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Abstract

This paper explores what kinds of information two parties must communicate in order to correct
errors which occur in a shared secret stringW . Any bits they communicate must leak a significant
amount of information aboutW — that is, from the adversary’s point of view, the entropy ofW will drop
significantly. Nevertheless, we construct schemes with which Alice and Bob can prevent an adversary
from learning anyusefulinformation aboutW . Specifically, if the entropy ofW is sufficiently high,
then there is no functionf(W ) which the adversary can learn from the error-correction information with
significant probability. This leads to several new results:

• Code obfuscation: An obfuscator for a functionalityg generates a scrambled circuit̃C which
allows one to evaluateg on any input, but leaks no additional information. Obfuscation of general
functionalities is impossible (Barak et al. [2]).

We show how to obfuscateproximity queries: we design a randomized functionObf(w) such that
for anyw, givenObf(w) one can verify if a candidate stringy is close tow, yet if an adversary’s
a priori probability of guessingw was low,Obf(W ) reveals no function ofw. This is the same as
constructing noise-tolerant “perfectly one-way” hash functions in the sense of Canetti et al [10].

The result does not contradict the impossibility results of Barak et al since the obfuscation guaran-
tee requiresw to have high entropy.

• Private “Fuzzy Extractors”: A fuzzy extractor (Dodis et al, [14]) takes a nonuniformly random,
error-prone inputW (e.g. a fingerprint or iris scan) and produces two outputs, a public stringP
and a keyR, with two guarantees:R is uniformly random givenP , and yet given bothP and any
stringY close toW , one can recoverR exactly. Our constructions yield fuzzy extractors with an
added privacy guarantee:P reveals no function of the original inputW . This means, for example,
that a sensitive sub-string ofW will not accidentally be revealed.

• Noise Tolerance and Key Re-Use in the Bounded Storage Model: We give a scheme for key
extraction in the bounded storage model with noise (Ding, [13]) which allows one to re-use the
same initial key to derive many different session keys based on long public random strings. This
answers the main open question from [13].

∗Some of the results of this paper appears in the second author’s Ph.D. thesis [41].
†New York University. Email:dodis@cs.nyu.edu
‡Weizmann Institute of Science. Email:adam.smith@weizmann.ac.il .



1 Introduction

This paper investigates what kind of information must be leaked to an eavesdropper when two cooperating
parties communicate in order to correct errors in a shared secret string.

w
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↓
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S(w)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Bob w−−−−−→

Suppose that Alice and Bob share ann-bit secret string. Alice’s copyw of the shared string is slightly
different from Bob’s copyw′. Alice would like to send a short messageS(w) to Bob which allows him to
correct the errors inw′ (and thus recoverw) wheneverw andw′ differ in at mostτ bits. The randomized
mapS() that Alice applies tow to get the message she sends to Bob is called anon-interactive information
reconciliation scheme, or simply asketch, correctingτ errors. A typical example of a sketch is

S(w) = synC(w),

wheresynC is the syndrome of a linear error-correcting codeC with block lengthn (see below for defini-
tions) [3]. If C has dimensionk, thensynC(w) is only n − k bits long. If the minimum distance ofC is at
least2τ + 1, thensynC(w) allows Bob to correct anyτ errors inw′. Moreover, the process is efficient if the
code can correctτ errors in polynomial time.

Enter Eve, who is tapping the line and trying to learn as much as possible. From her point of view, Alice
and Bob hold a pair of random variablesW,W ′. Suppose that Alice and Bob do not share any secrets except
this pair.1 What kind of guarantees can Alice and Bob obtain on what Eve learns from seeingS(W )? This
abstract game — and partial answers to this question — have been applied in several contexts, most notably
in generating keys from long, noisy public strings and biometric authentication (see references below).

Standard notions of security do not fit here. The statement “S(W ) leaks no information aboutW ” is
normally formalized by requiring thatW andS(W ) be almost statistically independent or, equivalently,
that the Shannon mutual informationI(W ;S(W )) be very small. Such a strong requirement is impossible
to achieve in our setting: a coding argument shows that the mutual information must be large (much larger
thanτ ) in general [7]. Even the analogue requirement for computationally bounded adversaries,semantic
security[17], is impossible here: if Eve knows thatW is one of two stringsw1, w2 which differ in only a
few bits, then she can use whatever algorithm Bob would have run to computewi from S(wi) andw1.

The difficulty, then, is that the standard definitions of security require secrecy even when Eve knows
a lot aboutW . We show that when this requirement is relaxed (that is, when Eve is sufficiently uncertain
aboutW ), a strong secrecy guarantee can be be provided.

A more suitable definition for our setting isentropic security[10, 37]. If W,Y are (correlated) random
variables,Y hides all functions ofW if for every functionf , it is nearly as hard to predictf(W ) givenY as
it is withoutY , regardless of the adversary’s computing power. A randomized mapS() is calledentropically
secureif S() hides all functions ofW whenever the min-entropy2 of W is above a certain threshold. This
definition of security has already produced surprising results in two contexts. Canetti, Micciancio and
Reingold [9, 10] constructed hash functions whose outputs leak no partial information about the input.
Russell and Wang [37] gave entropically-secure symmetric encryption schemes with keys much shorter
than the length of the input, thus circumventing Shannon’s famous lower bound on key length.

This paper introduces a third, very different application of entropic security: we construct secure sketches
that are (a) efficiently decodable (that is, Bob’s recovery algorithm is polynomial-time) and (b) entropically
secure. In particular, for any entropy boundt which is linear inn, we obtain sketches which can efficiently
decode a constant fraction of errors and have leakage exponentially small inn. The core of our construction
is a family of strongrandomness extractorswith an additional property: given the output of the extractor

1This rules out trivial solutions, such as Alice sending the encryption ofW with Bob’s public key.
2Min-entropy measures the difficulty of guessingW a priori: H∞(W ) = − log(maxw Pr[W = w]).
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and a string which is close to the source, one can efficiently recover the source exactly. We construct these
extractors based on small random families of algebraic-geometric codes.

We apply our constructions to private storage of keys derived from biometric measurements, obfuscation
of proximity queries, and key re-use in the bounded storage model. Perhaps the most surprising of these
applications is to obfuscation: previous positive results for obfuscation were for “point functions,” which
are easy to obfuscate in the random oracle model [10, 27]. In contrast, it is not known how random oracles
can help obfuscation of proximity queries.

The Relation to Entropy Loss The task of correcting errors in a joint string is usually calledinformation
reconciliation[3, 7, 8, 25, 13], fuzzy cryptography([21], see [41] for a survey), ordocument exchange(in
communication complexity, e.g. [11]). In contrast to this paper, previous work focused only on maximizing
the length of a cryptographic key which can be derived fromW once the errors inW ′ have been corrected.
Because of that, they are only interested in bounding the drop in the entropy ofW from Eve’s point of view
when she sees the communication between Alice and Bob.

The security guarantee we provide is strictly stronger than in previous work. Entropic security implies
a lower bound on the min-entropy ofW given the sketchS(W ). Min-entropy is a lower bound on all the
measures of entropy used in the literature, and so entropic security implies an upper bound on entropy loss.
The converse implication is not true: simply bounding the entropy loss does not prevent Eve from learning
some particular function ofW with probability 1 (for example, the syndrome construction above always
reveals a particular, fixed set of linear combinations of the bits ofW ). This can be a problem for several
reasons. First,W itself may be sensitive (say, if it is a biometric used for authentication [21, 22, 14]), in
which caseS(W ) might reveal sensitive information, such as a person’s age. Second, when we use the
error-correction protocol as a piece of a larger framework, entropy loss may not be a sufficient guarantee
of secrecy; we will see an example of this in key agreement protocols which are secure against memory-
bounded adversaries [13].

For completeness, we state the min-entropy loss of our constructions explicitly, since it is typically much
lower than the bound implied by entropic security.

Notation and Definitions We denote the output of a randomized algorithm on inputx and random coins
r by Y (x; r). We use the shorthandY (x) for (random) output when the stringr is chosen uniformly at
random.

Thestatistical differencebetween two probability distributionsA andB on the same space isSD (A,B) def=
1
2

∑
v

∣∣Pr[A = v]− Pr[B = v]
∣∣ (that is, half theL1 distance between the probability mass functions).

The main measure of entropy we use ismin-entropy, which measures the difficulty of guessing a random
variableA a-priori: the best predictor succeeds with probabilityp∗ = maxa Pr[A = a], and the min-entropy
is H∞(A) = − log(p∗) (all logarithms are base 2 by default).A is called at-source ifH∞(A) ≥ t. The
conditional min-entropy ofA given B is H̃∞(A | B) def= − log(Eb←B

[
2−H∞(A|B=b)

]
). (This definition

is not standard but very convenient.) We will use two properties: (1) ifB ∈ {0, 1}` thenH̃∞(A | B) ≤
H∞(A) − ` and (2) for anyA,B, the eventH∞(A | B = b) ≥ H̃∞(A | B) − log

(
1
ε

)
occurs with

probability at least1− ε overb← B.
We now turn to defining secure sketches and entropic security. Following [14], we incorporate entropy

loss into the definition of a secure sketch; we state the definition of entropic security separately.

Definition 1 ([14]). A (t, t′, τ)-secure sketchis a pair of (possibly) randomized mapsS : {0, 1}n → {0, 1}∗
andRec : {0, 1}∗ → {0, 1}n such that:

– For all pairs of stringsw,w′ of distance at mostτ , we haveRec(w′, S(w)) = w with prob. 1.3

3We consider this “worst-case” error model for simplicity. The discussion extends naturally to random errors, although some
care must be taken: the results change depending on whether the adversary choosesw′ before or after seeingS(w). The issue is
discussed partially in [41].
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– For all t-sourcesW , we haveH̃∞(W | S(W )) ≥ t′.

Theentropy lossof a sketch is the differencet− t′.
The sketch isefficient if S andRec run in time poly(n).

Definition 2 ([10, 37, 15]). The probabilistic mapY () hides all functions ofW with leakageε if for every
adversaryA, there exists an adversaryA′ such that for all functionsf : {0, 1}∗ → {0, 1}∗,∣∣Pr[A(Y (W )) = f(W )]− Pr[A′() = f(W )]

∣∣ ≤ ε.

The mapY () is called(t, ε)-entropically secure ifY () hides all functions ofW , for all t-sourcesW .

1.1 Our Contributions

As stated earlier, our main result is the construction of entropically secure sketches.

Theorem 1. There exist efficient(t, t′, τ)-secure sketches for inputs in{0, 1}n which are also(t, ε)-entropically
secure, such that (for infinitely manyn)

– the tolerated errorτ and the residual entropyt′ are linear inn, and

– the information leakageε is exponentially small inn

whenever the original min-entropyt is linear in n. (That is, whenevert = Ω(n) then we can find schemes
whereτ , t′ andlog

(
1
ε

)
areΩ(n)).

Before proceeding, a word about parameters: the original entropyt of the inputW is given by the
context in whichW arises. The error toleranceτ will also typically be specified externally—it is the amount
of noise to whichW will likely be subject. Thus, the goal is to get both the (entropic) securitylog

(
1
ε

)
and

the residual min-entropyt′ as high as possible. The quantitylog
(

1
ε

)
measures the difficulty of learning some

function ofW , while t′ measures the difficulty of guessingW exactly. In particular,t′ is bounded below by
log
(

1
ε

)
(roughly), since by the definition of entropic security the adversary’s probability of predicting the

identity functionf(W ) = W is at mostε + 2−t ≈ ε. Thus, it is sufficient to look for sketches will tolerate
τ errors and are(t, ε)-entropically secure forτ, log

(
1
ε

)
= Ω(n). Theorem1 states that such secure sketches

do indeed exist.

The Relation to Randomness Extraction The starting point of the constructions is a result from earlier
work stating thatrandomness extractors[33] are entropically secure, that is the output hides all functions of
the source. We say a (randomized) mapY () is (t, ε)-indistinguishable if for all pairs oft-sourcesW1, W2,
the distributionsY (W1) andY (W2) areε-close. (Y () is a randomness extractor in the special case where
the output distribution is always close to uniform.) We will use the following result several times:

Fact 2 ([15], Thm 2.1). If Y () is (t, ε)-entropically secure, then it is(t − 1, 4ε)-indistinguishable. Con-
versely, ifY () is (t, ε)-indistinguishable, then it is(t + 2, 8ε)-entropically secure.

The second implication is the more interesting of the two. In particular, our main result is really a
construction of randomness extractors whose output can be used to correct errors in the input. They are
strongrandomness extractors in the sense of Nisan and Zuckerman [33]: all the random coins used by by
the extractor (the “seed”) appear explicitly in the output. We will use the strong extractor property in the
bounded storage model application. The construction is based on a random family of binary images of an
algebraic-geometric code. It is explained in Section2. We rephrase Theorem1 in terms of extractors here:

Theorem 3. For any constant entropy ratet/n, there is an explicitly constructible of ensemble of strong
(t, ε)-extractorsExt : {0, 1}n × {0, 1}d → {0, 1}` × {0, 1}d with seed lengthd = n such that (1)Ext
extracts a linear amount of entropy from the input with exponentially small error and (2)Ext() corrects a
linear numberτ of errors in the source. That is, there is a polynomial time algorithmRec such that for any
stringsw,w′ at distance at mostτ , Rec(w′,Ext(w;R)) = w with probability 1.

3



Applications We present three new applications of this result:

• Key Re-Use in the Bounded Storage ModelThis is perhaps the least expected application of our tech-
nique, resolving the main open question left by Ding [13]. Namely, Ding considered the question
of error correcting in the bounded storage model [29] which received a lot of attention recently (see
[13, 44, 26] and references therein). The attractive feature of this model comes from the fact that is
provides so called “everlasting” security of the derived keys (assuming the adversary has bounded
storage capabilities at the time of transmission of a huge random string). Another nice feature of the
recent constructions is the fact that the same long-term key can be used many times for subsequent
session key derivations. This feature is called key reuse. On the other hand, one of the aspects lim-
iting the usability of the current solutions comes from the fact that Alice and Bob must be error-free
when receiving the satellite data. Ding [13] elegantly extended the bounded storage model to achieve
error correction, but at the expense of considerably weakening the key reuse property: the parties
must synchronously and periodically update their long-term secret keys. We resolve this open prob-
lem by showing that nearly optimal error-correctioncan be achieved without sacrificing the key reuse
property.

• Obfuscation and Perfectly One-Way Functions. While general program obfuscation is impossible
[2], obfuscation might be possible for specific functionalities. Indeed, Lynn, Prabhakaran and Sahai
[27] formally showed that one can obfuscate equality queries in the random oracle model relative to
some secretw, while the results of Canetti et al. [9, 10] on perfect one-way hash functions could be
interpreted as obfuscating equality queries in the standard model, providedw has high min-entropy.
While equality queries are very natural for password authentication applications, for more general
biometric applications it is more natural to consider more general proximity queries, where inputsw′

sufficiently close tow should also be accepted. This was explicitly mentioned as an open problem in
[27], who noticed that random oracles do not appear to be of much help for correcting unknown errors.
We settle this problem in the affirmative in the standard model, but assuming thatw has high entropy
(which is the model of [10]). Alternatively, this gives the error-tolerant construction of perfectly one-
way hash functions. Along the way, we also improve the noise-free construction of [10], roughly
halving the min-entropy requirement of their construction.

• Privacy for Biometric ApplicationsRecently, Dodis, Reyzin and Smith [14] introduced a general
framework for dealing with noisy and non-uniform biometric data, by defining two primitives termed
secure sketches and fuzzy extractors aimed to provide noise-tolerant password recovery and random-
ness extraction, respectively. In both cases the goal was achieved by publishing some public function
P = P (W ) which eliminated errors in subsequent imperfect readings of passwordW . However,
in all the constructions in [14] the public informationP actually leaked some (potentially sensitive)
information about the biometric inputW . Our results here are two-fold. On the one hand, we show
thatP mustindeed leak some non-trivial amount of Shannon information aboutW . This conclusion
is somewhat non-trivial for the case of fuzzy extractors, and critically uses the isoperimetric inequal-
ity. On the other hand and somewhat surprisingly, we construct secure sketches and fuzzy extractors
which leak no deterministic function (such as a sensitive substring) of the biometric inputW . This
once again shows that Shannon security is stronger than semantic security for high-entropy distribu-
tions — a conclusion recently derived in a very different context of symmetric encryption [37, 15].

This Abstract The bulk of this abstract describes the construction of secure sketches which leak no partial
information. Section3 describes the application to the bounded storage model. The applications to fuzzy
extractors and perfectly one-way hash functions are described in AppendixE and AppendixF, respectively.
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2 Sketches That Hide All Partial Information

This section describes the main technical construction of the paper (Theorem1). Our discussion refers often
to the “code-offset” construction [3, 21]: if we view an error-correcting code as a functionC : {0, 1}k →
{0, 1}n with minimum distanced, the randomized map

S(w;R) = w ⊕ C(R) (1)

has entropy losst − t′ = n − k (for any value oft) [14]. It can correctτ = b(d− 1)/2c errors, and is
efficient if and only ifC has efficient encoding and error-correction algorithms. In the case of linear codes,
this construction reduces to the syndrome construction in the introduction, sincew ⊕ C(R) is a random
element of the coset{x ∈ {0, 1}n : synC(x) = synC(w)}).

2.1 General Approach: Codes with Small Bias

We now turn to our constructions. Our starting point is the following fact about “small-bias” subsets of
{0, 1}n (defined below). IfA is randomly drawn from a subset of sufficiently small “bias,” andB is any
random variable with sufficient min-entropy, thenA⊕B is close to uniform on{0, 1}n. This fact was used
to construct a nearly optimal entropically secure encryption scheme [37]. The intuition behind our approach,
then, is simple:

If C itself is a small-bias set, then the code-offset constructionS(W ) = W ⊕ C(R) always
yields distributions close to uniform, and henceS() is entropically secure.

The problem with this intuition is that explicit constructions of codes with small bias are not known (in
particular, such codes cannot be linear, and most explicitly constructible codes are linear).

We circumvent this difficulty and construct explicit,efficiententropically secure sketches. We show
that the code-offset construction can be made indistinguishable (even with linear codes) when the choice of
error-correcting code is randomized as opposed to always using the same fixed code.

Suppose that we have a family ofk-dimensional linear error-correcting codes{Ci}i∈I indexed by some
setI. Consider sketches of the form

S(w; i) = (i, synCi
(w)) , for i← I

or, equivalently, S(w; i, x) = (i, w ⊕ Ci(x)) , for i← I, x← {0, 1}k
(2)

Below, we establish a necessary condition on the code family for the construction to leak no partial
information about the inputw.

1. We define a notion of “bias” forfamiliesof codes, and show that a small-bias family of codes also leads
to an entropically-secure sketch. This allows us to work with linear codes.

2. To illustrate the framework, we show that random linear codes are optimal in terms of both error-
correction and entropic security (this corresponds to reproving the “left-over hash” lemma [20]).

3. We construct explicit, efficiently decodable, small-bias families of codes by considering a subset of binary
images of a fixed code over a large (but constant-size) alphabetGF (2e).

A number of interesting observations come out of our analysis. First of all, we derive a general sufficient
condition for a set oflinear functions to form a good randomness extractor; this may be of independent in-
terest. We also obtain new bounds on the average weight enumerators of “generalized” algebraic-geometric
codes.
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Bias and Secrecy Thebiasof a random variableA over{0, 1}n is a (weak) measure of “pseudo-randomness”:
it measures how closeA is to fooling all statistical tests that look only at the parity of a subset of bits. For-
mally, the bias ofA with respect to a non-zero vectorα is the distance between the dot product ofα andA
from a fair coin flip, that is

biasα(A) def= E
[
(−1)α�A

]
= 2Pr[α�A = 1]− 1

The random variableA has biasδ if |biasα(A)| < δ for all non-zero vectorsα ∈ {0, 1}n. The bias of a set
C is the bias of the uniform distribution over that set. It is known that the mapY (W ;A) = W ⊕ A is a
(t, ε)-extractor whenever the bias ofC is sufficiently small (δ ≤ ε2−(n−t−1)/2), e.g. [5].

We generalize this to a family of sets by requiring that on average, the square of the bias with respect to
everyα is low (at mostδ2):

Definition 3. A family of random variables (or sets){Ai}i∈I is δ-biased if, for allα 6= 0n,√
Ei←I [biasα(Ai)2] ≤ δ.

Note that this isnot equivalent, in general, to requiring that the expected bias be less thanδ. There are
two important special cases:

1. If C is aδ-biased set, then{C} is aδ-biased set family with a single member.

Constructing codes with good minimum distance and negligible bias seems difficult. Such codes do
exist: a completely random setC of 2k elements will have both (1) minimum distanced, wherek/n ≈
(1 − h2(d/n))/2 [28] and (2) bias approximately2−(k−log n)/2 [31]. However, these codes are neither
explicitly constructed nor efficiently decodable. This raises a natural question:

Does there exist an explicitly-constructible ensemble of good codes with small bias and poly-
time encoding and decoding algorithms (ideally, codes with linear rate and minimum distance,
and negligible bias)?

To the best of our knowledge, the problem remains open.

2. A family of linear codes{Ci}i∈I is δ-biasedif there is no word which is often in the dualC⊥i of a random
codeCi from the family. Specifically, the bias of a linear space with respect to a vectorα is always either
0 or 1:

biasα(Ci) =
{

0 if α 6∈ C⊥i
1 if α ∈ C⊥i

Hence a family of codes isδ-biased if and only ifPri←I [α ∈ C⊥i ] ≤ δ2, for everyα 6= 0n.

Note that for a family of linear codes to satisfy Definition3 the expected bias must be at mostδ2, while
for a single set the bias need only beδ.

The general lemma below will allow us to prove that the randomized code-offset construction is indistin-
guishable (and hence entropically-secure).

Lemma 4 (Small Bias Families Yield Extractors). Let{Ai}i∈I be aδ-biased family of random variables

over{0, 1}n, with δ ≤ ε · 2−
n−t−1

2 . For anyt-sourceB (independent ofAi) the pair(I, AI ⊕B) is ε-close
to uniform.

The proof of Lemma4 is in AppendixD.1. It is a generalization of the proof that random walks on the
hypercube converge quickly when the edge set is given by a small bias set. The basic idea is to bound the
Fourier coefficients (overZn

2 ) of the output distribution in order to show that it is close to uniform in the`2

norm.
In order to apply Lemma4 we will need a family of error-correcting codes with small bias. Our con-

struction is described in the next section, and summarized here:

6



Lemma 5 (Good Code Families Construction).For any constant0 < λ < 1, there exists an explicitly
constructible ensemble of code families whichefficiently correct τ = Ω(n) errors and have square bias
δ2 < 2−λn.

Proof of Theorem1 We can combine this lemma and Lemma4 to prove our main result, i.e. that that there
are efficient, entropically secure sketches (Theorem1). If t/n is constant, we can setλ = 1− t

2n . Picking a
sequence of code families as in Lemma5, we obtain a secure sketch scheme which correctsτ = Ω(n) errors
efficiently and is(t, ε)-entropically secure, whereε = δ · 2(n−t)/2+O(1). Sinceδ2 ≤ 2−λn, the leakageε is
exponentially small. 2

2.2 Small-Bias Families of Linear Codes: Constructions and Lower Bounds

Inefficient Construction: Random Linear Codes An easy observation is that the family ofall linear
codes of a particular dimensionk is has squared biasδ2 < 2−k, although the codes are not known to be
efficiently decodable. This bias is optimal. (The extractor one gets by plugging random linear codes into
Lemma4 is in fact the usual pairwise independent hashing construction [19]. See AppendixC.2 for a
discussion). Random linear codes also exhibit the best known tradeoff between rate and distance for binary
codes, as they lie near the Gilbert-Varshamov bound with high probability [28]. This gives us a point of
reference with which to measure other constructions.

Efficient Constructions via Random Binary Images The basic idea behind our construction is to start
from a single, fixed codeC ′ over a large (but constant) alphabet, and consider a family of binary codes
obtained by converting field elements to bit strings in different ways.

Let F = GF (q), whereq = 2e. Starting from a[n′, k′, d]q codeC ′ overF , we can construct a binary
code by taking thebinary imageof C ′, that is by writing down the codewords ofC ′ using some particular
e-bit binary representation for elements ofF . More formally, fix a basis of the fieldF over Z2, and let
bin(a) ∈ {0, 1}e be the binary representation of a field elementa in the basis (the exact choice of basis does
not matter). For a vectorα = (a1, ..., an′) ∈ Fn′ , let bin(α) be the concatenation(bin(a1), ..., bin(an′)).
Finally, letbin(C ′) denote the set of binary images of the codewords,bin(C ′) def= {bin(c) : c ∈ C ′}.

We can randomize the codeC ′ by

1. Permuting then′ coordinates ofFn′ ,

2. Multiplying each coordinate of the code by some random non-zero scalar inF , and

3. Taking the binary image of the result.4

These operations affect neither the dimension nor the decodability ofC ′: they are invertible and preserve
Hamming distances inFn′ . Describing the particular operations that were applied to the code requires
O(n′ log n′ + n′ log(q − 1)) bits (we must describe a permutation ofn′ positions andn′ non-zero scalars).

When the initial codeC ′ is a Reed-Solomon code or an algebraic-geometric (AG) code, the family of
codes obtained as above is called a ”generalized” Reed-Solomon (resp. AG) code. The bias of such a code
family can be computed from the (average) weight distribution5 of the codes in the family. These weight
distributions have been studied before [35, 36, 45, 43], but the existing bounds do not apply to the range of
parameters relevant here. We prove a new bound based on the minimum distance of the dual code ofC ′.

4For the bounds stated in this abstract to hold, it is not necessary to permute the coordinates of the code—multiplying the
components by scalars provides enough randomness. Thus, onlyO(n) random bits are needed to select a code from the family. As
noted at the end of the proof of Lemma6, permuting the coordinates does allow the potential of a much better bound on the bias of
the code.

5The weight distribution of a codeC is a vector ofn integersA0, A1, ..., An, whereAw is the number of codewords inC with
weight exactlyw.
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Lemma 6 (Random binary images).Let C ′ be a linear[n′, k′, d]q code overF = GF (q), with q = 2e.
Let{C ′i} be the set of[n′, k′, d]q codes overF obtained by permuting the coordinates and multiplying each
coordinate by a non-zero scalar inF . LetCi = bin(C ′i). Then

1. TheCi are [n, k, d]2 codes withn = n′e andk = k′e. (Note that the ratesk/n andk′/n′ are equal).

2. If C ′ can correctτ errors inFn′ efficiently, then eachCi can efficiently correctτ errors in{0, 1}n.

3. If (C ′)⊥ has minimum distanced⊥, then the average square bias of{Ci} is

δ2 = max
α∈{0,1}n,α 6=0n

{
Pr
i

[α ∈ C⊥i ]
}
≤ 1/(q − 1)d⊥−1.

Note that in the last statement, the dual code(C ′)⊥ is taken with respect to the dot product inFn′ , while the
dual codeC⊥i is taken with respect to the dot product in{0, 1}n.

Finally, applying this lemma to algebraic-geometric codes yields the following lemma, which implies
Lemma5. The proofs of both Lemma6 and Lemma7 may be found in AppendixD.

Lemma 7 (Good Code Families Construction).For any constant0 < R < 1, and anyq = 22k wherek is
an integer,k ≥ 2, there exists an explicitly constructible ensemble of code families whichefficientlycorrect
τ errors and have square biasδ2 where:

τ ≥ n

log q

(
1−R− 1

√
q − 1

)
and log

(
1
δ

)
≥ nR

2

(
1− 1

R(
√

q − 1)

)(
1− log q

q − 1

)

3 Application: Noise Tolerance and “Everlasting Security”

In this section we resolve the main open question of [13]: we show that there is a noise-tolerant “locally
computable extractor” which allows its key to be reused many times.

Bounded Storage Model (BSM). We first briefly recall the basics of the bounded storage model [29].
Alice and Bob share a short, “long-term” secret keyK. A sequence of huge random stringsX1, X2, . . .

6

is broadcast to both of them. Alice and Bob then apply a deterministic functionfK to derive relatively
short one-time padsRi = fK(Xi). Traditionally, there are two main considerations in the bounded storage
model: efficiency andeverlasting security. Efficiency means that thatfK depends on a few bits of the
sourceXi, and these bits can be easily determined from the long-term keyK alone. Concretely, for typical
setting of parameters we usually want this number of bits to be linear in the length of the extracted one-time
padRi, and perhaps polylogarithmic in the lengthN of the sourceXi. Security means that as long as the
adversary does not know the secret keyK and cannot store each sourceXi in “its entirety”, the one-time
padsRi are statistically close to uniform, even if the adversary later gets the long-term secret keyK. A
bit more formally (see [44] for a complete definition), if the adversary is allowed to adaptively choose a
storage functiongi : {0, 1}N → {0, 1}γN , whereγ < 1 is a fixed constant, ifI = 〈g1(X1), . . . , gt(Xt),K〉
denotes all the data available to the adversary, the joint distribution of〈I,R1 . . . Rt〉 is t2−Ω(N)-close to the
distribution〈I, U1 . . . Ut〉, whereUi are independent, truly uniform keys of the same length asRi.

The BSM has received a lot of attention recently (see [13, 44, 26] and references therein). The current
technique for achieving everlasting security [26, 44] in this model is the “sample-then-extract” approach.
The high-level idea sufficient for our purposes is to haveK consist of two keysKs andKe, whereKs

is used to obliviously sample a small potionXi
s of the bits ofXi, and thenKe is used as a key for a

strong randomness extractor [33]. Using optimal parameter settings, one can achieve a total key of size
O(log N + log

(
1
ε

)
).

6More generally, it is sufficient that eachXi has high min-entropy conditioned on the otherXj for j 6= i.
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Error-Correction in BSM. Recently Ding [13] considered the problem of the error-correction in the
bounded storage model, where it is assumed that Bob will not necessarily receive the same stringXi as
Alice, but instead will receive somẽXi which is guaranteed (or expected) to be close toXi in the Hamming
distance. Ding proposed the following simple idea to overcome such errors, which we first describe for a
single sample (i.e.,t = 1). After receiving the sourceX and sampling the substringXs (usingKs), Alice
will simply send to Bob — over a public channel — the stringP = synC(Xs), whereC is a good error-
correcting code.7 Bob will sample the string̃Xs which is going to be close toXs (due to the properties of
the sampler), which means that he can recoverXs from P andX̃s, after which he can useKe to extract the
final randomnessR.

It is easy to see that this idea works fort = 1 and might initially appear to work for arbitrary number
of repetitionst. However, Ding pointed out the following subtle problem. The valuesynC(Xs) leaks
some information aboutXs, which in turn could conceivably leak information about the long-term keyKs,
sinceXs depends onKs. But now the security in the BSM model crucically assumes that the keyKs is
independentfrom the source. Now, leakingP1 conceivably leaks information aboutKs, which in principle
means that the attacker can choose the storage functiong2 as if it depends onKs. But this means that the
conditional distribution ofX2 given g2(X2) canno longer be argued independent from the sampling key
Ks. And this means that the analysis does not go through.

Ding addressed this problem by making Alice and Bob synchronized and stateful. Specifically, after
each communication they not only extract a fresh one-time padRi, but also refresh thelong-term keyK
(specifically,Ks must be replaced). While Ding showed that this solution achieves very good parameters, it
obviously creates a lot of inconvenience for the sender and the receiver.

Our Contribution. Using our technique, we resolve the main open problem of [13]. Specifically, our
construction gives a family of codes{Ci} with the property that a syndrome of a randomly selected code is
a strong randomness extractor, provided that the input distribution has enough min-entropy. Specifically, we
have that the following distributions are statistically close (U is the uniform distribution):

〈i, synCi
(W )〉 ≈ 〈i, U〉 (3)

where in case|W | = n andH∞(W ) = t = Ω(n), we can have codes correctingΩ(n) errors and the
residual min-entropy ofW given 〈i, synCi

(W )〉 is t′ = Ω(n). Moreover, the length of the code indexi is
Θ(n).

Now, instead of sending Bob a fixed syndrome of the sampled sourceXs, Alice will additionally
share with Bob the random indexi of the codeCi, and will send Bob the valuesynCi

(Xs). It is easy
to see that our modification resolves the reusability problem of [13]; We give brief reasoning here (be-
low “high” denotesΩ(n), wheren is the length ofXs). Indeed, by the property of averaging samplers,
proved in [44, 33], the joint distribution of〈g(X),Ks, X

s〉 is statistically close to〈g(X),Ks, Y 〉, where
Y |Ks=a,g(X)=b has high min-entropy, for every setting ofa, b. By Equation3 and the fact that the syndrome
length is shorter than the residual min-entropy ofXs giveng(X) andKs, this means that the distribution
〈g(X),Ks, i, synCi

(Xs), Xs〉 is statistically close to〈g(X),Ks, i, synCi
(Xs), Z〉, whereZ has high min-

entropy given any setting for the other variables. Finally, the properties of the strong extractorExt mean that
〈g(X),Ks, i, synCi

(Xs),Ke, R = ExtKe(Xs)〉 is statistically close to〈g(X),Ks, i, synCi
(Xs),Ke, U ,

whereU is a truly uniform string of lengthΩ(n). This shows “one-time” security. Now, given that the
above “one-time” indistinguishability holds even conditioned on the sampling keyKs, the multiple time
security of this locally computable extractor holds using the standard hybrid argument, much like for the
error-free case of [26, 44]. In contrast, the argument of Ding could not condition of the sampling key
Ks, since the syndrome could in fact reveal some information aboutKs, which forced him to update the
“compromised” value ofKs with part of the freshly extracted keyR, leading to the stateful construction.

7More precisely, if the adversary is allowed to corruptδ-fraction of the bit inX, C should be able to correct slightly more than
δ-fraction of errors.
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This construction achieves similar parameters to those of Ding — arbitrary high storage thresholdγ < 1,
linear fraction of corrected errors, up to linear number of extracted bits` (in previous notation,̀ = Ω(n),
which in principle could be as high asΩ(N)), small number of sampled bitsn = O(`). There are two
significant differences. First, the long-term key now has to include the indexi of the code, which in our
construction isΘ(n) = Θ(`). This could be considerably larger than theO(log N + log

(
1
ε

)
)-key size

achieved in [13], but it is still sublinear in N, and moderate enough to be stored. For example, in applications
when the extracted stringR is a 128-bit key to a computationally secure cipher, this value of` = 128 is of
the same order aslog N + log

(
1
ε

)
. A second drawback is that the sketches constructed in this paper do not

tolerate as many errors for a given level of entropy loss as do sketches without the requirement of entropic
security. Finally, we remark that the linear key length in the number of extracted bits of our construction is
asymptotically similar to the well known leftover hash lemma, which gives a more than sufficient extractor
for most cryptographic applications, while our construction additionally supports error correction.
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A Background on Coding and Information Theory

This appendix provides the notation and basic concepts from information theory that we use in the text. We
assume that most readers are familiar with these concepts, but we have tried to state all the facts we will
need explicitly.

We use capital letters (e.g.A) to refer to both random variables and the distributions from which they are
drawn, and lower case letters to denote particular values which the variables may take on. The expression
a ← A denotes thata is sampled according to the distribution (r.v.)W . If S is a set,a ← S denotes
drawingx from the uniform distribution onS. We sometimes also useUn to denote the uniform distribution
on {0, 1}n. If A(x; r) is a randomized algorithm with random inputR, we will sometimes useA(x) to
denote the distribution on outputs whenr is drawn uniformly at random.E [A] denotes the expectation of a
real-valued random variable andVar [A], its variance.

Thestatistical differencebetween two probability distributionsA andB on the same space isSD (A,B) def=
1
2

∑
v

∣∣Pr[A = v]− Pr[B = v]
∣∣ (that is, half theL1 distance between the probability mass functions). The

collision probabilityof X is Col(X) def=
∑

x Pr[X = x]2. If X ∈ S, andCol(X) ≤ (1 + 2ε2)/|S|, then
SD (X, U) ≤ ε, whereU is uniform overS.
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The main measure of entropy we use ismin-entropy, defined as the negative log of the probability of
predicting a random variableX a priori, that isH∞(A) def= − log maxa Pr[A = a] (all logarithms are
base 2 by default).A is called at-source ifH∞(A) ≥ t. The conditional min-entropy ofA given B is
H̃∞(A | B) def= − log(Eb←B

[
2−H∞(A|B=b)

]
). (NB: This definition is not standard but very convenient.)

We will use two properties: (1) ifB ∈ {0, 1}` thenH̃∞(A | B) ≤ H∞(A) − ` and (2) for anyA,B, the
eventH∞(A | B = b) ≥ H̃∞(A | B)− log

(
1
ε

)
occurs with probability at least1− ε overb← B.

We will also use theShannon entropyof a distribution, defined asHsh(A) def=
∑

a Pr[A = a] log 1
Pr[A=a] .

The conditional entropy ofA given B is Hsh(A | B) def= Eb [Hsh(A | B = b)]. The mutual information
betweenA andB is the entropy loss inA when givenB: I(A;B) def= Hsh(A)−Hsh(A|B).

Randomness Extractors An extractor is a function which takes as input some imperfect source of ran-
domness (the various bits of which may be biased or correlated) and a short truly random “seed”, and
produces as output something close to uniformly random string.

Definition 4. Ext : {0, 1}n × {0, 1}k → {0, 1}k+` is a strong(t′, ε)-extractor if for all min-entropyt′

distributionsX, the outputExt(X;Uk) is ε-far from Uk+`. A strongextractor has output of the form
Ext(x; r) = r, Ext′(x; r) whereExt′ outputs̀ bits.

The differencet′ − (` + k) is theentropy lossof the extractor. The number of truly random bitsk is the
seed length of the extractor. Much research has been devoted to improving these parameters in extractors.
The easiest construction of strong extractors is given by the “left-over hash” lemma, also called the “privacy
amplification” lemma [18, 20, 4]. A family of functions{hi}i∈I from n bits to ` bits is (pairwise) XOR-
independentif the eventhi(x) + hi(y) = z occurs with probability2−` wheni is chosen uniformly fromI,
for any choice ofx, y ∈ {0, 1}n andz ∈ {0, 1}`.

Lemma 8 (Left-over hash/ priv. amp.). If {hi}i∈I is a family of XOR-independent functions fromn bits to
` bits, thenExt(x; i) = hi(x) is a strong(t, ε)-extractor whenevert ≥ ` + 2 log

(
1
ε

)
+ 1.

Distance and Error-Correcting Codes Many of the ideas discussed in this paper extend to correcting
errors in almost any metric space. For simplicity, we will work mostly over the Hamming cube{0, 1}n,
wheredist(x, y) is the number of bits in which stringsx andy differ. We also use the Hamming metric over
larger alphabets such as[q]n where[q] = 1, . . . , q, q is a power of 2, and Hamming distance is the number
of symbols in[q] in which two strings differ. We will associate[q] with the fieldGF (q). The weightwt(w)
of a wordw ∈ GF (q)n is the number of positions in which it is non-zero, that isdisxy = wt(x− y).

A [n, k, d]q-code is a linear subspace ofC ⊆ F = GF (q)n of dimensionk, such that every pair of
stringsx, y ∈ C is at distance at leastd. Such a code can correct anyτ =

⌊
d−1
2

⌋
errors in a codeword

unambiguously. LetH ∈ F (n−k)×n be a matrix whose kernel (null space) is exactlyC. The syndrome with
respect toC is synC(x) = Hx. Thesyndromeof a codeword is0n−k, and for any wordx, the syndrome
of x depends only on the subset of bits in whichx differs from the nearest codewordc: if x = c ⊕ e, then
synC(x) = synC(e). A linear code can correct anyτ errors efficiently if and only if there is an algorithm
which efficiently computese from synC(e) wheneverwt(e) ≤ τ .

B Alternative Error Models

The error model in the definition of secure sketches above is very restrictive: we require that the sketch
correctany τ errors with probability 1. We made this choice for simplicity, since such a strong require-
ment will be sufficient in any application. However, for some applications one can get substantially better
performance by considering less stringent error models.
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The main relaxation is to require that error-correction occur only with high probability. There are several
variants on the problem at that point. Perhaps the most subtle issue is that in some situations (such as
biometric authentication), the errors introduced inw′ by the adversary may somehow depend on the sketch
S(w). In contrast, the set-up of the introduction implicitly suggests that the errors inw′ are decided on
ahead of time, non-adaptively. This ambiguity is not a problem in our model since we require correction
with probability 1. However, it can be a problem in general. Another issue is whether or not the errors are
introduced by a computationally bounded process (see, e.g., [30] for techniques to exploit such bounds).

The ideas and techniques of this paper can be extended to yield better performance in these relaxed error
models; we do not discuss those extensions in the paper. A very partial discussion may be found in Smith’s
thesis [41].

C Context: Lower Bounds on Secure Sketches and Small-Bias Families

This section describes lower bounds (some old, some new) on the parameters achievable by secure sketches:
this provides some useful context for understanding the parameters achieved by our constructions. The
bounds relating to distance are specific to the stringent error model we consider here (see AppendixB).
Bounds for high-probability error correction will look more like the Shannon bounds on channel capacity;
we do not discuss the various distinctions here since they do not really shed light on our focus, which is
entropic security.

1. Min-Entropy Loss [14]: Let d∗(n, k) be the minimum distance of the best binaryn-bit block code with
2k codewords. Ift = n (i.e. W is uniform), then any secure sketch correctingτ = b(d∗ − 1)/2c errors
has residual entropy at mostt′ ≥ k (i.e. entropy loss at leastn− k).

2. Shannon Entropy Loss [7]: When τ = Ω(n), the drop in Shannon entropy,I(W ;S(W )), is at least
nh−1

2 (τ/n), whereh2() is the binary entropy function.

The first bound above gives a (nearly) complete picture of the performance of sketches for the Hamming
metric with respect to entropy loss (the bound is matched by the code-offset construction above); we will
use the bound as a benchmark for comparisons.

C.1 Bounds on Entropic Security

Next, we can relate entropic security to the residual entropyt′ of a sketch (this is the minimum of̃H∞(W |
S(W )) over allt-sourcesW ). First, it is easy to prove that the leakageε of a(t, ε) secure sketch will always
be at least2−t′ − 2−t (Proposition10).

We can in fact get a better bound for a large class of canonical schemes. Recall thatS() is (t, ε)
entropically secure only ifS(W ) is always4ε-close to some particular “target” distribution whenW is a
(t − 1)-source (Fact2). In the special case where the “target” distribution is uniform,S() is a(t − 1, 4ε)-
extractorin the sense [33]. We can then apply:

Fact 9 (Radakrishanan and Ta-Shma, [34]). SupposeS(W ) is a (t, ε)-extractor. IfS() usesr random
coins as extra input, and always outputs` bits, then2 log

(
1
ε

)
< t− ` + r.

In all the schemes we discuss, the sketch will in fact be an extractor and the residual entropy will satisfy
t′ = t − ` + r. For these schemes, the bound above implies thatε > 2−t′/2 (i.e. t′ > 2 log

(
1
ε

)
). We

conjecture that this bound actually holds for all entropically secure sketches. For now, we only have the
weaker bound:

Proposition 10. If a (t, t′, τ)-secure sketch is(t, ε)-entropically secure, thenε > 2−t′ − 2−t ≈ 2−t′ .

Proof. Consider the functionf(w) = w, and any sourceW with min-entropy exactlyt. The best adversary’s
expected probability of guessingf after seeingS(W ) is exactly2−H̃∞(W |S(W )). Without S(W ), it is
2−H∞(W ) = 2−t. By entropic security,ε > 2−H̃∞(W |S(W )) − 2−H∞(W ) > 2−t′ − 2−t.
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C.2 Bounds on Small-Bias Code Families

In this section, we explore some consequences of Lemma4. If applied to a family of linear codes with
sufficiently small bias, Lemma4 shows that the sketchS(w; i) = i, synCi

(w) is a strong extractor.
How close to optimality is this extractor? Entropy loss is defined slightly differently for extractors and

secure sketches. For the code offset construction, the entropy-loss-as-extractor ist + k − n wherek is the
dimension of the code. By a lower bound of Radakrishnan and Ta-Shma [34] (described in AppendixC),
the entropy loss of an extractor is at least2 log

(
1
ε

)
− O(1). In our context, this yields the boundδ2 ≥

2n−t−k−O(1)·2−n+t = 2−k−O(1). We can conclude both that the average square bias is bounded by2−k−O(1)

and that codes which match this bound yield nearly optimal extractors.
Code families with optimal bias do exist (the set of all linear codes is an example, and in that case

Lemma4 reduces to the left-over hash lemma [19]). However, these codes are not efficiently decodable.
We do not know constructions of efficiently decodable families of codes with minimal bias, although the
constructions in terms of algebraic geometric codes can get the ratio2 log

(
1
δ

)
/k arbitrarily close to 1.

D Proofs from the Main Construction

D.1 Proof of Secrecy for Small-Bias Families

Proof of Lemma4. The proof uses elementary Fourier analysis over the hypercubeZn
2 . The intuition comes

from the proof that Cayley graphs based onε-biased spaces are good expanders: adding aδ-biased family
of random variables toB will cause all the Fourier coefficients ofB to be reduced by a factor ofδ, which
implies thatthe collision probabilityof B (see below) gets multiplied byδ also.

Let Di be the distributionAi ⊕ B. Recall that for any probability distributionD on a set of sizeK, if
Col(D) ≤ (1 + ε2)/K, thenD is within statistical distanceε of the uniform distribution (see, e.g., [20]).
Hence to prove the theorem it is sufficient to show that the collision probability of thepair D = (i,Di) =
(i, Ai + B) is bounded above by(1+2ε2)

|I|2n .

Claim: Col(D) = 1
|I|Ei←I [Col(Di)] .

Proof. We can write out the probability of a collision (here prime′ denotes an independent copy):

Pr[(I,DI) = (I ′, D′I′ ] =
∑

i

Pr[I = I ′ = i] Pr[Di = D′i]

Factoring out 1
|I| , we getCol(D) = 1

|I|
∑

i
1
|I|Col(Di), as desired.

To boundCol(D), we need only bound the average collision probability ofDi. To do so, we use a
standard fact from Fourier analysis over the hypercube:

Fact 11. For any distributionDi on {0, 1}n, the collision probabilityCol(Di) is given by the sum of the
squared biases ofDi with respect to all possible vectors:

Col(Di) =
1
2n

∑
α∈{0,1}n

biasα(Di)2 =
1
2n

+
1
2n

∑
α 6=0

biasα(Di)2.

SinceDi = Ai ⊕B (that is, the distribution ofDi is the convolution ofAi andB), we can compute the
bias ofDi as a product of the biases ofAi andB:

biasα(Di) = E
[
(−1)α�(Ai⊕B)

]
= E

[
(−1)α�(Ai)

]
E
[
(−1)α�B

]
= biasα(Ai)biasα(B).
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We now want to bound the bias ofDi. We don’t know how this bias will behave for particular values of
i, but we can use the fact that{Ai} is δ-biased family to bound theaveragesquared bias:

Ei

[
biasα(Di)2

]
≤ Ei

[
biasα(Ai)2

]
biasα(B)2 ≤ δ2biasα(B)2.

Finally, we can combine these bounds:

Col(D) = 1
|I|Ei

[
1
2n + 1

2n

∑
α 6=0

biasα(Di)2︸ ︷︷ ︸
Col(Di)

]
=

1
|I|2n

(1 + δ2
∑
α 6=0

biasα(B)2)

By the fact above, the sum of squared biases ofB is at most2nCol(B). Since the min-entropy ofB is
at leastt, its collision probability is at most2−t, and we get the boundCol(D) ≤ 1

|I|2n (1 + δ22−t+n). By

hypothesis,δ ≤ ε2−(n+t)/2, which implies the desired boundCol(D) ≤ 1
|I|2n (1 + ε2).

D.2 Analysis of Random Binary Images

Proof of Lemma6. (1),(2): The first two statements are straightforward since the multiplication by non-zero
scalars in one component and permutations of positions are easily invertible isometries ofFn′ .

(3): There are really two separate stages to proving this statement. In the first stage, we have to relate
the dual of aq-ary code to the dual of a binary code. Second, we will bound the bias of theq-ary codes
{C ′i}.

To clarify the notion of “dual” code, let�2 denote binary inner product on{0, 1}n, and let�F denote
the standard inner product inFn′ . The duals of the codesCi ⊆ {0, 1}n are defined with respect to the binary
inner product, while the duals of theC ′i ∈ Fn′ are defined w.r.t. the dot product overFn′ :

C⊥i = {y ∈ {0, 1}n : y �2 x = 0 (∀x ∈ Ci)}
(C ′i)

⊥ = {y′ ∈ Fn′ : y′ �F x′ = 0F (∀x′y ∈ C ′i)}

For the rest of the proof, fix someα ∈ {0, 1}n, and letα′ be the corresponding vector inFn′ , that is
α = bin(α′). The statement to be proved follows from two claims:

Claim 1: For allα ∈ {0, 1}n, there existsα′ ∈ Fn′ s.t.Pri[α ∈ C⊥i ] = Pri[α′ ∈ (C ′i)
⊥].

Claim 2: For allα′ ∈ Fn′ , we have:Pri[α′ ∈ (C ′i)
⊥] ≤ 1/(q − 1)d⊥−1.

Proof of Claim 1.The first claim is mostly a careful unwinding of the definitions. We will use the trace
function Tr : F → {0, 1}. The exact definition of the trace is not important here (see, e.g. [28]). All we
require is that the trace is linear, i.e. Tr(a+b) = Tr(a)+Tr(b), and not identitically zero. Tr(ab) is a bilinear
map fromF × F to {0, 1}, and so there exists an invertible linear transformationB : {0, 1}e → {0, 1}e
such that for all scalarsa, b ∈ F , we haveB(bin(a))�2 bin(b) = Tr(ab).

Fix α ∈ {0, 1}n. We can choose the unique vectorα′ in Fn′ such thatα is the concatenation of thee-bit
vectorsB(bin(α′i)). Then for any vectorx′ ∈ Fn′ , we have:

α�2 bin(x′) = Tr(α′ �F x′)

Sub-Claim:α is in C⊥i if and only if α′ is in (C ′i)
⊥.

One direction of the sub-claim is easy: supposeα′ ∈ (C ′i)
⊥. Then for any vectorx ∈ Ci, we have

α�2x = Tr(α′�Fbin−1(x)). Now the image ofx inFn′ is inC ′i, and so Tr(α′�Fbin−1(x)) = Tr(0F ) = 0.
In the other direction (of the sub-claim), suppose thatα ∈ C⊥i . Suppose, to get a contradiction, that there
is somex′ ∈ C ′i such thatα′ �F x′ 6= 0F . Then there exists some non-zero scalarb ∈ F , such that
0 6= Tr(b(α′ �F x′)) = Tr(α′ �F (bx′)) = α �2 bin(bx′). But the vectorbx′ is in C ′i sinceC ′i is a linear
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code, and so the inner product of its binary image withα should be 0. Thus, we get a contradiction and
conclude thatα′ ∈ (C ′i)

⊥, completing the proof of the sub-claim.
Based on the sub-claim, we can conclude thatPri[α ∈ C⊥i ] = Pri[α′ ∈ (C ′i)

⊥].

Proof of Claim 2.The main observation behind this proof is that the randomization operations we use be-
have nicely in the dual space. Permuting the coordinates of the codeC ′ induces the same permutation on
the coordinates ofC ′. Similarly, if we multiply then′ coordinates by non-zero scalarsb1, ..., bn′ ∈ F , then
we multiply the dual code by the inversesb−1

1 , ..., b−1
n . Thus we get the same family ofq-ary codesC ′i by

applying the randomization procedure to the dual instead of the primal code.
Now fix some vectorα′ ∈ Fn′ . By symmetry, we can imagine that the randomizing operation is applied

to the target wordα′ instead of to the code itself.This mapsα′ to a random word inFn′ of the same weight
asα′. The probability that this hits a codeword is exactly the fraction of words of a given weightw which
are in the code. We call the set of words inFn′ with weight exactlyw thew-slice. To complete the proof,
we need only prove the following:

Sub-Claim (Singleton bound for constant weight codes):For any code overF = GF (q) of minimum
distanced⊥, the fraction of codewords in any slice ofFn′ is bounded above by(q − 1)/(q − 1)d⊥ (except
for the trivial slice{0n′}).

To prove the sub-claim, fix some weight0 < w ≤ n′. We can partition the slice of weightw according
to whichw positions in a word are non-zero. Each of these partitions can further be subidivided into pieces
where all butd⊥ of the non-zero values are fixed, i.e. sets of the form

( 0, ..., 0︸ ︷︷ ︸
n−w times

, b1, ..., bw−d⊥︸ ︷︷ ︸
non-zero scalars

, ∗, ..., ∗︸ ︷︷ ︸
d⊥ times

),

up to permutation of coordinates, where∗ may take any non-zero value.
Now within any such piece, there can be at mostq − 1 codewords (since the codewords must differ

in d⊥ positions). There are(q − 1)d⊥ words in the piece, and so overall the fraction of codewords in any
constant-weight slice is at most(q − 1)d⊥−1.

This completes the proof of Lemma6.

Remark D.1. The key piece of the proof above is a bound on the number of codewords of a given weight,
based only on the minimum distance of the code. This corresponds to bounding the size of a “constant
weight” code. The bound we give is the analogue of the Singleton bound. It is tight in some cases, such
as for Reed-Solomon codes. However, it is quite loose in cases where the alphabet size is small (in that
case, there are other much better bounds on constant weight codes [1]. It is sufficient for our purpose: we
are mainly interested in proving that reasonable families of codes exist (rather than trying to optimize the
parameters).

D.3 Constructions of Small-Bias Families from Specific Codes

We can now use Lemma6 to construct small-bias families from known code families.

Warm-up: Reed-Solomon-Based Constructions Reed-Solomon (RS) codes are a class of efficiently-
decodable[n′, k′, d]q linear codes over a large alphabet:q = 2e must be at leastn. They have distance
d = n′ − k′ + 1 and, because the dual of a Reed-Solomon code is another Reed-Solomon code, they have
dual distanced⊥ = k′ + 1 (see, e,g., [24]).

Consider the family{Ci} of binary images of a fixed RS codeC ′. By Lemma6, the probability that a
non-zero worda lies in the dual is at mostδ2 = (q− 1)−d⊥+1 = (q− 1)−k′ . Sincek < q and(1− 1/q)q >
1/3, we can in fact writeδ2 ≤ 3q−k′ = 3 · 2−k. Thus, binary images of RS codes (often called “generalized
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Reed-Solomon codes”) have optimal bias:log
(

1
δ

)
= k/2 − O(1), as with random linear codes, matching

the lower bound (see AppendixC.2).
Unfortunately, the conversion to a binary alphabet increases the code length and dimension without

increasing the distance. Thus, these codes are only guaranteed to correct aboutn−k
2 log n errors. Nevertheless,

for large alphabets, these codes do very well. That is, if the metric in which we care about error-correction
for the sketch is Hamming distance inGF (q)n′ , then we get as good a secure sketch as possible, with as
small a bias as possible.

Proposition 12 (RS-based Families for Large Alphabets).For all k < n ≤ q = 2e, there exists a family
{Ci} of [n, k, d]q linear codes forq ≥ n with biasδ ≤ 2−k/2+1, correctingτ ≥ n−k

2 errors efficiently.

Algebraic-Geometric Constructions We now turn to our main construction. Our starting point is a con-
struction of “algebraic-geometric” (AG). We get binary codes with exponentially small bias and linear min-
imum distance. We will need the following fact:

[Algebraic-geometric codes, see [42]] Let q ≥ 4 be an even power of a prime,q ≥ 16. There
exists an infinite ensemble of[n′, k′, d]q linear codesC ′ (overGF (16)) with minimum distance
at leastd = n′−k′− n′√

q−1 and dual minimum distanced′ ≥ k′− n′√
q−1 . Moreover, these codes

have efficient algorithms for decoding up tob(d− 1)/2c errors.

This follows from well-known bounds on algebraic-geometric codes (see, e.g., [42], section II.2). The
main fact we need is that the dual of an AG code is an AG code for the same curve, and the distance of an
AG code is bounded below byn − k + 1 − g, whereg is the genus of the underlying curve. For infinitely
manyn, there exist curves overGF (16) with n′ points and genus at mostn′/3.

We can now prove Lemmas7 and5, which we restate here in a single statement.

Lemma 13 (Good Code Families Construction).For any constant0 < λ < 1, there exists an explicitly
constructible ensemble of code families whichefficiently correct τ = Ω(n) errors and have square bias
δ2 < 2−λn. More specifically, for any constantR ∈ [0, 1], any even power of two, for inifinitely manyn
there is a family of binary codes which can efficiently correctτ errors and have biasδ, where:

τ ≥ n

log q

(
1−R− 1

√
q − 1

)
and

log
(

1
δ

)
≥ nR

2

(
1− 1

R(
√

q − 1)

)(
1− log q

q − 1

)
In fact, the codes can be made arbitrarily close to optimal, at some cost in error-correction. That is, for

anyγ > 0, we can havelog
(

1
δ

)
> k/2(1− γ) and still correct a linear number of errors.

Proof. Suppose thatR > 1/2 (this is the interesting case, since it corresponds to small entropy loss; the case
R < 1/2 is similar). Letq be any (constant) even power of two. By the facts above on AG codes, there exist
[n′, k′, d]q codes with ratek′/n′ = R, minimum distance at leastd = n′(1 − R − 1√

q−1) ≥ n′(1 − R)/2,

and dual distanced⊥ ≥ n′(R− 1√
q−1) ≥ n′(3R− 1)/2.

We can now apply Lemma6 to get a family of codes which correctτ (binary) errors and have biasδ,
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where:

τ ≥ n

log q

(
1−R− 1

√
q − 1

)
and

log
(

1
δ

)
≥ 1

2
(d⊥ − 1)(log(q − 1))

=
n

2

(
R− 1

√
q − 1

)(
1− log q

q − 1

)
=

k

2

(
1− 1

R(
√

q − 1)

)(
1− log q

q − 1

)
By choosingq to be large enough (but constant), we get codes with constant error-correction rate and expo-
nentially small bias, as desired. In fact, we can getlog

(
1
δ

)
> 1

2n(R − γ) for anyγ > 0, and still correct
a linear number of errors. Letλ be any positive constant less than 1. SettingR = 1 − (1 − λ)/2, and
γ = (1− λ)/2, we getlog

(
1
δ

)
> 1

2λn, as desired.

E Application: Secrecy for Fuzzy Extractors

Fuzzy extractors were introduced in [14] to cope with keys derived from biometrics and other noisy measure-
ments. In this section we show that for fuzzy extractors, as for secure sketches, leaking Shannon information
is unavoidable. We also show that the straightforward construction of fuzzy extractors from secure sketches,
which extracts a key fromW using a pairwise independent hash function, preserves entropic security.

Definition 5 ([14]). An (t, `, τ, ε) fuzzy extractoris a given by two procedures(Gen,Rep).

1. Gen is a probabilistic generation procedure, which on inputw ∈ M outputs an “extracted” string
R ∈ {0, 1}` and a public stringP . We require that for any distributionW onM of min-entropyt, if
〈R,P 〉 ← Gen(W ), then we haveSD (〈R,P 〉, 〈U`, P 〉) ≤ ε.

2. Rep is a deterministic reproduction procedure which allows one to recoverR from the corresponding
public stringP and any vectorw′ close tow: for all w,w′ ∈ M satisfyingdist(w,w′) ≤ τ , if
〈R,P 〉 ← Gen(w), then we haveRep(w′, P ) = R.

The fuzzy extractor isefficient if Gen andRep run in time polynomial in the representation size of a point in
M.

A Simple Construction Recall that for secure sketches, we required thatY (W ) = S(W ) be entropically
secure. For fuzzy extractors, we will in fact require that thepair Y (W ) = 〈P,Z〉 satisfy the definition of
security. This is somewhat counter-intuitive: we think ofP as being published andZ as being used as a
secret key in some other application. However, we cannot guarantee that no information aboutZ will be
leaked in the other application (indeed, ifZ is used to encrypt a known string it may be leaked completely).
Requiring that the pair〈P,Z〉 be entropically secure protects against arbitrary information being revealed
aboutZ.

Nevertheless, if we consider fuzzy extractors built from a sketch scheme and a hash family (as in [14]),
then the requirement that〈Z,P 〉 be entropically secure reduces to the requirement thatS(W ) be entropically
secure. The following lemma follows from a standard hybrid argument:

Lemma 14. Suppose thatS is a secure sketch with entropy losst − t′, andH is drawn from a 2-universal
hash family fromn bits tot′ − 2 log

(
1
ε

)
bits. LetP = 〈H,S(W )〉 andZ = H(W ) (as in [14]).

If Y1(W ) = S(W ) is (t, ε)-indistinguishable, thenY2(W ) = 〈P,Z〉 is (t, 2ε)-indistinguishable.

Hence, it is sufficient to build secure sketch schemes which are entropically secure—the resulting fuzzy
extractors will inherit the property.
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E.1 A Bound on Loss of Shannon Information

The argument that secure sketches must leak a lot of Shannon information, i.e. thatI(W ;S(W )) must
be high follows the lines of Shannon’s noisy coding theorem, and is quite simple given the language of
information theory.

The argument that fuzzy extractors must also leak a certain amount of Shannon information about their
inputs is much more delicate. For simplicity, we restrict our attention to the uniform distribution, which is a
valid min-entropyt distribution for anyt.8

The simplest consequence to take away from the result (Proposition16, below) is that as soon as the
number of errorsτ to be tolerated becomes large (say

√
n), then the public part of the fuzzy extractor leaks

Ω(n) bits of information about the secret input.
The proof uses the isoperimetric inequality on the hypercube{0, 1}n (see [6], theorem 16.6), so we first

introduce some notation. Given a setS ∈ {0, 1}n and a numberτ , we letOutτ (S) = {y | ∃w ∈ S s.t.‖w − y‖ ≤ τ}
be theτ -th shadowof S, i.e. the set of points of distance at mostτ from some point inS. Then the isoperi-
metric inequality states that balls have the smallest outshadows, for everyτ . This allows one to lower bound
|Outτ (S)| in terms of|S|. Since we want to find a closed expression boundingHsh(W | P ) above, we
will only use the following corollary of the isoperimetric inequality. Hereh2 is the binary entropy function,
h2(p) = p log(1

p)− (1− p) log( 1
1−p).

Fact 15. For every setS ⊂ {0, 1}n such that|Outτ (S)| ≤ 2n−1, we have

|S| ≤ Aτ · |Outτ (S)|, where Aτ ≤
∑n/2−τ−1

i=0

(
n
i

)
2n−1

≤ 2n(h2( 1
2
− τ

n
)−1) (4)

In particular, whenτ = Ω(
√

n), the ratio is exponentially small, i.e.Aτ = 2−Ω(n).

Proposition 16. Assume(Gen,Rep) is a (n, t, `, τ, ε) fuzzy extractor, and let the output of the generation
algorithm Gen(W ) be P,Z, whereP is the public part andZ, the extracted key. Then for the uniform
distributionW ← {0, 1}n, we have

I(W ;P ) ≥ log
(

1
Aτ

)
− 2−`n− ε(n + `) ≈ n

(
1− h2

(
1
2
− τ

n

))
whereατ is as in Fact15. If τ = Ω(

√
n), ` = ω(1) and ε = o(1), then we can use the bounds onAτ to

concludeP revealsΩ(n) bits of information aboutW .

SinceH̃∞(W | P ) ≤ Hsh(W | P ), the result also implies that average min-entropy ofW is reduced.

Proof. SinceW andP determineZ, we have

Hsh(W | P ) = Hsh(W,Z | P ) = Hsh(Z | P ) + Hsh(W | Z,P ).

We will bound each of the two last terms separately. We begin withHsh(Z|P ). Let g(x) = −x log x.
Recall that the Shannon entropy of a distribution with probabilitiesq1, ..., qL is

∑
i g(qi). We’ll use a

simple approximation, which can be derived by computing the derivative ofg(): for δ ≥ 0, g(2−` + δ) ≤
g(2−`) + `δ.

We expect the distribution of the pairZ conditioned on most valuesp of P to be essentially uniform
over{0, 1}`. In order to manipulate the small deviations from uniformity, we let

δp,r = max[Pr(Z = r | P = p)− 2−`, 0].

8Even though our technique works for more general distributions, the particular bounds we get do not appear to be much
stronger, while the exact estimates become intractable.
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SinceSD (〈Z,P 〉, 〈U`, P 〉) ≤ ε, we have
∑

p,r δp,r ≤ ε. Now, we can upper boundHsh(Z | P ) as follows:

Hsh(Z | P ) =
∑

p

Pr(P = p)Hsh(Z | P = p)

=
∑

p

Pr(P = p)
∑

r

g(Pr(Z = r | P = p)) ≤
∑

p

Pr(P = p)
∑

r

g(2−` + δp,r)

≤
∑

p

Pr(P = p)
∑

r

(
g(2−`) + `δp,r

)
≤ ` + `

∑
p

Pr(P = p)
∑

r

δp,r

≤ `(1 + ε)

Next, givenp andr, denote bySp,r the set ofw for whichRep(w, p) = r. Note that

Hsh(W |P = p, Z = r) ≤ log |Sp,r|.

We wish to bound the size of the setsSp,r. To do so, letTp,r = Outτ (Sp,r) be theτ -th shadow ofSp.r.
For anyr0 6= r1, their τ -th shadows must be disjoint (Why? Ifw′ ∈ Tp,r0 ∩ Tp,r1 , then error correction
property of fuzzy extractors would imply thatRep(w′, p) is equal to bothr0 andr1, which is impossible.)
This allows us to use the following lemma:

Claim 17. For any 2` subsetsS1, ..., S2` of {0, 1}n, if the τ -th shadowsOutτ (Si) are mutually disjoint,
then the product of the sizes is bounded above:

log(
∏

i

|Si|) ≤ n + 2`(log(Aτ ) + n− `) (5)

We will prove the claim below. For now, we can boundHsh(W | P,Z):

Hsh(W | P,Z)

=
∑

p

Pr(P = p)
∑

r

Pr(Z = r | P = p)Hsh(W | P = p, Z = r)

≤
∑

p

Pr(P = p)
∑

r

(2−` + δp,r) log |Sp,r|

≤ n
∑

p

Pr(P = p)(
∑

r

δp,r) + 2−`
∑

p

Pr(P = p) log

(∏
r

|Sp,r|

)

The first of the terms in the last equation is at mostε, since the probabilitiesPr[P = p] are each bounded
by 1, and the sum

∑
p,r δp,r is at mostε. To bound the second term, we can apply the claim, once for each

value ofp, to the collection{Sp,r}r∈{0,1}` :

Hsh(W |P,Z) ≤ εn + 2−`
∑

p

Pr[P = p](n + 2`(log(Aτ ) + n− `))

= n− ` + log(Aτ ) + n(2−` + ε)

Combining the bounds forHsh(Z | P ) andHsh(W | P,Z), and replacingn with Hsh(W ), completes
the proof. We getHsh(W |P ) ≤ Hsh(W )+ log(Aτ )+n2−` + ε(n+ `), which implies the main statement.
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Proof of Claim17. By hypothesis, theτ -th shadowsOutτ (Si) are all disjoint, and hence at most one of
them can have more than2n−1 points. For all the remaining sets, we have|Si| ≤ Aτ |Outτ (Si)|. For the
one “exceptional” seti∗ of large size, we can boundlog |Si∗| by n. Thus

log(
2`∏

i=1

|Si|) ≤ n + log(A2`

τ

∏
i

|Outτ (Si)|) = n + 2` log(Aτ ) + log(
∏

i

|Outτ (Si)|).

The setsOutτ (Si) are all disjoint, and so their sizes sum to at most2n. If one has2` numbersai whose

sum is less than2n, their product is maximized by setting allai to 2n−`. This gives uslog(
∏2`

i=1 |Si|) ≤
n + 2` log(Aτ ) + 2` log(2n−`), as desired.

F Application: Perfectly One-Way Hash Functions

“Perfectly one-way” hash functions (POWFs) were introduced by Canetti [9] to attempt the formalize the
common intuition that cryptographic hash functions reveal very little about their input. We will adopt
the somewhat simplified version of the definition used in the subsequent paper of Canetti, Micciancio and
Reingold [10]; see [9, 10] a discussion of the differences.

Informally, POWFs arerandomizedhash functionsw 7→ H(w;R) which satisfy two properties, First,
given w andy, one can verify thaty = H(w; r) for some value of the randomnessr. This means that
a computationally bounded adversary cannot produce a pairw′ 6= w which would pass the same test.
Second, ifR is random, thenH(w;R) reveals “no information” aboutw. The intuition that the hash leaks
no information about the input was formalized in [10] using entropic security. Our results apply in two
different ways:

Noise Tolerance We show how to construct “fuzzy”—that is, noise-resilient—perfect hash functions. The
hash value forw allows one to verify whether a candidate stringw′ is close tow, but reveals nothing else
aboutw. This is a significant departure from the approach of Canettiet al. The motivation behind[9, 10]
was to formalize the properties of an ideal “random oracle” which might be achievable by a real computer
program. In contrast, even given a random oracle, it is not at all clear how to construct aproximityoracle
for a particular valuew (i.e. an oracle that accepts an input if and only if it is sufficiently close tow).

In that sense, the result is also aboutcode obfuscation:noise-resilient POWFs might best be viewed as
weakly obfuscated versions of a proximity oracle. This is all the more interesting since strong obfuscation
is not possible, see [2].

Improved Construction We strengthen the results of [10] on information-theoretically-secure POWF’s.
We reduce the assumptions necessary for security: Canetti, Micciancio and Reingold [10] assume the
existence of a collision-resistant hash function with an extra combinatorial property—regularity (a.k.a.
balancedness)—in order for their proof of security to g through. We show how to modify the proof so the
extra condition is unnecessary. We also improve the parameters of the [10] construction, roughly halving
the requirement on the min-entropy of the input for the same level of security.

F.1 Definition of Perfect One-way-ness

Recall the two informal conditions on PWOF’s. Formalizing the first requirement is simple, though we note
that the hash function requires a key in order to get full collision resistance. We denote byRn the space
of random coins required by the hash, and byKn the space of keys (for input lengthsn). A family of
keyed randomized hash functionH(n) with input lengthn and output length̀(n) is a family of functions{
Hk : {0, 1}n ×Rn → {0, 1}`(n)

}
k∈Kn

. An ensemble of such functionsH =
{
H(n)

}
n∈N consists of one

such family for every input lengthn.
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Definition 6 ([9, 10]). An ensemble of keyed randomized functionsH = {Hk}k∈Kn,n∈N as above ispublicly
verifiableif there is a polynomial-time verification algorithmVer such that

• For all keysk ∈ Kn, inputsw ∈ {0, 1}n, and stringsr ∈ Rn, Ver(k,w, Hk(w; r)) = ACC.

• For any PPT adversaryA, the probability overk ∈ Kn thatA(k) outputs a triple(w, y, c) such that
Ver(k, w, c) = Ver(k, y, c) = ACC is negligible inn.

The intuition that the hash leaks no information about the input was formalized using a definition almost
identical to entropic security for predicates. Given the equivalence of entropic security with respect to
predicates and functions, we formulate the definition in terms of functions.

The main difference was that in the definitions of [9, 10], the adversary’s ability to predict a predicate
g(W ) given the (randomized) hash valueH(w) = Hk(w;R)) is compared the adversary’s ability to predict
g(W ) given only polynomially many accesses to anidentity oracleIdw(·) which answers outputs “yes” on
inputw and “no” on any other input.

We’ll say an adversaryAO(·) with access to an oracleO(·) is poly-limited if there is some polynomial
p(·) such that on inputs of lengthn, the adversary makes at mostp(n) queries to the oracle. A ensemble
{Wn}n∈N of t(n)-sources consists of distributions on{0, 1}n with min-entropy at leastt(n).

Definition 7 (Perfect One-Way-ness, [9, 10]). A ensemble of keyed randomized functionsH = {Hk}k∈Kn,n∈N
is (t(n), ε(n))-perfectly one-way if for every adversaryA, for every ensemble{Wn}n∈N of t(n)-sources,
and for every functionf : {0, 1}∗ → {0, 1}∗, there exists a poly-limited oracle adversaryA·∗ such that, for
everyn andk ∈ Kn:

Pr
w←Wn,r←Rn

[A(Hk(w; r)) = f(w)]− Pr
w←Wn,r←Rn

[AIdw(·)(1n)) = f(w)] ≤ ε(n)

Note that adding the identity oracle makes no significant difference when the min-entropy ofW is very
high and hence the chance that the adversary queries the oracle onW is negligible. Hence, entropic security
implies semantic security in the sense of [9, 10]. Despite this implication, the formulation in terms of
the identity oracle makes sense in the context, since the public verifiability makes one able to verify if a
particular value is indeedw. We retain the “oracle” flavor in the definition of noise-resilient POWFs.

F.1.1 Noise-resilient POWFs

We now define the new primitive which we construct in this section. Aproximity oracleBw,τ (·) accepts
its input w′ if and only if the distance betweenw andw′ is less thanτ . Implicit here is a measure of
distance between strings. We will only discuss constructions for the Hamming distance, but we formulate
the definitions in more generality. We will assume that the distance functiondist(, ) is a metric (that is,
it satisfies the triangle inequality) on the space{0, 1}∗. For simplicity we also assume that the distance
between strings of different lengths is+∞.

An ensemble of hash functions is called aone-time(t(n), ε(n), τ(n))-noise-resilient POWF (in the space
dist(·, ·)) if it satisfies the following two conditions:

Definition 8 (Proximity Verifiability). A ensemble of keyed randomized functionsH = {Hk}k∈Kn,n∈N is
(dist(, ), τ(n))-publicly proximity-verifiableif there is a polynomial-time verification algorithmVer such
that

• For all pairs of inputsw,w′ ∈ {0, 1}n such thatdist(w,w′) ≤ τ(n), keysk ∈ Kn, and strings
r ∈ Rn, Ver(k, w, Hk(w; r)) = ACC.

• For any PPT adversaryA, the probability overk ∈ Kn thatA(k) outputs a triple(w, w̃, c) such that
Ver(k, w, c) = Ver(k, w̃, c) = ACC anddist(w, w̃) ≥ 2τ(n) is negligible inn.
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Definition 9 (Proximity-Semantic-Security). A ensemble of keyed randomized functionsH = {Hk}k∈Kn,n∈N
is (t(n), ε(n))-semantically perfectly one-way for(dist(, ), τ(n)) if for every adversaryA, for every ensem-
ble {Wn}n∈N of t(n)-sources, and for every functionf : {0, 1}∗ → {0, 1}∗, there exists a poly-limited
oracle adversaryA·∗ such that, for everyn andk ∈ Kn:

Pr
w←Wn,r←Rn

[A(Hk(w; r)) = f(w)]− Pr
w←Wn,r←Rn

[ABw,τ(n)(·)(1n) = f(w)] ≤ ε(n)

whereBw,τ (·) is the proximity oracle which accepts its inputw′ iff dist(w,w′) ≤ τ .

Unlike in the case of an identity oracle, proving that the proximity orace is not useful to the adverary
requires much stronger bounds on the initial value of the min-entropyt. See the proof of security of the
main construction, below.

F.2 Constructing Noise-resilient POWFs

The basic idea of our main construction is simple: ntropically-secure secure sketches compose well with
any ordinary POWF, as long as residual entropy of the secret given the sketch is higher than the entropy
requirement for the POWF.

Theorem 18 (Generic Construction).Suppose that

– {Sn}n∈N is an ensemble of(n, t− 1, t′, τ) sketches which are(t, ε)-entropically secure,

– {Hk}k∈Kn,n∈N is a (ordinary) POWF as defined above which is(t′− log
(

1
ε

)
+1, ε)-perfectly one-way,

Then the ensemble{H ′k}k∈Kn,n∈N of randomized hash functions given by

H̃k(w; r1, r2︸ ︷︷ ︸
r

) def= S(w; r1),Hk(w; r2)

is τ -proximity-verifiable and(t + 1, 2ε)-perfectly one-way. (Heret, t′, τ, ε are functions ofn.)

Proof. The fact that the construction in the preceding theorem isproximity-verifiableis easy to check. Given
a candidate string̃w, and a string(s, c) which is a correctly generated hash ofw, then the verification
alogrithmVer′(k, w̃, (s, c)) does the following (a) Run the recovery procedure forS() on the pair(w̃, s), get
back a candidate stringw′ for w, and (b) check ifdist(w̃, w′) ≤ τ andVer(k, w′, c) = ACC, whereVer() is
the verification function for the original (nonfuzzy) POWF.

If w̃ is indeed close tow, then this test will always succeed.9 On the other hand, if a poly-time adversary
can produce a values̃w, z̃ which both pass verification with the same stringc, then there are corresponding
valuesw, z within distanceτ of w̃ (resp.z̃) such thatVer(k, w, c) = Ver(k, z, c) = ACC. By the verifiability
of the original POWF-scheme, it must be thatw = z, and sodist(w̃, z̃) ≤ dist(w̃, w) + dist(z, z̃) ≤ 2τ , as
desired.

We now turn to the proof that the scheme is semantically perfectly one-way in the sense of Definition9.
We’ll use the following general lemma on composing entropically-secure maps:

Lemma 19. If (1): Y1() is a (t, ε)-entropically-secure map, (2): for all distributionsW of min-entropy at
leastt− 1 we haveH̃∞(W | Y1(W )) ≥ t′ and (3):Y2() is a (t′− log

(
1
ε

)
+ 1, ε) secure map, then the map

which outputs the pairY (w) = Y1(w), Y2(w) is (t + 1, 2ε)-entropically-secure.

The lemma can be proven using a simple hybrid argument (see below). For now, we can use it to
complete the proof of security of the noise-resilient POWF. LetY1 = S() andY2 = Hk(). By the definition
of a secure sketch and the hypotheses of the theorem statement, the conditions of the lemma are satisfied,
and we get that the mapH ′k(·;R) is (t + 1, 2ε)-entropically-secure. Entropic security implies semantic
perfect one-way-ness with the same parameters.

9Similarly, if the sketch only corrects errors with high probability, then the test will succeed with high probability, achieving a
sligthly relaxed version of the definition of verifiability.
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We can now prove the composition lemma used above:

Proof of Lemma19. The proof follows a hybrid argument. In order to provet+1-entropic security, we will
provet − 1-indistinguishability and then apply the equivalence. Suppose thatW has min-entropy at least
t−1. With probability1−ε over the values ofS(W ), the min-entropyH∞(W | S(W )) will be at leastte′−
log
(

1
ε

)
(recall thatt′ = H̃∞(W | Y1(W )), so2−t′ is the average value of2−H∞(W |Y1(W ))). SinceY1(W )

is t′− log
(

1
ε

)
+1-entropically secure, it is(t′− log

(
1
ε

)
, 4ε) indistinguishable and so with probability1− ε

(over values ofY1(W )), the statistical difference betweenY1(W ), Y2(W ) andY1(W ), Y2(Un) is at most
4ε. Hence, the overall statistical difference between the two distributions is at most5ε. Finally, the distance
betweenY1(W ), Y2(Un) andY1(U ′n), Y2(Un) is at most4ε sinceY1() is (t − 1, 4ε)-indistinguishable. By
the triangle inequality, the distance betweenY1(W ), Y2(W ) andY1(U ′n), Y2(Un) is at most9ε, and so the
scheme is(t−1, 9ε)-indistinguishable. Applying the equivalence in the other direction completes the proof.

F.3 Improved Construction of Ordinary POWFs

Before we can apply the generic construction of the previous section, we need to constructions of ordinary,
non-noise-resilient POWF’s.

Canetti et al. [10] gave the following simple construction of perfect one-way hash functions which
achieves (information-theoretic) entropic secrecy. Given a family of “regular” collision-resistant hash func-
tions{crhfk}k∈Kn

, and a family of pairwise independentpermutations{πi}i∈I , we can define a probabilistic
map

Hk(w; i) = i, crhfk(πi(w)).

[10] proved that the construction is(t, ε)-entropically secure as long as the output length`(n) of the
functionscrhfk satisfies̀ (n) ≤ (t− 2 log

(
1
ε

)
)/2. Their analysis also required an additional assumption on

thecrhf, namely that the functions be “regular” (a.k.a. balanced), that is for allk, every point in the image
of crhfk must have the same number of pre-images.

Here we improve on the analysis in several ways. First, we remove the assumption of regularity. This
is based on a version of the left-over hash lemma in which a pairwise independent hash function is fed
through an arbitrary function before producing output (Lemma22). Second, we improve the parameters:
we show that their construction only requires`(n) ≤ t− 2 log

(
1
ε

)
(that is, we may leak twice as many bits

about the input without compromising entropic security). Finally, we provide a stronger security guarantee,
namely that the adversary may not learn anyfunctionof the input. We encapsulate these improvements in
the following proposition.

Proposition 20. Suppose that

– {crhfk(·)}k∈Kn,n∈N is a collision-resistant hash family fromn bits to`(n) bits,

– ` < t− 2 log
(

1
ε

)
,

–
{
{πi}i∈I

}
n∈N is an ensemble of XOR-universalpermutationsof {0, 1}n.

Then the ensemble of randomized hash functions given by:Hk(w; i) = i, crhfk(πi(w)) is (t, ε)-entropically
secure. (Heret, t′, τ, `, ε are all functions ofn.)

To prove entropic security, it suffices to prove that the scheme is indistinguishable. The statement follows
directly from a variant of the left-over hash lemma (Lemma22), which basically states that combining
XOR-independent permutations with any arbitrary functions yields a “crooked” strong extractor: that is,
the output may not be look random, but it will look the same for all input distributions of sufficiently high
entropy. Contrary to intuition, this statement doesnot follow directly from the left-over hash lemma.
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F.4 Putting It All Together

We can now combine the results of this chapter so far. Our initial goal was a non-trivial family of noise-
resilient POWF’s. As mentioned above, these can be viewed as obfuscated code for proximity queries.
We would like to combine Theorem1 with the generic constructions of this section. For this purpose, we
will use the fact that if there are length-reducing collision-resistant hash functions, then for for any output
length`(n) = Ω(n), there exists a hash family{crhfk}k∈Kn,n∈N with output length̀ (n) for which no PPT
adversary can find collisions with non-negligible probability. We obtain:

Theorem 21. If collision-resistant hash functions exist, then for any initial entropyt = Ω(n), there exists a
noise-resilient POWF ensemble which tolerates a linear number of errorsτ = Ω(n), is (t, ε)-entropically-
secure forε = 2−Ω(n) and is proximity-publicly verifiable with negligible soundness error.

G Composing Hashing with Arbitrary Functions

This section states and proves the lemma needed for removing the regularity assumption from the construc-
tion of [10]. Below,H2(X) refers to the Renyi entropy of a random variableX, H2(X) def= − log Col(X) =
− log

∑
x]Pr[X = x]2.

Lemma 22 (Composing with an arbitrary function). Letf : {0, 1}N → {0, 1}` be an arbitrary function.
If {hi}i∈I is a family of pairwise independent hash functions fromn bits to N bits andX is a random
variable in{0, 1}n with Renyi entropyH2(X) ≥ ` + log

(
1
ε

)
+ 1, then

〈I, f(hi(X))〉 ≈ε 〈I, f(UN )〉

whereI ← I, UN ← {0, 1}N (both drawn uniformly), andI, X andUN are independent.

This lemma requires a fresh proof—it does not follow directly from the original left-over hash lemma:
becauseN may be much larger thann andH2(X), the distributions〈I, hI(X)〉 and〈I, UN 〉 need not be
indistinguishable. In fact, whenN > n they will have statistical distance almost 1.

The idea behind the proof is to show that for all non-zero stringsα ∈ {0, 1}`, the inner product modulo
two α� f(hI(X)) is distributed almost identically toα� f(UN ). Elementary Fourier analysis then shows
that the distributionsf(hI(X)) andf(UN ) are close (even givenI). Details follow.

Proof. The bias of a distributionA over {0, 1}` with respect to a stringα is defined to bebiasα(A) =∣∣ EA

[
(−1)α�A

] ∣∣ = |2 Pr[α�A = 0]− 1|.
The following fact about the hypercube{0, 1}` will be useful below: For any random variables (distri-

butions)A andB on{0, 1}`, we have:

SD (A,B) ≤
√ ∑

α∈{0,1}`
(biasα(A)− biasα(B))2. (6)

Claim 23. For everyα ∈ {0, 1}`, the expectation, overi← I, of the expression

(biasα(f(hi(X)))− biasα(f(UN )))2

is at mostCol(X) = 2−H2(X) ≤ ε22−`.

We first show that this claim implies the lemma, and then prove the claim further below. For everyi ∈ I,
let Di = f(hi(X)). The first observation is that the distance we are seeking to bound is the average, taken
overi, of the distance betweenDi and the target distributionf(hi(X)).

SD (〈I,DI〉 , 〈I, f(UN )〉) = EI [SD (DI , f(UN ))]
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We can now bound the statistical difference using the biases (Eqn.6):

SD (〈I,DI〉 , 〈I, f(UN )〉) ≤ EI

√∑
α

(biasα(DI)− biasα(f(UN )))2


For any random variable,E

[√
X
]
≤
√

E [X] (Jensen’s inequality). Hence

SD (〈I, DI〉 , 〈I, f(UN )〉) ≤
√∑

α

EI

[
(biasα(DI)− biasα(f(UN )))2

]
By the main claim above, the term inside the square root sign is at most

∑
α ε22` = ε2, and so the statistical

difference which we want to bound is at mostε2.

To complete the proof above, we just have to prove the claim.

Proof of Claim23. For α = 0`, the claim is trivial since the difference of biases is always 0. Fixα 6= 0`.
Let

µ = biasα(f(UN )) = EUN

[
(−1)α�f(UN )

]
Let px = Pr[X = x]. Then we can writebiasα(f(hI(X)))− biasα(f(UN )) as

biasα(f(hI(X)))− biasα(f(UN )) =
∑

x∈{0,1}n
px((−1)α�f(hI(x)) − µ︸ ︷︷ ︸

Zx

)

Now letZx be the random variable(−1)α�f(hI(x))−µ (this is a function ofI). Since{hi} is a pairwise
independent family of hash functions, the expectation ofZx taken overI is exactly 0 (that is, for any fixedx,
hI(x) is uniformly distributed over{0, 1}N ). Moreover, the variablesZx andZy are independent for every
pair of stringsx 6= y, so thatEZxZy [=] 0. Thus

EI

[
(biasα(f(hI(X)))− biasα(f(UN )))2

]
=

∑
x,y∈{0,1}n

pxpyEI [ZxZy] =
∑

x

p2
xE
[
Z2

x

]
The varianceEI

[
Z2

x

]
= Var [Zx] is at most half of the range ofZx, that is 1. Thus the expected square of

the difference of biases is at most
∑

x p2
x = Col(X).
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