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Abstract

This paper explores what kinds of information two parties must communicate in order to correct
errors which occur in a shared secret striig Any bits they communicate must leak a significant
amount of information abod¥” — that is, from the adversary’s point of view, the entropyioiwill drop
significantly. Nevertheless, we construct schemes with which Alice and Bob can prevent an adversary
from learning anyusefulinformation aboutl’. Specifically, if the entropy o#V is sufficiently high,
then there is no functiofi(1¥') which the adversary can learn from the error-correction information with
significant probability. This leads to several new results:

e Code obfuscation: An obfuscator for a functionalitygenerates a scrambled circdit which
allows one to evaluatg on any input, but leaks no additional information. Obfuscation of general
functionalities is impossible (Barak et aP]].

We show how to obfuscaf@oximity querieswe design a randomized functié? f (w) such that

for anyw, givenObf(w) one can verify if a candidate stringis close tow, yet if an adversary’s
a priori probability of guessing was low,Ob f (W) reveals no function ofv. This is the same as
constructing noise-tolerant “perfectly one-way” hash functions in the sense of Canettl@t al |

The result does not contradict the impossibility results of Barak et al since the obfuscation guaran-
tee requiresv to have high entropy.

e Private “Fuzzy Extractors™: A fuzzy extractor (Dodis et al4]) takes a nonuniformly random,
error-prone inpul? (e.g. a fingerprint or iris scan) and produces two outputs, a public siting
and a keyR, with two guaranteesR is uniformly random giverP, and yet given bottP and any
stringY close tolW, one can recoveR exactly. Our constructions yield fuzzy extractors with an
added privacy guarante@. reveals no function of the original inplit’. This means, for example,
that a sensitive sub-string &F will not accidentally be revealed.

e Noise Tolerance and Key Re-Use in the Bounded Storage Model: We give a scheme for key
extraction in the bounded storage model with noise (Didg])[which allows one to re-use the
same initial key to derive many different session keys based on long public random strings. This
answers the main open question froh3][

*Some of the results of this paper appears in the second author’s Ph.D. #igsis [
TNew York University. Email:dodis@cs.nyu.edu
fWeizmann Institute of Science. Emaildam.smith@weizmann.ac.il



1 Introduction

This paper investigates what kind of information must be leaked to an eavesdropper when two cooperating
parties communicate in order to correct errors in a shared secret string.
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Suppose that Alice and Bob shareaibit secret string. Alice’s copw of the shared string is slightly
different from Bob’s copyw’. Alice would like to send a short messagéw) to Bob which allows him to
correct the errors in’ (and thus recovew) wheneverw andw’ differ in at mostr bits. The randomized
map.S() that Alice applies tav to get the message she sends to Bob is calleahainteractive information
reconciliation schemeor simply asketch correctingr errors. A typical example of a sketch is

S(w) = sync(w),

wheresyn. is the syndrome of a linear error-correcting ca@davith block lengthn (see below for defini-
tions) [3]. If C has dimensiotk, thensyn-(w) is only n — k bits long. If the minimum distance @F is at
least2r + 1, thensyn(w) allows Bob to correct any errors inw’. Moreover, the process is efficient if the
code can correct errors in polynomial time.

Enter Eve, who is tapping the line and trying to learn as much as possible. From her point of view, Alice
and Bob hold a pair of random variablé$ W’. Suppose that Alice and Bob do not share any secrets except
this pair! What kind of guarantees can Alice and Bob obtain on what Eve learns from s¢@iig? This
abstract game — and partial answers to this question — have been applied in several contexts, most notably
in generating keys from long, noisy public strings and biometric authentication (see references below).

Standard notions of security do not fit here. The statem&tl") leaks no information about’” is
normally formalized by requiring thal” and S(W) be almost statistically independent or, equivalently,
that the Shannon mutual informati@(id’; S(W)) be very small. Such a strong requirement is impossible
to achieve in our setting: a coding argument shows that the mutual information must be large (much larger
thanr) in general ¥]. Even the analogue requirement for computationally bounded adverssaiaantic
security[17], is impossible here: if Eve knows thélt is one of two stringsuv, wo which differ in only a
few bits, then she can use whatever algorithm Bob would have run to compirem S(w;) andw; .

The difficulty, then, is that the standard definitions of security require secrecy even when Eve knows
a lot aboutl¥. We show that when this requirement is relaxed (that is, when Eve is sufficiently uncertain
aboutl?), a strong secrecy guarantee can be be provided.

A more suitable definition for our setting &ntropic security10, 37]. If WY are (correlated) random
variablesY hides all functions ofV if for every functionf, it is nearly as hard to predigi{ W) givenY as
itis withoutY’, regardless of the adversary’s computing power. A randomizedStgig calledentropically
secureif S() hides all functions of% whenever the min-entropyof W is above a certain threshold. This
definition of security has already produced surprising results in two contexts. Canetti, Micciancio and
Reingold P, 10] constructed hash functions whose outputs leak no partial information about the input.
Russell and Wang3[7/] gave entropically-secure symmetric encryption schemes with keys much shorter
than the length of the input, thus circumventing Shannon’s famous lower bound on key length.

This paper introduces a third, very different application of entropic security: we construct secure sketches
that are (a) efficiently decodable (that is, Bob’s recovery algorithm is polynomial-time) and (b) entropically
secure. In particular, for any entropy boundhich is linear inn, we obtain sketches which can efficiently
decode a constant fraction of errors and have leakage exponentially smallie core of our construction
is a family of stronglandomness extractorgith an additional property: given the output of the extractor

1This rules out trivial solutions, such as Alice sending the encryptidi afith Bob’s public key.
2Min-entropy measures the difficulty of guessifiga priori: Ho, (W) = — log(max,, Pr[W = w]).



and a string which is close to the source, one can efficiently recover the source exactly. We construct these
extractors based on small random families of algebraic-geometric codes.

We apply our constructions to private storage of keys derived from biometric measurements, obfuscation
of proximity queries, and key re-use in the bounded storage model. Perhaps the most surprising of these
applications is to obfuscation: previous positive results for obfuscation were for “point functions,” which
are easy to obfuscate in the random oracle mati&lZ7]. In contrast, it is not known how random oracles
can help obfuscation of proximity queries.

The Relation to Entropy Loss The task of correcting errors in a joint string is usually callddrmation
reconciliation[3, 7, 8, 25, 13], fuzzy cryptography{21], see B1] for a survey), ordocument exchang@n
communication complexity, e.gll]). In contrast to this paper, previous work focused only on maximizing
the length of a cryptographic key which can be derived fiéhonce the errors iV’ have been corrected.
Because of that, they are only interested in bounding the drop in the entrépyfraim Eve’s point of view
when she sees the communication between Alice and Bob.

The security guarantee we provide is strictly stronger than in previous work. Entropic security implies
a lower bound on the min-entropy &F given the sketcts(17). Min-entropy is a lower bound on all the
measures of entropy used in the literature, and so entropic security implies an upper bound on entropy loss.
The converse implication is not true: simply bounding the entropy loss does not prevent Eve from learning
some particular function off” with probability 1 (for example, the syndrome construction above always
reveals a particular, fixed set of linear combinations of the bitd’9f This can be a problem for several
reasons. FirstiV itself may be sensitive (say, if it is a biometric used for authenticatdn22, 14]), in
which caseS(1W') might reveal sensitive information, such as a person’s age. Second, when we use the
error-correction protocol as a piece of a larger framework, entropy loss may not be a sufficient guarantee
of secrecy; we will see an example of this in key agreement protocols which are secure against memory-
bounded adversarie3].

For completeness, we state the min-entropy loss of our constructions explicitly, since it is typically much
lower than the bound implied by entropic security.

Notation and Definitions We denote the output of a randomized algorithm on inpahd random coins
r by Y (z;r). We use the shorthand (x) for (random) output when the stringis chosen uniformly at
random.

Thestatistical differencéetween two probability distribution$ and B on the same space$D (A, B) =
3>, | Pr[A = v] — Pr[B = v]| (that is, half thel; distance between the probability mass functions).

The main measure of entropy we useim-entropy which measures the difficulty of guessing a random
variableA a-priori: the best predictor succeeds with probabgiity= max, Pr[A = «a], and the min-entropy
isHy(A) = —log(p*) (all logarithms are base 2 by default}. is called at-source ifH.,(A) > t. The
conditional min-entropy ofd given B is Hoo (A | B) £ — log(Eyp [2He<(AIB=0]). (This definition
is not standard but very convenient.) We will use two properties: (B) i {0, 1} thenﬂoo(A | B) <
H,(A) — ¢ and (2) for anyA, B, the eventH (A | B = b) > H,(A | B) — log (1) occurs with
probability at least — ¢ overb «— B.

We now turn to defining secure sketches and entropic security. Follodiigwe incorporate entropy
loss into the definition of a secure sketch; we state the definition of entropic security separately.

Definition 1 ([14]). A (t,t’, 7)-secure sketcls a pair of (possibly) randomized mags {0,1}" — {0,1}*
andRec : {0,1}* — {0, 1}" such that:

— For all pairs of stringsw, w’ of distance at most, we haveRec(w’, S(w)) = w with prob. 13

3We consider this “worst-case” error model for simplicity. The discussion extends naturally to random errors, although some
care must be taken: the results change depending on whether the adversary ahidesose or after seein§(w). The issue is
discussed partially in4[1].



— For all t-sourcesV, we haveH . (W | S(W)) > t'.

Theentropy losof a sketch is the difference- ¢'.
The sketch igfficientif S andRec run in time poly(n).

Definition 2 ([10, 37, 15]). The probabilistic mag’() hides all functions ofV with leakager if for every
adversaryA, there exists an adversard’ such that for all functiong : {0, 1}* — {0,1}*,

| PHAY (W) = F(W)] - Pr{A() = f(W)]| <.

The mapY () is called(t, €)-entropically secure it"() hides all functions ofV, for all t-sourcesiV.

1.1 Our Contributions

As stated earlier, our main result is the construction of entropically secure sketches.

Theorem 1. There exist efficien{t, ¢’, 7)-secure sketches for inputs{fi, 1}™ which are alsqt, €)-entropically
secure, such that (for infinitely mamny

— the tolerated errorr and the residual entrop# are linear inn, and
— the information leakageis exponentially small im

whenever the original min-entropyis linear inn. (That is, whenever = Q(n) then we can find schemes
wherer, ¢ andlog (1) are Q(n)).

Before proceeding, a word about parameters: the original entr@sythe inputiV is given by the
context in whichlV arises. The error toleraneewill also typically be specified externally—it is the amount
of noise to whichiV will likely be subject. Thus, the goal is to get both the (entropic) secisity1) and
the residual min-entropy as high as possible. The quantibg (%) measures the difficulty of learning some
function of W, while ¢’ measures the difficulty of guessiif exactly. In particular{’ is bounded below by
log (%) (roughly), since by the definition of entropic security the adversary’s probability of predicting the
identity functionf (W) = W is at most + 27! =~ €. Thus, it is sufficient to look for sketches will tolerate
T errors and arét, e)-entropically secure for, log (1) = Q(n). Theorem states that such secure sketches
do indeed exist.

The Relation to Randomness Extraction The starting point of the constructions is a result from earlier

work stating thatandomness extractof83] are entropically secure, that is the output hides all functions of
the source. We say a (randomized) mé&Q is (¢, €)-indistinguishable if for all pairs of-sourcedVy, W,

the distributionsy” (W) andY (W>) aree-close. {'() is a randomness extractor in the special case where
the output distribution is always close to uniform.) We will use the following result several times:

Fact 2 ([15], Thm 2.1). If Y() is (¢, €)-entropically secure, then it i& — 1, 4¢)-indistinguishable. Con-
versely, ifY () is (¢, €)-indistinguishable, then it i§ + 2, 8¢)-entropically secure.

The second implication is the more interesting of the two. In particular, our main result is really a
construction of randomness extractors whose output can be used to correct errors in the input. They are
strongrandomness extractors in the sense of Nisan and Zucker®3ng]l the random coins used by by
the extractor (the “seed”) appear explicitly in the output. We will use the strong extractor property in the
bounded storage model application. The construction is based on a random family of binary images of an
algebraic-geometric code. It is explained in SecfollVe rephrase Theorefnin terms of extractors here:

Theorem 3. For any constant entropy rate/n, there is an explicitly constructible of ensemble of strong
(t, e)-extractorsExt : {0,1}" x {0,1}¢ — {0,1}* x {0,1}¢ with seed lengthl = n such that (1)Ext
extracts a linear amount of entropy from the input with exponentially small error anBx{Z) corrects a
linear numberr of errors in the source. That is, there is a polynomial time algorifRea such that for any
stringsw, w’ at distance at most, Rec(w’, Ext(w; R)) = w with probability 1.



Applications We present three new applications of this result:

e Key Re-Use in the Bounded Storage MoHeik is perhaps the least expected application of our tech-
nigue, resolving the main open question left by Did@][ Namely, Ding considered the question
of error correcting in the bounded storage mo@§] which received a lot of attention recently (see
[13, 44, 26] and references therein). The attractive feature of this model comes from the fact that is
provides so called “everlasting” security of the derived keys (assuming the adversary has bounded
storage capabilities at the time of transmission of a huge random string). Another nice feature of the
recent constructions is the fact that the same long-term key can be used many times for subsequent
session key derivations. This feature is called key reuse. On the other hand, one of the aspects lim-
iting the usability of the current solutions comes from the fact that Alice and Bob must be error-free
when receiving the satellite data. Dintf3 elegantly extended the bounded storage model to achieve
error correction, but at the expense of considerably weakening the key reuse property: the parties
must synchronously and periodically update their long-term secret keys. We resolve this open prob-
lem by showing that nearly optimal error-correcticam be achieved without sacrificing the key reuse

property.

e Obfuscation and Perfectly One-Way Function#/hile general program obfuscation is impossible
[2], obfuscation might be possible for specific functionalities. Indeed, Lynn, Prabhakaran and Sahai
[27] formally showed that one can obfuscate equality queries in the random oracle model relative to
some secrei, while the results of Canetti et al9,[10] on perfect one-way hash functions could be
interpreted as obfuscating equality queries in the standard model, pravitied high min-entropy.
While equality queries are very natural for password authentication applications, for more general
biometric applications it is more natural to consider more general proximity queries, wheredriputs
sufficiently close tav should also be accepted. This was explicitly mentioned as an open problem in
[27], who noticed that random oracles do not appear to be of much help for correcting unknown errors.
We settle this problem in the affirmative in the standard model, but assuming tres high entropy
(which is the model of10Q]). Alternatively, this gives the error-tolerant construction of perfectly one-
way hash functions. Along the way, we also improve the noise-free constructidjpfrughly
halving the min-entropy requirement of their construction.

e Privacy for Biometric Application®kecently, Dodis, Reyzin and Smiti4] introduced a general
framewaork for dealing with noisy and non-uniform biometric data, by defining two primitives termed
secure sketches and fuzzy extractors aimed to provide noise-tolerant password recovery and random-
ness extraction, respectively. In both cases the goal was achieved by publishing some public function
P = P(W) which eliminated errors in subsequent imperfect readings of passiwordHowever,
in all the constructions in1[4] the public informationP actually leaked some (potentially sensitive)
information about the biometric inpd’. Our results here are two-fold. On the one hand, we show
that P mustindeed leak some non-trivial amount of Shannon information aldout his conclusion
is somewhat non-trivial for the case of fuzzy extractors, and critically uses the isoperimetric inequal-
ity. On the other hand and somewhat surprisingly, we construct secure sketches and fuzzy extractors
which leak no deterministic function (such as a sensitive substring) of the biometriclinpthis
once again shows that Shannon security is stronger than semantic security for high-entropy distribu-
tions — a conclusion recently derived in a very different context of symmetric encry&oa’|.

This Abstract The bulk of this abstract describes the construction of secure sketches which leak no patrtial
information. Sectior8 describes the application to the bounded storage model. The applications to fuzzy
extractors and perfectly one-way hash functions are described in AppEmaict Appendix-, respectively.



2 Sketches That Hide All Partial Information

This section describes the main technical construction of the paper (Thépréur discussion refers often
to the “code-offset” constructior8[ 21]: if we view an error-correcting code as a functiéh: {0,1}* —
{0, 1}™ with minimum distance!, the randomized map

S(w; R) = w® C(R) 1)

has entropy losg — ¢ = n — k (for any value oft) [14]. It can correctr = |(d — 1)/2] errors, and is
efficient if and only ifC has efficient encoding and error-correction algorithms. In the case of linear codes,
this construction reduces to the syndrome construction in the introduction, ifc€’'(R) is a random
element of the cosdtr € {0,1}" : syna(x) = synq(w)}).

2.1 General Approach: Codes with Small Bias

We now turn to our constructions. Our starting point is the following fact about “small-bias” subsets of
{0,1}" (defined below). IfA is randomly drawn from a subset of sufficiently small “bias,” @ds any
random variable with sufficient min-entropy, thedn® B is close to uniform or{0, 1}". This fact was used

to construct a nearly optimal entropically secure encryption schaielhe intuition behind our approach,
then, is simple:

If C itself is a small-bias set, then the code-offset construcsigi’) = W @ C(R) always
yields distributions close to uniform, and her€@ is entropically secure.

The problem with this intuition is that explicit constructions of codes with small bias are not known (in
particular, such codes cannot be linear, and most explicitly constructible codes are linear).

We circumvent this difficulty and construct explicéfficiententropically secure sketches. We show
that the code-offset construction can be made indistinguishable (even with linear codes) when the choice of
error-correcting code is randomized as opposed to always using the same fixed code.

Suppose that we have a family bfdimensional linear error-correcting codgs; },.; indexed by some
setl. Consider sketches of the form

S(w;i) = (i,syng, (w)) , fori « I )
or, equivalently, S(w;i,z) = (i,w ® Cy(x)), fori — I,z « {0,1}"

Below, we establish a necessary condition on the code family for the construction to leak no partial
information about the input.

1. We define a notion of “bias” fofamiliesof codes, and show that a small-bias family of codes also leads
to an entropically-secure sketch. This allows us to work with linear codes.

2. To illustrate the framework, we show that random linear codes are optimal in terms of both error-
correction and entropic security (this corresponds to reproving the “left-over hash” le2fha [

3. We construct explicit, efficiently decodable, small-bias families of codes by considering a subset of binary
images of a fixed code over a large (but constant-size) alpliabé®).

A number of interesting observations come out of our analysis. First of all, we derive a general sufficient
condition for a set ofinear functions to form a good randomness extractor; this may be of independent in-
terest. We also obtain new bounds on the average weight enumerators of “generalized” algebraic-geometric
codes.



Bias and Secrecy Thebiasof arandom variablel over{0, 1}" is a (weak) measure of “pseudo-randomness”:
it measures how closé is to fooling all statistical tests that look only at the parity of a subset of bits. For-
mally, the bias ofA with respect to a non-zero vectaris the distance between the dot productvaind A

from a fair coin flip, that is

biase(A) £ E [(—1)°®4] =2Prla@A=1] —1
The random variablel has bias) if |bias,(A)| < § for all non-zero vectors: € {0,1}". The bias of a set
C'is the bias of the uniform distribution over that set. It is known that the iépy’; A) = W & Ais a
(t, €)-extractor whenever the bias 6fis sufficiently small § < e2=(~=1)/2) e.g. B].
We generalize this to a family of sets by requiring that on average, the square of the bias with respect to
everya is low (at most?):

Definition 3. A family of random variables (or setg)A; },_; is d-biased if, for alla: # 0",

VEi_ [biasq(4;)2] < 6.

Note that this isnot equivalent, in general, to requiring that the expected bias be les$ thidrere are
two important special cases:

1. If C'is ad-biased set, thefiC'} is ad-biased set family with a single member.

Constructing codes with good minimum distance and negligible bias seems difficult. Such codes do
exist: a completely random sét of 2¢ elements will have both (1) minimum distanéewherek /n ~

(1 — ha(d/n))/2 [28] and (2) bias approximately~(v~1°7)/2 [31]. However, these codes are neither
explicitly constructed nor efficiently decodable. This raises a natural question:

Does there exist an explicitly-constructible ensemble of good codes with small bias and poly-
time encoding and decoding algorithms (ideally, codes with linear rate and minimum distance,
and negligible bias)?

To the best of our knowledge, the problem remains open.

2. Afamily of linear codes(C;},. is 6-biasedif there is no word which is often in the du@}- of a random
codeC; from the family. Specifically, the bias of a linear space with respect to a vadtoalways either

Oor1: N
. 0 if agC
biasa (Cs) —{ 1 if aeCt

Hence a family of codes i&biased if and only iPr;._;[a € C;+] < §2, for everya # 0™.

Note that for a family of linear codes to satisfy Definiti8nthe expected bias must be at méstwhile
for a single set the bias need only he

The general lemma below will allow us to prove that the randomized code-offset construction is indistin-
guishable (and hence entropically-secure).

Lemma 4 (Small Bias Families Yield Extractors). Let { A;},.; be ad-biased family of random variables
over{0,1}", withy <e- 2="% . For anyt-sourceB (independent of;) the pair(I, A; @ B) is e-close
to uniform.

The proof of Lemmat is in AppendixD.1. It is a generalization of the proof that random walks on the
hypercube converge quickly when the edge set is given by a small bias set. The basic idea is to bound the
Fourier coefficients (ovefs) of the output distribution in order to show that it is close to uniform in4he
norm.

In order to apply Lemmd we will need a family of error-correcting codes with small bias. Our con-
struction is described in the next section, and summarized here:



Lemma 5 (Good Code Families Construction).For any constand < A < 1, there exists an explicitly
constructible ensemble of code families whédficiently correct = Q(n) errors and have square bias
62 < 27,

Proof of Theorem1 We can combine this lemma and Lem#hi prove our main result, i.e. that that there
are efficient, entropically secure sketches (Theotnif ¢/n is constant, we can sat= 1 — ﬁ Picking a
sequence of code families as in LemBave obtain a secure sketch scheme which correetx2(n) errors
efficiently and is(t, ¢)-entropically secure, wheke= ¢ - 2(»~1/2+0(1) " Sinces? < 2=, the leakage is
exponentially small. O

2.2 Small-Bias Families of Linear Codes: Constructions and Lower Bounds

Inefficient Construction: Random Linear Codes An easy observation is that the family afl linear

codes of a particular dimensignis has squared bia® < 2%, although the codes are not known to be
efficiently decodable. This bias is optimal. (The extractor one gets by plugging random linear codes into
Lemmad is in fact the usual pairwise independent hashing constructiép [See AppendixC.2 for a
discussion). Random linear codes also exhibit the best known tradeoff between rate and distance for binary
codes, as they lie near the Gilbert-Varshamov bound with high probal##y [This gives us a point of
reference with which to measure other constructions.

Efficient Constructions via Random Binary Images The basic idea behind our construction is to start
from a single, fixed cod€’ over a large (but constant) alphabet, and consider a family of binary codes
obtained by converting field elements to bit strings in different ways.

Let F = GF(q), whereq = 2¢. Starting from dr/, ¥/, d|, codeC’ over F, we can construct a binary
code by taking théinary imageof C’, that is by writing down the codewords 6f using some particular
e-bit binary representation for elements f More formally, fix a basis of the fieldF over Z,, and let
bin(a) € {0, 1}¢ be the binary representation of a field elemeit the basis (the exact choice of basis does
not matter). For a vectar = (ay,...,a,) € F", letbin(a) be the concatenatiofbin(a;), ..., bin(a,/)).
Finally, letbin(C”) denote the set of binary images of the codewabig,C’) < {bin(c) : ¢ € C'}.

We can randomize the cod& by

1. Permuting they’ coordinates ofF™

2. Multiplying each coordinate of the code by some random non-zero scafgrand
3. Taking the binary image of the reslt.

These operations affect neither the dimension nor the decodabilify:ahey are invertible and preserve
Hamming distances itF™". Describing the particular operations that were applied to the code requires
O(n/logn’ + n’log(q — 1)) bits (we must describe a permutationrdfpositions and’ non-zero scalars).

When the initial code”’ is a Reed-Solomon code or an algebraic-geometric (AG) code, the family of
codes obtained as above is called a "generalized” Reed-Solomon (resp. AG) code. The bias of such a code
family can be computed from the (average) weight distribdtiointhe codes in the family. These weight
distributions have been studied befod®,[36, 45, 43, but the existing bounds do not apply to the range of
parameters relevant here. We prove a new bound based on the minimum distance of the duaC’tode of

“For the bounds stated in this abstract to hold, it is not necessary to permute the coordinates of the code—multiplying the
components by scalars provides enough randomness. Thug)6mjyrandom bits are needed to select a code from the family. As
noted at the end of the proof of Lemrigpermuting the coordinates does allow the potential of a much better bound on the bias of
the code.

5The weight distribution of a cod€ is a vector ofn integersdo, A1, ..., A,, whereA,, is the number of codewords @& with
weight exactlyw.



Lemma 6 (Random binary images).Let C’ be a linear[n/, k', d], code overF = GF(q), with ¢ = 2¢.
Let{C!} be the set ofn/, k', d], codes overF obtained by permuting the coordinates and multiplying each
coordinate by a non-zero scalar ifi. LetC; = bin(C?). Then

1. TheC; are [n, k,d]; codes withh = n’e andk = k’e. (Note that the rates/n andk’/n’ are equal).
2. If ¢’ can correctr errors in F™' efficiently, then eact; can efficiently correct errors in {0, 1}™.
3. If (C")* has minimum distancé, , then the average square bias{af; } is

6% = Prla € CHV < 1/(qg — 1)%+1,
aE{O,r{l}%i(a;ﬁon{ ir[a ( ]} <1/(q )

Note that in the last statement, the dual c¢d8) is taken with respect to the dot product#t’, while the
dual codeC;- is taken with respect to the dot product{if, 1}".

Finally, applying this lemma to algebraic-geometric codes yields the following lemma, which implies
Lemmab. The proofs of both Lemm@and Lemma/ may be found in Appendi.

Lemma 7 (Good Code Families Construction).For any constan® < R < 1, and anyg = 22* wherek is
an integerk > 2, there exists an explicitly constructible ensemble of code families efficiently correct
7 errors and have square biag where:

102(}(1_3_\/61_1) and 1og(};)z”2R<1_RWq}_l)> (1_;o§q1)

3 Application: Noise Tolerance and “Everlasting Security”

T >

In this section we resolve the main open questionl@}:[ we show that there is a noise-tolerant “locally
computable extractor” which allows its key to be reused many times.

Bounded Storage Model (BSM). We first briefly recall the basics of the bounded storage mazi@! [
Alice and Bob share a short, “long-term” secret K€y A sequence of huge random strings, X, .. .°
is broadcast to both of them. Alice and Bob then apply a deterministic fungjoto derive relatively
short one-time pad®; = fx(X;). Traditionally, there are two main considerations in the bounded storage
model: efficiency andeverlasting security Efficiency means that thaty depends on a few bits of the
sourceX;, and these bits can be easily determined from the long-ternkkalone. Concretely, for typical
setting of parameters we usually want this number of bits to be linear in the length of the extracted one-time
pad R;, and perhaps polylogarithmic in the lengthof the sourceX;. Security means that as long as the
adversary does not know the secret K€yand cannot store each sout&e in “its entirety”, the one-time
padsR; are statistically close to uniform, even if the adversary later gets the long-term secr&t kay
bit more formally (see44] for a complete definition), if the adversary is allowed to adaptively choose a
storage functiory; : {0,1}" — {0,1}"", wherey < 1is a fixed constant, if = (g;(X1),...,9:(X;), K)
denotes all the data available to the adversary, the joint distributioh &f; . .. R;) is t2-N)_close to the
distribution(I, U; ... U), whereU, are independent, truly uniform keys of the same lengtRas

The BSM has received a lot of attention recently (SE® 44, 26] and references therein). The current
technique for achieving everlasting securi6[44] in this model is the “sample-then-extract” approach.
The high-level idea sufficient for our purposes is to h@eonsist of two keysK; and K., where K
is used to obliviously sample a small potidf{ of the bits of X;, and thenk, is used as a key for a
strong randomness extract@3]. Using optimal parameter settings, one can achieve a total key of size
O(log N +log (1)).

®More generally, it is sufficient that eacty; has high min-entropy conditioned on the ottr for j # i.
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Error-Correction in BSM.  Recently Ding 13] considered the problem of the error-correction in the
bounded storage model, where it is assumed that Bob will not necessarily receive the sam¥;stiing
Alice, but instead will receive somg; which is guaranteed (or expected) to be clos&ton the Hamming
distance. Ding proposed the following simple idea to overcome such errors, which we first describe for a
single sample (i.es, = 1). After receiving the sourc&X and sampling the substring® (using K;), Alice

will simply send to Bob — over a public channel — the striRg= syn(X*), whereC' is a good error-
correcting codé. Bob will sample the string{® which is going to be close t&* (due to the properties of

the sampler), which means that he can recovéfrom P and X ¢, after which he can usk, to extract the

final randomnesg.

It is easy to see that this idea works fo= 1 and might initially appear to work for arbitrary number
of repetitionst. However, Ding pointed out the following subtle problem. The value.(X?®) leaks
some information abouX #, which in turn could conceivably leak information about the long-term Key
since X, depends orKs. But now the security in the BSM model crucically assumes that thefkeis
independentrom the source. Now, leaking; conceivably leaks information abo#i, which in principle
means that the attacker can choose the storage fungtias if it depends ork;. But this means that the
conditional distribution ofXs given g»(X2) canno longer be argued independent from the sampling key
K. And this means that the analysis does not go through.

Ding addressed this problem by making Alice and Bob synchronized and stateful. Specifically, after
each communication they not only extract a fresh one-timepadut also refresh thiong-term keyk
(specifically, K must be replaced). While Ding showed that this solution achieves very good parameters, it
obviously creates a lot of inconvenience for the sender and the receiver.

Our Contribution.  Using our technique, we resolve the main open probleml8f [ Specifically, our
construction gives a family of codd€”; } with the property that a syndrome of a randomly selected code is

a strong randomness extractor, provided that the input distribution has enough min-entropy. Specifically, we
have that the following distributions are statistically cloBeig the uniform distribution):

(i,sync, (W) = (i, U) (3)

where in caseW| = n andH. (W) = t = Q(n), we can have codes correctififn) errors and the
residual min-entropy oWV given (i, syns, (W)) is t' = Q(n). Moreover, the length of the code indéjs
O(n).

Now, instead of sending Bob a fixed syndrome of the sampled saoXif¢ceAlice will additionally
share with Bob the random indexof the codeC;, and will send Bob the valugyn. (X°). It is easy
to see that our modification resolves the reusability probleml8f, [We give brief reasoning here (be-
low “high” denotesQ2(n), wheren is the length ofX*). Indeed, by the property of averaging samplers,
proved in B4, 33, the joint distribution of(¢(X), K5, X*) is statistically close tdg(X), Ks,Y), where
Y |k,—a,9(x)=5 Nas high min-entropy, for every settingafb. By Equation3 and the fact that the syndrome
length is shorter than the residual min-entropyXof given g(X) and K, this means that the distribution
(9(X), Ks,i,sync, (X?), X?) is statistically close tdg(X), K, ,sync, (X?), Z), whereZ has high min-
entropy given any setting for the other variables. Finally, the properties of the strong exBac¢torean that
(9(X), Ks,i,sync, (X?), Ke, R = Extg, (X?)) is statistically close tdg(X), K, i,sync, (X?), Ke, U,
whereU is a truly uniform string of lengtlf2(n). This shows “one-time” security. Now, given that the
above “one-time” indistinguishability holds even conditioned on the samplingfkgythe multiple time
security of this locally computable extractor holds using the standard hybrid argument, much like for the
error-free case ofZ6, 44]. In contrast, the argument of Ding could not condition of the sampling key
K, since the syndrome could in fact reveal some information abQutwhich forced him to update the
“compromised” value of<; with part of the freshly extracted kdy, leading to the stateful construction.

"More precisely, if the adversary is allowed to corrégtaction of the bit inX, C should be able to correct slightly more than
o-fraction of errors.



This construction achieves similar parameters to those of Ding — arbitrary high storage thresho|d
linear fraction of corrected errors, up to linear number of extracted/lits previous notation{ = Q(n),
which in principle could be as high &¥(V)), small number of sampled bits = O(¢). There are two
significant differences. First, the long-term key now has to include the indéthe code, which in our
construction is9(n) = ©(¢). This could be considerably larger than log N + log (1))-key size
achieved in13], but it is still sublinear in N, and moderate enough to be stored. For example, in applications
when the extracted string is a 128-bit key to a computationally secure cipher, this value-6f128 is of
the same order dsg N + log (%) A second drawback is that the sketches constructed in this paper do not
tolerate as many errors for a given level of entropy loss as do sketches without the requirement of entropic
security. Finally, we remark that the linear key length in the number of extracted bits of our construction is
asymptotically similar to the well known leftover hash lemma, which gives a more than sufficient extractor
for most cryptographic applications, while our construction additionally supports error correction.
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A Background on Coding and Information Theory

This appendix provides the notation and basic concepts from information theory that we use in the text. We
assume that most readers are familiar with these concepts, but we have tried to state all the facts we will
need explicitly.

We use capital letters (e.gl) to refer to both random variables and the distributions from which they are
drawn, and lower case letters to denote particular values which the variables may take on. The expression
a «— A denotes that is sampled according to the distribution (r\Wy. If S is a set,a < S denotes
drawingz from the uniform distribution oi%. We sometimes also u$g, to denote the uniform distribution
on{0,1}". If A(x;r) is a randomized algorithm with random inp&{ we will sometimes usel(x) to
denote the distribution on outputs whers drawn uniformly at randoniZ [A] denotes the expectation of a
real-valued random variable aMdr [A], its variance.

Thestatistical differencéetween two probability distribution$ and B on the same space$D (A, B) e
>, | Pr[A = v] — Pr[B = v]| (that is, half theL; distance between the probability mass functions). The
collision probabilityof X is Col(X) £ > Pr[X = z]2. If X € S, andCol(X) < (1 + 2¢2)/|S|, then
SD (X,U) < ¢, whereU is uniform overs.
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The main measure of entropy we usammm-entropy defined as the negative log of the probability of
predicting a random variabl& a priori, that isH.(A) £ _ log max, Pr[A = a] (all logarithms are
base 2 by default)A is called at-source ifH.,(A) > ¢. The conditional min-entropy ofl given B is
Hoo(A | B) £ —log(Ey_p [27H=(AIB=0)]). (NB: This definition is not standard but very convenient.)
We will use two properties: (1) iB € {0,1}¢ thenH, (A4 | B) < H,(A) — ¢ and (2) for anyA, B, the
eventH.(A | B =b) > Ho(A | B) —log (1) occurs with probability at leadt— ¢ overb « B.

We will also use th&hannon entropgf a distribution, defined &, (A) £ > . Pr[A = a]log m.
def

The conditional entropy ofl given B is Hy, (A | B) = E, [Hsn(A | B =b)]. The mutual information

def

betweend and B is the entropy loss il when givenB: I(A; B) = Hg,(A) — Hg, (A|B).

Randomness Extractors An extractor is a function which takes as input some imperfect source of ran-
domness (the various bits of which may be biased or correlated) and a short truly random “seed”, and
produces as output something close to uniformly random string.

Definition 4. Ext : {0,1}" x {0,1}* — {0,1}**+¢ is a strong (¥, ¢)-extractor if for all min-entropyt’
distributions X, the outputExt(X; Uy) is e-far from Uy4,. A strongextractor has output of the form
Ext(z;r) = r, Ext’(z;r) whereExt’ outputs? bits.

The difference’ — (¢ + k) is theentropy losof the extractor. The number of truly random bitss the
seed length of the extractor. Much research has been devoted to improving these parameters in extractors.
The easiest construction of strong extractors is given by the “left-over hash” lemma, also called the “privacy
amplification” lemma 18, 20, 4]. A family of functions {h;},.; from n bits to/ bits is (pairwise) XOR-
independenif the eventh;(z) + h;(y) = z occurs with probabilit2— wheni is chosen uniformly front,
for any choice ofr,y € {0,1}" andz € {0, 1}*.

Lemma 8 (Left-over hash/ priv. amp.). If {h;}, . is a family of XOR-independent functions frarbits to

¢ bits, thenExt(z; i) = h;(z) is a strong(t, e)-extractor whenever > ¢ + 2log (1) + 1.

Distance and Error-Correcting Codes Many of the ideas discussed in this paper extend to correcting
errors in almost any metric space. For simplicity, we will work mostly over the Hamming fuag ",
wheredist(z, y) is the number of bits in which stringsandy differ. We also use the Hamming metric over
larger alphabets such &g§" where[q] = 1,...,¢q, ¢ is a power of 2, and Hamming distance is the number
of symbols in[g] in which two strings differ. We will associafe] with the fieldGF'(¢). The weightwt(w)

of awordw € GF(q)™ is the number of positions in which it is non-zero, thafiszy = wt(z — y).

A [n, k,d|,-code is a linear subspace 6f C F = GF(q)" of dimensionk, such that every pair of
stringsz,y € C is at distance at least Such a code can correct any= [dglj errors in a codeword
unambiguously. LeH € F("—k)*" he a matrix whose kernel (null space) is exa¢tlyThe syndrome with
respect taC' is syn.(z) = Hzx. Thesyndromeof a codeword i€~ *, and for any wordr, the syndrome
of x depends only on the subset of bits in whickliffers from the nearest codewoedif x = ¢ @ ¢, then
syno(z) = synq(e). A linear code can correct anyerrors efficiently if and only if there is an algorithm
which efficiently computes from syn(e) whenevervt(e) < 7.

B Alternative Error Models

The error model in the definition of secure sketches above is very restrictive: we require that the sketch
correctany  errors with probability 1. We made this choice for simplicity, since such a strong require-
ment will be sufficient in any application. However, for some applications one can get substantially better
performance by considering less stringent error models.
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The main relaxation is to require that error-correction occur only with high probability. There are several
variants on the problem at that point. Perhaps the most subtle issue is that in some situations (such as
biometric authentication), the errors introduced:inby the adversary may somehow depend on the sketch
S(w). In contrast, the set-up of the introduction implicitly suggests that the erraig are decided on
ahead of time, non-adaptively. This ambiguity is not a problem in our model since we require correction
with probability 1. However, it can be a problem in general. Another issue is whether or not the errors are
introduced by a computationally bounded process (see, 8@ fof techniques to exploit such bounds).

The ideas and techniques of this paper can be extended to yield better performance in these relaxed error
models; we do not discuss those extensions in the paper. A very partial discussion may be found in Smith’s
thesis f1].

C Context: Lower Bounds on Secure Sketches and Small-Bias Families

This section describes lower bounds (some old, some new) on the parameters achievable by secure sketches:
this provides some useful context for understanding the parameters achieved by our constructions. The
bounds relating to distance are specific to the stringent error model we consider here (see ABpendix
Bounds for high-probability error correction will look more like the Shannon bounds on channel capacity;
we do not discuss the various distinctions here since they do not really shed light on our focus, which is
entropic security.
1. Min-Entropy Loss 14]: Let d*(n, k) be the minimum distance of the best binarpit block code with

2k codewords. It = n (i.e. W is uniform), then any secure sketch correcting: | (d* — 1)/2] errors

has residual entropy at mast> k (i.e. entropy loss at least— k).

2. Shannon Entropy Loss’. Whenr = Q(n), the drop in Shannon entropltWW; S(W)), is at least
nhy ' (7/n), wherehy() is the binary entropy function.

The first bound above gives a (nearly) complete picture of the performance of sketches for the Hamming
metric with respect to entropy loss (the bound is matched by the code-offset construction above); we will
use the bound as a benchmark for comparisons.

C.1 Bounds on Entropic Security

Next, we can relate entropic security to the residual enttbpfa sketch (this is the minimum (fioo(W |
S(W)) over allt-sourcedV). First, it is easy to prove that the leakagef a (¢, €) secure sketch will always
be at leasp~* — 2~ (Proposition10).

We can in fact get a better bound for a large class of canonical schemes. Recdl|)that(¢, ¢)
entropically secure only if(1W) is always4e-close to some particular “target” distribution whéh is a
(t — 1)-source (Facp). In the special case where the “target” distribution is unifofft),is a(t — 1, 4e¢)-
extractorin the sensed3]. We can then apply:

Fact 9 (Radakrishanan and Ta-Shma, 84]). SupposeS(W) is a (¢, €)-extractor. IfS() usesr random
coins as extra input, and always outpitsits, then2 log (%) <t—Ll+r.

In all the schemes we discuss, the sketch will in fact be an extractor and the residual entropy will satisfy
t' =t — {+ r. For these schemes, the bound above impliesahat2=*/2 (i.e. ' > 2log (1)). We
conjecture that this bound actually holds for all entropically secure sketches. For now, we only have the
weaker bound:

Proposition 10. If a (¢, ', 7)-secure sketch ig, €)-entropically secure, thea> 2~ — 27t ~ 2V,

Proof. Consider the functioff(w) = w, and any sourc#” with min-entropy exactly. The best adversary’s
expected probability of guessing after seeingS (W) is exactly2~H(WIS(W)) " without S(W), it is
2-He(W) — 9=t By entropic securityg > 2~ Hoe(WISW)) _ 9-Hoo (W) - o=t _ 9t O

14



C.2 Bounds on Small-Bias Code Families

In this section, we explore some consequences of Ledmi& applied to a family of linear codes with
sufficiently small bias, Lemma shows that the sketchi(w; i) = 4,synq. (w) is a strong extractor.

How close to optimality is this extractor? Entropy loss is defined slightly differently for extractors and
secure sketches. For the code offset construction, the entropy-loss-as-extraetds is n wherek is the
dimension of the code. By a lower bound of Radakrishnan and Ta-Sb#hédescribed in AppendixC),
the entropy loss of an extractor is at leasbg (1) — O(1). In our context, this yields the boursd >
on—t—k=0(1).9-n+t — 9-k=O(1) \We can conclude both that the average square bias is boundedHy*)
and that codes which match this bound yield nearly optimal extractors.

Code families with optimal bias do exist (the set of all linear codes is an example, and in that case
Lemma4 reduces to the left-over hash lemnid)]). However, these codes are not efficiently decodable.
We do not know constructions of efficiently decodable families of codes with minimal bias, although the
constructions in terms of algebraic geometric codes can get th@ﬂa@d%) /k arbitrarily close to 1.

D Proofs from the Main Construction

D.1 Proof of Secrecy for Small-Bias Families

Proof of Lemmat. The proof uses elementary Fourier analysis over the hypet€fib&he intuition comes
from the proof that Cayley graphs based«biased spaces are good expanders: addinpiased family
of random variables t@ will cause all the Fourier coefficients @f to be reduced by a factor éf which
implies thatthe collision probabilityof B (see below) gets multiplied byalso.

Let D; be the distribution4; & B. Recall that for any probability distributio® on a set of sizdy, if
Col(D) < (1 + €%)/K, thenD is within statistical distance of the uniform distribution (see, e.g2().
Hence to prove the theorem it is sufficient to show that the collision probability qfafreD = (i, D;) =

(i, A; + B) is bounded above b&‘EﬁTf)
Claim: Col(D) = 7 Ei—z [Col(D;)].
Proof. We can write out the probability of a collision (here prifdenotes an independent copy):

Pr((I,Dy) = (I', D] = Y Pr[I = I' =] Px[D; = D]

7

L Col(D;), as desired. O

Factoring outy;, we getCol(D) = i 3,

To boundCol(D), we need only bound the average collision probability’pf To do so, we use a
standard fact from Fourier analysis over the hypercube:

Fact 11. For any distributionD; on {0,1}", the collision probabilityCol(D;) is given by the sum of the
squared biases db; with respect to all possible vectors:

Col(D Z biasa(D;)* = — —|— — Z bias, (D

aE{O 1}n a#0

SinceD; = A; ® B (that is, the distribution oD, is the convolution of4; and B), we can compute the
bias of D; as a product of the biases df and B:

biase(D;) = E[(,l)a(D(Ai@B)]

) [(_1)@(&)} E [(—1)°®5] = bias(A;)biass(B).
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We now want to bound the bias &f;. We don’t know how this bias will behave for particular values of
i, but we can use the fact that; } is 6-biased family to bound thaveragesquared bias:

E; [biasa(D;)?] < E; [biasq(A;)?] biase(B)? < §*biasq (B)>.

Finally, we can combine these bounds:

. 1 .
Col(D) = LE; [QL &Y blasa(Di)ﬂ = F 5* 3" biasa(B)?)
a#0 a#0
Col(Dy)

By the fact above, the sum of squared biase® @ at most2™Col(B). Since the min-entropy aB is
at leastt, its collision probability is at mos2—*, and we get the boundol(D) < \Zl%(l + §227tt1), By

hypothesis§ < €2~ ("+1)/2 which implies the desired bour@bl(D) < m%(l + €2). 0

D.2 Analysis of Random Binary Images

Proof of Lemmab. (1),(2): The first two statements are straightforward since the multiplication by non-zero
scalars in one component and permutations of positions are easily invertible isomeffes of
(3): There are really two separate stages to proving this statement. In the first stage, we have to relate
the dual of ag-ary code to the dual of a binary code. Second, we will bound the bias of-#ng codes
{cl.
To clarify the notion of “dual” code, leb, denote binary inner product di, 1}", and let® + denote
the standard inner product &’ . The duals of the codes; C {0, 1}™ are defined with respect to the binary
inner product, while the duals of the/ ¢ F™ are defined w.r.t. the dot product o\&F':
Ct = {ye{0,1}" : yoosz =0 (Vz € Cy)}

)

CHr = {y eFV .y ora’ =05 (Va'y € C))}

For the rest of the proof, fix some € {0,1}", and leta’ be the corresponding vector j&", that is
a = bin(a’). The statement to be proved follows from two claims:

Claim 1: For allo € {0,1}", there exists’ € F" s.t. Pr;[a € Ci] = Pry[a’ € (C!)1].
Claim 2: For allo/ € F"', we have:Pr;[o/ € (C/)*] < 1/(q—1)%~1,

Proof of Claim 1. The first claim is mostly a careful unwinding of the definitions. We will use the trace
function Tr: F — {0,1}. The exact definition of the trace is not important here (see, &8j). [All we
require is that the trace is linear, i.e.(dr-b) = Tr(a)+Tr(b), and not identitically zero. Tub) is a bilinear
map fromF x F to {0,1}, and so there exists an invertible linear transformafion {0,1}¢ — {0,1}¢
such that for all scalars, b € F, we haveB(bin(a)) ®2 bin(b) = Tr(ab).

Fix o € {0,1}". We can choose the unique vectdiin F" such thaty is the concatenation of thebit
vectorsB(bin(c})). Then for any vector’ € F™', we have:

a @9 bin(z") = Tr(a/ ©F 2)

Sub-Claim:« is in C;- if and only if o/ is in (C])*.

One direction of the sub-claim is easy: suppe$ec (C!)*. Then for any vector € C;, we have
a@ez = Tr(a/ ©#bin~!(z)). Now the image of: in ™' is in C/, and so Tt/ ® £bin~(z)) = Tr(0£) = 0.
In the other direction (of the sub-claim), suppose that C;-. Suppose, to get a contradiction, that there
is somex’ € C! such thate! ©r 2’ # 0z. Then there exists some non-zero scalag F, such that
0 # Tr(b(a ©F 2’)) = Tr(e/ @F (bx')) = a ®2 bin(ba’). But the vectoz’ is in C/ sinceC! is a linear
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code, and so the inner product of its binary image witehould be 0. Thus, we get a contradiction and
conclude that’ € (C!)+, completing the proof of the sub-claim.
Based on the sub-claim, we can conclude thafa € Ci] = Pr;[o/ € (C))4]. O

Proof of Claim 2. The main observation behind this proof is that the randomization operations we use be-
have nicely in the dual space. Permuting the coordinates of thebiteluces the same permutation on

the coordinates of’. Similarly, if we multiply then’ coordinates by non-zero scalass..., b,, € F, then

we multiply the dual code by the inverséjsl, ...,by L. Thus we get the same family gfary codes”! by
applying the randomization procedure to the dual instead of the primal code.

Now fix some vectory € F™'. By symmetry, we can imagine that the randomizing operation is applied
to the target wordy’ instead of to the code itselfhis mapsy’ to a random word inF™ of the same weight
asc’. The probability that this hits a codeword is exactly the fraction of words of a given weigttiich
are in the code. We call the set of words/tt with weight exactlyw the w-slice. To complete the proof,
we need only prove the following:

Sub-Claim (Singleton bound for constant weight codd=)r any code ovelF = GF(q) of minimum
distanced  , the fraction of codewords in any slice 8" is bounded above by — 1)/(q — 1)%* (except
for the trivial slice{0" }).

To prove the sub-claim, fix some weight< w < n/. We can patrtition the slice of weight according
to whichw positions in a word are non-zero. Each of these partitions can further be subidivided into pieces
where all butd | of the non-zero values are fixed, i.e. sets of the form

( 0,...,0 ,bl,...,bw_dL7 *,...,*),

n—w times non-zero scalarsd_ times

up to permutation of coordinates, wherenay take any non-zero value.

Now within any such piece, there can be at mgst 1 codewords (since the codewords must differ
in d, positions). There arg; — 1)?- words in the piece, and so overall the fraction of codewords in any
constant-weight slice is at mogt — 1)4+ 1. O

This completes the proof of Lemn@a O

Remark D.1. The key piece of the proof above is a bound on the number of codewords of a given weight,
based only on the minimum distance of the code. This corresponds to bounding the size of a “constant
weight” code. The bound we give is the analogue of the Singleton bound. It is tight in some cases, such
as for Reed-Solomon codes. However, it is quite loose in cases where the alphabet size is small (in that
case, there are other much better bounds on constant weight dpd#sq sufficient for our purpose: we

are mainly interested in proving that reasonable families of codes exist (rather than trying to optimize the
parameters).

D.3 Constructions of Small-Bias Families from Specific Codes

We can now use Lemn&to construct small-bias families from known code families.

Warm-up: Reed-Solomon-Based Constructions Reed-Solomon (RS) codes are a class of efficiently-
decodabldr’, k', d], linear codes over a large alphabet:= 2° must be at least. They have distance
d =n' — k' + 1 and, because the dual of a Reed-Solomon code is another Reed-Solomon code, they have
dual distancel; = k' + 1 (see, e,g.,34]).

Consider the family{C;} of binary images of a fixed RS cod&. By Lemmas, the probability that a
non-zero word: lies in the dual is at mos = (¢ — 1)~ +! = (4 —1)~*. Sincek < gand(1 —1/¢)? >
1/3, we can in fact writey? < 3¢~¥ = 3.27%. Thus, binary images of RS codes (often called “generalized
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Reed-Solomon codes”) have optimal bidsg (%) = k/2 — O(1), as with random linear codes, matching
the lower bound (see Appendix 2).

Unfortunately, the conversion to a binary alphabet increases the code length and dimension without
increasing the distance. Thus, these codes are only guaranteed to corregt}—oéébnoetrors. Nevertheless,
for large alphabetsthese codes do very well. That is, if the metric in which we care about error-correction
for the sketch is Hamming distance @F(q)”', then we get as good a secure sketch as possible, with as
small a bias as possible.

Proposition 12 (RS-based Families for Large Alphabets)For all & < n < ¢ = 2¢, there exists a family
{C;} of [n, k, d], linear codes folg > n with biasé < 9—k/2+1 correctingr > ”T*’“ errors efficiently.

Algebraic-Geometric Constructions We now turn to our main construction. Our starting point is a con-
struction of “algebraic-geometric” (AG). We get binary codes with exponentially small bias and linear min-
imum distance. We will need the following fact:

[Algebraic-geometric codes, se4”] Let ¢ > 4 be an even power of a prime,> 16. There
exists an infinite ensemble pf’, &', d], linear codes”” (over GF'(16)) with minimum distance
atleastd = n' — k' — \/371 and dual minimum distaneé > &' — \/271 Moreover, these codes
have efficient algorithms for decoding up|t@l — 1)/2]| errors.

This follows from well-known bounds on algebraic-geometric codes (see, €2.sgction 11.2). The
main fact we need is that the dual of an AG code is an AG code for the same curve, and the distance of an
AG code is bounded below by — k£ + 1 — g, whereg is the genus of the underlying curve. For infinitely
manyn, there exist curves over F'(16) with »’ points and genus at most/3.

We can now prove Lemmasand5, which we restate here in a single statement.

Lemma 13 (Good Code Families Construction).For any constant < A\ < 1, there exists an explicitly
constructible ensemble of code families whétficiently correct™ = Q(n) errors and have square bias
62 < 27", More specifically, for any constarit € [0, 1], any even power of two, for inifinitely many
there is a family of binary codes which can efficiently correetrors and have bias, where:

n (1 1 )
log g Va—1
and

w0 = o mime) -2)

In fact, the codes can be made arbitrarily close to optimal, at some cost in error-correction. That is, for
any~ > 0, we can havéog (%) > k/2(1 — ~) and still correct a linear number of errors.

Proof. Suppose thaR > 1/2 (this is the interesting case, since it corresponds to small entropy loss; the case
R < 1/2is similar). Letq be any (constant) even power of two. By the facts above on AG codes, there exist
[, k', d], codes with raté’ /n’ = R, minimum distance at leagt= n'(1 — R — \/(7171) >n/(1-R)/2,
and dual distancé, > n/(R — \/51_1) >n/(3R —1)/2.

We can now apply Lemma@ to get a family of codes which correet(binary) errors and have bids
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where:

= () (55

= 2 (men) (37)

By choosingg to be large enough (but constant), we get codes with constant error-correction rate and expo-
nentially small bias, as desired. In fact, we canlggt(%) > %n(R — ~) for any~y > 0, and still correct

a linear number of errors. Let be any positive constant less than 1. Settihg= 1 — (1 — \)/2, and

v = (1-X)/2, we getlog (5) > 1An, as desired. O

E Application: Secrecy for Fuzzy Extractors

Fuzzy extractors were introduced Y] to cope with keys derived from biometrics and other noisy measure-
ments. In this section we show that for fuzzy extractors, as for secure sketches, leaking Shannon information
is unavoidable. We also show that the straightforward construction of fuzzy extractors from secure sketches,
which extracts a key froml/ using a pairwise independent hash function, preserves entropic security.

Definition 5 ([14]). An(t, ¢, T, €) fuzzy extractolis a given by two procedurd§en, Rep).

1. Gen is a probabilistic generation procedure, which on inpute M outputs an “extracted” string
R € {0,1}¢ and a public stringP. We require that for any distributioli” on M of min-entropyt, if
(R, P) < Gen(W), then we hav8D ((R, P), (U, P)) <.

2. Rep is a deterministic reproduction procedure which allows one to recé&om the corresponding
public string P and any vector’ close tow: for all w,w’ € M satisfyingdist(w,w’) < 7, if
(R, P) «— Gen(w), then we hav®ep(w’, P) = R.

The fuzzy extractor isfficientif Gen andRep run in time polynomial in the representation size of a point in
M.

A Simple Construction Recall that for secure sketches, we required ¥hdl’) = S(WW) be entropically
secure. For fuzzy extractors, we will in fact require thatplagr Y (W) = (P, Z) satisfy the definition of
security. This is somewhat counter-intuitive: we thinkiéfas being published and as being used as a
secret key in some other application. However, we cannot guarantee that no informatior¥ akitibe
leaked in the other application (indeed/ifis used to encrypt a known string it may be leaked completely).
Requiring that the paitP, Z) be entropically secure protects against arbitrary information being revealed
aboutZ.

Nevertheless, if we consider fuzzy extractors built from a sketch scheme and a hash familyi@s in [
then the requirement thak, P) be entropically secure reduces to the requirementtidt) be entropically
secure. The following lemma follows from a standard hybrid argument:

Lemma 14. Suppose tha$' is a secure sketch with entropy lass ¢/, and H is drawn from a 2-universal
hash family fromn bits to#’ — 2log (1) bits. LetP = (H, S(W)) andZ = H(W) (as in [14]).

If Y1(W) = S(W)is (¢, e)-indistinguishable, thei> (W) = (P, Z) is (¢, 2¢)-indistinguishable.

Hence, it is sufficient to build secure sketch schemes which are entropically secure—the resulting fuzzy
extractors will inherit the property.
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E.1 A Bound on Loss of Shannon Information

The argument that secure sketches must leak a lot of Shannon information, i.d(Wha(1/)) must
be high follows the lines of Shannon’s noisy coding theorem, and is quite simple given the language of
information theory.

The argument that fuzzy extractors must also leak a certain amount of Shannon information about their
inputs is much more delicate. For simplicity, we restrict our attention to the uniform distribution, which is a
valid min-entropyt distribution for anyt.®

The simplest consequence to take away from the result (Propo&#idoelow) is that as soon as the
number of errors to be tolerated becomes large (sgx), then the public part of the fuzzy extractor leaks
Q(n) bits of information about the secret input.

The proof uses the isoperimetric inequality on the hyperdibe}™ (see B], theorem 16.6), so we first
introduce some notation. Given a $e€ {0, 1}" and anumber, we letOut.(S) = {y | Jw € Ss.t.|lw —y| < 7}
be ther-th shadowof S, i.e. the set of points of distance at medrom some point inS. Then the isoperi-
metric inequality states that balls have the smallest outshadows, forevehys allows one to lower bound
|Out,(S)] in terms of|S|. Since we want to find a closed expression boundig (W | P) above, we
will only use the following corollary of the isoperimetric inequality. Hérgis the binary entropy function,

ha(p) = plog(3) — (1 — p) log(115).

Fact 15. For every setS C {0, 1}" such that Out.(S)| < 2"~!, we have

TL/Q—T—I n
S| < A; - [Out,(S)], where A < 2202”1() < 27h2(=3)-1) (4)

In particular, whenr = Q(,/n), the ratio is exponentially small, i.ed, = 2=,

Proposition 16. AssumgGen, Rep) is a (n,t, ¢, 7, €) fuzzy extractor, and let the output of the generation
algorithm Gen(W) be P, Z, where P is the public part andZ, the extracted key. Then for the uniform
distributionW" < {0, 1}", we have

iy vs (1) nans 0w (3 1)

wherea; is as in Factl5s. If 7 = Q(y/n), ¢ = w(1) ande = o(1), then we can use the bounds dn to
concludeP revealsQ2(n) bits of information aboutV'.

SinceH.. (W | P) < H,,(W | P), the result also implies that average min-entropyiofs reduced.

Proof. SincelW and P determineZ, we have
H,, (W |P)=HgW,Z|P)=Hy(Z | P)+Hy (W | Z,P).

We will bound each of the two last terms separately. We begin Hifh(Z|P). Letg(x) = —zlogz.
Recall that the Shannon entropy of a distribution with probabilitigs.., ¢z, is >, g(¢;). We'll use a
simple approximation, which can be derived by computing the derivatiyé)offor § > 0, g(27¢ + 6) <
g(27) + 46,

We expect the distribution of the paif conditioned on most valugsof P to be essentially uniform
over{0, 1}*. In order to manipulate the small deviations from uniformity, we let

pr = max[Pr(Z =7 | P=p) —27% 0].

8Even though our technique works for more general distributions, the particular bounds we get do not appear to be much
stronger, while the exact estimates become intractable.
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SinceSD ((Z, P), (U, P)) < ¢, we have)_ , . 6, < e. Now, we can upper bourld,,(Z | P) as follows:
H.,(Z | P) =) Pr(P=p)Hu(Z| P =p)

= Y Pr(P=p)> gPr(Z=r|P=p)<Y Pr(P=p)> g2+,

P r
< Y P(P=pY (g(z—f) + eap,r) <0+ Pr(P=p)Y 6,
< Efl +¢€) '

Next, givenp andr, denote byS,, , the set ofw for which Rep(w, p) = r. Note that

Hy(W|P =p,Z =r) < log|Sy,|.

We wish to bound the size of the s&fg,. To do so, lel},, = Out,(S),,) be ther-th shadow ofS), ,..
For anyrg # r1, their 7-th shadows must be disjoint (Why? «f € T}, ,, N T}, ,,, then error correction
property of fuzzy extractors would imply th&ep(w’, p) is equal to bothy andry, which is impossible.)
This allows us to use the following lemma:

Claim 17. For any 2 subsetsSy, ..., Sy of {0,117, if the 7-th shadowsOut,(S;) are mutually disjoint,
then the product of the sizes is bounded above:

log(J [ 15il) < n +2"(log(Ar) +n = ¢) 5)

We will prove the claim below. For now, we can boulHd,, (W | P, Z):
H,, (W |P,7Z)
= Y Pr(P=p)) Pr(Z=r|P=pHuW |P=pZ=r)
P T

< Z Pr(P = p) 2(24 + 0p,r) log |Sp.r|
I3

0 S PrP = (500 4 2 S Pr(P = p) o (n s ,r|)

The first of the terms in the last equation is at mgsince the probabilitieBr[ P = p] are each bounded
by 1, and the SU”ZW dp,r is at moste. To bound the second term, we can apply the claim, once for each
value ofp, to the collection{:5, -}, 1

IA

H,,(W|P, Z) < en+27") Pr[P = p|(n+2‘(log(A,;) + n — ()
p
=n—0+1log(A;) +n(2 " +€)

Combining the bounds fdd,(Z | P) andHg, (W | P, Z), and replacing: with H, (W), completes
the proof. We geH,,(W|P) < Hy, (W) +log(A,) +n2~! + ¢(n +£), which implies the main statement.
O
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Proof of Claim17. By hypothesis, the-th shadowsDut,(S;) are all disjoint, and hence at most one of
them can have more tha¥t—! points. For all the remaining sets, we hage| < A,|Out,(S;)|. For the
one “exceptional” sef. of large size, we can bouridg |S;.| by n. Thus

2t

log(] [ 1Sil) < n+ log(A2' [ 10ut-(S:)]) = n+ 2°log(A-) + log(H |Out,(S;))).

i=1 7

The setDut,(S;) are all disjoint, and so their sizes sum to at njstif one ha2! numbers:; whose

sum is less thaf™, their product is maximized by setting al) to 2”—*. This gives uslog(l_[fi1 1S;i]) <
n + 21og(A,) + 2¢log(2"*), as desired. O

F Application: Perfectly One-Way Hash Functions

“Perfectly one-way” hash functions (POWFs) were introduced by Cargjtto[attempt the formalize the
common intuition that cryptographic hash functions reveal very little about their input. We will adopt
the somewhat simplified version of the definition used in the subsequent paper of Canetti, Micciancio and
Reingold [LQ]; see P, 10] a discussion of the differences.

Informally, POWFs areandomizechash functionsv — H (w; R) which satisfy two properties, First,
givenw andy, one can verify thay = H(w;r) for some value of the randomness This means that
a computationally bounded adversary cannot produce augai w which would pass the same test.
Second, ifR is random, therf! (w; R) reveals “no information” aboub. The intuition that the hash leaks
no information about the input was formalized 0] using entropic security. Our results apply in two
different ways:

Noise Tolerance We show how to construct “fuzzy”—that is, noise-resilient—perfect hash functions. The
hash value forw allows one to verify whether a candidate strimgjis close tow, but reveals nothing else
aboutw. This is a significant departure from the approach of Caeétl. The motivation behingo, 10]
was to formalize the properties of an ideal “random oracle” which might be achievable by a real computer
program. In contrast, even given a random oracle, it is not at all clear how to conspumtimity oracle
for a particular valuew (i.e. an oracle that accepts an input if and only if it is sufficiently close)to

In that sense, the result is also aboatle obfuscationnoise-resilient POWFs might best be viewed as
weakly obfuscated versions of a proximity oracle. This is all the more interesting since strong obfuscation
is not possible, se€].

Improved Construction We strengthen the results df(Q] on information-theoretically-secure POWF's.

We reduce the assumptions necessary for security: Canetti, Micciancio and Reihgoas$ume the
existence of a collision-resistant hash function with an extra combinatorial propetyHtarity (a.k.a.
balancedness)—in order for their proof of security to g through. We show how to modify the proof so the
extra condition is unnecessary. We also improve the parameters dfGheohstruction, roughly halving

the requirement on the min-entropy of the input for the same level of security.

F.1 Definition of Perfect One-way-ness

Recall the two informal conditions on PWOF’s. Formalizing the first requirement is simple, though we note
that the hash function requires a key in order to get full collision resistance. We dendig tne space

of random coins required by the hash, and Ky the space of keys (for input lengthg. A family of

keyed randomized hash functidh(™ with input lengthn and output lengttf(n) is a family of functions

{Hy : {0,1}" x R, — {0,1}™}, .. An ensemble of such functiorts = { H(™} __ consists of one

such family for every input length. !
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Definition 6 ([9, 10]). Anensemble of keyed randomized functiins {Hy},. . ey @S above ipublicly
verifiableif there is a polynomial-time verification algorithker such that

e For all keysk € K, inputsw € {0, 1}", and strings- € R,,, Ver(k,w, Hi(w;r)) = ACC.

e For any PPT adversaryl, the probability ovelk € K, that A(k) outputs a triple(w, y, ¢) such that
Ver(k,w, c) = Ver(k,y,c) = ACC is negligible inn.

The intuition that the hash leaks no information about the input was formalized using a definition almost
identical to entropic security for predicates. Given the equivalence of entropic security with respect to
predicates and functions, we formulate the definition in terms of functions.

The main difference was that in the definitions 8f 10], the adversary’s ability to predict a predicate
g(W) given the (randomized) hash valégw) = Hj(w; R)) is compared the adversary’s ability to predict
g(W) given only polynomially many accesses toidantity oracleld,,(-) which answers outputs “yes” on
inputw and “no” on any other input.

We'll say an adversany®() with access to an oracl@(-) is poly-limited if there is some polynomial
p(+) such that on inputs of length, the adversary makes at mggt.) queries to the oracle. A ensemble
{Wh},en Of t(n)-sources consists of distributions ¢, 1}" with min-entropy at least(n).

Definition 7 (Perfect One-Way-ness,g, 10]). A ensemble of keyed randomized functitins {Hk}keKn,neN
is (t(n), e(n))-perfectly one-way if for every adversad, for every ensembléW,, },  of £(n)-sources,
and for every functiorf : {0,1}* — {0, 1}*, there exists a poly-limited oracle adversa#y such that, for
everyn andk € K.
. — Idw(-) (1)) —
P A i) = f)] = Pr [AMO0") = f(w)] < e(n)

Note that adding the identity oracle makes no significant difference when the min-entrdpysofery
high and hence the chance that the adversary queries the ordé¢iesonegligible. Hence, entropic security
implies semantic security in the sense 8f 10]. Despite this implication, the formulation in terms of
the identity oracle makes sense in the context, since the public verifiability makes one able to verify if a
particular value is indeed. We retain the “oracle” flavor in the definition of noise-resilient POWFs.

F.1.1 Noise-resilient POWFs

We now define the new primitive which we construct in this sectionpréximity oracle B,, - (-) accepts

its inputw’ if and only if the distance between andw’ is less thanr. Implicit here is a measure of
distance between strings. We will only discuss constructions for the Hamming distance, but we formulate
the definitions in more generality. We will assume that the distance fundisoi ) is a metric (that is,

it satisfies the triangle inequality) on the spgde1}*. For simplicity we also assume that the distance
between strings of different lengths+sx.

An ensemble of hash functions is called@e-time(t(n), e(n), 7(n))-noise-resilient POWF (in the space
dist(-, -)) if it satisfies the following two conditions:

Definition 8 (Proximity Verifiability). A ensemble of keyed randomized functibhs: {Hy }.c ¢ nen IS
(dist(, ), 7(n))-publicly proximity-verifiableif there is a polynomial-time verification algorithWer such
that

e For all pairs of inputsw,w’ € {0,1}" such thatdist(w,w’) < 7(n), keysk € K,, and strings
r € Ry, Ver(k,w, H,(w;r)) = ACC.

e For any PPT adversary, the probability ovek € K, that A(k) outputs a triple(w, w, ¢) such that
Ver(k,w, c) = Ver(k,w, c) = ACC anddist(w, w) > 27(n) is negligible inn.
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Definition 9 (Proximity-Semantic-Security). A ensemble of keyed randomized functitihs {Hk}keKn,neN
is (t(n), e(n))-semantically perfectly one-way fQdist(, ), 7(n)) if for every adversary, for every ensem-
ble {W,},,cy Of t(n)-sources, and for every functigh : {0,1}* — {0,1}*, there exists a poly-limited
oracle adversaryA, such that, for every andk € K,,:

Pr [A(Hy(wir)) = fw)] = Pr [APermO1") = f(w)] < €(n)

we—Wp,r—R, we—Wn,r—Rp, -
whereB,, -(-) is the proximity oracle which accepts its inputiff dist(w, w’) < 7.

Unlike in the case of an identity oracle, proving that the proximity orace is not useful to the adverary
requires much stronger bounds on the initial value of the min-enttoBee the proof of security of the
main construction, below.

F.2 Constructing Noise-resilient POWFs

The basic idea of our main construction is simple: ntropically-secure secure sketches compose well with
any ordinary POWF, as long as residual entropy of the secret given the sketch is higher than the entropy
requirement for the POWF.

Theorem 18 (Generic Construction). Suppose that
— {Sn},.cn is an ensemble @i, t — 1,1/, 7) sketches which arg, €)-entropically secure,
— {Hi} ek, nen IS @ (ordinary) POWF as defined above whiclffis—log (1) + 1, ¢)-perfectly one-way,

Then the ensemblg; }, ;- . Of randomized hash functions given by

i def

Hy(w;r1,m9) = S(w;ire), Hp(w;ra)
N——
T
is 7-proximity-verifiable andt + 1, 2¢)-perfectly one-way. (Here ¢, 7, € are functions of.)

Proof. The fact that the construction in the preceding theorgondzimity-verifiablas easy to check. Given
a candidate stringo, and a string(s, ¢) which is a correctly generated hashwof then the verification
alogrithmVer' (k, w, (s, c¢)) does the following (a) Run the recovery procedure§6ron the pai(w, s), get
back a candidate string’ for w, and (b) check itlist(w, w’) < 7 andVer(k,w’, ¢) = ACC, whereVer() is
the verification function for the original (nonfuzzy) POWF.

If @ is indeed close ta, then this test will always succe€tdOn the other hand, if a poly-time adversary
can produce a values, Z which both pass verification with the same stringhen there are corresponding
valuesw, z within distancer of w (resp.z) such thaver(k, w, ¢) = Ver(k, z, ¢c) = AccC. By the verifiability
of the original POWF-scheme, it must be that= z, and sddist(w, 2) < dist(w, w) + dist(z, 2) < 27, as
desired.

We now turn to the proof that the scheme is semantically perfectly one-way in the sense of D&Jinition
We'll use the following general lemma on composing entropically-secure maps:

Lemma 19. If (1): Y31 () is a (¢, €)-entropically-secure map, (2): for all distributiori¥” of min-entropy at
leastt — 1 we haveH.. (W | Y1(W)) > ¢ and (3):Ya() is a(#' —log (1) + 1, ) secure map, then the map
which outputs the pai¥ (w) = Y1 (w), Ya(w) is (t + 1, 2¢)-entropically-secure.

The lemma can be proven using a simple hybrid argument (see below). For now, we can use it to
complete the proof of security of the noise-resilient POWF.Yset= S() andY2 = Hy(). By the definition
of a secure sketch and the hypotheses of the theorem statement, the conditions of the lemma are satisfied,
and we get that the maf; (-; R) is (¢t + 1, 2¢)-entropically-secure. Entropic security implies semantic
perfect one-way-ness with the same parameters. O

%Similarly, if the sketch only corrects errors with high probability, then the test will succeed with high probability, achieving a
sligthly relaxed version of the definition of verifiability.
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We can now prove the composition lemma used above:

Proof of Lemmadl.9. The proof follows a hybrid argument. In order to prave 1-entropic security, we will
provet — 1-indistinguishability and then apply the equivalence. Supposelthaias min-entropy at least
t—1. With probabilityl —e over the values af (17), the min-entropyH (W | S(W)) will be at leaste’ —
log (1) (recall thatt’ = H.(W | Y1(W)), so2~* is the average value af H=(W¥1(W)y_ Sincey; (W)
ist' —log (1) + 1-entropically secure, iti§&’ —log (1) , 4¢) indistinguishable and so with probability- e
(over values oft; (W)), the statistical difference betweéf (W), Y2(W) andY (W), Ya(U,,) is at most
4e. Hence, the overall statistical difference between the two distributions is athmdsnally, the distance
betweeny; (W), Y2(U,,) andY;(U)},), Yo(U,) is at mostde sinceY; () is (¢ — 1, 4¢)-indistinguishable. By
the triangle inequality, the distance betwa&éiV), Yo(W) andY1(U)), Y2(U,,) is at most9e, and so the
scheme igt — 1, 9¢)-indistinguishable. Applying the equivalence in the other direction completes the proof.
O

F.3 Improved Construction of Ordinary POWFs

Before we can apply the generic construction of the previous section, we need to constructions of ordinary,
non-noise-resilient POWF's.

Canetti et al. 10] gave the following simple construction of perfect one-way hash functions which
achieves (information-theoretic) entropic secrecy. Given a family of “regular” collision-resistant hash func-
tions{crhfs},c . , and afamily of pairwise independguermutationg r; },. -, we can define a probabilistic
map

Hy(w;i) = i, crhfp(m(w)).

[10] proved that the construction {g, ¢)-entropically secure as long as the output lengfth) of the
functionscrhf, satisfies/(n) < (t —2log (1))/2. Their analysis also required an additional assumption on
the crhf, namely that the functions be “regular”’ (a.k.a. balanced), that is fdr, &Very point in the image
of crhf;, must have the same number of pre-images.

Here we improve on the analysis in several ways. First, we remove the assumption of regularity. This
is based on a version of the left-over hash lemma in which a pairwise independent hash function is fed
through an arbitrary function before producing output (Lent8a Second, we improve the parameters:
we show that their construction only requités) < ¢t — 2 log (%) (that is, we may leak twice as many bits
about the input without compromising entropic security). Finally, we provide a stronger security guarantee,
namely that the adversary may not learn &mnyctionof the input. We encapsulate these improvements in

the following proposition.

Proposition 20. Suppose that
— {crhfi () }rer, nen IS @ collision-resistant hash family frombits to£(n) bits,
—{<t—2log (%),
- {{Wi}iez}neN is an ensemble of XOR-univerg@rmutation®f {0, 1}".

Then the ensemble of randomized hash functions giveHpitv; i) = i, crhfy (m;(w)) is (¢, €)-entropically
secure. (Here, t', T, £, € are all functions ofn.)

To prove entropic security, it suffices to prove that the scheme is indistinguishable. The statement follows
directly from a variant of the left-over hash lemma (Lem@&#, which basically states that combining
XOR-independent permutations with any arbitrary functions yields a “crooked” strong extractor: that is,
the output may not be look random, but it will look the same for all input distributions of sufficiently high
entropy. Contrary to intuition, this statement doesfollow directly from the left-over hash lemma.
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F.4 Putting It All Together

We can now combine the results of this chapter so far. Our initial goal was a non-trivial family of noise-
resilient POWF’s. As mentioned above, these can be viewed as obfuscated code for proximity queries.
We would like to combine Theorerhwith the generic constructions of this section. For this purpose, we
will use the fact that if there are length-reducing collision-resistant hash functions, then for for any output
length¢(n) = Q(n), there exists a hash familierhfy },. x| oy With output length/(n) for which no PPT
adversary can find collisions with non-negligible probability. We obtain:

Theorem 21. If collision-resistant hash functions exist, then for any initial entropy Q2(n), there exists a
noise-resilient POWF ensemble which tolerates a linear number of errets(2(n), is (t, ¢)-entropically-
secure fore = 2~ and is proximity-publicly verifiable with negligible soundness error.

G Composing Hashing with Arbitrary Functions

This section states and proves the lemma needed for removing the regularity assumption from the construc-
tion of [10]. Below, Hy(X) refers to the Renyi entropy of a random variaflleH (X)) . log Col(X) =
—log ", 1Pr(X = z]?.

Lemma 22 (Composing with an arbitrary function). Let f : {0,1}" — {0, 1}* be an arbitrary function.
If {hi},c7 is a family of pairwise independent hash functions frerhits to N bits and X is a random
variable in{0, 1}" with Renyi entropyH,(X) > ¢ +log (1) + 1, then

(L, f(hi(X))) ~e (I, f(Un))

wherel « Z, Uy «+ {0,1}¥ (both drawn uniformly), and, X andUy are independent.

This lemma requires a fresh proof—it does not follow directly from the original left-over hash lemma:
becauseV may be much larger tham andHy (X)), the distributions 7, h; (X)) and (I, Uy) need not be
indistinguishable. In fact, wheN > n they will have statistical distance almost 1.

The idea behind the proof is to show that for all non-zero strings{0, 1}/, the inner product modulo
two o ® f(h(X)) is distributed almost identically ta ® f(Uy). Elementary Fourier analysis then shows
that the distributiong (h; (X)) and f(Uy ) are close (even givef). Details follow.

Proof. The bias of a distributiomd over {0, 1} with respect to a string: is defined to bebias, (A4) =
| Ea [(-1)294] | = [2Prla ® A = 0] — 1].

The following fact about the hypercul§®, 1} will be useful below: For any random variables (distri-
butions)A and B on {0, 1}¢, we have:

SD(A,B)< | ) (biasa(A) — biasy(B))>. (6)
ae{0,1}¢

Claim 23. For everya € {0, 1}Z, the expectation, ovér— Z, of the expression
(biasa(f(hi(X))) = biasa(f(Un)))”

is at mostCol(X) = 2~ H2(X) < 29-¢,
We first show that this claim implies the lemma, and then prove the claim further below. For ev&ry
let D; = f(h;(X)). The first observation is that the distance we are seeking to bound is the average, taken
overi, of the distance betwee; and the target distributiofi(h;(X)).
SD ({1, D1) , (I, f(Ux))) = E; [SD (D1, f(Un))]
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We can now bound the statistical difference using the biases @gqgn.

SD ({1, Dr) , (I, f(Un))) < Er {\/Z (biasa (Dr) — biasa(f(Un)))*

For any random variablé&, {\/)7(} < /E [X] (Jensen’s inequality). Hence

SD ((1.Dy) . (I, f(Un))) < \/Z E [ (biasa(Dy) — biasa(f(Un)))?]

By the main claim above, the term inside the square root sign is atEQS?QE = €2, and so the statistical
difference which we want to bound is at me$t O

To complete the proof above, we just have to prove the claim.

Proof of Claim23. Fora = 0, the claim is trivial since the difference of biases is always 0. Fi% 0°.
Let
p = bias, (f(Un)) = Eyy [(_l)a@f(vm}

Let p, = Pr[X = z|. Then we can writdiasa(f(hr(X))) — bias,(f(Un)) as

biasar(f(hs(X))) — biasa (f(Un)) = > pa((—1)* M) — )
z€{0,1}" Z

Now let Z,, be the random variable-1)*®/(»1(=)) _, (this is a function ofl). Since{h;} is a pairwise
independent family of hash functions, the expectatioff ofaken over is exactly O (that is, for any fixed,
k() is uniformly distributed ovef0, 1}*V). Moreover, the variableg, andZ, are independent for every
pair of stringsz # y, so thatEz, z, [=] 0. Thus

Er [(biasa(f(hr(X))) = biasa(F(UN))’| = Y. panyBr (222, = Y v2E [22]

z,y€{0,1}"

The variancef; [Z2] = Var [Z,] is at most half of the range df,, that is 1. Thus the expected square of
the difference of biases is at mdst, p2 = Col(X). O
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