Round-Efficient Multi-party Computation with a Dishonest Majority

Jonathan Katz, U. Maryland
Rafail Ostrovsky, Telcordia
Adam Smith, MIT

Longer version on http://theory.lcs.mit.edu/~asmith
Multi-party Computation [GMW87]

- Also called “Secure Function Evaluation”
- Network of n players
- Each has input x_i
- Want to compute $f(x_1, \ldots, x_n)$ for some known function f
- E.g. electronic voting
Multi-party Computation [GMW87]

Even if t out of n players try to cheat:

1. Cheaters learn nothing (except output)
2. Cheaters cannot affect output
Multi-party Computation [GMW87]

Even if t out of n players try to cheat:

1. Cheaters learn nothing (except output)
2. Cheaters cannot affect output except to force (unanimous) abort

Necessary when $t > n/2$

$f(x_1, \ldots, x_n)$
Round-efficient MPC tolerating any $t < n$

For any PPT $f()$, we get (abortable, unfair) MPC:

- In $O(\log n)$ rounds… with black-box simulation
- In $O(1)$ rounds… with non-black-box simulation

No assumption of Common Random String, but:

- Given CRS, MPC takes $O(1)$ rounds [BMR, CLOS]
- This talk: how to generate a CRS from scratch fast?
Review: **Standard Synchronous Model**

- Synchronous network of n players (= randomized TM’s)
- Authenticated, unblockable Broadcast Channel

- Adversary corrupts $t < n$ players
 - Malicious coordination of corrupted players
 - Choice of corruptions is **static** (= before start of protocol)
 - Messages may be rushed

- Computationally bounded adversary

 No initial common random string
Big Picture: Active Adversary

$t < n/2$

- $O(\text{depth})$ rounds, unconditional security, adaptive [GMW87, CDDHR99]
- $O(1)$ rounds, static [GMW87, BMR90]

$t \geq n/2$

- Robustness and fairness impossible [Cleve,GMW]

(Abortable)

- $O(n+k)$ rounds static (?) […,BG,GL]

- $O(\log n)$ static with black box simulation
- $O(1)$ static with non-black-box simulation
Rest of talk

- Reduction of MPC to “simulatable coin-flipping”

Two protocols

1. $O(\log n)$ round protocol (black box)
 based on Chor-Rabin proof scheduling

2. $O(1)$ round protocol (non-black-box)
 based on Barak’s non-malleable coin-flipping
Simulatable Coin-Flipping is Enough

- **Honest-but-Curious adversary:**
 \[\text{[BMR90]} \quad O(1) \text{ rounds for any } t < n \]

- **Intuition:** to go from **Honest-But-Curious** to **Active**, we want independence of zero-knowledge proofs [GMW]

- Possible in \(\Omega(n) \) rounds (sequential proofs)

- Possible in \(O(1) \) rounds [CLOS90]
 - Need a common random string

- To get CRS from scratch: **simulatable coin-flipping**
Simulatable Coin-Flipping I

∀ PPT adversaries A, ∃ PPT Sim_A:

$c' \in_R \{0,1\}^k \rightarrow Sim_A \rightarrow coins \rightarrow View_A$

• Indistinguishable from real execution
• $coins \in \{c', \perp\}$

Output k coin flips (or abort) so that:

1) Adversary can bias outcome only by sometimes aborting

2) Simulator can set outcome to any desired string
 (needed for composition theorems)
Simulatable Coin-Flipping II

∀ PPT adversaries \(A \), ∃ PPT \(Sim_A \):

\[
\begin{align*}
&c' \\ \in_R \{0,1\}^k
\end{align*}
\]

\(Sim_A \) → \(coins \)

\(View_A \)

- Indistinguishable from real execution
- \(coins \in \{c', \bot\} \)

Composition Lemma:

Simulatable coin-flipping + MPC protocol based on CRS

= Secure MPC protocol (from scratch)
Simulatable Coin-Flipping III

∀ PPT adversaries A, \exists PPT Sim_A:

- $c' \in \mathbb{R}\{0,1\}^k$
- Sim_A outputs $coins$
- $View_A$

- Indistinguishable from real execution
- $coins \in \{c', \perp\}$

Two protocols:

- Proof scheduling of Chor-Rabin: $O(\log n)$ rounds
- Non-malleability technique of Barak: $O(1)$ rounds
Simulatable CF: Protocol Outline [Lindell02]

<table>
<thead>
<tr>
<th align="left">I) For all i:</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">1. $P_i \leftrightarrow m_i = \text{Commit}(r_i)$</td>
</tr>
<tr>
<td align="left">2. P_i proves knowledge of r_i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th align="left">II) For all i:</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">3. $P_i \leftrightarrow r_i$ (no decommitment)</td>
</tr>
<tr>
<td align="left">4. P_i proves consistency with m_i</td>
</tr>
</tbody>
</table>

| III) Output coins | $r_1 \text{ XOR } r_2 \text{ XOR } \ldots \text{ XOR } r_n$ |

Proofs must overlap to get $o(n)$ rounds

Simulator must
- **Extract** from cheaters
- Lie about x_i (i.e. **falsify** proofs)
Problem: Malleability of Proofs

- When proofs overlap, bad things can happen:

 P_1 Proof of x_1 P_2 Proof of x_2 P_3

 - P_2 can choose x_2 to depend on x_1
 - Protocols often provably broken
 - Non-malleable Zero-Knowledge [DDN]:
 - Resists this attack
 - Huge round complexity*
Chor-Rabin Proof Scheduling

• For all i: P_i must prove some statement x_i in ZK
• $\log n$ phases, each with 2 blocks

• Each phase:
 Players either blue or red
• At phase t:
 $\text{Blue} = \{P_i \mid t$-th bit of i is 0$\}$
 $\text{Red} = \{P_i \mid t$-th bit of i is 1$\}$
• 1st block: Red prove to Blue
 2nd block: Blue prove to Red

At every point, each player is either prover or verifier
Chor-Rabin Proof Scheduling

• For all i: P_i must prove some statement x_i in ZK
• $\log n$ phases, each with 2 blocks

Each phase:
Players either blue or red

At phase t:
- Blue = $\{P_i \mid t$-th bit of i is 0$\}$
- Red = $\{P_i \mid t$-th bit of i is 1$\}$

• 1st block: Red prove to Blue
• 2nd block: Blue prove to Red

At every point, each player is either prover or verifier
Chor-Rabin Proof Scheduling

• For all i: P_i must prove some statement x_i in ZK

• $\log n$ phases, each with 2 blocks

• Each phase:
 Players either blue or red

• At phase t:
 $\text{Blue} = \{P_i | t$-th bit of i is 0$\}$
 $\text{Red} = \{P_i | t$-th bit of i is 1$\}$

• 1st block: Red prove to Blue
• 2nd block: Blue prove to Red

At every point, each player is either prover or verifier
Chor-Rabin Proof Scheduling

• For all i: P_i must prove some statement x_i in ZK

• $\log n$ phases, each with 2 blocks

• Each phase:
 Players either blue or red

• At phase t:
 \begin{align*}
 \text{Blue} &= \{ P_i \mid \text{t-th bit of i is 0} \} \\
 \text{Red} &= \{ P_i \mid \text{t-th bit of i is 1} \}
 \end{align*}

• 1st block: Red prove to Blue
• 2nd block: Blue prove to Red

At every point, each player is either prover or verifier
Chor-Rabin Scheduling: Analysis

• At every point, each player is either prover or verifier but never both

• For every pair i,j:
 Eventually P_i proves to P_j and P_j proves to P_i

• Simulator who controls a single honest player can
 – Falsify all proofs
 – Extract witnesses from all other players

• Sufficient for simulatable coin flipping (and MPC)
• (Not known if Chor-Rabin works directly in MPC)
Getting to Constant Rounds

- All pairs i, j of players run some pairwise coin flipping protocol π simultaneously
- Get $n(n-1)$ strings σ_{ij}
- Give proofs with respect to σ_{ij} in the global coin flip
- Need some kind of non-malleable coin flipping protocol
Non-Malleable Coin Flipping [Barak02]

• Two executions run concurrently
• Resists man-in-the-middle attack

Either $\rho = \sigma$ or ρ, σ independent

• Constant rounds
Parallel Non-Malleable Coin Flipping

- Two sets of n parallel protocols

- All σ_i independent, random

- For each i: either $\rho_i \in \{\sigma_1, \ldots, \sigma_n\}$ or ρ_i independent
The end

• Improved round complexity for dishonest majority
• Protocols still far from practical… how well can we do?
• Adaptive adversaries?
• $\log(n)$-round on black-box round complexity?
• What about composability?
 – Composability results useful even for “stand-alone” model and essential for practice
 – Concurrent composability: impossible [Lindell03]
 – Limited non-malleability?
Old slides graveyard
Review: Computational Power

Two main models:

• ‘Computational’ security
 – Adversary runs in polynomial time
 – Assume secure cryptographic primitives (e.g. signatures)

• ‘Statistical’ security
 – Adversary has unbounded computational power
 – Assume secure channels between honest player
Definition of Security [..., Canetti99]

Security: real protocol equivalent to ideal protocol with TP

\[\forall \text{PPT } A, \exists \text{PPT } S_A : \pi[A](1^k) \approx \pi'[S_A](1^k) \]
Ideal Protocol for function $f()$

1. $\forall i: P_i$ sends x_i to TP

2. TP computes $y = f(x_1, \ldots, x_n)$

3. TP broadcasts y

4. Honest players output y
Abortable Ideal Protocol for $f()$

1. $\forall i: P_i$ sends x_i to TP

2. TP computes $y = f(x_1, \ldots, x_n)$

3. TP sends y to A

4. A replies accept/reject

5. TP sends $y' = y$ (if accept) or $y' = \bot$ (if reject)

6. Honest players output y'

Protocol neither robust nor fair
Outline

• Passive adversaries: $O(1)$ rounds for any $t < n$

• Intuition: to go from passive to active, we want independence of zero-knowledge proofs

• Independence easy with Common Random String (NIZK)

• To generate a CRS: simulatable coin-flipping
 – Proof scheduling of Chor-Rabin: $O(\log n)$ rounds
 – Non-malleability technique of Barak: $O(1)$ rounds

• Open questions
Passive (honest-but-curious) adversaries

- All players follow protocol faithfully
- A tries to learn by looking at internal state of t parties (e.g. honest verifier ZK)
- [BMR90]: $O(1)$ rounds for any $t < n$ (static)
 All communication over broadcast channel
From passive to active adversaries [GMW]

General schema: real players P_i emulate passive players P_i'

1. $\forall i$: P_i commits to initial state of P_i': input x_i, coins r_i

2. P_i proves knowledge of (x_i, r_i)

3. Repeat:
 - P_i commits to new state of P_i'
 - P_i broadcasts messages sent by P_i' at this round.
 - P_i proves consistency of new state and messages with previous round.
From passive to active adversaries \cite{GMW}

Main challenge: independence in this emulation

- **Committed input values** should be independent
- **Proofs** should be independent. We want that
 - Simulator can prove false statements
 - Simultaneously extract witnesses from cheaters.

Rest of talk: how to guarantee independence
Why Coin Flipping is Enough

- Suppose all players see a common random string σ
- Divide σ into n pieces
- Player i gives commitments and proofs with respect to string σ_i
- Players’ proofs are mutually independent
- Simulator can prove false statements and simultaneously extract from malicious players.