
Sketching Stencils

Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik, Vijay Saraswat,∗ Sanjit Seshia
University of California, Berkeley ∗ IBM T. J. Watson Research Center

{asolar,arnold,tancau,bodik,sseshia}@eecs.berkeley.edu vsaraswa@us.ibm.com

Abstract
Performance of stencil computations can be significantly improved
through smart implementations that improve memory locality,
computation reuse, or parallelize the computation. Unfortunately,
efficient implementations are hard to obtain because they often in-
volve non-traditional transformations, which means that they can-
not be produced by optimizing the reference stencil with a com-
piler. In fact, many stencils are produced by code generators that
were tediously handcrafted.

In this paper, we show how stencil implementations can be
produced with sketching. Sketching is a software synthesis ap-
proach where the programmer develops a partial implementation—
a sketch—and a separate specification of the desired functionality
given by a reference (unoptimized) stencil. The synthesizer then
completes the sketch to behave like the specification, filling in code
fragments that are difficult to develop manually.

Existing sketching systems work only for small finite programs,
i.e., programs that can be represented as small Boolean circuits. In
this paper, we develop a sketching synthesizer that works for stencil
computations, a large class of programs that, unlike circuits, have
unbounded inputs and outputs, as well as an unbounded number
of computations. The key contribution is a reduction algorithm that
turns a stencil into a circuit, allowing us to synthesize stencils using
an existing sketching synthesizer.

Categories and Subject DescriptorsD.2.2 [Software Engineer-
ing]: Software Architectures, Design Tools and Techniques; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms Languages, Design, Performance

Keywords Sketching, Stencil, SAT

1. Introduction
Sketching is a program synthesis paradigm in which a programmer
expresses an outline of the implementation, called asketch. The de-
tails missing in the sketch are filled in by the compiler such that the
result is functionally equivalent to a separately provided specifica-
tion. Programming by sketching is supported by theSKETCH lan-
guage [21], an imperative language with a “hole” construct. Holes
can be used in place of hard-to-get-right expressions, such as index
expressions and loop bounds. TheSKETCH synthesizer infers the
content of holes using a SAT-based combinatorial search over the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

space of possible sketch completions. Thanks to the combinatorial
search, the synthesizer requires no domain-specific knowledge and
can therefore be applied to a wide variety of programming prob-
lems, as long as they computefinite programs, i.e., functions that
take inputs of bounded size and perform a finite computation.

SKETCH has been used to synthesize efficient implementations
for non-trivial functions—including ciphers (e.g., DES and AES),
error-correction codes, and long integer multiplication—in only a
fraction of the time required for coding a full and correct imple-
mentation.

Scientific computing codes could equally benefit from sketch-
ing. Despite advances in optimizing compilers, these codes are of-
ten hand-crafted through a long and error-prone process. The chal-
lenges arise in particular when transforming a loop iteration space
for better locality and computation reuse. For example, a complex
tiling strategy may entail index and loop bound expressions that are
hard to write and debug.

Unfortunately, most scientific codes are not finite programs:
their input size is unbounded, and henceSKETCH is unable to syn-
thesize them. While we can finitize some scientific kernels by fixing
their problem size, the combinatorial problem easily overwhelms
the SAT solver. (In fact,SKETCH already fails to synthesize a sim-
ple kernel on an 8x8 matrix.)

This paper introduces sketching for stencil-based scientific ker-
nels. Stencil kernels transform an arbitrarily large input grid into an
output grid, mostly by applying constant-time, nearest-neighbors
computations. This domain includes many widely-used iterative
PDE solvers, including the popular Jacobi and MultiGrid [3] meth-
ods. These solvers constitute the core of many structured grid ap-
plications, such as elasticity and fluid dynamics simulations.

In order to handle the unbounded nature of stencils, we develop
a program transformation that reduces a stencil into a finite pro-
gram. The reduction is enabled by the internal boundedness of a
stencil, a property that each output grid element is a function of
only a finite (and small) number of input grid elements. The reduc-
tion process effectively extracts this function from an imperative
program with loop nests. The reduced stencil is then synthesized
using the finiteSKETCH synthesizer. Because the reduction is loss-
less, we can plug the synthesized holes back into the original sketch
to obtain a complete and correct implementation of the stencil.

We have used sketching to implement a recursive, cache-
oblivious implementation of a 2-point stencil. The paper also de-
scribes our experience implementing two kernels from the Multi-
Grid solver. The implementation of two MultiGrid kernels took less
than two hours of work by one of the authors, including synthesis
time, which did not exceed 5 minutes. Both sketches produced im-
plementations that were 2 to 8-times faster than the corresponding
naive stencil.

In summary, this paper makes the following contributions:

• It presents a sketching synthesizer for the class of stencil com-
putations. It is the first system for sketching programs that go

beyond the finite programs of the originalSKETCH language
and synthesizer [21].

• It develops and evaluates a reduction mechanism for transform-
ing an unbounded stencil into a finite function for which an ef-
ficient synthesizer is available.

• It shows that the reduction based approach scales to real-
world implementations of kernels of interest to the scientific-
computing community, and that it is able to synthesize imple-
mentations which are beyond the reach of commercial optimiz-
ing compilers.

2. The SKETCH Programming Language
To give necessary background for the sections that follow, this
section summarizes the finite sketch synthesis method introduced
in [21] and implemented in the SKETCH language and compiler.

The original SKETCH language allows the user to write a clean,
behavioral specification for an algorithm, and then sketch the out-
lines of a more efficient implementation. The following example
illustrates some of the key features of the language. The function
on the left is a specification that computes the logarithm of an in-
teger by searching for the position of the most significant non-zero
element. The specification is executable, so it can be debugged and
tested like any other program. The function on the right is a sketch.
The implements clause in the function header states thatsklog2
should be resolved to be behaviorally equivalent toslog2. The??
operators will be replaced by the synthesizer with suitable constants
to satisfy this equivalence.

int W = 8, logW = 3;
bit[W] log2(bit[W] in) {
bit[W] i = W;
while (ret > 0) {

i--;
if (in[i])

break;
}
return i;

}

bit[W] sklog2(bit[W] in)
implements log2 {

bit[W] ret = 0;
loop (logW)

if (in & ??) {
in >>= ??;
ret |= ??;

}
return ret;

}

The sketch specifies the key properties of the implementation:
in particular, we state that it applies a binary search (with a logarith-
mic number of steps) to find the most significant non-zero, setting
the bits of the result accordingly. The?? operator is being used in
place of tedious details of the implementation, such as the actual
masks and shifts. The synthesizer will unroll loop constructs the
appropriate number of times, inline all function calls (if such ex-
ist), and then substitute all “holes” with actual values to produce a
final implementation that matches the behavior of the specification
for all inputs.

bit[W] sklog2_resolved(bit[W] in) {
bit[W] ret = 0;
if (in & 0xf0) { in >>= 4; ret |= 4; }
if (in & 0xc0) { in >>= 2; ret |= 2; }
if (in & 0x02) { in >>= 1; ret |= 1; }
return ret;

}

The sketch compiler completes the sketch by reducing the prob-
lem to a generalized Boolean satisfiability problem. Having un-
rolled all loops and inlined all function calls, the compiler then
replaces each hole in the resulting straight-line program with a dis-
tinct free variable, referred to as acontrol variable. Then it trans-
lates both the specification and the sketch into Boolean functions
of the inputs and the control variables.

At this point, the sketch resolution problem becomes a 2QBF
Boolean satisfiability problem (i.e., a satisfiability problem with
two quantifiers) of the form

∃c.∀x.P (x) = S(x, c) (2.1)

whereP is a Boolean function representing the spec, andS is a
Boolean function representing the sketch. The variablesx and c
correspond to the program inputs and the control variables respec-
tively. The formula specifies a search for a valuec of the control
variables that will make the sketch behave identically to the speci-
fications on all inputsx.

The problem is then solved using a counterexample-driven
search procedure. The solver expects that there will be a small
set of inputsE such that a solutionc to the problem

∃c.∀x ∈ E.P (x) = S(x, c) (2.2)

will also be a solution to Equation (2.1). Equation (2.2) can be ex-
panded and supplied to a SAT solver directly since the universal
quantification over the small setE can be expressed as a conjunc-
tion. The SKETCH solver starts by solving Equation (2.1) withE
containing only a single random input. It then verifies that the syn-
thesizedc actually solves Equation (2.1). If the verifier fails, it will
produce a counterexample which is added to setE, and the process
is repeated until a solution is found or the sketch is shown buggy
(i.e., it cannot be completed to behave like the specification).

The synthesis algorithm works remarkably well, but requires
that both the spec and the sketch befiniteprograms. This means that
the number of iterations of all loops and the sizes of all arrays must
be bounded at compile time. In the rest of the paper, we describe
how we have overcome this limitation for the domain of stencils.

3. Sketching Stencil Kernels
In the scientific computing literature, a stencil is a nearest-neighbor
computation on a grid, where the new value of a grid entry is
computed as a function of the old values of some of its neighbors.
Stencils are generally classified by the number of neighbors they
consider and the dimensions of the grid. For example, a typical
four-point stencil in two-dimensions computes a valueanew

i,j as a
linear combination of the valuesaold

i+1,j , aold
i,j+1, aold

i−1,j andaold
i,j−1.

This paper uses a broader definition of stencils: we define a stencil
to be a function that computes each element of an output grid by
performing constant time operations on a bounded number of input
grid elements.

Stencils form the core of many scientific applications; in par-
ticular, most PDE solvers work through repeated applications of
different stencils. Stencils are also important in signal processing,
image analysis and even compression; for example, the wavelet
transform that forms the basis of the JPEG2000 image compression
standard is implemented as a sequence of stencil computations. Our
broader definition of stencils also covers data permutations, such as
matrix transpositions, and even data-dependent permutations such
as scatter and gather operations.

As befits such an important class of problems, great efforts
have been expended in automatically identifying and optimizing
stencils, particularly in languages for high-performance computing,
such as HPF [18] and ZPL [20]. Fully automatic optimization
approaches, however, are constrained by the set of transformations
built into the compiler, as well as the analysis and heuristics used
to decide if it is possible and convenient to apply a given one.
These constraints are relevant for production codes because stencil
optimization is still an area of active research [10–12, 19]. For this
reason, many production-level stencil codes are still hand-tuned in
Fortran and C++.

Hand-optimized stencil implementations can be fiendishly com-
plicated despite their relatively small size. As one of the authors can

int N;
int T = 3; // manipulate 3 rows at once
void sten1d(float[N] in, float[T,N] X) {
for (int i = 0; i < N; ++i)

X[0, i] = in[i];
for (int t = 1; t < T; ++t)

for (int i = 1; i < N-1; ++i)
X[t, i] = X[t-1, i-1] + X[t-1, i+1] ;

}

Figure 1. Specification for 1-dimensional 2-point stencil.

1

2

3

4

5

6

7

8

1

5

2

6

3

7

4

8

(a)

(b)

(c)

(d)

Figure 2. (a) Grid with some of the data dependencies. The regions
in the two ends correspond to the corner cases which the time-
skewed implementation will have to handle differently. (b) Iteration
direction for the spec. (c) Iteration direction for the time-skewed
implementation. (d) Iteration direction for the base case of the
cache-oblivious scheme.

attest from personal experience, one can easily spend several days
hunting for a bug in two hundred lines of this low-level code. The
complexity in these implementations arises from a large number of
low-level expressions controlling nested looping and multidimen-
sional indexing. These expressions have little intuitive meaning for
the programmer because they do not resemble the specification. To
make matters worse, programming errors may have subtle effects
which are hard to spot. For example, it is possible for iterative al-
gorithms that work by repeated applications of a stencil to produce
the correct answer even when coded with a buggy stencil; they al-
gorithm may just take much longer to converge.

For these reasons, the domain of stencils is well suited for
sketching: stencil specifications can usually be stated cleanly and
concisely, in a few dozen lines of code, and the low-level ex-
pressions which complicate the implementations can be efficiently
synthesized by the compiler. As the following example illustrates,
sketched implementations for stencils allow the developer to pro-
vide high-level insights about an implementation without getting
bogged down in low-level implementation details.

3.1 Example

The stencil we want to implement is a 2-point 1-dimensional stencil
of the formXt

i = Xt−1
i−1 + Xt−1

i+1 . In order to improve temporal
locality, the implementation will compute the next two iterations
(called timesteps) of the stencil at once, instead of a single one.
This is described by the full specification shown in Figure 1. From
this specification, we are going to create two implementations, the
second one being an improvement of the first one. First, we are
going to implement time-skewing, as described in [23]. Then we
are going to use this time-skewing implementation as a reference

to produce a recursive cache-oblivious implementation like the one
described in [10].

The time-skewing transformation requires us to change the iter-
ation pattern from the one in Figure 2(b) to the one in Figure 2(c).
Note that in order to preserve the dependencies, we have to tra-
verse along diagonals, which forces us to treat the cells close to the
boundary as special cases, as shown in Figure 2(a). It is easy to see
that one must write three separate loop nests, two for the corner
cases and one for the steady state. However, determining the ex-
act expressions to use for the loop iteration bounds is a challenging
task, especially for the corner cases, where the iteration bound for
the inner loop depends on the outer loop. We can express the imple-
mentation idea in a sketch that leaves all these details unspecified.

To understand the sketch shown below, recall that inSKETCH,
functions that contain holes in them are inlined into their call site
before the holes are resolved. In effect, we can think of these func-
tions as macros. The inlining semantics allow us to treat functions
with holes asgenerators. In the sketch below,linexpG is a gener-
ator that produces expressions involving sums and differences of
its arguments, and the generatorloopNest can produce loop-nests
with arbitrary loop conditions, but which follow the diagonal pat-
tern we desire. In this example, each call tolinexpG andloopNest
expands into a separate snippet of code, and the holes in each of
these snippets are independent of each other. After the holes are
resolved, partial evaluation is applied to clean up the code by elim-
inating unnecessary operations and conditionals.

int linexpG(int a, b, c = 0) {
rv = ??;
if (??) rv = (?? ? rv + a : rv - a);
if (??) rv = (?? ? rv + b : rv - b);
if (??) rv = (?? ? rv + c : rv - c);
return rv;

}
void loopNest(float[T,N] X) {
for (int i = linexpG(N, T); i < linexpG(N, T); ++i)

for (int t = linexpG(N, T, i);
t < linexpG(N, T, i); ++t)

X[t, i-t] = X[t-1, i-t-1] + X[t-1, i-t+1];
}
void sten1dSK(float[N] in, float[T,N] X)

implements sten1d {
if (N >= 3) {

for (int i = 0; i < N; ++i) X[0, i] = in[i];
loopNest(X); // generate left corner case
loopNest(X); // generate steady-state loop
loopNest(X); // generate right corner case

} else
sten1d(in, X); // optimization inapplicable

}

The key idea of the implementation is expressed in the sketch
by stating thatXt

i−t = Xt−1
i−t−1+Xt−1

i−t+1, but the low-level details
of the loop iteration bounds are left for the compiler to discover. As
an added benefit, the sketch spares the programmer from the error-
prone task of having to code the three cases separately. Instead, all
three loops are synthesized from the generatorloopNest.

This sketch resolves to the correct implementation in less than
4 minutes, and produces the code shown below. The synthesized
expressions are underlined.

void sten1dSK(float[N] in, float[T,N] X)
implements sten1d {

if (N >= 3) {
for (int i = 0; i < N; ++i)
X[0, i] = in[i];

for (int i = 0; i < T; ++i)
for (int t = 1; t < i; ++t)

X[t, i-t] = X[t-1, i-t-1] + X[t-1, i-t+1];
for (int i = T; i < N; ++i)
for (int t = 1; t < T; ++t)

X[t, i-t] = X[t-1, i-t-1] + X[t-1, i-t+1];
for (int i = N; i < N+T; ++i)
for (int t = i-N+2; t < T; ++t)

X[t, i-t] = X[t-1, i-t-1] + X[t-1, i-t+1];
} else

sten1d(in, X);
}

This time-skewed implementation will serve to as a reference
for a cache-oblivious implementation of the middle loop, which
handles the steady state behavior. The first step will be to extract
this loop and put it into a separate function as shown below. We
will treat this function as a specification.

void mainLoop(float[T,N] X, int n1, int n2) {
for (int i = n1; i < n2; ++i)

for (int t = 1; t < T; ++t)
X[t, i-t] = X[t-1, i-t-1] + X[t-1, i-t+1];

}

The developer writes another sketch to implement this specifi-
cation with the recursive partitioning that yields a cache-oblivious
behavior. For the base case of the recursion, we are going to reverse
the loops, since the block is small enough that we believe we can
get better cache behavior this way: it will result in consecutive reads
instead of interleaved ones. Since we are not sure how the reversal
is going to affect the index expressions, we just replace them with
thelinexpG generator. On the other hand, we wish to retain control
of the recursive partitioning and the size of the base case, so that
portion of the sketch is fully specified. From the sketch, the synthe-
sizer produces the desired recursive implementation and proves its
equivalence to the original spec.

void mainLoopSK(float[T,N] X, int n1, int n2)
implements mainLoop {

if (n2-n1 < 4)
for (int t = 1; t < T; ++t)
for (int i = n1; i < n2; ++i)

X[t, i-t] = X[t-1, linexpG(i,t)]
+ X[t-1, linexpG(i,t)];

else {
int m = (n1 + n2) / 2;
X = mainLoopSK(X, n1, m);
X = mainLoopSK(X, m, n2);

}
return X;

}

The cache-oblivious implementation we have produced is
known to be difficult to implement by hand, especially for higher
dimensions. But using the algorithms presented in this paper, the
sketch compiler easily synthesizes the low-level details for this
complex implementation. (Note that for a 3-D stencil, we would
have to deal with 16 different corner cases, making an optimization
by hand extremely difficult [11].) Furthermore, no compiler we
know of will generate a recursive cache-oblivious implementation
automatically.

4. Overview of Stencil Synthesis
As mentioned before, the compiler resolves the sketches by first re-
ducing the spec and the sketch to finite programs, solving the finite
synthesis problem with theSKETCH compiler, and then mapping

the results of finite synthesis onto the original sketch. This section
presents the key ideas of the reduction process; the reduction algo-
rithm is described in detail in Section 5.

The algorithm exploits domain-specific properties to reduce
both the spec and sketch into bounded programs without loss of
information. In particular, the reduction uses the fact that each
element in the output grid is computed from a finite number of input
grid elements. This property allows the compiler to represent the
stencil as a function taking only a small number of grid elements
as input and producing only a single element of the output. For
example, the compiler reduces a 2-point 1-D stencils into a finite
programreduced_s:

float[N] s(float[N] in);
float reduced_s(float[4] v, int N, int idx);

The reduced stencilreduced_s computess(in)[idx], i.e., the
value of theidx-th element of the grid computed by the original
stencils. The finite arrayv represents the elements from the input
grid in that are needed to computes(in)[idx]. (This section will
explain why four elements are needed for a 2-point stencil.) The
function is a finite program, and therefore a valid input to the finite
SKETCH solver: the size of its input and output are fixed to small
constants, and, as we will see shortly, the number of computations
performed by the function is constant with respect to the input
parameters. In particular, the value ofN no longer determines the
amount of computation; it is only passed because it may be needed
to compute the output value,e.g., to identify if the desired output
element is close to the grid boundary.

The reduction works in three steps; the same steps are applied
to both the spec and the sketch. First, the reduction bounds the
size of the program output by focusing on a single element of
the output grid. Second, it uses symbolic manipulation to bound
the number of computations performed by the stencil. Finally, it
uses abstraction to bound the size of the input. To illustrate the
process, we use the 2-point 1-D stencil, together with a somewhat
contrived sketch which nonetheless hints at how more complex
sketches are reduced. For the sake of simplicity, the sketch differs
from the specification only slightly: it uses holes to adjust its index
expressions to compensate for its loop bounds, which differ from
those in the spec. The functionsf, g, andh stand for arbitrary index
expressions (these functions do not have side effects):

float[N] spec(float[N] in) {
foreach i ∈ [1, N-2]

out[f(i)] = in[g(i)] + in[h(i)];
}
float[N] sketch(float[N] in) implements spec {
foreach k ∈ [0, N-??]

out[f(k+??)] = in[g(k+??)] + in[h(k+??)];
}

Bounding the output. We replace the unbounded output grid
with a single scalar by making the program return the value of
a single element of that output grid. Specifically, a stencil func-
tion s is transformed to a functionscalar_s in such a way that
s(in)[idx]=scalar_s(in, idx). The transformation does not
lose any information, and the behavior of the original program can
be obtained by invoking thescalar functionof s as shown below
for both the spec and the sketch.

float[N] spec(int[N] in) {
foreach j ∈ [0, N-1] out[j] = scalar_spec(in, j);

}
float[N] sketch(int[N] in) implements spec {
foreach j ∈ [0, N-1] out[j] = scalar_sketch(in, j);

}

Note that aside from calling a different scalar function, the spec
and the sketch are identical (both compute all elements of the
output gridout). Hence, we reduced the stencil synthesis problem
to the problem of making the scalar functionsscalar_sketch and
scalar_spec behave identically.

The two scalar functions are shown below. Their goal is to
expressout[idx] in terms of the input grid. Both functions achieve
this with a two-step symbolic back-substitution process. First, they
compute the iteration in which the output elementout[idx] was
most recently assigned. (In our example, each output element was
assigned at most once, but as we shall see in the next section this
is not required by the algorithm.) The number of this iteration is
stored in variablelast. Next, the value ofout[idx] is computed
by evaluating the right-hand-side expression of the most recent
assignment. If the right-hand-side expression refers to values other
than the input, the two-step process is repeated (not needed in our
example).

float scalar_spec1(float[N] in, int idx) {
int last = UNDEFINED;
foreach i ∈ [1, N-2]

if (idx == f(i)) last = i;
if (last == UNDEFINED) return 0;
return in[g(last)] + in[h(last)];

}
float scalar_sketch1(float[N] in, int idx) {
int last = UNDEFINED;
foreach k ∈ [0, N-??]

if (idx == f(k+??)) last = k;
if (last == UNDEFINED) return 0;
return in[g(last+??)] + in[h(last+??)];

}

Bounding the number of computations. The scalar functions
execute an unbounded number of computations because they con-
tain loops controlled by the free variableN. However, the only
purpose of the loops is to identify the latest iteration that wrote
to out[idx]. This operation can be expressed declaratively as
last = max({[1,N−2]∩f−1(idx)}), wheref−1 is the inverse of
the index expressionf.

The advantage of this formulation is that it allows us to use
a symbolic solver to reduce the evaluation of the latest iteration
expression into a finite sequence of operations. Our current solver
is quite rudimentary, but it has already been able to handle all the
problems we have tried so far, including several from real-world
benchmarks.

For our running example, the declarative formulation allows us
to write the scalar functions as follows.

float scalar_spec2(float[N] in, int idx) {

int last = max({[1,N−2]∩ f−1(idx)});
if (last == UNDEFINED) return 0;
return in[g(last)] + in[h(last)];

}
float scalar_sketch2(float[N] in, int idx) {
int last = max({k | k ∈ [0,N−??]

∧ k+??∈ f−1(idx)});
if (last == UNDEFINED) return 0;
return in[g(last+??)] + in[h(last+??)];

}

If f is the identity function, for example, the symbolic solver
will replace the last-iteration computation with a few conditional
assignments; the one in the spec is shown below.

if (idx >= 1 && idx <= N-2) last = idx;
else last = UNDEFINED;

After the replacement, the functions are already bounded in terms
of computation, but the input is still an unbounded array.

Bounding the input. For programs that do not modify their in-
puts, the input array can be treated as an uninterpreted function.
In other words, the input array is an entity whose only discernible
property is that accesses with the same index produce the same
value. Programs like the example in Section 3.1 that do modify their
input array are modeled by the compiler as receiving an immutable
array as input, copying it into a mutable array, and then returning
the modified array as an output at the end of the computation.

The next problem is to represent the uninterpreted function
finitely. We observe that the scalar functionsscalar_spec2 and
scalar_sketch2 read only a finite number of input grid elements,
which lets us borrow a technique originally proposed by Acker-
man [1] and used extensively in hardware verification [4]. The
functionin_fn below implements the semantics of an uninterpreted
function under the restriction that the function is called with at most
four different values of the argument. (For this example, we can re-
strict ourselves to four symbolic values because the scalar functions
reduced_spec and reduced_sketch, shown below, will together
make no more than four dynamic calls toin_fn for a given value
of their input parameteridx.) The functionin_fn implements the
desired semantics by returning the same symbolic value whenever
called with the same value of the argumentin_idx.

float in_fn(int in_idx) {
if (in_idx == i0) return v0;
if (in_idx == i1) return v1;
if (in_idx == i2) return v2;
if (in_idx == i3) return v3;

}

This use of uninterpreted functions is considered a form of abstrac-
tion, because we are representing an unbounded grid using only
four scalars by throwing away all the information about those cells
that were not accessed on a particular invocation of the scalar func-
tions.

The final step is to represent the symbolic valuesik andvk with
constructs from theSKETCH language. (Recall thatSKETCH relies
on a Boolean satisfiability solver which does not support symbolic
manipulations.) The non-symbolic version ofin_fn shown below,
expressed entirely inSKETCH, implements the symbolic valuesik
by remembering the concrete values of arguments in a global array.
The symbolic valuesvk are implemented as function arguments.
This treatment will make the synthesizer carry out its reasoning
under all possible values ofvk, which is equivalent to viewingvk

as symbolic values.

float in_fn(int in_idx, float[4] v) {
static int[4] g; static int gi=0; // globals
g[gi++] = in_idx;
if (in_idx == g[0]) return v[0];
if (in_idx == g[1]) return v[1];
if (in_idx == g[2]) return v[2];
if (in_idx == g[3]) return v[3];

}

As an optional optimization, our system allows the user to assert
that the sketch computesout[idx] using only the input elements
used by the spec, as opposed to arbitrary input elements. That
is, the arrayg is set only in the spec; the sketch only reads its
values and asserts that one of them matches. This is the case for
almost all implementations, because if a sketch used any other
entry, its value would have to get canceled out in order for the
spec and the sketch to be equivalent. Using this assumption, we can
reduce the number of comparisons on each call to the uninterpreted
function, since we only need to compare the index to those indices

used by the spec, but not with those used by the sketch. With
this optimization, the compiler will ignore any implementation
that violates the assumption, while never producing an incorrect
implementation.

Putting it all together. Let us assume for the sake of simplicity
that f, g, andh are identity functions. Then, the symbolic solver
reduces the evaluation of the latest iteration expression to guarded
assignments as shown below.

float reduced_spec(float[4] v, int N, int idx) {
if (idx < 1 || idx > N-2) return 0;
return in_fn(idx, v) + in_fn(idx, v);

}
float reduced_sketch(float v[4], int N, int idx) {
int last = idx - ??1;
if (last < 0 || last > N-??2) return 0;
return in_fn(last+??3, v) + in_fn(last+??4, v);

}

These functions define a finite sketch problem which can be
solved by the finiteSKETCH solver. In this case, theSKETCH
solver can easily prove that the abstracted sketch and spec are
equivalent for the following value assignments to holes:??2 = 3,
??1 = ??3 = ??4 = 1.

The control values can then be applied to the original sketch,
and the construction will guarantee that the resulting implementa-
tion is equivalent to the original spec.

Abstracting integers and floating point values.Here, we focus
on complications arising from modeling integer and floating-point
values.

The reduced functions produced by the above algorithm lead to
intractable SAT problems if translated directly to Boolean circuits,
mainly due to the presence of floating point variables in the reduced
programs. Additionally, modeling floating point values in their full
IEEE glory would make the equivalence criterion overly strict,
ruling out many optimizations employed by programmers who
often choose to assume associativity of floating point numbers.

There are numerous approaches in the literature to handle float-
ing point arithmetic in the context of model-checking and verifica-
tion, most of them relying on uninterpreted functions [6,15]. While
it is relatively easy to replace floating point operations with uninter-
preted functions, there is a simpler approach that works remarkably
well in our domain. The key observation is that the stencils we are
generating are often linear functions in their floating point argu-
ments: both the reduced spec and sketch have the property that if
you set their integer inputs to any fixed value, the remaining func-
tion will be a linear function (it may be a different linear function
for different values of the integer inputs). The stencil appears linear
to the solver because it performs verification separately for each
combination of integer input values. It is trivial to verify this prop-
erty statically from a DAG representation of the reduced spec and
reduced sketch. When this property holds—as is the case with all
the benchmarks presented in this paper—the compiler can safely
replace all floating point inputs with 1-bit integers without losing
soundness, provided that it grows the integer representation when-
ever necessary to avoid arithmetic overflow. The soundness argu-
ment should be obvious from the fact that in order to test the equiv-
alence of twok-dimensional linear functions over the reals, one
only needs to test them withk independent vectors.

Floating point constants are treated as free variables, and are
also represented with a single bit. This treatment is sound but not
complete because it loses algebraic relationships among constants.
For example, after we replace0.5 with a free variablev0.5, we can
no longer prove thata*0.5 + a*0.5 == a. This limitation did not
prove to be an issue for any of the benchmarks we studied.

After performing abstraction on the floating point values, the
remaining problems involve only integers and Booleans. Our cur-
rent approach is to translate these problems directly into circuits,
which limits our scalability to representing integers with about 6
bits (3 bits for the hardest benchmarks). However, there are known
scalable techniques that we can use to remove this limitation [5].

5. Algorithm Details
Here, we presents in detail the stencil reduction algorithm outlined
in Section 4, focusing mainly on the first two steps (bounding the
output and bounding the computations).

5.1 Preliminaries

We use standard compiler transformations to bring the input pro-
grams (i.e., the specification and the sketch) into an intermediate
normal form bearing the following properties:

Loops. All loops are normalized to the formfor (int i = e1;
i < e2; ++i), wherei is the uniquely namedmain induction
variable of the loop. Remaining loop induction variables are
expressed as a function ofi.

Function calls. All calls are inlined. Recursive calls to sketched
functions are replaced with calls to their specifications (which
must be non-recursive). Proving equivalence of the spec and
a recursive sketch after this transformation constitutes a proof
by induction, under the assumption that the recursion is well
founded (i.e., that all recursive calls eventually terminate).

Normalized programs obey the following syntax:

Expressions e ::= n | true | false | x | x[e] | e1 op e2

| f(e1, . . . ,ek)
| switch e case n1: e1; . . . case nk: ek

Statements c ::= x:= e | x[e1]:= e2 | skip
| if e then c1 else c2 | c1; c2

| for (i = e1; i < e2; ++i) c
Functions f ::= def f(x1, . . . ,xk) c return e

An additional semantic restriction is that loop bounds must be
invariant with respect to the induction variable of their loop. The
bounds can, of course, relate to outer induction variables. This
restriction could be relaxed, but the complications involved are not
justified in the domain of stencils. The domain is also restricted
by the power of the algebraic solver used to eliminate the latest
assignment expression (calledRD in this section).

If the program satisfies the aforementioned constraints, the re-
duction about to be described will be sound, but only under the as-
sumption that there is no integer overflow in either the spec or the
sketch. This is because the symbolic solver used to eliminate the
latest assignment expression may assume algebraic properties that
do not hold in the presence of overflow (e.g., a-1<N ⇐⇒ a<N+1).

5.2 Synthesizing Scalar Functions

We describe the algorithm that generates scalar functions and
bounds their computation. These two steps are performed in an
intertwined fashion and we describe them together.

One way to define a scalar function is to view it as a slice of
the original stencil. More precisely, given a stencil computation
s(in) returning a gridout, and an indexidx, the scalar function
computes a slice ofs with respect toout[idx]. While the original
computation may read the entire (unbounded) input grid, the slice
only reads aboundednumber of input elements.

The slice is expressed recursively, using a functional language
that resembles the one defined by the above syntax, but does not
include statements. Each recursive call corresponds to a def-use
edge in the slice ofout[idx]. Since the slice incurs a bounded

computation, the recursion is bounded. The result is thus finite and
can be accepted by the finiteSKETCH synthesizer.1.

The slicing algorithm boils down to expressingout[idx] sym-
bolically in terms of program inputs. To this end, we recursively
substitute non-input variables in the expressionout[idx] with the
right-hand side values of their most recent assignments.

We refer to most recent assignments asreaching definitions. In
contrast with traditional reaching definitions, which offer a static
approximation of the dynamic behavior of the program, our reach-
ing definitions areconcrete: they are defined on the execution trace
where each program point is reached by at most one definition for
any program location. Since there is no ambiguity as to which defi-
nition most recently assigned the location, we obtain precise back-
substitution in the sense that the fully substituted symbolic expres-
sion is executable and computes the value ofout[idx].

The procedureRD, which lies at the heart of the algorithm,
computes the concrete reaching definition of a memory location.

RD : M × P × I → P

The procedure maps a memory locationm ∈ M , an execution
point p ∈ P , and a program inputi ∈ I to the most recent
execution point that defined the value ofm prior to p, under the
input i. The set of memory locationsM consists of scalar variables
and array elements. The set of execution pointsP is the cross
product of static program points with the loop iteration space.
The input spaceI includes the input grid together with any scalar
arguments.

We are now ready to describe the abstraction algorithm. For
each scalar variablev we create a function

v_fn : P × I → T

that computes the valuen of v at execution pointp ∈ P under
the inputi ∈ I. The typeT is a primitive type (boolean, int, or
double). The function will be expressed in the functional language
shown above. Similarly, for an arraya (for simplicity, we assume
that arrays are one-dimensional) we create a function

a_fn : Int× P × I → T

that computes the value ofa[idx] for an indexidx ∈ Int at point
p ∈ P under the inputi ∈ I. These two functions are called v-
functions. The reduced function for a stencils returning a gridout
now becomes

double reduced_s(int idx, double[N] in) {
return out_fn(idx, Pe, in);

}

wherePe is the end point of the program execution trace.
v-functions are constructed via syntactic translation of the orig-

inal program. A v-function first obtains the reaching definition and
then (recursively) replaces all array and variable references on the
right-hand side of the reaching definition with calls to appropriate
v-functions. A v-function for variablev (or array accessa[idx]) at
execution pointp under inputi, looks as follows.

1. Obtain the most recent execution pointp′ wherev (respectively,
a[idx]) was defined prior top under inputi.

1 If the input program violates the boundedness assumption, the algorithm
described in this section will still produce a correct recursive representation
of the slice, but the recursion will be unbounded and will depend on the
inputs. When this program is fed to theSKETCH synthesizer, the synthesizer
will attempt to inline the recursive calls an increasing number of times, to
no avail; after a few tries, it will reach a predefined threshold for function
inlining, and will inform the user that the sketch can not be resolved.
Crucially, though, a violation of the assumption can not lead to a buggy
implementation.

2. Extract the static program statements executed atp′, and the
right-hand side expressione in s.

3. Return a valuation of a transformed expressionF (e) where

(a) each variable sub-expressionv’ is replaced withv’_fn(p′,i);

(b) each array access sub-expressiona’[e′] is replaced with
a’_fn(F (e′),p′,i).

To illustrate the process, consider the following example. The
example is acyclic so that the reader need not be concerned with
execution point representation for now.

int[N] f(int[N] in, int a) {
s1: int[N] out = 0;
s2: int[N] A = in;
s3: if (in[3] > in[4]) {
s4: out[3] = A[3];
s5: A[a] = in[5];

}
s6: if (A[5] > 0)
s7: out[a] = A[out[a]];

return out;
}

The v-function ofout for this example needs to handle three as-
signments toout:

out_fn(idx, p, i)) {
p’ = RD((out,idx), p, i);
switch (P_s(p’)) { // extract the statement at p’

case s1: return 0;
case s4: return A_fn(3, p’, i);
case s7: return A_fn(out_fn(a, p’, i), p’, i);

}
}

It remains to show how the functionRD computes the concrete
reaching definitions. First, we need to define theexecution point
p ∈ P . As mentioned in passing above, an execution pointp is a
pair(s, t), wheres is a (static instance of a) program statement and
t is a point from the iteration spaceT of the program. The iteration
point t is defined as a valuation of loop induction variables that are
in scope at the statements (these are exactly the induction variables
of loops that encloses). Whenp = (s′, t′), we defineP_s(p) = s′

and P_t(p) = t′. In the following, we useT_map(t,’j’,n) to
denote binding of an induction variablej to some valuen in
iteration pointt, andT_get(t,’j’) to extract the currently bound
value forj. Similarly, I_get(i,’x’) extracts the value associated
with (non-induction) variablex at input statei.

The trace of a program execution is a sequence of execution
points. We define a total order<P on P such thatp1 <P p2 iff
p1 executed beforep2. The execution orderp1 <P p2 is deter-
mined by the lexicographic order of the iteration pointsP_t(p1)
andP_t(p2); if there is a tie, thenp1 andp2 must be in the same
loop iteration and their execution order is determined by their po-
sition in the program. Internally, we represent the execution point
such that the<P -test can be performed as a single lexicographic
test. We define two execution point constants:Pb is the beginning
of the execution andPe is the end of the execution.

As statement guarded by conditionals may not execute in every
iteration, the execution order<P alone is insufficient for deter-
mining the most recent definition. To reflect control conditions un-
der which the statement executes, we define the predicateq(p, i),
which holds iff the statementP_s(p) executes at iteration point
P_t(p) under the inputi. Formally speaking,q(p, i) is the disjunc-
tion of the path constraints for all paths that reach the execution
point q(p, i). Programs in our domain have structured control flow

and loop bounds that are invariant with respect to their loop’s in-
duction variable. Therefore, the predicateq(p, i) can be constructed
syntactically as a conjunction of all the conditionals (including loop
conditions) enclosing the statementP_s(p).

For example, consider statements4 in the code below. Let
p = (s4, t) be an execution point associated withs4 for some
iteration pointt. We form the predicateq(p, i) for this execution
point under some input statei: the constraint corresponding to the
if statement ins3 is A_fn(T_get(t, ’j’), p, i) > 0; the constraint
corresponding to the loop statement ins0 ands1 is T_get(t, ’j’) ≥
0 ∧ T_get(t, ’j’) < I_get(i, ’N’).

double[N] f(double[N] in) {
int [N] A, out;

s0: for (int j=0;
s1: j<N; ++j) {
s2: A[j] = in[j];
s3: if (A[j] > 0)
s4: out[j] = in[j];

else
s5: out[j] = -in[j];

s6: out[j] = sqrt(out[j]);
}

}

We are now ready to describeRD, the procedure for computing
reaching definitions, for this case of an array access. Given a pro-
gram locationv[idx], an execution pointp, and inputi, the proce-
dure considers all execution pointsp′ that precedep, execute under
the inputi, and assign into locationv[e] for some index expression
e such that the value ofe at execution pointp′ equalsidx. Among
all such execution points, it selects the most recent one; if none
meets all criteria, there is no reaching definition, andRD returnsPb.

RD((v,idx), p, i) {

return max({Pb} ∪ {p′ | p′ <P p ∧ q(p′,i)
∧ P_s(p′)≡v[e]=e’

∧ e_fn(p′,i)=idx});
}

Our compiler uses algebraic reasoning to simplify procedure
RD. The symbolic simplifier reasons with equalities, inequalities,
and logical connectives. The simplification procedure relies on the
fact that when we have an assignment of the formx[g(j)] = e,
the constraintg(j) = idx often suffices to fully define the iter-
ation space point in terms ofidx, by invertingg. It then remains
only to test whether the values thus derived satisfy the remaining
constraints for qualifying execution points. Also, finding the most
recent point of assignment is done in a staged manner, by first find-
ing the most recent point corresponding toeachassigning statement
and then picking the most recent among them.

In the above example, we can find the last program point prior
to point p where out[idx] has been updated by the particular
statements4 (if such a point exists), as follows:

p’ = max({(s4, t) | (s4, t) <P p
∧ (T_get(t,’j’)≥ 0
∧ T_get(t,’j’)<I_get(i,’N’)
∧ A_fn(T_get(t,’j’), (s3, t), i)> 0)

∧ T_get(t,’j’)=idx});
Note that the constraintT_get(t,’j’) = idx fully defines the
value ofj to be equal toidx, so the statement above can be replaced
with a couple of simple assignments.

t = T_map(new T,’j’,idx);
p’ = (s7,t);

int out_fn(int idx, P p, I i) {
T t = T_map(new T, ’j’, idx);

P p4 = new P(s4,t);
if (! (p4 < p && idx >= 0 && idx < I_get(i,’N’)

&& A_fn(idx, new P(s3,t), i) > 0))
p4 = Pb;

P p5 = new P(s5,t);
if (! (p5 < p && idx >= 0 && idx < I_get(i,’N’)

&& ! A_fn(idx, new P(s3,t), i) > 0))
p5 = Pb;

P p6 = new P(s6,t);
if (! (p6 < p && idx >= 0 && idx < I_get(i,’N’)))

p6 = Pb;

P p’ = (p4 < p5 ? (p5 < p6 ? p6 : p5) :
(p4 < p6 ? p6 : p4));

switch (P_s(p’)) {
case s4: return I_get(i, ’in’, T_get(P_t(p’),’j’));
case s5: return -I_get(i, ’in’, T_get(P_t(p’),’j’));
case s6:
return sqrt(out_fn(T_get(P_t(p’),’j’), p’, i));

}
}

Figure 3. v-function for arrayout

if (! (p’ < p && idx >= 0 && idx < I_get(i,’N’)
&& A_fn(idx, (s3,t), i) > 0))

p’ = Pb;

To complete our example, we find statement-specific most recent
points for each assigning statement in a similar manner, and pick
the most recent among these points. The final v-function forout is
shown in Figure 3.

6. Evaluation
In this section, we present an empirical evaluation of our system
using several kernels from the MultiGrid method as case studies.
From the case studies, we were able to validate three basic claims.

Scalability. We prove that the system scales to complex real-world
implementations of important kernels. For example, we were
able to synthesize in a matter of minutes an implementation for
a kernel that involved 14 different loops from a sketch that had
44 different holes.

Usability. The case studies also allow us to describe a typical use
scenario for a sketching system. In particular, we describe how
we were able to explore different implementation strategies,
discarding those that don’t work and refining those that do,
without the risk of introducing bugs.

Performance of generated code.We show that creating these
complex implementations is worth the effort. In particular, one
of the implementations we sketched was over 8 times faster than
the original reference implementation on a 1.3 GHz Itanium-2,
even though they were compiled and optimized using the Intel
Fortran compiler version 9.1, arguably one of the best com-
pilers commercially available on the Itanium architecture. In
other words, the sketch expressed optimization ideas which the
compiler was unable to discover on its own.

The results of the performance evaluation of the synthesizer
are summarized in Table 1. The table lists all the benchmarks
that appear in the paper together with their solution time, and a

Loop Holes i-bits Size SAT Total
timeSkew 3 12 expr 5 10469 137 269
cacheObv rec 2 expr 5 5313 141 165
interp1 3 111 3 1930 422 424
interp2 7 74 3 1954 85 88
rb3d1 6 36 5 2471 97 108
rb3d1Odd 14 43 3 27045 138 214
rb3d2 7 30 3 18994 82 145
rb2d1 4 16 6 1809 81 88
rb2d2 4 22 6 3868 72 78

Table 1. Solution time for the different benchmarks in the paper.
Table columns specify: the number of loops present in the final im-
plementation (“rec” stands for recursive); the number of holes the
synthesizer filled in; the number of bits used to represent integers;
the number of Boolean and arithmetic operations in the reduced
problem after some simplification; the time (in seconds) spent in
SAT solver queries; and the total time (in seconds) required to re-
solve the benchmark.

few statistics regarding their complexity. The statistics include the
loops in the final implementation, the number of holes filled by
the synthesizer, and the number of integer and boolean operations
in the spec and the sketch after reduction and some algebraic
simplification. This last quantity is simply to give a measure of
how complex the reduced problems are. The table also shows the
solution time for each benchmark on an Intel Pentium M 1.6 GHz
laptop, and what fraction of the time is spent solving SAT problems.
It should be pointed out thatSKETCH doesn’t invoke a SAT solver
directly, but instead uses the circuit equivalence checking engine
from ABC [14], which has proven to be much more efficient.

6.1 Sketching for MultiGrid

The MultiGrid algorithm is used for solving partial differential
equations for a wide range of domains, including fluid dynamics
and solid mechanics. It is composed of three main kernels: relax,
interpolate, and restrict [3]. Each application of the relaxation rou-
tine produces a closer approximation to the solution, but with a very
fine grid the low frequency components of the error in the approxi-
mation take too long to die out. To address this problem, MultiGrid
computes corrections to the solution by creating a coarser problem
(restrict), solving it recursively, and then mapping the correction
back to a finer grid (interpolate). We have sketched implementa-
tions of relaxation and interpolation kernels in 3-D; the restrict ker-
nel is quite similar to interpolate.

We sketched several implementation tricks from the literature
and from hand optimized implementations of these kernels. In
a couple of cases, it took less than half an hour to write and
synthesize implementations that we estimate would have taken
half a day if written by hand. Additionally, some of our sketched
implementations were several times faster than the clean reference
implementations, even after the latter had been optimized by the
Intel Fortran compiler.

Relaxation. The relaxation phase of MultiGrid starts with an ap-
proximation to the solution of the problem and uses it to compute a
closer approximation to the solution. For our case study, we imple-
mented a Red-Black Gauss-Seidel relaxation scheme for both a 2-D
grid and a 3-D grid following more or less the same implementation
strategies. The specification for the 3-D benchmark is shown below.
The algorithm assigns a color to each cell on the grid in a check-
ered pattern, and then applies a six point stencil on the red cells,
followed by another (same) stencil on the black cells. This widely

used relaxation scheme has well known implementation strategies
to optimize it for different architectures [8].

// red
for (int i = 1; i < N-1; ++i)
for (int j = 1; j < N-1; ++j)

for (int k = 1; k < N-1; ++k)
if (i%2 == 0 ^ j%2 == 0 ^ k%2 == 0)

out[i,j,k] = F(i,j,k, in);
// black
for (int i = 1; i < N-1; ++i)
for (int j = 1; j < N-1; ++j)

for (int k = 1; k < N-1; ++k)
if (! (i%2 == 0 ^ j%2 == 0 ^ k%2 == 0))

out[i,j] = F(i,j,k, out);

Here,F(i,j,k, prev) expands to

f[i,j,k] + v0*in[i,j,k] + v1*prev[i-1,j,k]
+ v2*prev[i+1,j,k] + v3*prev[i,j-1,k]
+ v4*prev[i,j+1,k] + v5*prev[i,j,k+1]
+ v6*prev[i,j,k-1];

The above specification is written in the simplest possible way,
using thexor expressioni%2 == 0 ^ j%2 == 0 ^ k%2 == 0 to
decide the color of each cell. These types of conditions tend to
confuse traditional dependence analysis, so even a state-of-the-art
compiler like the Intel compiler is unable to optimize the kernel
fully.

In order to produce a better implementation, we used two im-
plementation strategies from [8]. In this paper, Douglaset al. pro-
vide only high-level descriptions of their optimization strategies
(no pseudo-code), but those low-level details omitted in the paper
are exactly whatSKETCH can synthesize.

The first implementation we created is quite simple; it just
eliminates the conditionals by computing the output in blocks of
eight elements at a time: four red and four black. The sketch for
the case where N is even is very simple; it has two loop-nests with
unspecified bounds, each with four assignments of the form

out[2*i-??,2*j-??,2*k-??] =
F(2*i-??,2*j-??,2*k-??, in);

The sketch describes the high-level idea that we compute first all
the red cells four at a time, and then all the black cells, also four at a
time. The sketchesrb2d1 andrb3d1 from Table 1 correspond to the
2-D and 3-D instances of this sketch respectively. One can see that
both sketches resolved quite fast despite having a large number of
holes. Moreover, the resulting implementation is about45% faster
for the 3-D case and70% faster for the 2-D case.

The implementation for the case whereN is odd is considerably
more complicated because one must cover a lot of corner cases,
particularly in 3-D, where the final implementation is composed
of 14 different loops. However, with the support of sketching, it
is easy to construct the odd case from the even case. To do this,
we took the 3-D implementation for the even case produced by
the previous sketch, and simply sketched the corner cases on top
of it. Using the implementation generated from the even case as
a starting point allowed the sketch to scale; a sketch for the odd
case that left everything unspecified proved to be intractable for the
compiler. Fortunately, we did not have to start from scratch. We
were able to exploit the fact that we already had a solution for the
even case to make the odd case more tractable. The sketch for the
red cells for the 2-D odd case is shown below. Statements 1 and 2
came from the implementation of the even case, and on top of it,
we added a corner case for the last cell in each row (3), and the
last row (4), Since we are not sure if the last cell in the last row (5)
needs to be treated separately, we ask the solver to decide.

for (int i = ??; i < N/2-??; ++i){
for (int j = ??; j < N/2-??; ++j){

out[2*i-1,2*j-1] = F(2*i-1,2*j-1, in); //1
out[2*i,2*j] = F(2*i,2*j, in); //2

}
out[2*i-??,N-??] = F(2*i-??,N-??, in); //3

}
for (int j = ??; j < N/2-??; ++j){
out[N-??,2*j-??] = F(N-??,2*j-??, in); //4

}
if (??) out[N-??,N-??] = F(N-??,N-??, in); //5

Our second implementation for this benchmark uses another
strategy mentioned in [8], namely computing the red and black
cells together in a single pass through the array. In this case, careful
attention is required in order to preserve the dependencies. We first
implemented the trick in 2-D by creating a loop that updates both
red and black cells as shown below, and then two more loops to
handle the corner cases.

for (int i = ??; i < N/2-??; ++i) {
for (int j = ??; j < N/2-??; ++j) {

// red
out[2*i-??,2*j-??] = F(2*i-??,2*j-??, in);
out[2*i-??,2*j-??] = F(2*i-??,2*j-??, in);
//black
out[2*i-??,2*j-??] = F(2*i-??,2*j-??, out);
out[2*i-??,2*j-??] = F(2*i-??,2*j-??, out);

}
}

From the sketch, the synthesizer was able to discover that it had
to compute the black cells with an offset with respect to the red
cells in order to preserve dependencies. Note that neither the loop
bounds nor the array access offsets are trivial; getting them right
would have been quite challenging for the programmer.

for (int i = 2; i < N/2; ++i){
for (int j = 1; j < N/2; ++j) {

// red
out[2*i-1,2*j-1] = F(2*i-1,2*j-1, in);
out[2*i,2*j] = F(2*i,2*j, in);
//black
out[2*i-3,2*j-0] = F(2*i-3,2*j, out);
out[2*i-2,2*j-1] = F(2*i-2,2*j-1, out);

}
}

As shown in Table 2, this optimization delivered a60% perfor-
mance improvement compared to the previous optimization, which
was already70% faster than the spec. This shows that the opti-
mizations we are able to sketch go beyond what the Intel compiler
is able to do on its own given a straightforward specification.

We tried to implement the same trick in 3-D. In this case,
our sketch produced an implementation that computed the black
cells for the plane2i after computing the red cells in the plane
2i + 2. Unlike the 2-D case, however, this produced a performance
degradation, probably due to the fact that the planes are too big to
fit in the cache, so accessing too many of them at a time simply
confuses the prefetcher with no benefit to performance.

Interpolation. The interpolation routine maps the values in a
coarse grid to a finer grid of size2N × 2N × 2N, as illustrated in
Figure 4. Points in the fine grid that correspond to points in the
coarse one are copied, while the other points in the fine grid are
computed by averaging the values of their neighbors in the coarse
grid. As illustrated in Figure 4, this leads to four different cases,
depending on whether we average 1, 2, 4 or 8 points. The following

1 2

3
4

k

i

j 0
4

2
6

1 3

0
4

2
6

1 3

A

B

a

b
c

a

b
c

5

5 7

7

(a) (b)

Figure 4. (a) Stencil for interpolation distinguishes four different
cases. Either the new point matches a point in the coarse grid (1), is
in an edge in the old grid (2), in a face (3), or in the center of a cube
formed by consecutive points in the old grid (4). (b) The optimized
version will precompute the sums a, b and c.

code shows a fragment of the specification, describing a few of the
cases.

for (int i = 0; i < 2*N-2; ++i)
for (int j = 0; j < 2*N-2; ++j)
for (int k = 0; k < 2*N-2; ++k) {
if (i%2 == 0 && j%2 == 0 && k%2 == 0) // Case 1
out[i,j,k] = in[i/2,j/2,k/2];

if (i%2 == 1 && j%2 == 0 && k%2 == 0) // Case 2
out[i,j,k] =

0.5 * (in[i/2,j/2,k/2] + in[i/2+1,j/2,k/2]);
...

if (i%2 == 1 && j%2 == 1 && k%2 == 0) // Case 3
out[i,j,k] =

0.25 * (in[i/2,j/2,k/2] + in[i/2+1,j/2+1,k/2]
+ in[i/2,j/2+1,k/2] + in[i/2+1,j/2,k/2]);

...
}

As in the previous sketch, we started by blocking the computa-
tion to eliminate all the conditionals in the specification. For each
point in the coarse grid, there is a2 × 2 × 2 block in the fine grid
which constitutes the smallest repeating pattern. Because the output
grid is of size(2N)3, odd grid sizes are not a problem.

The sketch was very easy to write because we left every single
array offset unspecified, as well as the bounds of all loops. We only
specified that on each iteration of the innermost loop, there were 8
assignments to entries ofout, 1 for case1, 3 for case2, 3 for case
3, and 1 for case4. The individual cases are shown below.

out[2*i+??,2*j+??,2*k+??] = in[i+??,j+??,k+??];
out[2*i+??,2*j+??,2*k+??] =
0.5 * (in[i+??,j+??,k+??] + in[i+??,j+??,k+??]);

out[2*i+??,2*j+??,2*k+??] =
0.25 * (in[i+??,j+??,k+??] + in[i+??,j+??,k+??] +

in[i+??,j+??,k+??] + in[i+??,j+??,k+??]);
out[2*i+??,2*j+??,2*k+??] =
0.125 * (in[i+??,j+??,k+??] + in[i+??,j+??,k+??] +

in[i+??,j+??,k+??] + in[i+??,j+??,k+??] +
in[i+??,j+??,k+??] + in[i+??,j+??,k+??] +
in[i+??,j+??,k+??] + in[i+??,j+??,k+??]);

As shown in Table 2, this simple transformation allowed the imple-
mentation to run 8 times faster than the spec.

The second sketch we did for this benchmark describes an
optimization which is used by the HPF implementation of this
kernel in the NAS benchmark suite [2]. The key insight behind this
optimization is that a lot of the sums are computed more than once,
so we can reuse some of them when computing different blocks.
Figure 4(b) shows two consecutive blocks (A and B). The pairs
a, b andc represent a partial sum of two points from the original
grid. We can see that the partial suma can be used to compute 6
different points:A5, A7, B4, B5, B6, B7. Similarly, the partial sums
b andc can be reused in computing most of the other points. The
implementation uses this insight by pre-computing the partial sums
a, a+b andc; these are stored in temporary arrays for each value of
(i, j), to make the rest of the computation easier to vectorize.

We wrote the sketch for this implementation trick in less than
one hour. As before, the sketch leaves unspecified every single
array offset and every single loop iteration bound. Below, one can
see the loop that pre-computes the sub-expressions:

for (int i = ??; i < N-??; ++i) {
float ta = in[i+??,j+??,k+??] + in[i+??,j+??,k+??];
float tb = in[i+??,j+??,k+??] + in[i+??,j+??,k+??];
float tc = in[i+??,j+??,k+??] + in[i+??,j+??,k+??];
aplusb[i] = ta + tb;
a[i] = ta;
c[i] = tc;

}

The code for each of the expressions was sketched following Fig-
ure 4(b). In particular, the picture shows that the three points corre-
sponding to case 2 are computed one froma, one fromc, and one
by adding the two vertices labeled0. Similarly, for points corre-
sponding to case 3, one is computed from two entries fromc, one
from two entries froma, and one is justa+b. And finally, case 4
is the sum of two consecutivea+b. So the basic idea is clear from
the picture, and can be sketched directly with the statements shown
below. Nonetheless, the details of which offsets to use are not clear
from the picture, so those are left unspecified for the solver to com-
plete. The sketch resolves in less than three minutes.

output[k*2+??,j*2+??,i*2+??] = in[k+??,j+??,i+??];
output[k*2+??,j*2+??,i*2+??] =
0.5 * (in[k+??,j+??,i+??] + in[k+??,j+??,i+??]);

output[k*2+??,j*2+??,i*2+??] = 0.5 * a[k+??];
output[k*2+??,j*2+??,i*2+??] = 0.5 * c[k+??];
output[k*2+??,j*2+??,i*2+??] =
0.25 * (c[k+??] + c[k+??]);

output[k*2+??,j*2+??,i*2+??] =
0.25 * (a[k+??] + a[k+??]);

output[k*2+??,j*2+??,i*2+??] = 0.25 * aplusb[k+??];
output[k*2+??,j*2+??,i*2+??] =
0.125 * (aplusb[k+??] + aplusb[k+??]);

On the Itanium-2, this optimization had a very minimal im-
pact on the performance compared with simple blocking. However,
what is important is the fact that we were able to sketch the imple-
mentation trick, and get a complete implementation for it, all with-
out the risk of introducing bugs. In fact, in the process of sketch-
ing these optimizations, we tried many other variations on the ba-
sic tricks. Some ideas were rejected by the compiler while others
caused performance degradations. Nevertheless, we were able to
try them easily and without introducing bugs.

7. Related Work
The algorithms described in this paper are implemented as an ex-
tension to theSKETCH system, and rely heavily on the combinato-
rial synthesis engine described in [22]. The originalSKETCH com-
piler handled unbounded programs by artificially bounding the size

of their input. This is completely unsuitable for stencils, because
the resulting formula would be proportional (by a very large factor)
to the maximum size of the input grids, leading to intractably large
problems: even the simplest sketch examined in this paper (rb2d1
from Section 6) causes the originalSKETCH compiler to run out of
memory when asked to consider grids of size N< 16. For the same
size problem (3 bit integers), the new algorithm resolves the same
sketch in 7 seconds.

The reduction technique presented in this paper extracts a
bounded representation of stencils, making the problem tractable
for the combinatorial synthesizer. Thus it extends the domain of
theSKETCH system by allowing it to reason about unbounded pro-
grams. Additional techniques—like those presented in [5]—can
be applied on top of the bounded representation in order to prove
equivalence very efficiently.

Our reduction technique is based on exploiting the high-level
structure of a program, together with abstraction to make a com-
binatorial analysis more tractable. These principles are well-rooted
in the research of model checking: for example, uninterpreted func-
tions and their representation using input variables is widely used
in verifying hardware and (more recently) software [4, 6], as is the
idea of breaking the problem into cases that we apply to bounding
the output [13].

7.1 Alternative approaches

We find our approach to be complementary to more traditional
forms of compiler optimization. On the one hand, having a very
powerful optimizer available allows sketching-based efforts to fo-
cus only on higher-level optimization. On the other hand, sketches
can be used to express implementations that are beyond the capa-
bilities of traditional compiler optimization. Optimizers relying on
dependence analysis—such as [16]—must be able to reason stati-
cally about all array reads and writes, so every array index expres-
sion must have a clean algebraic form to ensure that no dependence
will be violated after a transformation. Additionally, dependence
analysis must deal very conservatively with index expressions and
conditionals that depend on inputs.

In contrast to dependence analysis, our reduction procedure
only needs to reason about array index expressions on the left-
hand side of an assignment, since these are used to symbolically
derive the expression for the latest assignment to an array (see Sec-
tion 5). Therefore, complex conditionals, and even input dependent
array accesses and looping structures, do not pose further complica-
tion; the reduced problem is delegated to the combinatorial engine,
which analyzes it under all possible inputs.

Finally, search-based optimization for performance-critical ker-
nels has gained increasing popularity in the high-performance com-
munity. Such approaches explore and test candidate implementa-
tions from a suitably restricted implementation space, either by
executing them on the target machine or by detailed simulation.
For example, FFTW [9] uses a planner to try many different ex-
ecution plans for an FFT at run-time, and pick the best one. SPI-
RAL [17] generates high-performance DSP kernels by searching
the space of possible implementations, taking advantage of the
structure of the algorithm and the implementation space to speed
up the search. Demmelet al. [7] also use search-based methods
to generate dense and sparse linear algebra kernels. These systems
use hand-crafted code generators to produce candidate implemen-
tations, which makes building them a difficult and error-prone task.
This in turn restricts the space of implementations that these sys-
tems can explore.

Sketching may benefit from adopting search-based tuning: con-
ceivably, a sketch synthesizer can generate a set of correct comple-
tions of the sketch, and then search for the most efficient one.

Relax (Red-Black) 2-D Relax 3-D Interpolate
N spec rb2d1 rb2d2 N spec rb3d1 rb3d2 N spec interp1 interp2

1000 17 10 6 100 15 10 9 75 141 18 18
2000 66 38 24 200 115 77 109 100 338 44 43
3000 153 84 54 300 385 236 634 150 1146 149 147
4000 264 148 97 400 923 585 1650 175 1935 238 232

500 1787 1174 2428 200 2822 339 335

Table 2. Running times of benchmarks implementations. The size of the grid for the Red-Black code isN2 and N3 for 2-D and 3-D
respectively. The size of the fine grid for Interpolate is(2N)3. Time is in milliseconds.

8. Conclusion
The paper describes a sketching synthesizer for stencil computa-
tions. It is the first system for sketching programs that go beyond
the finite programs of the originalSKETCH language and synthe-
sizer [21]. The synthesis is enabled with an abstraction that makes
the stencil synthesis problem finite without sacrificing precision,
which allows reduction onto the finite synthesizer. The resulting
stencil synthesizer is surprisingly scalable.

Acknowledgment

We are grateful to the anonymous referees for their helpful com-
ments. This work is supported in part by the National Science Foun-
dation with grants CCF-0613997, CCF-0085949, CCR-0105721,
CCR-0243657, CNS-0225610, CCR-0326577, and CNS-0524815,
the University of California MICRO program, the MARCO Gi-
gascale Systems Research Center, an Okawa Research Grant, an
IBM Graduate Fellowship, and a Hellman Family Faculty Fund
Award. This work has also been supported in part by the Defense
Advanced Research Projects Agency (DARPA) under contract No.
NBCHC020056. The views expressed herein are not necessarily
those of DARPA.

References
[1] W. Ackermann.Solvable cases of the decision problem. Studies in

Logic and the Foundations. of Mathematics. NorthŰHolland„ 1954.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski,
R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The nas parallel benchmarks.The International Journal
of Supercomputer Applications, 5(3):63–73, Fall 1991.

[3] W. L. Briggs, V. E. Henson, and S. F. McCormick.A Multigrid
Tutorial. SIAM, 2000.

[4] R. E. Bryant, S. German, and M. N. Velev. Processor verification
using efficient reductions of the logic of uninterpreted functions to
propositional logic. ACM Transactions on Computational Logic,
2(1):1–41, January 2001.

[5] R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman,
and B. Brady. Deciding bit-vector arithmetic with abstraction. In
Proc. TACAS 2007, March 2007.

[6] D. Currie, X. Feng, M. Fujita, A. J. Hu, M. Kwan, and S. Rajan.
Embedded software verification using symbolic execution and
uninterpreted functions.Int. J. Parallel Program., 34(1):61–91,
2006.

[7] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc,
C. Whaley, and K. Yelick. Self adapting linear algebra algorithms
and software.Proceedings of the IEEE, 93(2), 2005.

[8] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiss. Cache
optimization for structured and unstructured grid multigrid.Elect.
Trans. Numer. Anal., 10:21–40, 2000.

[9] M. Frigo and S. Johnson. Fftw: An adaptive software architecture
for the fft. In ICASSP conference proceedings, volume 3, pages

1381–1384, 1998.

[10] M. Frigo and V. Strumpen. The memory behavior of cache oblivious
stencil computations.The Journal of Supercomputing, 39(2):93–112,
2007.

[11] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick.
Implicit and explicit optimizations for stencil computations. In
MSPC ’06: Proceedings of the 2006 workshop on Memory system
performance and correctness, pages 51–60, New York, NY, USA,
2006. ACM Press.

[12] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. A. Yelick. Impact
of modern memory subsystems on cache optimizations for stencil
computations. In B. Calder and B. G. Zorn, editors,Memory System
Performance, pages 36–43. ACM, 2005.

[13] K. McMillan. Verification of infinite state systems by compositional
model checking. InCorrect Hardware Design and Verification Meth-
ods: 10th IFIP WG 10.5 Advanced Research Working Conference,
CHARME ’99, Bad Herrenalb, Germany, September 1999., pages
219–237, 1999.

[14] A. Mishchenko, S. Chatterjee, and R. Brayton. Dag-aware AIG
rewriting: A fresh look at combinational logic synthesis. InDAC ’06:
Proceedings of the 43rd annual conference on Design automation,
pages 532–535, New York, NY, USA, 2006. ACM Press.

[15] A. Pnueli, O. Shtrichman, and M. Siegel. The code validation
tool (cvt). International Journal on Software Tools for Technology
Transfer (STTT), 2, December 1998.

[16] W. Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. InSupercomputing ’91:
Proceedings of the 1991 ACM/IEEE conference on Supercomputing,
pages 4–13, New York, NY, USA, 1991. ACM Press.

[17] M. Püschel, B. Singer, J. Xiong, J. Moura, J. Johnson, D. Padua,
M. Veloso, and R. Johnson. Spiral: A generator for platform-
adapted libraries of signal processing algorithms.Journal of High
Performance Computing and Applications, accepted for publication.

[18] G. Roth, J. Mellor-Crummey, K. Kennedy, and R. G. Brickner. Com-
piling stencils in high performance fortran. InSupercomputing ’97:
Proceedings of the 1997 ACM/IEEE conference on Supercomputing
(CDROM), pages 1–20, New York, NY, USA, 1997. ACM Press.

[19] S. Sellappa and S. Chatterjee. Cache-efficient multigrid algorithms.
Int. J. High Perform. Comput. Appl., 18(1):115–133, 2004.

[20] L. Snyder.Programming Guide to ZPL. MIT Press, Cambridge, MA,
1999.

[21] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. Seshia.
Combinatorial sketching for finite programs. In12th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2006), pages 404–415, New York,
NY, USA, 2006. ACM Press.

[22] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. Seshia.
Combinatorial sketching for finite programs. InASPLOS ’06, San
Jose, CA, USA, 2006. ACM Press.

[23] D. Wonnacott. Achieving scalable locality with time skewing.
International Journal of Parallel Programming, 30(3):1–221, 2002.

