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Abstract. We study the two-party commitment problem, where two
players have secret values they wish to commit to each other. Traditional
commitment schemes cannot be used here because they do not guaran-
tee independence of the committed values. We present three increasingly
strong definitions of independence in this setting and give practical proto-
cols for each. Our work is related to work in non-malleable cryptography.
However, the two-party commitment problem can be solved much more
efficiently than by using non-malleability techniques.

1 Introduction

We consider the scenario in which two players have some private values in mind,
and want to commit these values to one another. In these circumstances, simply
using commitment schemes on each side does not provide sufficient security.
While this approach guarantees that the two commitments will each be hiding
and binding, it does not guarantee their independence.

For example, if Alice is selling something to Bob, and commits to a (her
lowest price) by publishing c(a), then Bob can commit to a as his highest bid
(without knowing the value), by copying c(a). Thus, Bob will force Alice to
always sell at her lowest price. Though this is an obvious and easily preventable
attack, more sophisticated ones exist. For example, if the commitment scheme
being used is that of Pedersen [Ped91], Bob could, without risking detection,
copy (or indeed add an arbitrary constant to) Alice’s value.

Independence of committed values is quite fundamental to secure two-party
protocols. Indeed, in any protocol to which both parties have inputs which they
are unwilling to reveal at the outset, the inputs must be committed (so that the
parties cannot change their minds later) and independent (so that each party’s
influence of the outcome is limited to the choice of its own input).

The two-party commitment problem. In our setting, Alice and Bob have
secret values a and b, respectively. They want to commit their values to each
other. Informally, we want the following security properties to hold:



– Hiding: A dishonest party cannot discover the honest party’s value.
– Binding: A dishonest party cannot open his or her commitment in more than

one way.
– Non-correlation: A dishonest party cannot commit to a value that is in some

significant way correlated to the honest party’s value.

We formalize the last property in three increasingly stronger definitions.

– Mutually independent announcement: Non-correlation is guaranteed given
that the parties open their commitments.

– Mutually independent commitment: Non-correlation is guaranteed once the
commitments are exchanged and accepted.

– Mutually independent and aware commitment: Each party is guaranteed to
know his or her own value once the commitments are exchanged and ac-
cepted. This property, combined with the hiding property of the commit-
ment, actually guarantees non-correlation.

We also give practical protocols that satisfy these definitions. Specifically, we
give a two-round1 mutually independent announcement protocol based on the
existence of one-way permutations. We give two mutually independent commit-
ment protocols: a two-round protocol based on the assumption that subexpo-
nentially hard one-way permutations exist, and a three-round protocol based on
the assumption that dense cryptosystems exist. Finally, we give a seven-round
mutually independent and aware commitment protocol based on the discrete log-
arithm assumption. With the exception of an eleven-round mutually independent
and aware protocol we present to elucidate the definitions, all the protocols we
present are efficient enough to be useful in practice.

1.1 Mutual Independence Versus Other Notions

Mutually independent commitments provide a new approach to an important
cryptographic problem: how ensure that secret and committed values are inde-
pendent. This problem has been addressed before in other settings.

Independence in the Multi-party Setting. In protocols involving more
than two parties, it has long been recognized that independence of committed
values is fundamental to the very notion of security: a player who can correlate
his input to those of other players (without necessarilly knowing them) may
be able to change the outcome of the protocol in his favor. In that setting,
the problem of independence was introduced by Chor, Goldwasser, Micali and
Awerbuch [CGMA85], who solved it using verifiable secret-sharing protocols.
1 The round complexity we refer to is the number of rounds required for the commit

stage of the protocols. All the protocols we present have one-round reveal stages,
except the mutually independent announcement protocol, which has a two-round
reveal stage.



Subsequent impovements to their solution were made by Chor and Rabin [CR87]
and by Gennaro [Gen95].

Our two-party setting, while similar to the multi-party setting at first glance,
is actually quite different: the multi-party protocols assume that a majority of
players are honest. This allows “committed information” to actually be dis-
tributed among multiple players. Because we have only two players, we cannot
assume an honest majority without trivializing the problem. Thus, each player
in our setting will have all the committed information from the other player.

Non-malleability of Commitment Schemes. It has also long been recog-
nized that the hiding property of a commitment scheme (carried out between two
parties, a sender and a receiver) does not prevent an adversary from committing
to a value related to someone else’s commitment. In the two-party commitment
setting, the notion of non-malleability was introduced to address this problem.

Defined by Dolev, Dwork and Naor [DDN00], non-malleability for commit-
ment schemes captures the following intuitive notion: if Alice commits a value to
Bob, and Bob commits a value to Charlie (using the same commitment scheme),
then Bob’s committed value should be independent of Alice’s. Thus, this is a
setting with two honest parties (Alice and Charlie) who are unaware of each
other, and one adversary (Bob). Because Alice and Charlie are unaware of each
other, Bob can arbitrarily vary the timing of the two interactions in which he is
involved. This, in particular, implies that Bob can always just copy Alice’s com-
mitted value by simply being a “transparent intermediary.” Copying committed
values is, in fact, explicitly permitted in the definiton of [DDN00].

In our setting there are three crucial differences. First, Alice and Charlie are,
in a sense, the same person. (This, in particular, prevents Bob from arbitrarily
scheduling the exections of the two commitment protocols and thus copying the
committed value.) Second, we are not restricted to using the same commitment
scheme for the two commitments. Finally, either party in our setting can be the
adversary, and independence needs to be ensured both ways.

While, as we describe in the next section, non-malleable commitment schemes
may be used to provide mutually independent commitments, the mutually inde-
pendent commitment problem can be solved more efficiently in other ways.

1.2 Relevance of Prior Solutions

As we pointed out above, solutions in the multiparty setting seem inapplicable to
our setting, because they assume an honest majority of players. Non-malleable
commitments, on the other hand, can address our problem.

In fact, any commitment protocol non-malleable with respect to commitment
(i.e., in which non-malleability is assured even if the adversary never sees Alice’s
decommitted value) can be used to provide mutually independent commitments:
simply run two copies of the protocol in parallel, one from Alice to Bob and the
other from Bob to Alice. Either party can detect if the other is copying the



transcript, and thus prevent it from copying the commitment2. However, only
one non-malleable commitment protocol is known that does not require extra
set-up assumptions: the one of [DDN00]. It is quite impractical, requiring a non-
constant number of rounds (it will, however, achieve mutually independent and
aware commitments in our setting). In contrast, we present simple constant-
round protocols that solve the problem.

A number of much simpler non-malleable commitment schemes (con-
structed using either non-malleable encryption [DDN00,CS98,Sah99] or directly
[DIO98,FF00,DKOS01,CF01]) are known, all requiring trusted public file to be
set up ahead of time. Because we are interested in a two-party scenario, we are
unwilling to assume the existence of trusted public parameters.

Moreover, some of the above commitment schemes [DIO98,FF00,DKOS01]
achieve only a weaker security notion called non-malleability with respect to
opening. That is, it may be possible for Bob to commit to a value related to Al-
ice’s, but he won’t know how to open it. Using such a protocol in our setting will
achieve mutually independent announcement, but not necessarily commitment
(in particular, some of the schemes are perfectly hiding, and then it is unclear
how the committed value can be defined prior to opening).

1.3 Applicability of Mutually Independent Commitments

The protocols we present are for the two-party model. We intend our notions to
be useful as essential building blocks in secure two-party computation protocols.

As we have discussed, the question of mutual independence also naturally
arises in the multi-party setting, and has been previously studied. By focusing
on the two-party case exlusively, we obtain protocols that are more efficient
and conceptually simpler. Applicability of our techniques in other settings is a
subject of further study.

2 Definitions

2.1 Notation

Negligible functions. The expression negl(k) is used to denote any function
f that is negligible in k; that is, for any positive polynomial q, f(k) = o(1/q(k)).

Probability .3 If S is a probability space, then “x ← S” denotes assigning
to x an element randomly selected according to S. If F is a finite set, then the
notation “x← F” denotes the algorithm that chooses x uniformly from F .
2 The original definition of [DDN00] did not prevent Bob from copying the committed

value while not copying the transcript. However, any non-malleable commitment
scheme can be modified to preclude this possibilty [KOS], thus leaving Bob only one
way to copy the commitment: by copying the transcript exactly.

3 This notation closely follows that of [BDMP91] and [GMR88].



If p is a predicate, the notation Pr[x ← S; y ← T ; · · · : p(x, y, · · · )] denotes
the probability that p(x, y, · · · ) will be true after the ordered execution of the
algorithms x← S; y ← T ; · · · . The notation [x← S; y ← T ; · · · : (x, y, · · · )] de-
notes the probability space over {(x, y, · · · )} generated by the ordered execution
of the algorithms x← S, y ← T, · · · .

Protocols. The schemes discussed in this paper are protocols P = (A,B) run
between two parties, A and B. Both A and B are probabilistic polynomial-time
interactive Turing machines (ppITMs). Given (1) a security parameter 1k, which
is available to both parties; (2) inputs (a, b), where a is private to A and b is
private to B; and (3) random tapes (rA, rB), where rA is private to A and rB is
private to B, protocol P computes in a sequence of rounds, alternating between
A-rounds and B-rounds. In an A-round (respectively, B-round) only A (only B)
is active and sends a string that will become an available input to B (to A) in
the next B-round (A-round). We will divide P into two stages: the commit stage
PC = (AC , BC), and the reveal stage PR = (AR, BR) (state information for A
and B is saved between the stages). At the end of the commit stage, AC and BC
will each output “accept” or “reject.” At the end of the reveal stage, AR will
output the value β that B revealed to it, which is a string or a special symbol
“reject”, and BR will similarly output the value α. For notational convenience,
we will assume that if the output of the commit stage is “reject,” then so is the
output of the reveal stage—i.e., if a party did not accept the commitment, it
will not accept its revealing, either. The terms “output of A” and “output of B”
shall mean “output of AR” and “output of BR.”

We will also consider the situation in which one of the two parties is dishonest.
The dishonest party, denoted by A′ or B′, is also a ppITM. A dishonest party
can, of course, simply stop the protocol before the other party produces an
output. In such a case, for notational convenience, we will consider the honest
party’s output to be “reject.”

Transcripts, views, and outputs.
4 Letting E be an execution of a protocol

(A,B) on inputs (1k, a, b, rA, rB), we make the following definitions:

– The transcript of E consists of the sequence of messages exchanged by A and
B, and is denoted by TRANSA,B(1k, a, b, rA, rB) (for notational convenience,
we will include the outputs of A and B into the transcript);

– The view of A consists of the triplet (1k, a, rA, t), where t is E’s transcript,
and is denoted by VIEWA,B

A (1k, a, b, rA, rB);
– The output of A is denoted by OUTPA,PBA (a, b, rA, rB);
– The output and view of B are defined similarly and denoted by

VIEWA,B
B (a, b, rA, rB) and OUTPA,PBB (a, b, rA, rB);

– We use the symbol · in place of rA and rB in the above notation to denote
the distribution induced on the transcripts, views and outputs when rA or
rB is selected at random. Thus, for example, TRANSA,B(1k, a, b, ·, ·), is a

4 We borrow much of our protocol notation from [BMM99] and [GMR85].



probability space of transcripts, with probabilities induced by selecting rA
and rB at random and executing (A,B) on (1k, a, b, rA, rB).

The output of each party is, of course, computed based solely on that party’s
view. Therefore, we denote by OUTA(1k, a, rA, t) the output of A as computed
on the particular view (note that A is not assumed to be interacting with anyone
in this case). We use similar notation for the output of B.

Finally, we will denote the transcript for the commit stage by tC , the tran-
script for the reveal stage by tR, and the combined transcript by t = tC ◦ tR.

2.2 Mutually Independent Announcement

A protocol (A,B) is a mutually independent announcement if the following prop-
erties hold:

– A-completeness. If A and B are honest, then A can can commit and reveal
her value successfully:

∀a, b
Pr[α← OUTA,BB (1k, a, b, ·, ·) :

α = a] = 1− negl(k)

– A-soundness. This property prevents a dishonest B′ from influencing which
value A commits to. That is, if the honest A is interacting with a dishonest
B′C during the commit stage and outputs “accept,” then A would only reveal
a during the reveal stage, at least with an honest BR.

∀tC , tR, a, b, rA, rB ,
OUTAC (1k, a, rA, tC) = “accept” ∧
OUTBR(1k, b, rB , tC ◦ tR) = α⇒
α = a

– Computational A-hiding. No adversary B′, interacting only with AC , the
commit stage of A, can break the GM-security [GM84] of A’s commitments:

∀(a0, a1) ∀B′
Pr[v ← {0, 1};

z ← OUTAC ,B
′

B′ (av, (a0, a1), ·, ·) :
z = v] < 1/2 + negl(k)

– Perfect A-binding. If the commit stage BC of B outputs “accept,” then the
reveal stage BR will accept only one revealed value; moreover, this value
depends only on the transcript of the reveal stage, not on the private input
of B:

∀tC , b, b′, rB , r′B , tR, t′R, α, α′,
OUTBC (1k, b, rB , tC) = “accept” ∧
OUTBC (1k, b′, r′B , tC) = “accept” ∧
OUTBR(1k, b, rB , tC ◦ tR) = α ∧
OUTBR(1k, b′, r′B , tC ◦ t′R) = α′ ⇒
α = α′.



– A-non-correlation at opening. To define non-correlation at opening, we use
techniques similar to those used in defining commitment schemes that are
non-malleable with respect to opening ([DDN00,DIO98,FF00]). The defini-
tion essentially states that for any polynomial-time relation R, any adversary
B′ that engages in a protocol with A(1k, a, rA) and then opens his committed
value as β, has no more chance of achieving R(a, β) than a simulator who
does not engage in any interaction with A at all. Note, of course, that because
we are defining non-correlation at opening (rather than at commitment), B′

may already know a before revealing β, and thus may simply refuse to reveal
depending on a. If B′ refuses to reveal, A will output “reject.” There is no
getting around the fact that B′ can correlate “reject” to a. Thus, as for non-
malleability, we explicitly require that R(a,“reject”) = 0, so that forcing A
to reject is not considered correlating to a better than a simulator. We call
such polynomial-time relations allowable. Note that, unlike the definitions of
non-malleability, we do not require that the relation be non-reflexive—that
is, our definitions do not even allow B′ to copy the commitment of A.

∀B′ ∃S ∀ allowable R ∀ efficiently sampleable D
Pr[a← D;

β ← OUTA,B
′

A (1k, a,−, ·, ·):
R(a, β) = 1] <

Pr[a← D;
β ← S(1k,D) :
R(a, β) = 1] + negl(k)

– B-completeness, B-soundness, computational B-binding, perfect B-binding,
B-non-correlation at opening. Defined the same way as for the above, with
A and B reversed.

2.3 Mutually Independent Commitment

Mutually independent commitments are defined the same way as mutually in-
dependent announcements, except for the non-correlation property, which is de-
fined as follows.

– A-non-correlation at commitment. Because our commitments are perfectly
B-binding, at the end of the commit stage, there is at most one value β that
a (dishonest) B′ can reveal. Moreover, this value is determined uniquely by
the transcript tC of the commit stage, provided that A outputs “accept.”
Let UB(tC) be this value, or ⊥ if no such value exists or if A outputs “reject”
(recall that we included A’s output into the transcript, by definition). Note
that, by B-hiding, UB(tC) is not efficiently computable, at least when B
is honest. A-non-correlation at commitment requires that UB(tC) be not
correlated to a, for any polynomial-time relation R. Unlike the case for non-
correlation at opening, we do not require that R(a,⊥) = 0 —that is, B′

should not even be able to correlate to a the fact that no valid decommitment



exists. This stronger requirement is justified in this case, because B′ does
not get to see a before deciding whether a decommitment should exist.

∀B′ ∃S ∀ poly-time R ∀ efficiently samplable D
Pr[a← D;

tC ← TRANSAC ,B
′
C (1k, a,D, ·, ·) :

R(a, UB(tC)) = 1] <
Pr[a← D;

β ← S(1k,D) :
R(a, β) = 1] + negl(k)

– B-non-correlation at commitment. Defined similarly, with A and B reversed.

2.4 Mutually Independent and Aware Commitment

In addition to the properties of mutually independent commitments defined
above, we want to capture the strong notion that B, if he accepts the com-
mitment stage, is assured that A “knows” the value she committed to. We mean
“knowledge” in the sense of the existence of a knowledge extractor E, in the tra-
dition of the definitions of a proof of knowledge [TW87,FFS88]. Note, however,
that unlike proofs of knowledge, where an NP-witness y is being extracted for
a predetermined statement x, in our case, no predetermined statement exists.
What is being extracted—the commited-to value—is determined only by the
transcript tC of the commitment stage. Thus, our definition gives E the view of
the dishonest party (which includes the transcript of the conversation), and E
has to extract, given oracle access to the dishonest party, the committed value.

– A-awareness. Similarly to the definition ofA-non-correlation at commitment,
given a transcript tC of the commitment stage, let UA(tC) be the unique value
α that A′ can reveal, or ⊥ if no such value exists or if B output “reject” at
the end of the commitment stage. Because the view VA′C of A includes tC ,
we will use UA(VA′C ) to mean UA(tC).

∃E ∀b ∀A′

Pr[VA′C = VIEWA′C ,BC
A′C

(1k,−, a, ·, ·);
a← EA

′
(VA′C );

α = UA(VA′C ) :
a = α] > 1− negl(k)

– B-awareness. Defined similarly, with A and B reversed.

Note that A-awareness, combined with B-hiding, implies B-non-correlation at
commitment, because we can simply use E in place of the simulator S. Therefore,
aware commitments are automatically mutually independent.



3 Protocols

3.1 Mutually Independent Announcement

Theorem 1. If one-way permutations exist, then there exists a protocol for mu-
tually independent announcements with a two-round commit stage and a two-
round reveal stage5.

Proof sketch. The protocol is simplicity itself. Let c be a perfectly binding non-
interactive commitment scheme, which can be constructed based on any one-way
permutation [GL89]. The commit stage consists of two rounds:

1. Alice sends c(a) to Bob
2. Bob sends c(b) to Alice

The reveal stage likewise consists of two rounds:

1. Bob opens his commitment
2. Alice opens her commitment

The completeness, soundness, binding, and hiding properties are easy to see.
It is clear that A non-correlation at opening holds, since after step 1 of the
reveal stage, Bob still cannot understand Alice’s commitment, so if he could
correlate then he would break the hiding property of c. On the other hand,
B non-correlation at opening holds, since Alice commits first. Thus, her only
option is to refuse to open her commitment, which, be definition, can only hurt
her chances of being correllated. ut

It is worth noting that while non-malleable commitments “with respect to
opening” can be used for mutually independent announcement, the solution they
offer is far more complex than this. This elegantly illustrates the point that the
problem we solve requires less security than the problem that non-malleable
commitments solve.

3.2 Mutually Independent Commitment

All the remaining protocols we present have a one-round reveal stage under
the imperfect synchronization assumption. That is, each player sends only one
message in the reveal stage, and the order does not matter: we allow the honest
players to not wait to receive a message before sending one. Note that we do
not assume that the messages are actually sent simultaneously: dishonest players
can always wait for receipt of a message before sending theirs.
5 This protocol can be modified to be based only on one-way functions, but this

requires a 3-round commit stage: we simply use the construction of Naor [Nao91] to
make a commitment scheme based on one-way functions, which requires a round to
set up.



From this point on, when we refer to the number of rounds a protocol requires,
we mean only the rounds in the commitment stage.

We present two protocols for mutually independent commitment: a two-round
protocol based on the assumption that subexponentially hard one-way permu-
tations exist, and a three-round protocol based on the assumption that ‘dense’
cryptosystems exist.

Two Round Protocol. A subexponentially hard one-way permutation is one
for which there exists an ε > 0 such that the permutation remains one-way even
against adversaries that run in time 2n

ε

, where n is the security parameter. We
note that, based on the current state of the art in factoring and discrete loga-
rithm techniques, it is reasonable to assume that both RSA and exponentiation
in a large prime-order subgroup of Z∗p are subexponentially hard one-way per-
mutation with some ε ≤ 1/3 (because the best known attacks against them take
time 2O(n1/3(log n)2/3)).

Theorem 2. If subexponentially hard one-way permutations exist, then there
exists a two-round mutually independent commitment protocol.

Proof sketch. Let c be a subexponentially secure non-interactive commitment
scheme: i.e., one that is semantically secure against adversaries that run in time
2n

ε

for some ε > 0, where n is the security parameter (such a commitment
scheme can be constructed based on subexponentially hard one-way permuta-
tions). Assume that, for security parameter n, a commitment can be forced open
in time 2n

δ

, for some δ > 0 (this must be true for some δ, because one should
be able to simply enumerate all the possible decommitment strings).

Let k be the security parameter for our scheme, and K = k2δ/ε. The protocol
is, again, very simple:

1. Alice commits to a using c with security parameter K.
2. Bob commits to b using c with security parameter k,

In the reveal stage, Alice and Bob reveal their values. It is clear that this
scheme is complete, sound, hiding and binding. It is also clear that Alice cannot
correlate her value to Bob’s, since Alice is bound to her value before Bob commits
to his. On the other hand, if Bob could correlate his value to Alice’s, we could
force open his commitment in time 2k

δ

= 2K
ε/2, and then use b to break the

subexponentially strong semantic security of Alice’s commitment in time 2K
ε/2,

which is a contradiction, because Alice’s security parameter is K. ut

Three Round Protocol. This protocol assumes the existence of dense, per-
fectly faithful cryptosystems. Following [DP92], a δ-dense cryptosystem is de-
fined by modifying the definition of a secure cryptosystem [GM84] as follows:
first, we add the requirement that a public key generated by the key generation
algorithm is distributed uniformly over {0, 1}p(k), for some polynomial p in the



security parameter k; and second we require security for only a δ-fraction of
public keys. It was observed by [DDP00] that the assumption of the existence
of δ-dense cryptosystems, for a non-negligible δ, is equivalent to the existence of
(1−ε)-dense cryptosystems, for any negligible ε. We will actually need the latter.
They can be constructed based on the ElGamal cryptosystem, for example.

Theorem 3. If dense cryptosystems exist, then there exists a three-round mu-
tually independent commitment scheme.

Proof sketch. Let ε be a negligible function, and let (G,E,D) be a (1−ε)-dense
cryptosystem. Let p(k) be the length of the public key for a security parameter
k. Let c be a perfectly binding non-interactive commitment scheme. The commit
stage is as follows:

1. Alice generates a random p(k)-bit string, RA, and sends c(RA) to Bob.
2. Bob sends c(b) to Alice, and sends a random p(k) bit string RB to Alice.
3. Alice computes PK = RA ⊕ RB , C = E(PK, a), and sends PK, C to Bob.

Note that Alice does not open her commitment c(RA) at this step.

In the reveal stage, Bob opens his commitment to b, and Alice opens her
commitment to RA and reveals her value a and the random bits used to come
up with C. Bob checks if RA was revealed correctly, if PK indeed equals RA⊕RB ,
and if the random bits were correct. If any of these checks fail, Bob rejects.

Completeness, soundness, binding, and B-hiding are easy to prove. A-hiding
is proved as follows. Suppose B′ is able to break the semantic security of the
commitment of A. Then we will build a machine to break the semantic security
of the dense cryptosystem. The machine will be given, as input, a public key
PK and a ciphertext C. The machine will simulate A to B′: it will commit to
a random string RA in the first round, and receive c(b) and RB in the second
round. In the third round, it will ignore the first two rounds, and simply send
the PK and C that were input to it. Note that B′ should not be able to tell that
PK 6= RA ⊕RB—otherwise, it would be violating the hiding property of c(RA).
Therefore, B′ will “behave the same way” as with the true A, and thus would
break the semantic security of the ciphertext C.

A-non-correlation at commitment is simple to prove: B′ has no information
about a at the time it has to commit to b.

B-non-correlation at commitment is proved as follows. Suppose A′ can cor-
relate to b. Then we will build a machine M that breaks the hiding property
(semantic security) of c(RB), as follows. M receives a commitment c to some un-
known value b. It will generate a key pair (PK′,SK′) for the encryption scheme,
and run A′, simulating B to it by sending it c and a random string RB in
the second round. In the third round, A′ will send PK to M . M will compute
R = PK ⊕ RB (note that, if A′ computed PK faithfully, then R = RA), and
R′B = PK′⊕R. M will then rewind A′ to the end of the first round, run it again,
this time sending c and R′B to A′. If A′ again computes the public key faithfully,
then it will encrypt a with PK′, for which M knows the corresponding secret



key SK′. This will allow M to recover a, which is correlated to the unknown
committed value b, and thus will allow M to break the semantic security of c.

Of course, when M runs A′ in this manner and A′ does not compute the
public key faithfully, then M will fail. However, if A′ computes the public key
faithfully with only a negligible probability, then the commitment of A′ is invalid
with all but a negligible probability, so A′ is not correlating to b any better than
a simulator who just outputs ⊥ all the time. If, on the other hand, A′ computes
the public key faithfully with probability better than negligible, then M will
break the semantic security of c with probability better than negligible, as well.

ut

3.3 Mutually Independent and Aware Commitment

We present two protocols for mutually independent and aware commitment. The
first protocol, previously known in the folklore, uses non-interactive perfectly
binding commitments and general zero-knowledge arguments of knowledge (ar-
guments, as opposed to proofs, are sound only if the prover is computationally
bounded, which suffices for our case). Specifically, to minimize the number of
rounds, we use the 5-round protocol of [FS89], which is based on one-way per-
mutations.

This protocol is not practical, because it uses general zero-knowledge proofs
of NP statements. We present it here for didactic purposes: it clearly illustrates
the notion of mutually independent and aware commitments.

Theorem 4. If one-way permutations exist, then there exists an 11-round mu-
tually independent and aware commitment protocol.

Proof sketch. Let c be a commitment scheme.
The commit stage proceeds as follows:

1. Alice publishes a commitment c(a) to her value.
2. Bob publishes a commitment c(b) to his value.
3. Bob uses the [FS89] ZK argument of knowledge to prove to Alice that he

knows how to open his commitment.
4. Alice uses the [FS89] ZK argument of knowledge to prove to Bob that she

knows how to open her commitment.

This takes eleven rounds, since Bob can send c(b) and the first round of his
proof in the same message.

It is easy to show that this protocol is complete, binding, and sound. If it is
not (say) A-hiding, then whatever B′ breaks A-hiding can break the commitment
scheme, because the zero-knowledge argument of knowledge can be simulated.
Awareness follows simply by using the extractor for the proof of knowledge. ut

The second protocol is much more efficient than the first. It requires just
seven rounds, each of which takes only a few modular exponentiations. It re-
lies on the hardness of discrete logarithms. In its simplest version, it assumes



that there exists an easily indexable sequence of “safe” primes and generators
(p1, g1), (p2, g2), . . . , (pk, gk), . . . , one pair for every value of the security param-
eter k, such that pi = 2qi + 1 (where qi is a prime), gi is a generator of the
subgroup of order qi in Z∗pi , and discrete logarithm is hard in that subgroup.6

To simplify notation, we will assume the security parmater k is fixed, and will
simply use p, q, g in place of pk, qk, gk when describing our protocol.

With a loss of efficiency, our protocol can be modified to be based on general
assumptions rather than the hardness of discrete logarithms.

Theorem 5. Assuming the hardness of discrete logarithms, there exists a seven-
round mutually independent and aware commitment scheme.

Proof sketch. For clarity, we will present our protocol for commitments to
single-bit messages first, and then explain how it can modified for longer mes-
sages. Let H be a hardcore predicate for discrete log (in particular, [BM84] prove
that the sign of the exponent minus (p− 1)/2 is hardcore).

Let C denote a perfectly hiding trapdoor commitment scheme based on the
discrete logarithm assumption. To be specific, we use the scheme of Pedersen
[Ped91], in which one has two bases (generators), g and h = gα, and commits
to a value v by publishing gvhr, for a random r. The scheme is binding because
decommitting in two different ways allows one to find α. On the other hand, the
scheme is trapdoor because knowing α allows one to decommit to any v′.

The commit stage of our protocol proceeds as follows.

1. Alice randomly generates an element ga of order q and α ∈ Zq, and computes
ha = gαa . She sends (ga, ha) to Bob, to be used by him as bases for the
Pedersen commitment scheme.

2. (a) Bob likewise generates gb, β and hb, which he sends to Alice to be used
by her as bases for the Pedersen commitment scheme.

(b) Bob generates kb, k′b such that H(kb)⊕H(k′b) = b, and sends gkb and gk
′
b

to Alice.
(c) Bob generates a random rb ∈ Zq, computes grb , and then commits to

grb using Pedersen commitments with bases ga and ha. He sends the
resulting commitment Ca(grb) to Alice.

3. (a) Alice generates ka and k′a such that H(ka) ⊕ H(k′a) = a, and sends
gka , gk

′
a to Bob.

(b) Alice generates a random ra, and, just like Bob, commits to gra using
Pedersen commitments with bases gb and hb. She sends the resulting
commitment Cb(gra) to Bob.

(c) Alice generates and sends to Bob a random ca ∈ Zq.
4. (a) Bob generates and sends to Alice a random cb in Zq.

(b) Bob decommits grb from Ca(grb) and sends the decommitment to Alice.
6 This assumption can be relaxed by having the parties provide the parameters to

each other; moreover, we do not need primes of the form 2qi + 1; primes of the form
kiqi + 1, for sufficiently long prime qi, would suffice. For the sake of clarity, however,
we do not present our protocol that way.



(c) Bob computes db = cakb + rb, and sends db to Alice.
5. (a) Alice checks the decommitment of grb and verifies that gdb = (gkb)cagrb .

If the checks fail, she outputs “reject” and stops.
(b) Alice decommits gra from Cb(gra) and sends the decommitment to Bob.
(c) Alice computes da = cbka + ra, and sends da to Bob.
(d) Alice sends α to Bob.

6. (a) Bob checks the decommitment of gra and verifies that gda = (gka)cbgra .
If the checks fails, he outputs “reject” and stops.

(b) Bob also checks that gαa = ha. If not, he outputs “reject” and stops.
(c) Bob sends k′b and β to Alice.

7. (a) Alice checks that gβb = hb. If not, she outputs “reject” and stops.
(b) Alice checks k′b received from Bob against gk

′
b that was sent to her in

step 2. If they do not agree, she outputs “reject” and stops. Otherwise,
she outputs “accept.”

(c) Alice sends k′a to Bob.
8. Bob checks k′a against gk

′
a that was sent to him in Step 3. If the agree, he

outputs “accept.” Otherwise, he outputs “reject.”

In the reveal stage, Alice reveals ka and Bob reveals kb. The value a is then
calculated as H(ka)⊕H(k′a). b is calculated similarly.

Intuition. The following may help explain what is happening in this protocol
with respect to Alice’s commitment (Bob’s commitment is, of course, similar).
In step 3(a), Alice commits to her bit a by splitting it into two parts, ka and k′a.
In steps 3(b), 4(a) and 5(c), she proves knowledge of ka using a Schnorr [Sch89]
three-round proof of knowledge for discrete logarithms. The only difference from
the Schnorr proof is that the initial message of Alice’s proof of knowledge is
committed using the trapdoor commitment that Bob set up for Alice in step
2(a), and Alice reveals that message in step 5(b), at the end of the proof of
knowledge. Bob reveals the trapdoor for the commitment scheme in step 6(c).
Only after Alice gets the trapdoor does she reveal k′a in step 7(c).

The reason for not using Schnorr’s proof of knowledge directly is that it is
not known to be simulatable. However, if the simulator knows Bob’s trapdoor,
then we can simulate the proof. As we explain in detail below, Bob can refuse to
reveal the trapdoor, but then the simulator does not have to reveal k′a. (We note
that the idea of revealing the trapdoor to allow the simulation to go through has
been used before in a number of protocols, and seems to have first appeared in
[CDM00].)

Security. It should be clear that the protocol is complete, sound, and bind-
ing. Awareness is fairly easy to show: the extractor (say, for Bob) need only run
the protocol through where ca is sent by Alice, and repeatedly try substitut-
ing different challenges. If Bob ever answers two different challenges, kb can be
recovered. Then, since Bob reveals k′b in the protocol, b can be determined.

The hiding property is a little more difficult to demonstrate. Suppose there
is a B′ which can find A’s secret values. There are two cases.



case i: In this case, with a non-negligible probability, when Bob does not
give the correct β, he still can still distinguish whether A was committing to a 0
or a 1. In this case, we can break the hard-core predicate. Suppose we are given
z = gx and we are asked to find H(x) with good probability. Then we first of all
randomly choose ka and run the protocol as Alice faithfully, except that we give
z in place of gk

′
a . If Bob returns the correct β we output a coin flip. Otherwise,

we get Bob’s guess a and output a⊕H(k′a). Note that since we either output a
coin flip, or Bob doesn’t return the correct β, we never actually reach step 7, so
it doesn’t matter that we don’t know x.

case ii: In this case, when Bob does not give the correct β, he can only
distinguish with negligible probability. Thus, if Bob does give β correctly, he
must be able to distinguish. So, since he is able to distinguish with non-negligible
probability, he must give β with non-negligible probability. Thus, we run honestly
until Bob gives β. If it is incorrect, we output a coin flip. Otherwise, we rewind
and give z in place of gka and fake the proof of knowledge (which we can do
now that we have the trapdoor.) If Bob then completes the protocol, we take his
guess a and output a ⊕H(k′a). Otherwise, we output a coin flip. This will give
us an edge in guessing the most significant bit of the discrete logarithm of z.

Longer messages. In order to extend this protocol to longer messages, there
are two techniques. The first is the obvious one: run the protocol many times
in parallel (though we can collapse some rounds together: for instance, only one
pair ga, ha is needed). We can do better than this by relaxing our assumptions
and assuming that the discrete logarithm problem has more hardcore bits. That
is, if A’s secret is n bits long and Hn(x) returns n hardcore bits x, then we
simply modify the protocol so that Alice generates ka and k′a such that Hn(ka)⊕
Hn(k′a) = a. ut
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