later becomes corrupted, then subsequent queries to the structure might be
mutually inconsistent: for example, if entries are sorted on two fields, some entry might appear in one of the
two lists but not the other. A data-robust algorithm prevents such inconsistencies.

Suppose we have a query struct(fg Q, Q). A data-robust algorithmRA) for these consists of two
polynomial—tim@ algorithms(T', A): First, a setup transformatiéh : D — {0, 1} which takes a database
D and makes it into a static data structure (i.e. a bit strifigy 7'(D) which is maintained in memory.
Second, a query algorithm which takes a query € Q and an arbitrary “structureS € {0,1}* and
returns an answer. The structfeeedn’t be the output &F for any valid databas®.

Definition 4. The algorithmgT, A) form adata-robust algorithrior (D, Q, Q) if:

e Termination A terminates in polynomial time oall input pairs(q, 5‘), even whenS is not an output
fromT.

“We assume for simplicity that the algorithms are deterministic; this is not strictly necessary.

« SoundnessThere exists a functiof™ : {0, 1}* — D such thafor all inputsS, the databas® = 7*(5S)

satisfiesA(q, S) = Q(q, D) for all queries;.
(There is no need to give an algorithm fBt; we only need it to be well-defined.)

e CompletenessFor all D € D, we havel™(T'(D)) = D.
(Thatis, on inpuy andT'(D), the algorithmA returns the correct answéx(q, D).)

We only allow A readaccess to the data structure (although the algorithm may use separate space of its
own). MoreoverA is statelessit shouldn’t have to remember any information between invocations.

The running time of A. There is a naive solution to the problem of designingra: A could scan the
corrupted structuré in its entirety, decide which databagethis corresponds to, and answer queries with
respect toD. The problem, of course, is that this requires at least linear imevery queryrecall that

A is stateless). Hence the task of designing robust algorithms is most interesting when there are natural
sub-lineartime algorithms; the goal is then to maintain efficiency while also achieving robustness. In our
setting, efficiency means the running-time of the algorithron correctinputs, in either a RAM or pointer-

based model. On incorrect inputs, an adversarially-chosen structure could, in generald magkee time
proportional to the size of the structufethe termination condition above restricts the adversary from doing

too much damage (such as setting up an infinite loop, etc).

Error model. Although the design obrAs is an algorithmic question, the error model is a cryptographic
one. Much work has been done on constructing codes and data-structures which do well against randomly
placed errors, or errors which are limited in number (witness the fields of error-correcting codes, fault-
tolerant computation and fault-tolerant data structures). However, in this setting, there are no such lim-
itations on how the adversary can corrupt the data structure. We only require that the algorithm answer
consistently for any given input structure. Our error model is more similar to that of property testing and
probabilistically checkable proofs, where the goal is to test whether a given string is close to a “good”
string; however, we only require computational soundness, which allows us to use different (and simpler)
techniques.

3.2 Constructing Consistent Query Protocols FronDRAS

Given abRrRA which works in a pointer-based memory model, we can obtain a cryptographically secure
consistent query protocol of similar efficiency. InformallypRA is pointer-based if it operates by following
pointer in a directed acyclic graph with a single source (see Séction 3.2.1 for details). Most common search
algorithms fit into this model.

Theorem 1. Let (7, A) be aDRA for query structurdD, Q,) which fits into the pointer-based framework
of Sectioth 3.2]1. Suppose that on inpugdT'(D) (correctly formed), the algorithm examine$ memory
blocks and a total o bits of memory, using time steps. Assuming the availability of a public collision-
resistant hash function, there exists a consistent query protoc¢fo@,) which has proof length + kb

on queryq. The server's computation on each quergi& + ¢ + kb).

To get a consistent query protocol fromb&A, we essentially build a Merkle tree (or graph, in fact)
which mimics the structure of the data, replacing pointers with hashes of the values they point to. The
client runs the query algorithm starting from hash of the unique source in the graph (that hash value is the
public commitment). When the query algorithm needs to follow a pointer, the server merely provides the
corresponding pre-image of the hash value. Details are in S¢ction 3.2.2. If we run this transformation on

8

data-structures which are not data-robust, we still obtain an intersting guarantee: the resulting protocol is
secure as long as the server generating the commitment is honest. This is essentially the transformation of
[13,19].

The remainder of this section contains the details and proof of Thegdrem 1. We first specify what we
mean by a pointer-based framework and then proof the theorem.

3.2.1 Pointer-Based Algorithms
We say a pair of algorithm&", A) is pointer-basedf

1. A expects its input data structuse= 7'(D) to be arooteddirected graph of memory blocks. That is,
the output of the setup algorithifiis always the binary representation of a directed graph. Each node
in the graph has a list of outgoing edges as well as some associated data.

2. A accesses its inpuit and uses node names in a limited way:

A can get the contents of a noden the graph by issuing the instructigat(«). This returns the

associated datdata, and a list of outgoing edges ., v2.u, - - - , Un, u-
e A always starts out by getting the contents of the root of the graph by issuing the instruction
getroot().

The only operationsA performs on node names are (@) getting the contents of a node, and (b)
comparing two node names for equality.

The only node names which uses are those obtained from the outgoing edge lists returned by
calls togetroot() andget(-).

For exampleS could be a sequence of blocks separated by a distinguished chafaeté# . . . #b,,.
Each blockb; would consist of some data (an arbitrary string) and “pointers”, each of which is the index (in
the stringS) of the start of another blodk;. The root of the graph could be the first block by convention.
Finally, we need some simple robustness properties of this graph representation (which can be satisfied
by the example representation above). We assume:

3. The binary representation of the graph is such that whénfed an improperly formed inpuf (i.e.
one which is not an output df), then the behaviour gfet(-) andgetroot is not “too bad”:

e Whenget(u) or getroot() is called, if the corresponding part of the input string is not well-formed

(i.e. is not a tuple of the forrdata,,, v1 4, V2,u; - - - ; Un,), then the call will return a distinguished
value L.

e Both get(-) andgetroot() always terminate in time linear in the length of the corrupted structure
S.

Many common search algorithms can be cast in this pointer-based framework. For example, the algo-
rithm for searching in a binary tree takes as input a tree, which it explores from the root by following pointers
to right and left children of successive nodes. Indeed, almost all search algorithms for basic dynamic data
types can be viewed in this way. Moreover, any algorithm designed for a RAM machine can also be cast in
this framework at an additional logarithmic cost: if the total memory spa@ég, isimply build a balanced
tree of pointers of heighbg IV, where the-th leaf contains the data stored at location memory.

3.2.2 Proof of Theorenil

Let (T, A) be abRrA for query structuréD, Q,) which fits into the pointer-based framework described
above. For simplicity, suppose that a correctly formed structure (i.e. an outpdinever contains a pointer
cycle, that is, the resulting graph is acyﬁc.

Proof. The idea is to construct a “hash graph” which mimicks the data stru@tut®), replacing pointers

with hash values from the CRHF. Léf be a publicly available, randomly chosen member of a CRHF
with security parametet. Depending on the setting, we can either assume/ihes common knowledge

(in which case there is no need for public randomness), or ask explicitly that a trusted third party output a
description off (in which case the distributioR (1) is the key generator for the CRHF).

Setup algorithm. The server setup algorith®, is as follows: on inpuD, runT to getS = T'(D). View

S as a directed graph, with memory blocks as nodes and pointers as edges. This graph can be topologically
sorted (by assumption: no pointer cycles). There is a single source, the query algorithm’s starting memory
block (i.e. the root of the gradﬂ)Now proceed from sinks to the source by adding a hash value (¢ajjed

each node:: For a sink, attach the hash of its binary representation; this is bastcaty H (data,). When

uis aninternal node, replace each of its pointgfsby the hash values of the nodes they point to and then set

h, to be the hash of the binary representation of the transformed blpek H (datay, fiy; s - - - Py, 1)

At the end, one obtains a hash,,; for the source. The server publishes the commitnaest h,.,.:, and

storesS and the associated hash values as the internal vastdike

Query algorithm. Given a query; and the setup informaticstate the servesS, runs the robust algorithm

A on the data structurg, and keeps track of all the memory blocks (i.e. nodes) which are accessed by the
algorithm (by looking at calls to thget(-) instruction). Denote the set of accessed nodespy The
answera is the output ofA; the proof of consistency is the concatenation of the “transformed” binary
representation&datay, hy, ;. .., h) of all the nodes: € S;,as well as a description ¢f, and where

) PUny,u

to find each node in the string

Consistency check. On inputsc, ¢, a, 7 (wherer consists of a the description of a set of nodgsis well
as their transformed representations), the cliewill verify the answer by runningi, using the proofr to
construct the necessary partssf
The first step is to reconstruct the subgraph of memory blocks corresponding to the set of accessed nodes
Sgq- The clientC checks that :

e 7 is a sequence of correctly formed “transformed” binary representations of memory blocks along with
associated hash values.

¢ S, forms a subgraph entirely reachable from the root (siictarts from the root and follows pointers,
this holds when the server is honest).

e the hash values present are consistent: for each aoaled for each neighbar; , of u which is in S,
check that the valug,, , attached ta. is the hash of the transformed representation; of

e the valueh,.,; constructed from the input is indeed equal to the public commitment

5This restriction is not necessary. General graphs can be handled at a logarithmic cost by building a tree over the memory
structure.

5There could in principle be other sources, but by assumption on/aperates it will never access them, Scan safely
ignore them.

10

Next,C runs A on this reconstructef,. It checks that all the nodes requestedbgre inS, and thatA
returns the correct value

Since the hash function is collision-resistant, there is only one such sub§yaptich can be revealed
by the server. More precisely, there is one overall graph — the committed data structure — such that the
server can reveal (reachable) parts of the dﬂap‘hus the server is committed to a data structsinghich
is bounded in size by the server's memory. By the properties of the data-robust algorithm, an honest server
will always be able to answer a query and provide a valid proof of correctness, whereas a malicious server
can (at most) answer queries with respect to the databfa(sé). O

4 Orthogonal Range Queries

In the case of join queries, a databd3es a set of key/value pairs (entries) where each key is a point in
RY, and each query is a rectangle, b1] x - - - x [aq, bs]. Note that these are also often calledthogonal)
range queriesand we shall adopt this terminology here for consistency with the computational geometry
literature. For concreteness, we consider the two-dimensional case; the construction naturally extends to
higher dimensions. In two dimensions, each queiyg a rectanglda,, b1] x [a2,b2]. The query answer
Q(q, D) is a list of all the entries iD whose key(xkey, ykey) lies ing.

In this section we give a simple, efficienRA for range queries and show how to modify it to make an
efficient consistent query protocol.

4.1 A Data-Robust Algorithm for Range Queries

Various data structures for efficient orthogonal range queries exist (See [12] for a survey). The most efficient
(non-robust) solutions have query tird&(m + 1) log?~! N) for d-dimensional queries. We reviemulti-
dimensional range treg&lue to Bentleyl[2]), and show how they can be queried robustly. The query time
of the robust algorithm i©((m + 1) log? N). Itis an interesting open question to find a robust algorithm
which does as well as the best non-robust algorithms.

4.1.1 One-Dimensional Range Trees

Multidimensional range trees are built recursively from one-dimensional range trees (déADRT),
which were also used by[5,22,/117]. IneDRT, (key, value) pairs are stored in sorted order as the leaves of
a (minimum-height) binary tree. An internal nodestores the minimum and maximum keys which appear
in the subtree rooted at (denoteds,, andb,, respectively). For a ledf we takea; = b; to be the value of
thekey; key stored at. Additionally, leaves store the valwalue; associated t&ey;.

Setup. Given adatabasP = {(key;,value;), ..., (keyy,valuey)}, the setup transformatidhi prt con-
structs a minimum-height tree based on the sorted keys. All the intdayals,] can be computed using a
single post-order traversal.

Robust queries. It is easy to see that EDRT allows efficient range queries when it is correctly formed
(given the rootn of a tree and a target intervgl, b], descend recursively to those children whose intervals
overlap with[a, b]). However, in our setting we must also ensure that the queries return consistent answers

"The proof of this is standard: suppose that the server can produce two graphs consistent with the hash af theirgat
By induction on the distance from the root at which the two graphs differ, one can find a pair of strings which hash to the same
value

11

Algorithm 1. Aiprt([a,b], n,)
Input: a target rangg, b], a noden in a (possibly misformed)-DRT.
Output: a set ofkey, value) pairs.

1. if nis not properly formed (i.e. does not contain the correct number of fithds)return()
2. if nis aleafif a, = b, = key,, andkey,, € [a, b], then return{(key,,, value,,)} elsereturn()
3. if niis an internal node:

o [«— left,, r — right,

e ifa, =a; <b <a, <b. =b,then returnAlDRT([a, b], l) U AlDRT([a, b], 7”)
e elsereturn{)

Figure 1: Data-robust algorithmprt for querying one-dimensional range trees

even when the data structure is corrupted. The data structure we will use is exactly the one above. To ensure
robustness we will modify the querying algorithm to check for inconsistencies.

Assume that we are givenraotedgraph where all nodes have an associated interyal,, b,,|, and all
nodes have outdegree either 0 or 2leAf [is any node with outdegree 0. A leaf is additionally assumed to
have to extra fieldgey, andvalue;. Consider the following definitions:

Definition 5. A noden is consistentf its interval agrees with those of its children. That is, if the children
arel andr respectively, then the node is consistent,if= a; < b; < a, < b, = b,. Moreover, we should
havea,, = b,, for a node if and only if it is a leaf.

A path from the root to a node onsistenif n is consistent and all nodes on the path to the root are
also consistent.

Definition 6. A leafl in a1-DRT is valid if there is a consistent path from the root/to

In order to query a (possibly misformed}DRT in a robust manner, we will ensure that the query
algorithm A returnsexactlythe set of valid leaves whose keys lie in the target range. In a “normal” (i.e.
correctly formed)1-DRT, every leaf is valid, and so the algorithm will return the correct answer. In a
corrupted structure, the algorithm will always answer consistently with the database consisting of the set of
points appearing at valid leaves. Thus for any strhghe databas@™(S) consists of the data at all the
valid leaves one finds whefiis considered as the binary encoding of a graph.

Algorithm[1 (4;prT) Will query a1-DRT robustly. When it is first called, the argumentill be the
root of the graph. Essentiallyl;prT runs the ordinary (non-robust) search algorithm, checking all nodes it
passes to ensure that they are consistent (Defiriition 5). It also checks that it never visits the same node twice
(in such a case, it must be that the graph the algorithm receives as input is not a tree).

The algorithmA;prT Operates in the “pointer-based” model. Thus the first node on which the algorithm
is called is obtained through a call getroot(). The neighbours of an internal nodeare its two children
left,, andright,,. For clarity of the algorithm, we have not explicitly included callg#o(-) in the description
of the algorithm.

The following lemma proves that one-dimensional range trees, along with the algetiihgs, form a
DRA for range queries.

12

Lemma 2. The algorithmA;prt Will return exactly the set of valid leaves whose keys are in the target
range. In the worst case, the adversary can force the queries to takeéXig)enheres is the total size of

the data structure. Conversely, given a collectiomoéntries there is a tree such that the running time of
the algorithm isO((m + 1) log N), wherem is the number of points in the target range. This tree can be
computed in tim& (N log V) and takes) (V) space to store.

Proof. On one hand, the algorithm is complete, since in a correctly formed tree every node will pass the
consistency checks, and so the algorithm will return exactly the set of leaves whose keys are in the target
range.

Before proving robustness, it is important to note that there are some kinds of misformed data we don't
have to worry about. First, we can assume that all nodes are correctly formed (i.e. have the correct number
of fields and the correct types of data) since incorrectly formed nodes will be ignored by the algorithm. Thus
we can assume that the algorithm is indeed given some kind of graph as input, although it isn’'t necessarily
a tree. Moreover, we can assume all nodes in the graph have outdegree either 2 or 0.

The proof of robustness follows from the properties of consistent nodes, which in turn follow from the
definitions. For any node which is on a consistent path from the root:

1. The consistent path from the root is unique.
2. No valid leavesnsiden’s subtree have keysutsiden'’s interval.

3. If another node’ is on a consistent path from the root, dag', b,/] N [an, b,] # 0, thenn' is either
an ancestor or a descendantdithus one of the two intervals includes the other).

A corollary of these properties is thad node will be visited twice by the algorithihis is because the
algorithm expects intervals to shrink at each recurisve step, and so it will never follow a link which leads to
a node earlier on in the current recursion stack. Moreover, there can never be two distinct paths by which the
algorithm arrives at a node: because the algorithm is always checking for consistency, the two ancestors
n’ andn” of n would have to be consistent nodes with overlapping intervals, contradicting the properties
above.

Hence, the algorithm will visit valid leaves at most once, and never visit invalid leaves. Moreover, it will
visit all the valid leaves in the target interval (by inspection). Thus rundingzr on a stringS procudes

answers consistent with'yr1(5), the set of data points stored at valid leaves in the graph represented by
S. O

4.1.2 Two-Dimensional Range Trees

Here, the database is a collection of trip{ekey, ykey, value), where the pairgxkey, ykey) are all distinct

(they need not differ in both components). The data structure, a two-dimensional range tree (&enoted
DRT), is an augmented version of the one above. The skeletoh-BRT (called theprimary tree), which

is constructed using thekey’s of the data as its key values. Each node in the primary tree has an attached
1-DRT called itssecondanyree:

e Each leafl of the primary tree (which corresponds to a singtey valuea; = b;) stores all entries with
thatxkey value. They are stored in tieDRT tree; which is constructed usingkey’s as its key values.

e Eachinternal node (which corresponds to an intenval,, b,,| of xkey’s) stores &-DRT tree,, containing
all entries withxkey’s in [a,,, b,]. Again, this “secondary” tree is organized yey’s.

13

Algorlthm 2. AZDRT([a(”),b(x)] X [a(y),b(y)], 77,)
Input: a target rang@™), b®)] x [a¥), b¥)], a noden in a2-DRT.
Output: a set ofxkey, ykey, value) triples.

1. if nis not properly formed (i.e. does not contain the correct number of fields),
then return(.

2. Check for consistency (if check fails, retuin

e if n is a leafthen checka,, = b,, = key,,
e if nis aninternal nodeéhen checka,, = ajeft, < bieft,, < right,, < bright, = bn

3. (@) if [an, by] N [a®,b®)] =) then return()
(b) if [an,by] C [a®),b®)] then

e B — Ajpgrr([a(y),b(y)], tree;,)

e Remove elements dB for whichxkey & [a,,, b;,]

e if nis aninternal node:
For each poinp in B, check thap is 2-valid in eithereft,, or right,,.
If the check fails, remove from B.

e ReturnB

(c) Otherwise
B Appgr(([0,60)] () ot e,]) % [, 5], left)

U A2DRT< ([a, 5] N [aight, , bright,) * [a¥),b@)], rightn)
e Remove elements a8 which are not valid leaves afee,,.
e ReturnB

Figure 2: Data-robust algorithmd,;prT for querying two-dimensional range trees

The setup algorithfl,prT creates 2-DRT given a database by first sorting the data on thexkey,
creating gprimary tree for those keys, and creating a secondary tree based gkethfor each of nodes in
the primary tree. In -DRT, each point is stored times, wherei is its depth in the primary tree. Hence,
the total storage can be ma@¢N log N) by choosing minimum-height trees.

Searching in a2-DRT. The natural recursive algorithm for range queries in this structure takes time

O(log? N) [12]: Given a target rang*), b(*)] x [a(¥), b¥)] and an internal node, there are three cases:
if [a®),5®)] N [ay,, b,] = 0, then there is nothing to do; j&*), b)) D [a,, b,], then perform a search on
the second-level tree attachedrtaising the target range(¥), b¥)]; otherwise, recursively explongs two
children.

Based on the natural query algorithm, we can constro&ta A,prt by adding the following checks:

e All queries made to the 1-D trees (both primary and secondary) are made robustly following Alggrithm 1

(A1prT), i.€. checking consistency of each explored node.

14

e For every point which is retrieved in the query, make sure it is present and valid in all the secondary 1-D
trees which are on the path to the root (in the primary tree).

The following definition capturegalidity, which is enforced by the checks above:
Definition 7. A point p = (xkey, ykey, value) in a (corruptedp-DRT is 2-valid if

1. p appears at a valid leaf in the second&fRT tree; belonging to deaf [of the primary tree with key
valuexkey = a; = ;.

2. For every (primary) node on the path td from the root of the primary tree, is consistent angd is a
valid leaf in the (one-dimensional) treee,, .

Now given a (possibly corrupte@DRT and a poinp = (xkey, ykey, value), it is easy to check whether
or notp is 2-valid: one first searches for a |dafiith key xkey in the primary tree, exploring only consistent
nodes. Then, for each nodeon the path froni to the root (including and the root), one checks to ensure
thatp appears as a valid leaf in theee,,.

For robust range queries, we obtain Algorithm4grT). As before, the idea is to return only those
points which are 2-valid. Thus, for an arbitrary strifg the induced databasgr(S) is the collec-
tion of all 2-valid points in the graph represented $y The following lemma shows that the algorithms
(ToprT, A2prT) fOrm aDRA for two-dimensional range queries with query complexity(m + 1) log? N)

(wherem is the number of points in the target range).

Lemma 3. Algorithm[2 (AoprT) Will return exactly the set of 2-valid points which are in the target range. On
arbitrary inputs, A;prT terminates in worst-case tim@(L), whereL is the total size of the data structure.

Conversely, given a collection éf entries there is a tree such that the running time of the algorithm
AoprT isO((m+1) log? N), wherem is the number of points in the target range. This tree can be computed
in time O(N log? N) and takesD(N log N) space to store.

Proof. (sketch) As in the one-dimensional case, the algorithm will never explore the same node twice, and
so we may think of the corrupted input to the algorithm as a tree. Moreover, since the algorithm is checking
for proper formatiing of nodes, we can assume that this graph consists of a number of “primary” nodes with
secondary trees dangling off them. Finding the running time of the algorithm on well-constructed inputs is
a straightforward exercise.

On one hand, one can see by inspection that any 2-valid point in the target range will be output by the
algorithm, since all the checks will be passed. Moreover, no valid point outside the target range will be
output.

On the other hand, consider any point that is output by the algorithm. It must have appeared in the set
B at stage 3(b) of the algorithm for some nodeThus it is a valid leaf irtree,,. Moreover, it must be valid
in eitherleft,, or right,,, because of the checks made at step 3(b). This means there is/avieiah is a
descendant of such thap is a valid point intree; and in all the trees of the nodes on the path froto /.

Finally, as the recursion exits (in step 3(c)), the algorithm will verify thappears at a valid leaf in all the
nodes on the path from the root.#0 Thusp must be a 2-valid point. O

Remark 1. As mentioned above, more efficient data structures and algorithms for planar orthogonal queries
exist [12], but it is not clear how to make them robust without raising the query time bacK(te +
1)log® N). This is an interesting open question.

15

One can use similar ideas to make robust range queriesdmensional keys, wheré > 2. The
structure is built recursively, as in the 2-D case. Although the algorithm is polylogarithmic for any fixed
dimension, the exponent increases:

Lemma 4. There exists @RA for d dimensional range queries such that queries run in tithgém +
1)log? N), and the data structure requirg3(N log? N) preprocessing an@(N log?~! N) storage.

4.2 Efficient Query Protocol

Given this algorithm, the (non-private) query protocol can be constructed as in $ecfion 3.2: the server creates
atree as in the previous section. For each key/value pair, he computes a hasf)yaltte now works his

way up through the various levels of the tree, computing the hash values of nodes as the hash of the tuple
(min, max, left child’s hash value, right child’s hash value). A given key will appear rougpliy times in

the tree; the same valug,.,, should be used each time.

To answer a range guery, the server runs the algorithm of the previous section. He need only send the
hash values and intervals of nodes on the “boundary” of the subgraph (in memory) which was explored,
i.e. the leaves and the siblings of the nodes on their paths to the root (the information corresponding to the
interior nodes can be reconstructed from the boundary nodes). This yields the following:

Theorem 5 (Two dimensions).Assuming the existence of collision-resistant hash functions, there is a
consistent query protocol for two-dimensional range queries with commitment sizd non-interactive
consistency proofs of length at m@¥tk(m + 1) log? N), wherem is the number of keys in the query range,
andk is the security parameter (output size of the hash function).

For higher dimensions, our construction yields proofs of ler@th(m + 1) log? N).

Remark 2. When the dimension is large, one gets better asymptotics by going through the PCP construc-
tions (see the discussion preceding Theorém 6 in the next section). Those yield protocols of complexity
poly(k), wherek is the security parameter and the polynomial does not depend on the exact statement being
proven. Unfortunately, the constants involved are such that it is unlikely such protocols would be practical.

5 Privacy for Consistent Query Protocols

5.1 Privacy Via Generic Techniques

One can construct privateQps (Definition[3) with good asymptotic complexity using generic techniques,
as follows. Universal argumentsdue to Barak and Goldreichl[1], allow one to give an interactive, zero-
knowledge argument of knowledge of an NP statement of arbitrary polynomial length, using only a fixed,
poly(k) number of bits of communication. This allows one to handle arbitrary query structures (as long as
answering queries takes at most polynomial time): the server sends the answer to a query, and then proves
interactively that it “knows” a stringr which the client would accept as a valid proof of consistency. This
approach even hides the set size of the database(as in [20], since the universal argument leaks only a super-
polynomial bound on the length of the statement being proven. Unfortunately, the known construction of
universal arguments is cumbersome, even by the standards of theoretical cryptography, since it uses the
machinery of probabilistically checkable proofs.

One can gain some simplicity and efficiency by starting from a (non-private) effic@mtand replacing
each proof of consistency with an ordinary zero-knowledge argument of knowledgkAK) of = (for

16

example, see Goldreich [10], Chapter 4.7.3). If a public random string is available, one can also use non-
interactive zero-knowledge proofs of knowled@gZKPK).

This approach will typically leak some bound on the seef the database, since both ordin@ZKAK’s
andNIZKPK’s may leak a polynomial upper bound on the lenght of the statement being proven. One can
avoid that leakage if the original proofs take time and communicatign(log N), as with membership
and orthogonal range queries. ReplaciMgwith the upper boun@”*, we once again again gebly(k)
communication.

We summarize this discussion in Theorigm 6. If we consider the specific caggPsffor membership
gueries, then the theorem says thato-knowledge sqtrotocols [20] can be constructed based on general
assumptions, such as the existence of non-interactive zero-knowledge proof systems. A different proof of
this specific statement was later given by Healy et al. [15].

Theorem 6. (a) Assume that there exists a collision-resistant hash family. For any query structure with
polynomial complexity, there existspaivate cQP with a constant number of rounds of interaction and
poly(k) communication.

(b) Given a public random string, argQP with proofs of lengti{(V') can be made siz&#-private with
no additional interaction at @oly(k ¢(N')) multiplicative cost in communication, assuming non-interactive
zero-knowledge proof systems exist.

5.2 Explicit-Hash Merkle Trees in Brief

Although the asymptotics of Theordr 6 are good, the use of generic NP reductions means that the advan-
tages only appear for large datasets. We therefore construct simpler protocols tailored to Merkle trees.

The basic Merkle tree commitment scheme leaks information about the committed values, since a
collision-resistant function cannot hide all information about its iﬁ)uﬁu first glance, this seems easy
to resolve: one can replace the valugst the leaves of the tree with hiding commitmenté&;). This
doesn’t work, since there is may be additional structure to the values, a which is revealed when one
reveals a path in the tree. For examplecinrs for range queries, the entries are stored in sorted order.
Revealing the path to a particular value then reveals its rank in the data set. The problem gets even more
complex when we want to reveal a subset of the values, as we have to hide not only whether paths go left or
right at each branching in the tree, but whether or not different paths overlap.

A generic solution is to provide a hiding commitment to the description of each node on the path, and
then give a zero-knowledge proof that the committed string is consistent with the public hash value (the
root of the hash tree). The main bottleneck is in proving that H(z), given commitments’(x) and
C(y). Itis not known how to do that without going through either general NP reductions or oblivious circuit
evaluation protocols, both of which are extremely inefficient when applied to a circuit as complex as a hash
function. This seems to be a fundamental problem with privacy of Merkle-tree commitments: revealing
the hash values reveals structural information about the tree, and not revealing them and instead proving
consistency using generic ZK techniques kills efficiency.

The challenge, then, is to provide zero-knowledge proofs that# set a; is a subset of the committed
values, without going through oblivious evaluation of such complicated circuits. We present a modification
of Merkle trees where one reveals all hash-function input-output pairs explicitly, yet retains privacy. We call
our construction aixplicit-Hash Merkle TreeThe construction is explained below, in Secfior] 5.3.

8There are limited ways in which hash functions may hide information, as discussed by Canetti, Micciancio and Réingold [3].
That definition of privacy is not strong enough for our setting.

17

Lemma 7. Assuming the existence of collision-resistant hash families and homomorphic perfectly-hiding
commitment schemesxplicit-hash Merkle treeallow proving (in zero-knowledge) the consistencyt of

paths (of lengthl = log N) usingO(d - t? - k?) bits of communication, whereis the security parameter.

The protocol uses 5 rounds of interaction. It can be reduced to a single message in the random oracle model.

To illustrate the technique, we apply it to one-dimensional range queries. The main drawback of the
resulting protcol is that the server needs to maintains state between invocations; we dertberymber
of previous queries.

Theorem 8. There exists an efficiendjze<V-private consistent query protocol for 1-D range queries. For

the t-th query to the server, we obtain proofs of si2zgt + m) - s - k% - log N), wheres is the maximum
length of the keys used for the data, ands the total number of points returned on range queries made so
far. The protocol uses 5 rounds of interaction and requires no common random string. The protocol can be
made non-interactive in the random oracle model.

The remainder of this section gives the details of the results above. The proof of Llgmma 7 can be found
in Sectior] 5.B. The final subsection (Secfiorj 5.4) gives a proof of Thedrem 8.

5.3 Explicit-Hash Merkle Trees in Detall

As mentioned above, Merkle trees allow one to commit to a large number of values via a short commitment,
and to reveal some subs&}, ..., a; of those values very efficiently, by showing a path from the root to
that particular value. We explain how to modify that scheme to hide the remaining committed values,
while leaving the hash function evaluations explicit, i.e. without going through oblivious evaluation of such
complicated circuits. The goal of this section, then, is to prove Lefrjma 7.

Server storage. LetC/(-) be a non-interactive commitment scheme to messages of arbitrary length. It will
be convenient to assume th@(f-) is homomorphic, that is given commitmentsitq andms, it is possible
to produce a commitment ta; + mo @ Such schemes exist based on a number of assumptions, such
as the hardness of discrete logarithm extraction (e.g. Pedersen’s schéme [28}).beetelected from a
collision-resistant hash function family.

We will build a hash tree based on commitments to nodes, that is the server will actually commit to
commitments of the nodes in the tree. Moreover, rather than store explicit hash values in the tree we will
store commitments to those values. Specifically, for each nadehe tree, we will define three values:

e The basic string representatian; is the information stored at the node
e A hash pre-image fon: ¢, is a particular commitment to the valug via the commitment shcen(-).
e The corresponding hash valug; = H/(c,) is the hash value far which we will store at the parent of.

For a leafl, we haver; = q;, and¢; is a commitment’(q;). For an internal node, we havez,, =
(H((cieft,,) H(cright,,)), andc,, is a component-wise commitmentipusingC'(-), i.e.
c — (C(H(efr,), C(H (cright,,)))-

The public commitment is the valug,o: = H (2.,)-

Definition 8. For two stringsr andy, we sayy <1 z if y is the hash of some valid commitmentitpi.e. if
there are random coinssuch thaty = H(C(z;w).

°In fact, we only need to be able to prove the equality of two committed strings without revealing them.

18

Protocol outline. Suppose the server now wants to revieagalues from the tree. Let = log IV be the
depth of the tree. For each Ielato be revealed, the server finds the correspondingpath., ny wheren,

is the root andh, is . He sends to the client the datg plus fresh commitments to the values andy,,.

He then proves that these form a consistent path in two stages.

1. For each of the paths, Server sends = C(zy,),...,uq = C(xy,) andv; = C(yn,),...,vq =
C(ynd)'

2. The server proves that each of the paif; is a commitment to a pair;, y; such thaty; < x;.

3. The server proves that the committed nodes actually form a path, that is forievety the server
shows that one of thg, appears as one of the components of;.

4. The server proves that the first node is indeed the root by opening the commitmerreveal the
public commitment string;oo¢ -

The first proof is the trickiest, since we wish to use only explicit hash function evaluation (never oblivi-
ous) but also not reveal any information on possible relations between the various paths.

Proving that y; < z;. There arég paths of lengthl for which this must simultaneousely be proven. At the
very least, the server will have to reveal the hash pre-images for all the nodes irt thetbs. However,
depending on how the paths overlap, there may be far fewer#hanch nodes (and hence hash pre-
images), and any repetitions will be easy to detect. Thus, the server will additionally send enough “dummy
pre-images” so that the total number of committed nodes claimed to be in the hash tree istelxaltly
dummy values are other hash pre-images present in the hash tree. Formally:

1.1. Let{nW, ..., n(*)} be the union of the nodes on alpaths ¢ < td). We pad this set withd — s other
nodesns1, ..., nyg (arbitrary nodes will work) to get a set e nodes.

Letc(D, ..., c(*) be the corresponding pre-images, &€) = ¢, ;).
2. Server sendécV, ..., (!} to the client in random order.

3. Repeat the following cut-and-choose protacdimes:

1. Server chooses a permutatior— S;4, and sends fresh commitmemgﬁj) = C(z,;) to all td nodes
nl), as well as commitment§(y,,;)) to the hash valueg,;, = H(c")). These commitments are
permuted according to before sending.

2. Client answers with a challenge bit— {0, 1}.
3. If b =0, the server:
1. Sendsr proves that for each of thel nodesn(?), o andcl9) are commitments to the same value.
(This is easy since the commitment scheme is homomorphic.)
2. opens all commitments 9,;, (client verifiesy, ;) = H(c\9))).
If b =1, the server:

1. Shows that each of the commitmentsis equivalent to one of the commitments;, and that the
commitmenty; is equivalent to the corresponding committed hash valGg, ;).

At the end of this proof, the client should be convinced that each of the commitment(paits)
corresponds to one of the valué$), and that the underlying pair;, y; satisfiesy; < ;.

19

Proving that the path is consistent. We now have pairs of commitments, v; which hide valid pairs
T, Yn;» Wherey,, = H(C(z,,)) for some valid commitment of,,,. We can easily prove that;, v;
corresponds to the root by openingand checking it is equal to the public commitmeni,;.

The server must now prove that for each d, either:

e n,,1 is the left child ofn;, which means thaly,,,., = y|eft"i), or:
e 1,1 is the right child ofn;, which means thaty,,,,, = Yright,,)-

To prove this, one uses a classic cut-and-choose proof: the server commits to a permutgtion of
andyight, - Depending on the client’s challenge, the server either proves that the two values were a correct
permutatibn of the real values (this requires only showing equality, which is easy with homomorphic com-
mitments), or proves that one of the valueg,is_,. Repeating thig times will lower the soundness error
of the proof to2*.

5.3.1 Complexity of the Proofs

One can see by inspection that the communication complexity of this proof is dominated by the proofs that
y; < x;. Each phase of the cut-and-choose protocol requires transmid(itif) bits, and so the overall
communication complexity i©(t2dk?) bits.

Round complexity. The protocol consists of a number/offound cut-and-choose proofs. Because these
proofs are not interdependent, we can run them all in parallel without losing zero-knowledge, so long as we
use the same random coins for each of the proofs, i.e. at each round the client sends only a single challenge
bit, which is used in all the proofs. (This is not true of ZK proofs in general, but it is true for our protocol.)
Thus, we easily obtain &round protocol.

This can actually be improved substantially. As a first observation, we can collapsedbeds of in-
teraction together in order to obtain a 3-round protocol—that is, all challenges are sent simultaneously. This
protocol is no longer provably zero-knowledge, but does retatimess-indistinguishabilitythis property is
preserved by parallel repetition of protocols, see [10]).

Next, we can use various transformations to obtain a zero-knowledge proof.

5-round zero-knowledge based on perfect trapdoor commitm@nescan use standard folklore techniques
to transform the 3-round, public coin witness-indistinguishable proof of knowledge into a ZK proof
of knowledge. This increases the complexity to 5 rounds, and requires an additional assumption of
perfectly hiding trapdoor commitment schemes (which exist based on the discrete log assumption and
the hardness of factoring). In the first round, the server sends the parameters for a perfectly-hiding
trapdoor commitment scheme. The client responds with a commitment to the challenges he will use
in the protocol. They then run the 3-round protocol, using the committed challenges. Along with his
response to the challenges, the server sends the trapdoor information for the commitment scheme.

Non-interactive zero-knowledge based on a random ordickerandom oracle is available, then we can in
fact use the Fiat-Shamir technique to remove interaction completely without losing zero-knowledge,
since our underlying proofs require only public coins. The idea is to replace the verifier's challenges
with the output of the call to the random oracle on the first message of the protocol. We refer the
reader to[[11] for a discussion of the transformation and its limitations (in the context of signature
schemes).

20

As afinal note, it imotsufficient to transform our protocol to obtain a zero-knowledge proof of the exis-
tence of a witness — since the commitments involved are only computationally sound, a proof of knowledge
iS hecessary.

5.4 Efficient Privacy for Range Queries—Proof of Theorenj B

Given the efficient consistent query protocols for join queries described in SeEtion 3 and Section 4, privacy
can be achieved by applying generic withess-indistinguishable or zero-knowledge proofs of knowledge, as
described in Sectidn §.1. However, even for our efficient protocols these will be very complex, as they will
require as the least oblivious evaluation of the circuit for hash fundtion

Instead, we present efficient, private consistent query protocols for 1-D range queries, based on the
explicit-hash technique of Sectipn p.3. The main drawback is that our protocol is not memoryless: the
server must remember what queries have been made so far in order to ensure that no information is leaked
from a proof.

The main tool used in the construction is a sub-protocol which, given commitments to ¢gkueand
C'(b), allows the server to prove that< b.

The first step is to modify the range tree so thlhtonsistency proofs have length exactly- [log N].
Subsequently, we show how to achieve privacy efficently for membership queries, and finally for range
querires.

Modified range tree. We start from the basic consistent query protocol for membership and range queries,
based on range trees. First we modify the data structure slightly so that the length of a proof of consistency
can be calculated exactly from the number of data points returned on a given query. Specifically, we ensure
thatall consistency proofs have length exactly- [log N, and that the ranges of the children of a nade

form a partition of{a,,, b,,| about the splitting poinéplit,,.

¢ Instead of storing at each internal nodthe minimum and maximum keys which appear in the subtree
rooted at that node, we store a larger intefugl b,,], which nonetheless has the property that all keys
key in the subtree satisfy,, < key < b,.

At each branching we require that the children’s intervals partition that of their parent, and the point
at which they cut the parent’s interval is stored at the parent and desygtieg. Thus, the consistency
check of Algorithm 1 becomes, < b, = split, = a, < b,. If n is a leaf, the consistency check
becomes:,, < key,, < b,.

e For simplicity, we assume that keys are all integers in a known intdival., 2° — 2}. The values
0,2°% — 1 are set aside as special values, deneted andoco, respectively.

¢ In order to ensure that it is always possible to split intervals sodhat key,, < b, at the leaves, we
can require that all keys be even numbers (this at most increases the sizestxyuhd

e In every tree, we insert the valueso + 1 = 1 andoo — 1 = 2% — 2, so that the range stored at the
root is always in facf—oo, co].

¢ We assume that the number of leaves in the tree is a power of 2 so that all leaves are at the same depth.
This meansV = 2¢ — 2 for some integed. This at most doubles the number of points we must store
in the database.

21

The consistency proof for a membership query in this new structure will always consist of exactly
nodes (whereV = 2¢ — 2), even for queries which return “key not present”. Consistency proofs for range
gueries compriser + 2d nodes, wheren is the number of data points in the range.

Privacy for membership queries. We first describe how to achieve privacy for membership queries, and
then explain how to generalize the technique for range queries.

The protocol outline is the same as for explicit hashing, except that additional range information is stored
at the internal nodes. However, in the case of range trees the proof that the path is consistent is considerably
more complex, since it involves proving statements of the formb.

Server storage. This is the same as in the explicit hashing protocol, except that the sijimgntains
additional information: for internal nodes it containg, b,, andsplit,,. For leaves, we add the rangg, b,,,
plus the valuekey,, andvalue,, (note that for efficiencyyalue,, can be the hash of the value stored at the
leaf).

Moreover, all the range bounds are committediteby-bitinstead of as a monolithic string. This will be
necessary to get fast consistency checks. If all keys are integers le<s thtzen each number will require
sk bits to be committed.

Proving y; < x;. As before, the server commits to nodes and their hash valuelspaasu;, v;. The goal

is to prove that these correspond to pairsy; wherey; < ;. This is where the protocol requires the server

to have memory. As before, the server will send a set of possible hash pre-images for the nodes in the path,
and prove that each node in the path corresponds to at least one of these hash pre-images. The problem lies
in choosing that set of possible hash pre-images. If the server reveals only those necessary for this path,
then two different queries will reveal a lot about how the two different paths overlap. Instead, the server
will always send all of the pre-images sent on the previous querydahesv pre-images (regardless of how

many new pre-images are really necessary). Thus, ontthgquery, the server senéi$possible pre-images,

and runs the same cut-and-choose protocol to show that the committed pairsysatisfy

Proving that the path is consistent. We now have pairs of commitments, v; which hide valid pairs
Zn;,Yn;- We can easily prove that;,v; correspond to the root by opening and checking it is equal
to the public commitment,...,;. The basic check which must be performed are essentially the same as in
Section| 5.8, except that now we must add checks of the form b. We will show how to prove such
statements below. First, we give the outline of the consistency checks.

Suppose that we have a subprotocol for proving that b or a < b given two commitment€’(a) and
C(b). Then the server can prove that the path consistent as follows:

e Foreach < d, we haven,, < split,, < by,.
e For eachi < d, either:

— ni41 is the left child ofn;, which means thata,,,, , = ay,) and(b,, ., = split,,) and(y,, , =
Yieft,,), OF

— n;41 is the right child ofn;, which means thaia
yrightni)-

= splity,,) and(by,,,, = by,) and(y,, , =

Ni+1

To prove this, one uses a classic cut-and-choose proof: the server commits to a permutation of
(an,, Splitni,y|eftni> and (splity,, bn,, Yright,). Depending on the client’s challenge, the server ei-
ther proves the two triples were a correct permutation of the real values (this requires only showing

22

equality, which is easy with homomorphic commitments), or proves that one of the two triples is equal
to (am‘+1? bni+1 ’ ynz‘+1)'

Repeating thig times will lower the soundness error of the proo®td'.
e Forthe leafl = ng4, we haven; < key; < b;.

e For the leafl = ngy, the revealed query answer is correct. If the query was for viayewe must
check thata; < key < b; and eitherkey = key; or key # key;, depending on whether the query
answer was positive or negative.

Thus, we need only show how to prove that b, a < bora # b) for two committed value€’(a), C(b).

Proving a < b,a < b, a # b. Suppose we hav€'(a), C(b) for two integersa, b € {0, ...,2° — 1}. The
server wishes to prove to the client that b. A proof of the statement < b would proceed similarly. The
proof thata # b is in fact much easier and we leave it as an easy exercise.

1. Letay,..., as be the binary representation@fndb, ..., bs be the binary representationlofBecause
we asked that the server commit bit-by-bit, we hé&¥e,), ..., C(as) andC(by), ..., C(bs).

2. LetC’() be a commitment scheme which allows one to commit to one of three villués«}. We
only require that it be easy to prove that two commitments are e@Jal.

Suppose that the firstmost significant bits of andb are equal. Then the server sends fresh commit-
ments to the bits of andb, except that for the firstbits of each he commits teinstead.

The problem of verifying thaé < b can now be reduced to one of local pattern checking. There are
four sequences of committed bits. It must be thatappear in the two last sequences only when the
bits of a, b are equal, and in all other positions the bits are copied faithfully. Moreover, it must be
that the first position where's do not appear hasg;, = 0 andb; = 1. This means we must cheek
patterns, each on four positions.

However, pattern checking can be done with a cut-and-choose protocol: the server commits to a
permutation of all the possible patterns which apply to a given subset of bits (in our setting, there are
always less than 20 patterns). Then he either opens all the patterns, or shows that one of them matches
the positions he is checking. Repéaimes for soundness errar*.

Achieving privacy for range queries. In order to achieve privacy for range queries, we build on the
protocol above for membership queries. For each point in the range of the query, the server gives a proof
of membership as above. For the two endpoints, the server gives an almost-complete proof of membership:
he gives a path to the unique leaf which contains that endpoint, but does not prove any relation between the
endpoint and the key at that leaf. Instead, he proves that the answers he has given cover the entire range:

1. The leaves in the range should be contiguous. This can be proven easily by growing,; for
adjacent leavek '

2. The endpoints should be proven correct. Suppose the query intefwabjisLet ! be the leaf corre-
sponding to the left endpoint Let!’ be the leaf corresponding to the leftmost point in the range. The
left endpoint is correct if either

%This can be implemented by having each commitment be a pair of bit commitments, where a commitbpgnieioresents
the bit3 and a commitment td, 3 always represents

23

e q; = ay anda; < a < key;, or
o by =ay andkeyl <a<l

This can be proven by a cut-and-choose as before.
The proof of correctness of the right endpoint is similar.

Note that one can save some of the complexity of the membership proofs by running all the proofs that
the various paths are in the hash tree together (see below).

5.4.1 Complexity of the Proofs

The communication complexity of the proof of membership can be seen by inspectioto beé- s - k?),
wheret is the number of queries so fakjs the depth of the hash tree (og V), s is the bound on the length
of the keys, and is the security parameter.

As for range queries, the complexity of the proofs can be n@uﬂeﬁ +m)-d-s- k2), wheret is the
number of queries so far and is the total number of points returned from all queries so far. Note: The
protocols of Micali et al.[[20] fomembershigueries are more efficient than the protocol above. However,
their techniques do not generalize to range queries.

Round complexity Asin the discussion of explicit-hash Merkle trees, we can obtéimess-indistinguishability
with a 3-round, public coin protocotero-knowledgéy increasing the complexity to 5 rounds, and we can
remove all interactivity if we assume the existence of a random oracle.

Acknowledgements

We are grateful to Leo Reyzin, Silvio Micali and Joe Kilian for discussions clarifying the related work.

References

[1] B. Barak and O. Goldreich. Universal Arguments.Hroc. Complexity (CCC) 2002
[2] J. L. Bentley. Multidimensional divide-and-conqu€omm. ACM23:214-229, 1980.

[3] R. Canetti, D. Micciancio and O. Reingold. Perfectly One-Way Probabilistic Hash FunctioB$Q€ 1998pp.
131-140.

[4] A Buldas, P. Laud and H. Lipmaa. Eliminating Counterevidence with Applications to Accountable Certificate
Management]. Computer Securify2002. (Originally inCCS 2000

[5] A. Buldas, M. Roos, J. Willemson. Undeniable Replies to Database Querie&I$ 2002

[6] I.B. Damgard, T. P. Pedersen, and B. Pfitzmann. On the existence of statistically hiding bit commitment schemes
and fail-stop signatures. BRYPTO '93pp. 22-26.

[7] A. De Santis and G. Persiano Zero-Knowledge Proofs of Knowledge Without Interaction (Extended Abstract).
In Proc. of FOCS 1992pp. 427-436.

[8] P. Devanbu, M. Gertz, C. Martel, S. Stubblebine. Authentic Third-party Data Publicati@B$ec 2000.p.
101-112.

24

[9] Y. Dodis and J. Hea An. Concealment and Its Applications to Authenticated EncryptiBlROCRYPT 20Q3

[10]
[11]
[12]
[13]

[14]

May 2003.

O. Goldreich. Foundations of Cryptography, Vol. 1. Cambridge University Press, 2001.

S. Goldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir Paradii®Q62003.

J. Goodman and J. O’'Rourke, editokandbook of Discrete and Computational Geome@{RC Press, 1997.

M. T. Goodrich, R. Tamassia, N. Triandopoulos and R. Cohen. Authenticated Data Structures for Graph and
Geometric Searching. IRroc. RSA Conference, Cryptographers’ Tra2R03.

S. Halevi and S. Micali. Practical and provably-secure commitment schemes from collision-free hashing. In
CRYPTO '96p. 201-215.

[15] A. Healy, A. Lysyanskaya, T. Malkin, L. Reyzin. Zero-Knowledge Sets from General Assumptions. Manuscript,

[16]
[17]
[18]
[19]

[20]
[21]
[22]

(23]
[24]
[25]

[26]

[27]

March 2004.

J. Kilian. A note on efficient zero-knowledge proofs and argument24th STOC1992.

J. Kilian. Efficiently committing to databases. Technical report, NEC Research, 1998.

P. Maniatis and M. Baker. Authenticated Append-only Skip Lists. ArXiv e-print ¢s.CR/0302010, February, 2003.

C. Martel, G. Nuckolls, M. Gertz, P. Devanbu, A. Kwong, S. Stubblebine. A General Model for Authentic Data
Publication. Manuscript, 2003. http://www.cs.ucdavis.edu/"devanbu/files/model-paper.pdf.

S. Micali, M. Rabin and J. Kilian. Zero-Knowledge SetsHroc. FOCS 2003
S. Micali. Computationally Sound ProofSIAM J. Computing30(4):1253-1298, 2000.

S. Micali and M. Rabin. Accessing personal data while preserving privacy. Talk announcement (1997), and
personal communication with M. Rabin (1999).

D. Micciancio. Oblivious data structures: applications to cryptographirée. STOC 1997
R. Merkle A digital signature based on a conventional encryption functioBRWPTO '87 pp. 369-378, 1988.

M. Naor and K. Nissim. Certificate Revocation and Certificate Updat@thnUSENIX Security Symposium
1998.

M. Naor, M. Yung. Universal One-Way Hash Functions and their Cryptographic Applicatio?i.sinSTOC
1989.

R. Ostrovsky, C. Rackoff, A. Smith. Efficient Consistency Proofs on a Committed Database MIT LCS Technical
Report TR-887. Feb 2003. See http://www.lcs.mit.edu/publications

[28] T.P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sha@iRY.RiTO '91

25

	Introduction
	Related Work
	Our Contributions

	Definitions
	Consistent Query Protocols
	Privacy

	Data-Robust Algorithms and Consistent Query Protocols
	Data-Robust Algorithms
	Constructing Consistent Query Protocols From dras
	Pointer-Based Algorithms
	Proof of Theorem 1

	Orthogonal Range Queries
	A Data-Robust Algorithm for Range Queries
	One-Dimensional Range Trees
	Two-Dimensional Range Trees

	Efficient Query Protocol

	Privacy for Consistent Query Protocols
	Privacy Via Generic Techniques
	Explicit-Hash Merkle Trees in Brief
	Explicit-Hash Merkle Trees in Detail
	Complexity of the Proofs

	Efficient Privacy for Range Queries---Proof of Theorem 8
	Complexity of the Proofs

	References

