
Sketching Concurrent Data Structures

Armando Solar-Lezama, Christopher Grant Jones, Rastislav Bodík
University of California, Berkeley

{asolar,cgjones,bodik}@eecs.berkeley.edu

Abstract
We describePSKETCH, a program synthesizer that helps program-
mers implement concurrent data structures. The system is based
on the concept of sketching, a form of synthesis that allows pro-
grammers to express their insight about an implementation as a
partial program: a sketch. The synthesizer automatically completes
the sketch to produce an implementation that matches a given cor-
rectness criteria.

PSKETCH is based on a new counterexample-guided inductive
synthesis algorithm (CEGIS) that generalizes the original sketch
synthesis algorithm from [20] to cope efficiently with concurrent
programs. The new algorithm produces a correct implementation
by iteratively generating candidate implementations, running them
through a verifier, and if they fail, learning from the counterexam-
ple traces to produce a better candidate; converging to a solution in
a handful of iterations.

PSKETCH also extendsSKETCH with higher-level sketching
constructs that allow the programmer to express her insight as
a “soup” of ingredients from which complicated code fragments
must be assembled. Such sketches can be viewed as syntactic de-
scriptions of huge spaces of candidate programs (over108 candi-
dates for some sketches we resolved).

We have used thePSKETCH system to implement several
classes of concurrent data structures, including lock-free queues
and concurrent sets with fine-grained locking. We have also sketched
some other concurrent objects including a sense-reversing bar-
rier and a protocol for the dining philosophers problem; all these
sketches resolved in under an hour.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.2.2 [Software En-
gineering]: Design Tools and Techniques

General Terms Languages, Design

Keywords Sketching, Synthesis, Concurrency, SAT, SPIN

1. Introduction
Data structures designed to be shared among many concurrent
threads are among the most complex programs one can write in less
than a thousand lines of code. The source of this complexity can be
traced back to the requirement that the data structure maintain con-
sistency in the presence of many simultaneous updates. Moreover,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’08, June 7–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00

programmers must maintain this consistency while keeping mutual
exclusion to a minimum, in order to prevent the data structure from
becoming a sequential bottleneck in a highly concurrent applica-
tion. In order to achieve this, data-structure designers must resort
to complex schemes to maintain the consistency with only fine-
grained locking, or even without using locks at all, relying only
on atomic primitives provided by the hardware. Finally, the com-
position of concurrent objects is far from trivial, so library-based
approaches will not shield programmers from the complexities of
concurrent data structures.

In this paper, we argue that program synthesis in the form of
sketching can be an important element in helping programmers
cope with these daunting challenges. Sketching is a form of soft-
ware synthesis designed to make programming easier by helping
programmers focus on the high-level implementation strategy and
leave the low-level details to the synthesizer. With sketching, the
programmer creates an implementation by writing a sketch — a
partial program containing only the easier-to-write parts of the
code, together with additional insight to help synthesize the re-
maining “holes”. In this way, the programmer is relieved from the
most demanding aspects of programming, while still maintaining
full control over the implementation.

Previous work applied Sketching to the development of ciphers
and error correction codes, and to important classes of scientific
programs [18, 20]. But thePSKETCH synthesizer described in this
paper is the first sketch synthesizer capable of reasoning about
concurrency.PSKETCH extends the originalSKETCH system with
a new synthesis algorithm based on the concept of counterexample-
guided inductive synthesis (CEGIS). The new system also adds
high-level sketching constructs to the original language, making it
easier to express insights about the implementation without having
to think about the details.

Like its predecessor, thePSKETCH synthesizer performs com-
binatorial synthesis, framing the synthesis problem as a search for
a sketch completion that satisfies a given correctness criteria. The
synthesis algorithm uses counterexample-guided inductive synthe-
sis (CEGIS) to search this space efficiently. CEGIS works by se-
lecting candidate implementations from the space, then using the
counterexample produced by a verification procedure to prune a
large fraction of the search space when the selected candidate is
shown to be wrong. The key innovation inPSKETCH is to reformu-
late CEGIS for the case when the counterexample produced by the
verifier is no longer an input, but an execution trace on the selected
candidate. By reformulating CEGIS in this way, we are able to take
any verifier capable of producing counterexample traces and use it
to build a sketch synthesizer.

The new high-level sketching constructs make it easy for the
programmer to use the synthesizer. For example, the programmer
can now ask the synthesizer to discover the correct ordering of
operations in a block. This is especially useful in the concurrent
setting, where programmers must often expend considerable effort
determining the right point to release a lock, or the right way to

order a sequence of updates to shared data. The new constructs
also make it simple to constrain the set of pointer expressions that
the synthesizer can use to complete a pointer-valued hole. This
makes it very easy for programmers to provide partial insights
about complex pointer-manipulations.

We have used thePSKETCH system to implement several
classes of concurrent data structures, including lock-free queues
and concurrent sets with fine-grained and optimistic locking . We
have also sketched some interesting concurrent objects including a
sense-reversing barrier and a protocol for the dining philosophers
problem. The synthesizer is able to quickly search through enor-
mous spaces of candidate programs; in one of our benchmarks, for
example, the synthesizer was able to find a correct implementation
for a lock-free queue from a space of more than108 candidate
implementations in about 50 minutes.

In summary, the key contributions of the paper are.

1. A generalization of the CEGIS approach to synthesize concur-
rent programs.

2. A set of language extensions and high-level constructs to sup-
port sketching of concurrent data structures.

3. An experimental evaluation of sketching for concurrent data
structures.

Section 2 is a tutorial on sketching for concurrent data struc-
tures. Section 3 provides a brief introduction to the sequential
SKETCH language, and Section 4 introduces the extendedPS-
KETCH language. Section 5 describes the CEGIS algorithm for se-
quential programs, and Section 6 shows how we generalized it to
handle concurrent programs. Section 7 demonstrates how the new
sketching constructs are implemented on top of the base language,
and Section 8 contains our empirical evaluation ofPSKETCH.

2. Sketching with Concurrency
In this section we introduce sketching of concurrent data structures
from the programmer’s point of view. We show how—with only a
few constructs for sketching concurrent operations—thePSKETCH
language allows the programmer to express enough of the structure
to synthesize a correct and efficient implementation, all the while
having only a partial knowledge about how the final program will
work. We will walk through the development using a problem
assigned two years ago in a undergraduate exam on operating
systems.

We start by quoting the exam problem. Deceitfully simple,
the problem was successfully answered by less than 30% of the
students, even with additional hints (which we omitted).

Lock-Free Queue.An object such as a queue is considered
“lock-free” if multiple processes can operate on this object simulta-
neously without requiring the use of locks, busy-waiting, or sleep-
ing. We will construct a lock-free FIFO queue using an atomic
“swap” operation. This queue needs both anEnqueue and aDequeue
method.

Instead of the traditionalHead andTail pointers, we will have
PrevHead andTail pointers.PrevHead will point at the last object
returned from the queue, soPrevHead.next will point to the head
of the queue. Here are the basic class definitions, under the assump-
tion that only one thread accesses the queue at a time.

// Holding cell for an entry
class QueueEntry {
QueueEntry next = null;
Object stored;
int taken = 0;
QueueEntry(Object newobject) { stored = newobject; }

}

// The actual Queue (not yet lock-free!)
class Queue {
QueueEntry prevHead = new QueueEntry(null);
QueueEntry tail = prevHead;
void Enqueue(Object newobject) {

QueueEntry newEntry = new QueueEntry(newobject);
tail.next = newEntry;
tail = newEntry;

}
Object Dequeue() {

QueueEntry nextEntry = prevHead.next;
while (nextEntry != null && nextEntry.taken == 1)
nextEntry = nextEntry.next;

if (nextEntry == null)
return null;

else {
nextEntry.taken = 1;
prevHead = nextEntry;
return nextEntry.stored;

} } }

Suppose that we have an atomic swap instruction that takes a
local variable (register) and a memory location and swaps their
contents. In a relaxed dialect of Java that allows pointers, it can
be described as follows.

Object AtomicSwap(variable addr, Object newValue) {
Object result = *addr; // Get old value (object)

*addr = newValue; // Store new object
return result; // Return old contents

}

Problem (a). Using theAtomicSwap() operation, rewrite code for
Enqueue() such that it will work for any number of simultaneous
Enqueue andDequeue operations. You should never need to busy
wait. Do not use locking (e.g., test-and-set lock). Although tricky,
it can be done in a few lines.
Problem (b). Rewrite code forDequeue() such that it will work
for any number of simultaneous threads working at once. Again,
do not use locking. You should never need to busy-wait.¤

This problem gives away more about the final solution than
sketching typically requires, yet it is interesting enough to illustrate
how sketching is helpful. The following development reflects the
actual sketching process by a co-author who had not previously
seen the solution to this problem.

Let us first consider how the programmer might sketch the
concurrentEnqueue operation. First, the programmer speculates
that, in addition to the initialization of a new entry, the method will
consist of one or more of following statements:

assignment ::= location= value
swap ::= tmp = AtomicSwap(location, value)

The next step is to come up with locations and values that the con-
currentEnqueue may need to reference. The programmer guesses
that these sets are sufficient overestimates:

location ::= {tail, tail.next, newEntry.next, tmp.next}
value ::= location∪ {tmp, newEntry, null}

Next, the programmer realizes an important implication of the
AtomicSwap semantics. Unlike CAS, whose typical use is to update
the data structure only when a race condition has not occurred,
AtomicSwap modifies the location unconditionally. Therefore, if the
swap fails, some corrective action may be necessary.

The programmer of course does not know what it means for
the swap to fail, or whether it can fail at all, because he does not
know the solution. He can, however, state his observation by adding

#define aLocation {| tail(.next)? | (tmp|newEntry).next |}
#define aValue {| (tail|tmp|newEntry)(.next)? | null |}
#define anExpr(x,y) {| x==y | x!=y | false |}

void Enqueue(Object newobject) {
QueueEntry tmp = null;
QueueEntry newEntry = new QueueEntry(newobject);

reorder {
aLocation = aValue;
tmp = AtomicSwap(aLocation, aValue);
if (anExpr(tmp, aValue)) aLocation = aValue;

}
}

Figure 1. A sketch for the concurrentEnqueue.

a fixup statement to the set of statements that may comprise the
concurrentEnqueue.

fixup ::= if (expr(tmp, value)) assignment
expr(x,y) ::= x == y | x != y

At this point, the programmer believes to have listed a superset of
the statements that the concurrentEnqueue might need. He does not
know how to assemble these statements into a working method, but
he can already express aninformal sketchof the desiredEnqueue
method:

The concurrentEnqueue method will execute—insome se-
quential order—(i) an assignment, (ii) a swap, and (iii) an
optional fixup statement.

This is the extent of the reasoning that needs to be carried out
about the concurrentEnqueue, and the resulting informal sketch
is all that the synthesizer needs to know to perform the synthesis.
We are now ready to write the sketch in thePSKETCH language.
The sketchedEnqueue is shown in Figure 1. Since it closely cor-
responds to the informal sketch, little explanation is in order. First,
note that macro definitions behave as in C. Second, thePSKETCH
expression{|e1|e2|. . .|} asks the synthesizer to select one of the
ei expressions, which can be given as regular expressions. Third,
thereorder construct specifies that the statements in its body can
appear in any order in the final implementation. Finally, note that
the programmer included among the choices foranExpr thefalse
expression; this makes the fixup statement optional.

The value of the sketch for the programmer is highlighted by
the fact that the sketchedEnqueue represents 1,975,680 unique
candidate programs. Since the synthesizer will select a correct one
from among them, the programmer can now think in terms of
coming up with a set of ingredients rather than how to orchestrate
them. It remains to specify the correctness condition, so that the
synthesizer can select a correct candidate. We discuss how this is
done in Section 4, but here it suffices to say that the programmer-
specified conditions require that the concurrentEnqueue obeys the
same structural properties as the sequential counterpart that was
given in the problem statement, and is sequentially consistent.

The resolution of the sketch in Figure 1 by the synthesizer
produces the concurrentEnqueue method in Figure 2. The fixup
statement was optimized away because it was unnecessary (the
synthesizer replacedanExp with false).

The sketch for the concurrentDequeue is shown in Figure 3. In
this operation, the programmer easily realized that the main trick
is to test thetaken field with atomicSwap, so this aspect was not
sketched. The tricky part was to come up with correct code that
can advance theprevHead pointer as far as possible, for improved

void Enqueue(Object newobject) {
QueueEntry tmp = null;
QueueEntry newEntry = new QueueEntry(newobject);

tmp = AtomicSwap(tail, newEntry);
tmp.next = newEntry;

}

Figure 2. The sketch from Figure 1, resolved.

Object Dequeue() {
QueueEntry nextEntry = prevHead.next;
while (nextEntry!=null &&

AtomicSwap(nextEntry.taken,1)==1)
nextEntry = nextEntry.next;

if (nextEntry == null)
return null;

else {
QueueEntry p = {| prevHead | nextEntry |};
while (p != NULL && {| p(.next)?.taken |}) {

prevHead = p;
p = p.next;

}
return nextEntry.stored;

} } }

Figure 3. A sketch for the concurrentDequeue.

Object Dequeue() {
QueueEntry nextEntry = prevHead.next;
while (nextEntry!=null &&

atomicSwap(nextEntry.taken, 1)==1)
nextEntry = nextEntry.next;

if (nextEntry == null)
return null;

else {
QueueEntry p = prevHead;
while (p != NULL && p.taken) {

prevHead = p;
p = p.next

}
return nextEntry.stored;

} } }

Figure 4. The sketch from Figure 3, resolved.

performance. This loop was sketched. In it, there is a choice of
where to start the iteration (there were only two plausible choices)
and a choice where to end the loop (again, only two choices). The
sketch forDequeue in Figure 3 represents only 4 programs, but
together with theEnqueue sketch, the programmer has encoded
over five million candidate implementations. Section 8 describes
a sketch forDequeue that corresponds to more candidates; that
sketch seeks to synthesize a program that updates theprevHead
pointer during the first loop. Such aDequeue has incomparable
performance with that in Figure 4 (depending on the workload, one
or the other may be preferred). These two sketches give hope that
sketches may be used to quickly develop alternative algorithms.

3. The SKETCH Language
To give necessary background for the sections that follow, we
summarize here theSKETCH language introduced in [21]. This
language supports sketching-based synthesis by extending a simple
imperative language with a single synthesis operator on top of
which higher-level and domain-specific synthesis constructs can be
added as mere syntactic sugar.

With theSKETCH language, the programmer first writes a clean,
behavioral specification for an algorithm, and then he sketches an
outline of an efficient implementation. We have observed that this
outline, called a sketch, captures the programmer’s insight about
the implementation while allowing the programmer to leave tedious
details unspecified.

Let us illustrate programming withSKETCH using a small pro-
gram submitted to aSKETCH programming contest that we orga-
nized in the past year. The contestant usedSKETCH to implement a
problem that he had previously solved by hand; this manual process
took half a day. As we will see shortly, sketching the same imple-
mentation is much easier.

The problem at hand is to compute a4 × 4 matrix transpose.
The specification is given in the functiontrans. (Note thattrans
is an executable specification, not a declarative one, and so one can
debug it easily with standard debugging techniques.)

int[16] trans(int[16] M) {
int[16] T = 0;
for (int i = 0; i < 4; i++)

for (int j = 0; j < 4; j++)
T[4 * i + j] = M[4 * j + i];

return T;
}

While optimizing the transpose, the student realized that it
might be possible to parallelize the transpose with a SIMD instruc-
tion calledshufps. This instruction accepts two 4-word arrays and
semi-permutes each into a 2-word array; the semi-permutations
are given by a third argument. The followingSKETCH function
emulates the semantics ofshufps in theSKETCH language.The in-
dexing notationa[b::c] translates to a sub-array ofc cells of array
a starting at indexb.

int[4] shufps(int[4] x1, int[4] x2, bit[8] b) {
int[4] s;
s[0] = x1[(int) b[0::2]]; s[1] = x1[(int) b[2::2]];
s[2] = x2[(int) b[4::2]]; s[3] = x2[(int) b[6::2]];
return s;

}

The student’s insight was that ashufps-based transpose had
to proceed in two stages: The input matrix had to be permuted
into an intermediate matrix, which would then be permuted into
the resulting (transposed) matrix. It was not immediately obvious,
however, how exactly the two stages were to proceed.

The sketchtrans_sse shown below expresses the student’s in-
sight. First, we need to introduce the sketch constructs in the lan-
guage. Theimplements directive in the function header tells the
synthesizer to resolve the sketchtrans_sse such that it is behav-
iorally equivalent totrans, i.e., the two must compute the same
function. The?? operators, called theprimitive hole, will be re-
placed by the synthesizer with suitable constants to satisfy the
behavioral equivalence. Finally, therepeat(n) s construct is a
synthesis-time macro thatn times replicatess. The replication cre-
ates fresh holes, each of may be replaced with a different constant.

int[16] trans_sse(int[16] M) implements trans {
int[16] S = 0, T = 0;
repeat (??) S[??::4] = shufps(M[??::4], M[??::4], ??);

repeat (??) T[??::4] = shufps(S[??::4], S[??::4], ??);
return T;

}

The sketch concisely expresses the insight. Notice that the pro-
grammer fixed the two permutation stages but he left unspecified
(1) the number ofshufps instructions necessary for the task, (2) the
ranges of matrix cells to be permuted, and (3) the bit vectors direct-
ing the permutations. The above sketch resolves in 33 minutes on
a 1.G GHz Core 2 laptop. The synthesizedtrans_sse is shown be-
low. (The binary strings are initializers for the bit-arrays, and are
read left-to-right):

S[4::4] = shufps(M[6::4], M[2::4], "11001000");
S[0::4] = shufps(M[11::4], M[6::4], "10010110");
S[12::4] = shufps(M[0::4], M[2::4], "10001101");
S[8::4] = shufps(M[8::4], M[12::4], "11010111");
T[4::4] = shufps(S[11::4], S[1::4], "10111100");
T[12::4] = shufps(S[3::4], S[8::4], "11000011");
T[8::4] = shufps(S[4::4], S[9::4], "11100010");
T[0::4] = shufps(S[12::4], S[0::4], "10110100");

4. The Concurrent PSketch Language
ThePSKETCH language extends theSKETCH language introduced
in [20] in two important directions. First, it provides higher level
sketching constructs with which programmers can more easily ex-
press their insights. Second, it introduces threads and synchroniza-
tion primitives.

Concurrency introduces nondeterminism, which precludes the
SKETCH approach of specifying a sketch’s behavior by a reference
implementation to which a resolved sketch must be functionally
equivalent. At the end of this section, we describe how correct
behavior is specified inPSKETCH.

4.1 High-level sketching constructs

The sequentialSKETCH language extends its imperative base with
a single synthesis construct: the primitive “hole” expression,??,
which the synthesizer replaces with a constant that makes the
sketch satisfy its specification. Prior work found the primitive
hole sufficient for synthesizing expressions (r-values), such as loop
bounds and index expressions in matrix manipulations. [20]

When sketching concurrent data structures, we found a need to
synthesize (1) left-hand-side expressions (l-values) and (2) control
flow, such as the order in which statements execute. To facilitate
sketching of these constructs,PSKETCH introduces two features
(i) regular-expression expression generators, (ii) areorder block.
As we will show in section Section 7, these constructs can be
implemented as syntactic sugar on top of the basic?? expression.

Regular-expression expression generators. Regular-expression
generators (hereafterRE-generators) allow the programmer to
sketch both r-value and l-value expressions from a restricted regular
grammar.

The RE-generator construct has the form{|e|}, wheree is a
regular expression literal. The semantics of the construct is that
the synthesizer substitutes the syntactic occurrence of the construct
with a string fromL(e) such that the substitution makes the sketch
satisfy its specification.RE-generator are not simply expanded
as a macro, however; for programmability, we require that each
component regular expressione be well typed.

RE-generators are typically used to enumerate symbolic mem-
ory locations or values that the synthesized code can reference.
For example, the followingPSKETCH fragment shows how we
sketched the use of acompare-and-swap (CAS)instruction in a
doubly-linked data structure.

#define NODE {| (tprev|cur|prev)(.next)? |}
#define COMP {| (!)? ((null|cur|prev)(.next)? ==

(null|cur|prev)(.next)?) |}
while(cur.key < key){
Node tprev = prev;
reorder {

if (COMP) { lock (NODE); }
if (COMP) { unlock (NODE); }
prev = cur;
cur = cur.next;

}
}

Figure 5. A sketch of hand-over-hand locking.

while(cur.key < key){
if (prev != null)
unlock (prev);

lock (cur.next);
prev = cur;
cur = cur.next;

}

Figure 6. The sketch from Figure 5, resolved.

CAS({| head(.next|.prev)? |},
{| newNode(.next|.prev)? |},
{| newNode(.next|.prev)? |})

The first CAS argument selects the location to be modified, and the
second and third arguments give the old and new values, respec-
tively. When writing the sketch, the programmer suspected (or in-
sisted) that a CAS had to be used in the synthesized code, but he did
not know which location had to be updated, and with what values.
With the sketch below, he effectively specified all 27 CAS frag-
ments that made sense in the context of the list addition operation
(accessing other locations does not make sense in this operation).

RE-generators support only two regular expression operators:
e1|e2 and optional expressionse?.

At first sight, the exclusion of Kleene closure might seem ar-
bitrary, but keep in mind thatRE-generators are used to generate
bounded program text. In real code, it is unusual to find chains of
pointer dereferences of the form{|p(.next)*|} with more than
two or three levels of dereferencing, so adding Kleene closure
would increase the search space without any significant program-
mability benefit.

Reorder block. Concurrent data structures often depend on
careful statement ordering to satisfy desired invariants. For this rea-
son, we extendedPSKETCH with a reorder construct that leaves
the synthesizer in charge of determining the correct order for the
statements in a block of code. The synthesizer considers all pos-
sible orders of these statements and selects one that, together with
other choices made by the synthesizer, turns the sketch into a pro-
gram that meets the specification.

In Section 2, we showed a sketch that usedreorder to let the
synthesizer decide where in a block of code to use an atomic swap.
In many other sketches, we have similarly used thereorder block
to describe a “soup” of operations which, when ordered in the right
sequence, can produce a correct program.

Another use ofreorder is to control mutual exclusion. For ex-
ample, one of our benchmarks implements a hand-over-hand lock-
ing scheme for adding and removing elements from a concurrent set
represented as a sorted linked list (see Section 8). As the algorithm

struct Lock {
int owner = -1;

}
lock(Lock lk) {

atomic(lk.owner == -1){
lk.owner = pid;

}
}

unlock(Lock lk) {
assert lk.owner == pid;
lk.owner = -1;

}

Figure 7. Locks implemented with conditional atomics.

scans the list, it must acquire and release some locks to maintain
a sliding window of locks around the pointers it is holding. This
scheme is tricky to get right, but we can use thereorder block to
give the synthesizer the freedom to discover the correct strategy
for acquiring and releasing the locks. The sketch is shown in Fig-
ure 5, and the synthesized code is shown in Figure 6. Note how the
synthesizer used the freedom to reorder statements to discover the
correct strategy for acquiring and releasing the locks.1

4.2 Concurrency Primitives

The key novelty inPSKETCH is the support for synthesizing con-
current programs. To write these concurrent sketches, we included
three concurrency constructs in thePSKETCH language. While
these three constructs are standard, supporting them required re-
thinking our synthesis algorithm, which we discuss in Section 6.

Threads. Threads are created with the construct
fork (int i, N) b which spawnsN threads and blocks until all
N threads terminate. Each thread executes the statementb. The
index variablei contains a unique id for each thread, from0 to
N − 1. All variables declared insideb are thread-local. All other
variables, together with the heap, are shared.

Our current system only supports programs with a singlefork
statement, optionally preceded by a sequential prologue and fol-
lowed by a sequential epilogue. However, this limitation is not in-
herent to the method; it is only a matter of engineering to extend
the system to support multiple, nestedfork statements.

Atomic Sections. An atomic section is a block of code that
is guaranteed to execute without interference from other threads.
Atomic sections can be used to model the atomic primitives, such as
compare-and-swap or read-and-increment, available on a particular
architecture.

Synchronization. PSKETCH translates all synchronization
primitives into conditional atomic sections [13]. A conditional
atomic is an atomic section that blocks until its condition holds.
For example, lock and unlock primitives can be implemented in
terms of conditional atomics as shown in Figure 7.

It is worth noting thatPSKETCH does not support spin-locks,
so they must be modeled with conditional atomics. We discuss this
limitation in more general terms in Section 6.

4.3 Specifications inPSKETCH

In SKETCH, a sketch is synthesized into a program that complies
with a separately provided behavioral specification, which is bound
to the sketch with theimplements keyword. The synthesizer either
outputs a program is functionally equivalent to the specification (in
terms of observable outputs) or reports that the sketch cannot be
resolved (i.e., cannot be completed to behave like the specification).

1 PSKETCH does not necessarily resolvereorder so that it minimizes mu-
tual exclussion. If optimality is desired, we believe the best way to achieve
it is to synthesize many correct candidates and select the best one by mea-
suring the performance of each, as is done in autotuning [6]. Still, the pro-
grammer can use assert statements to constrain solutions to only those with
mutexes that are,e.g., separated by at most two statements.

This mode of specification is still supported inPSKETCH, but it
is useful only for those parallel sketches for which one expects de-
terministic behavior. The final state of concurrent data structures
typically depends on the nondeterministic interleaving of opera-
tions in concurrent threads, so a specification defined by input/out-
put equivalence is less useful.

PSKETCH allows the programmer to specify desired correctness
conditions usingassert statements. The semantics ofPSKETCH is
that the synthesized program must (1) behave like the specification
bound with theimplements clause; and (2) be free of assertion fail-
ures on all inputs and all thread interleavings. These assertions also
include implicit ones added by the synthesizer to guarantee mem-
ory safety and freedom from deadlock. The programmer-specified
correctness criteria are typically checked in the epilogue; Section 8
describes how we used assertions to define correctness for some of
the benchmarks we evaluated.

5. Synthesis for Sequential Sketches
TheSKETCH synthesizer solved sequential sketches using a
counterexample-guided synthesis algorithm. The algorithm was in-
troduced in [20], where it was presented as a solver for the prob-
lem of 2-quantifier Quantified Boolean Satisfiability specialized
for synthesis of sketches. We have recently found a deep connec-
tion between the original algorithm and inductive program synthe-
sis [4]. This section describes the original algorithm from this more
general perspective as counterexample-guided inductive synthesis
(CEGIS), and highlights the connection to program verification.
The algorithm is described on a reduced subset of the language that
is limited to basic control flow and integer holes. Section 6 extends
this algorithm to handle concurrent sketches that use conditional
atomic sections as the only synchronization primitive. Section 7
describes how the remaining language features are implemented in
terms of these basic constructs.

5.1 The Counterexample-Driven Inductive Synthesis

A sketch with only integer holes can be understood as a parame-
trized programSk [c], wherec is a control vector containing the
values for all the integer holes in the program. For a given inputx,
we can represent the correctness requirements for candidateSk [c]
as a predicateP (x, c) onx andc. Thus, the sequential sketch syn-
thesis problem reduces to finding a control vector satisfying the
following equation.

∃c.∀x.P (x, c) (5.1)

The two-quantifier alternation makes this problem very difficult,
but the CEGIS algorithm solves it by using the principle of induc-
tive synthesis.

The problem of inductive synthesis is to generate a candidate
implementation that is consistent with a set of observations about
the behavior of the program on a given set of inputs. For sequential
sketch synthesis, our observations consist of a set of inputsE,
together with the observation that the candidateSk [c] must satisfy
the correctness criteria on these inputs. Therefore, we can frame the
inductive synthesis problem as follows.

∃c.∀x ∈ E.P (x, c) (5.2)

Given a boolean representation of the predicateP , Equation (5.2)
can be expanded and supplied to a SAT solver directly since the
universal quantification over the small setE can be expressed as a
simple conjunction.

On its own, however, an inductive synthesizer is unable to guar-
antee the correctness of the candidate solution. The synthesizer can
only guarantee that the resulting implementation will match the
given observations. As more observations are added, the resulting
implementations are expected to converge to a correct implementa-

Synthesize Verifybuggy

candidate control

add counterexample input

sat

unsat sat

unsat

input set E

ok

Figure 8. Counterexample driven synthesis algo.

tion, but the inductive synthesizer is unable to detect convergence
on its own.

To address this problem, CEGIS couples the inductive synthe-
sizer with a verification procedure. The verifier serves two func-
tions: it rejects incorrect candidates until convergence is reached,
and it produces observations to drive the inductive synthesizer. The
verifier is very good at producing observations because every time
a candidate fails, the counterexample that proves the failure is guar-
anteed to cover a corner case not covered by any previous observa-
tions. The complete algorithm is illustrated in Figure 8. It is worth
noting that the CEGIS algorithm places very few requirements on
the verification procedure; any verification procedure capable of
producing concrete counterexamples can be incorporated into the
algorithm.

The power of the CEGIS algorithm was demonstrated empiri-
cally in [20]; for example, in one reported experiment, the sketch
solver synthesized a sketch of AES by analyzing only655 inputs
from space of2256 possible inputs. This demonstrated both the
power of the inductive synthesis approach, and the high quality of
the observations produced by the verifier.

The challenge of concurrent synthesis is to extend this algorithm
for the case when the observations are no longer just inputs, but
traces showing how specific thread interleavings in a candidate
solution lead to property violations.

6. Synthesis for Concurrent Sketches
This section develops a concurrency-aware synthesizer to support
the concurrency extensions to theSKETCH language. The con-
current synthesizer exploits the benefits of inductive synthesis ob-
served in the sequential setting. In that setting, synthesis from ob-
servations allowed us to ignore all but a few counterexample in-
puts, which turned the 2QBF synthesis problem into a sequence
of SAT problems. Here, we show that a correct candidate can be
computed by considering only a few counterexample thread inter-
leavings, sidestepping the need to reason about all possible thread
interleavings during synthesis. We implemented the algorithm on
top of the existingSKETCH infrastructure, usingSPINas our veri-
fication engine with very positive results.

The algorithm follows counterexample-guided inductive syn-
thesis:

• The inductive synthesizer evaluates each candidate on a set
of observations. Each observation is a fixed thread schedule.
As a result, the inductive synthesizer evaluates each candidate
only on traces induced by the observations, ignoring all other
interleavings. Traces have sequential semantics, so observations
reduce the concurrent synthesis problem into a sequential one.

• The verifier is standard in that it considers all thread interleav-
ings in the provided candidate. If the candidate is bad, the ver-
ifier generates a counterexample trace that witnesses the asser-
tion violation. Counterexample traces are then used as observa-
tions.

The algorithm can accommodate any verifier as long as it pro-
duces a bounded counterexample. The correctness guarantees of
the system will be those which the verifier can decide. However,
the inductive synthesizer can only eliminate candidates based on
violation of safety properties on a trace. Therefore, we require that
any liveness properties be approximated as safety properties which
must hold after a bounded number of steps. For example, the syn-
thesizer enforces termination by requiring that candidates terminate
after a bounded number of steps for the bounded inputs it considers.

The algorithm outlined above is relatively straightforward. The
challenge is how to turn a trace into a valid observation; that is,
how to make it applicable to all candidates. Compared to inputs,
which act as observations in the sequential setting, traces do not
lend themselves directly to that role: while a counterexample input
produced on one candidate is applicable to other candidates, a trace
is specific to a candidate and thus incompatible with others. We
could, of course, arbitrarily project a trace onto another candidate,
but we wantgoodobservations. An observation is good if it prunes
away many bad candidates, by exposing their violations. Since a
trace exposes an (unidentified) problem detected in a candidate by
a verifier, it is desirable that projected trace retains the ability to
expose this problem in candidates that share the problem.

Two issues complicate projection of traces onto other candi-
dates.

1. Projection onto candidate space.We cannot afford to project
traces individually for each candidate, as there are too many
candidates. Instead, we need to transform the sketch so that a
given counterexample trace is projected simultaneously onto all
candidates in the candidate space.

2. Preservation of errors.We know that a counterexample trace
exposes an error in a candidate, but we do not know what
aspects of the trace caused the error. Hence, projection cannot
aim to preserve a specific fragment of a trace. Instead, it needs
to preserve as much as possible under some notion of “error in
the candidate.”

Let us now address the first problem, starting from first princi-
ples. To turn a trace into an observation, we need to project a trace
tc1 produced on a candidate programc1 onto a tracetc2 valid on a
candidatec2. We denote the projection oftc1 ontoc2 with tc1 . c2,
or t . c when the origin oft is clear from the context. We define
tc1 . c2 to be a single trace, rather than a set of traces. (The latter
would enable preservation of more errors present intc1 , but this
would come at the cost of growing the size of the observation set.)

The goal is to be able to use a setTe of counterexample traces to
find a plausible candidatec. A candidate isplausibleiff trace t . c
does not fail, for all tracest ∈ T . A trace is considered tofail when
it encounters an assertion violation or a deadlock. This is denoted
with a predicatefail(t). Thus, we want to search for a candidatec
to satisfy the following equation.

∀t ∈ Te . ¬fail(t . c)

In order to make the search efficient, we need to produce a
boolean encoding of the problem above, similar to what is used
in sequential synthesis [20]. The first step, is to encode the space
of candidate programs as a functionSk [c] parametrized by a bit-
vectorc, so different values ofc makeSk a different candidate.

The second step is to create a new functionSk t[c] such that

Sk t[c] = t . Sk [c]

Sk t[c] is therefore a projection of tracet on the candidateSk [c].
With this encoding, the SAT solver is now left to solve the problem

∀t ∈ Te . ¬fail(Sk t[c])

Wherefail(Sk t[c]) is a boolean function ofc computed symboli-
cally for each individual trace inTe. Note thatSk t[c] is a sequential
trace, so this is the same inductive synthesis problem as in the se-
quential setting.

To explain howSk t[c] is computed symbolically fromSk and
t, we need to return to the second question—how to preserve errors
exposed by a trace. To simplify the presentation, let us assume
that the sketch is acyclic, which implies that all candidates are
acyclic. This is not a serious simplification because our inductive
synthesizer explores executions of bounded length. The acyclic
restriction is will simplify the explanation because each statement
is executed at most once.

When projecting traces, our goal is to ensure that, whenever
possible, the projected trace preserves the error exposed in the
original trace. An error is that aspect of a candidate program that
was responsible for an assertion violation: it could be not enough
synchronization causing a race condition, or too much of it causing
a deadlock, or any other “bug” allowed by the sketch. An error is
an inherently vague concept, so rather than defining it directly, we
define preservation of errors in terms of maximally preserving the
ordering of steps in the original trace. A step is a pair(s, i), of a
statements and the threadi which executed it.

We say that a tracet′ preservesa tracet if all steps common
to t′ and t are executed in the same order in both traces;i.e. if
s1 precedess2 in t, and boths1 ands2 are present int′, thens1

precedess2 in t′.
This notion of preservation is practically relevant if preserving

step ordering indeed preserves the conditions that lead to an error.
This is to be expected if preserving the order also helps preserve
the dataflow relationship that led to the error in the first trace. For
example, if data flowing froms1 caused an assertion failure ins2 in
a candidatec1, then if a trace for candidatec2 preserves this error-
causing dataflow, the trace should serve to eliminate candidatec2.
Preserving the order does not necessarily mean the dataflow will
be preserved. For example, it is possible that executings1 before
s2 exposed an error inc1 but it does not inc2, because something
in the programc2 executed between these two steps and masked
the error. However, step-ordering preservation is simple to enforce
and we hypothesize that it preserves many errors. Preserving or-
dering of statements worked well for the errors that we manually
examined.

Therefore, in general, we wantSk t[c] to be apreservingpro-
jection oft. However, it is not always possible to find a preserving
projection of a trace into another candidate program, as the follow-
ing example illustrates.

bool c = ??;
thrd1: { sa; if (c) wait; s1; if (!c) signal }
thrd2: { sb; if (!c) wait; s2; if (c) signal }

This sketch corresponds to two candidate programs, selected based
on the value ofc:

ct: thrd1: { sa; wait; s1; } thrd2: { sb; s2; signal; }
cf: thrd1: { sa; s1; signal; } thrd2: { sb; wait; s2; }

All traces forct executes2 befores1. However, none of these traces
can be projected ontocf in a preserving manner because all traces
for cf executes1 befores2.

In these situations where a preserving projection is not possible,
we require thatSk t[c] be a preserving projection of the longest pre-
fix of t for which such a projection is possible. For example, if the
tracett for ct is (2, sb),(1, sa),(2, s2),(2, signal),(1, wait),(1, s1),
then the encoder can not produce a complete preserving projection
into cf . Thus,Sk tt [0] = (2, sb), (1, sa), a projection of the longest
prefix of tt for which a preserving projection is possible.

The algorithm that producesSk t[c] from Sk andt is relatively
simple. As a first step, it performs if-conversion [1] on the sketch

Sk to turn it into a sequence of predicated atomic statements (either
atomic blocks, or simple assignments). An interesting property
of this representation is that any candidate implementationSk [c]
derived from the sketch will contain a subset of the statements
present inSk .

In the second step, the algorithm produces a version of the
sketchSk i for each threadi in the trace. Thenth statement ofSk i,
si

n is derived from thenth statement ofSk by renaming all local
variables to have thread-unique names. This guarantees that local
variables will behave as expected when we interleave statements
from different threads.

The next step is to interleave the sequences of statements cor-
responding to the different threads into a single sequence of state-
ments. To do this, the algorithm sorts all the statementssi

n accord-
ing to the partial order imposed by both the thread and the sequen-
tial threading; namely: (i) If step(si, n) precedes(sj , m) in the
trace, thensi

n < sj
m. (ii) If i = j∧n < m thensi

n < sj
m. (iii) If the

tracet exposes a deadlock involving a set of stepsD = (sj , m) . . .,
then if sj

m corresponds to a step in the deadlock set, andsi
n does

not, thensi
n < sj

m.
The last constraint is there for technical reasons, to make it eas-

ier for us to both do deadlock detection and rule out suffixes of
traces which can not be made into a preserving projection. The fi-
nal step in producingSk t is to take the sequence of guarded state-
ments form the previous step, and replace all conditional atomics
atomic(c) s with a conditional like the one shown below.

if(c)
s;

else
if(some other thread can make progress)

return OK;
else

assert 0 : ‘‘deadlock’’;

The resulting encodingSk t represents the preserving projec-
tion of the tracet onto all the candidates in the space. Moreover,
fail(Sk t[c]) can be represented as a boolean function ofc, which
allows us to solve the inductive synthesis problem efficiently with
a SAT solver. Section 8 will describe our empirical evaluation of
the method, but before that, we must describe how the synthesizer
handles the high-level sketching constructs.

7. Translating Sketching Constructs
In the last two sections, we described how the synthesizer com-
pletes sketches containing only integer holes. In this section, we
describe how the new high-level sketching constructs are imple-
mented by showing their translation to simple code fragments with
integer holes.

7.1 Regular Expression Generators

The translation ofRE-generators depends on whether theRE-
generator is an l-value or r-value. In both cases, we will use the
following terminology. Assume that theRE-generatorr describes
a setS(r) of k syntactically valid strings, denoteds1, . . . , sk.

Translating an r-valueRE-generator is straightforward. This
translation requireslg k bits of primitive holes.

translateRvalueGen (r) =
switch (??) {

case 1: return s1;
...
case k: return sk;

}

The translation of an l-valueRE-generatorr that appears in the
statementr=e is much like the r-valueRE-generator translation,

except that each statement in theswitch block is a choice of
assignments frome to si.

7.2 Reorder Statement

A reorder block with a setS of k statementss0, . . . , sk−1 rep-
resentsk! possible candidate programs; so the synthesizer needs
to encode this exponential space of possibilities in a reasonable
amount of PSKETCH code. ThePSKETCH synthesizer actually
contains two different encodings for the reorder block, each with
different tradeoffs of space and complexity.

Our first, quadratic, encoding is shown below. It usesk lg k
control bits and, after unrolling thefor loop, will havek copies
of each statement in the block, for a total ofk2.

translateReorder (S) =

int[k] order = ??k

assert noDuplicates in order
for (i=0 to k − 1)

switch (order[i]) {
case 1: S1

...
case k: Sk

}

Notice that the assert forces the synthesizer to consider only se-
mantically legal values of the arrayorder (permutations of1 . . . k),
which is initialized withk primitive holes.

The second encoding actually requires exponential space, but
for many sketches, it has proven to be significantly more efficient
than the quadratic one. The basic idea is as follows. Suppose that
we start with a list ofm statementss0; . . . ; sm−1, and we want to
insert a statementsm somewhere in the list. We can encode this
easily in 2*m+1 statements.

i=??;
if(i=0){ sm;} s0;
if(i=1) {sm;} s1;
. . .
if(i=m-1){ sm;} sm−1;
if(i=m) sm;

We can apply this construction recursively to build a representa-
tion of thereorder. To do this, we start withs0, and we use the
construction above to adds1 before or after it. Then, we repeat the
process to inserts2 into the resulting sequence; the same process is
repeated to insert each subsequent statement. The resulting repre-
sentation will have2i copies ofsi, and will require on the order of
n2 control bits.

Surprisingly, for many benchmarks this encoding is much better
than the quadratic one, both in terms of speedand size. There are
several reasons for this. First, in most of our benchmarks, the num-
ber of statements in the reorder blocks are relatively small. More-
over, our reorder blocks often contain statements of drastically dif-
ferent sizes; blocks with only a couple of very expensive statements
can be encoded more efficiently with the exponential encoding. For
example, if a reorder block has two expensive statements and three
inexpensive ones, the quadratic encoding will require 10 expensive
statements and 15 cheap ones. With the exponential encoding, we
can encode this block with 3 expensive statements and 28 cheap
ones, as long as we add them in the right order. Thus, if the expen-
sive statements are more than twice as expensive as the cheap ones,
the exponential encoding will be more efficient.

8. Evaluation
This section presents our evaluation of the desugaring of thePS-
KETCH language shown above, the newPSKETCH language in-
troduced in Section 4, and our CEGIS algorithm from Section 6.

Specifically, we evaluate the performance of ourPSKETCH com-
piler and the expressiveness of thePSKETCH language on a suite of
benchmarks. The benchmarks were chosen because they are com-
plex to implement, due to subtle issues caused by concurrency. Our
performance results are encouraging:

• PSKETCH successfully searched spaces of about108 syntacti-
cally unique candidates in under an hour, consuming less than
500 MiB of memory.

• Our CEGIS algorithm required only a few observations (mean-
ing only a few calls to the verifier) to resolve a sketch, or de-
termine that it could not be resolved. In our benchmarks,PS-
KETCH required 10 iterations to find a correct implementation
from a space of about108 possibilities.PSKETCH was also able
to show after only 7 observations that one of our benchmark
sketches could not be resolved.

The expressiveness of thePSKETCH language is harder to eval-
uate, but we show example sketches of our benchmarks below and
argue that they capture the insight behind a solution, with a min-
imum of unnecessary detail. For example, we were able to sketch
and synthesize a previously-unknown-to-usDequeue() method of
a lock-free queue. These results indicate that parallel programmers
might findPSKETCH useful.

We begin this section by introducing our hypotheses about the
PSKETCH system. Next, we present the benchmarks we used to
teste these hypotheses, showing some of our example sketches. We
then reportPSKETCH’s performance across our test suite, and dis-
cuss the results. Finally, we summarize the limitations we encoun-
tered in thePSKETCH synthesizer.

8.1 Hypotheses

We wish to evaluate the following hypotheses.
Synthesis scales well with the size of the candidate program

space. This scalability is the key to the sketching approach: it en-
ables programmers to write sketches with less mundane or subtle
detail, leaving its completion to the synthesizer. We test this hy-
pothesis by measuring the time forPSKETCH to resolve sketches
that encode increasingly large candidate spaces.

Our encoding of the observations made from failed candidates
captures useful information about the cause of failure. This ap-
praises the projection strategy we use to encode information from
the traces in the inductive synthesizer. The number of observations
required to resolve a sketch (or show that it cannot be resolved) can
measure the strategy ’s effectiveness. Fewer observations suggest
that the encoding is capturing more useful information from each
trace.

The PSKETCH language is expressive for this domain. We do
not attempt to measure this quantitatively; instead, we show how
we expressed the insights behind our benchmarks usingPSKETCH.

8.2 Benchmarks

Our benchmarks are intended to represent various sketching sce-
narios across different problems. These sketches were chosen as
exemplars; we have sketched other data structures that we omit
here, including a doubly-linked list and full version of the lazy list-
based set described below. Table 8.2 summarizes the more detailed
descriptions of the benchmarks that follow.

8.2.1 Lock-free queue

The first version of this queue,queueE1, contains a sketch of a re-
stricted version of theEnqueue() method discussed in Section 1. It
is restricted in that its candidate space is smaller than theEnqueue()
sketch from Section 1. The second version,queueE2, has the full
Enqueue() sketch shown in Section 1.

Sketch Description |C|
queueE1 Lock-free queue: restrictedEnqueue() 4
queueE2 Lock-free queue, fullEnqueue() 106

queueDE1 queueE1, plus sketchedDequeue() 103

queueDE2 queueE2, plus sketchedDequeue() 108

barrier1 Sense-reversing barrier, restricted 104

barrier2 Sense-reversing barrier, full 107

fineset1 Fine-locked list, restrictedfind() method 104

fineset2 Fine-locked list, fullfind() 107

lazyset Lazy list, singly-lockedremove() 103

dinphilo Approximation of dining philosophers problem 106

Table 1. Summary of benchmark sketches.C is the set of candi-
date programs encoded by each sketch.

For this benchmark, we also analyzed the complexity of resolv-
ing a problem where multiple methods had been sketched. The
Dequeue() sketch from Section 1 had too few holes to serve this
purpose. Instead, one of us decided to try implementingDequeue()
with a single while loop. In a few minutes, he wrote the very simple
sketch shown below. The sketch simply places in a reorder block all
the statements that one could reasonably expect to be necessary for
the solution. The solution times for this experiments correspond to
thequeueDE1 andqueueDE2 benchmarks.

Object Dequeue() {
QueueEntry tmp = null;
boolean taken = 1;
while (taken) {

reorder {
tmp = {| prevHead(.next)?(.next)? |};
if (tmp == null)

return null;
prevHead = {| (tmp|prevHead)(.next)? |};
if (!tmp.taken)

taken = AtomicSwap(tmp.taken, 1);
}

}
return tmp.stored;

}

The queue benchmarks were resolved with respect to the con-
junction of the following correctness conditions:

• Sequential consistency[15]. If a threadA enqueuesa1 anda2,
then a1 must be dequeued beforea2. Note that is a weaker
condition than linearizability [12].

• Structural integrity. The queue is not corrupted by concurrent
operations. Specifically: (1) the head and tail are notnull;
(2) prevHead.taken == 1; (3) the tail is reachable from the
head; (3) tail.next == null; (4) there are no cycles in the
queue; (5) no “untaken” nodes precede “taken” ones.

PSKETCH also enforces memory safety by default: nonull point-
ers may be deferenced, and array accesses must be within bounds.
It is worth noting that forqueueE2 andqueueDE2, we found that we
had to use more than one operation per thread or more than two
threads for verification in order to get solutions that generalized to
more threads and more operations per thread.

8.2.2 Sense-reversing barrier

Barriers allow multiple threads to synchronize at the same program
point before continuing. They are difficult to implement for a cou-
ple of reasons. First, the last thread to reach the barrier must realize
that it is last, then awaken the other, waiting threads. Second, barri-
ers must prevent newly awoken threads from passing through later
barrier points.

An insight to solving these problem is to separate consecutive
barrier points into two phases, even and odd; the phase is called
the barrier’s “sense,” and reverses after each barrier point [10]. The
barrier object keeps the global boolean sense, and each thread has
a local sense. When a thread reaches a barrier point, it either waits
until its local sense matches the barrier sense, or if the last thread,
reverses the barrier sense, awakening the waiting threads.

However, this insight is far from an implementation. The barrier
code requires subtle reasoning about interleaved threads and inter-
mediate barrier states. We claim that thePSKETCH language is well
suited to capturing the insight behind a sense-reversing barrier. Be-
low, we sketch the barrier’snext() method. The sketch encodes
next() as a “soup” of operations, to be executed (or not) under
some conditions on the barrier state. The synthesizer is left to find
an implementation that avoids harmful races, deadlocks, and other
intricate details.

We first write the fields of theBarrier: (1) sense, the current
phase; (2)senses, the local senses of each thread; and (3)count,
the number of threads yet to reach the barrier. We define the soup
of operations comprising the insight behindnext() as follows:

1. Update the thread’s own sense of the barrier.

2. Atomically decrement the count of threads yet to arrive.

3. Under some condition, wait until the barrier sense changes to
some predicate of the thread’s own sense.

4. Under some condition, set the barrier’s sense and yet-to-arrive
count so as to wake up the other threads, and prepare the barrier
for the next shot.

Before finishing the sketch, we define “under some condition” as a
PSKETCH generator function that returns a boolean expression of
its arguments:

boolean predicate (a, b, c, d) {
return {| (!)? (a==b | (a|b)==?? | c | d) |};

}

Now, translating the operations above into a sketch is straightfor-
ward. We make them into a “soup” by placing them in areorder
block:

void next (Barrier b, Thread th) {
boolean s = b.senses[th];
s = predicate (0, 0, s, s);
int cv = 0;
boolean tmp = 0;
reorder {

// (1) Update t’s local sense
b.senses[th] = s;
// (2) Decr. count of yet-to-arrive threads
cv = AtomicReadAndDecr (b.count);
// (3) Wake up other threads, reset barrier
tmp = predicate (b.count, cv, s, tmp);
if (tmp) {
reorder {

b.count = N;
b.sense = predicate (b.count, cv, s, s);

}
}
// (4) Wait at barrier
tmp = predicate (b.count, cv, s, tmp);
if (tmp) {
boolean t = predicate (0, 0, s, s);
atomic (b.sense == t);

}
}

}

The benchmarkbarrier2 is the sketch shown above. The com-
panionbarrier1 is a reduced version with a smaller candidate pro-
gram space. The barrier’s correctness was established by a client
program that ensured that threads always joined properly at each
barrier point, together with the implicit deadlock check performed
by PSKETCH. This client program launchedN threads that reached
a barrierB times. Before waiting at thebth invocation ofnext(),
each threadt set a bitreached[t][b]. After passing through the
bth call to next(), each thread ensured that its left neighbortl had
also reached thebth barrier by assertingreached[t-l][b].

8.2.3 Finely locked, list-based set

This data structure implements theSet data type with a sorted,
singly linked list. In a highly concurrent setting, locking the entire
list for eachadd(), remove(), andcontains() operation is unac-
ceptable. The insight behind the “finely locked” list is to maintain
a sliding window of locks around the nodes being traversed during
set operations, to allow concurrent modifications to disjoint areas
of the list. Implementing this locking scheme, known as hand-over-
hand-locking [11], is difficult; the programmer must order the ac-
quisition and release of locks while traversing the data structure,
keeping in mind deadlocks and data structure corruptions due to
concurrent modifications.

For this list, we sketched a methodfind (key) that returnscur,
the node with a least key greater than or equal tokey, andprev, the
node greatest key less thankey. The main loop of thefind method
was described in Section 4; the sketch left the synthesizer to decide
which nodes to lock and unlock and under what conditions, and
how to order these locking, unlocking, and traversal statements. It
is straightforward to implement the other data structure methods us-
ing thisfind() helper. The benchmarkfineset2 is our full sketch,
andfineset1 is a reduced version offineset2. The correctness
criteria for these benchmarks were similar to those for thequeue*
suite, with structural checks specific to this structure.

8.2.4 Singly-locked remove() method of lazy list

This is a problem proposed by [11]. Its basis is a lazily-updated,
list-based set data structure due to [9]. Theadd() andremove()
methods of this set are optimistic, in that they traverse the data
structure without locking. Only when the list is to be modified do
they check that the their view of the list is still valid. Bothadd()
andremove() acquire two locks before modifying the list.

This problem asks whether the list’sremove() method can be
modified to take only one lock, instead of two (the answer is “no”).
We translated this problem into a sketch forPSKETCH to solve
by first removing thelock statements from the originalremove()
method. Next, we gavePSKETCH the freedom tolock any one
of a set of nodes at any point in the body of the stripped-down
remove(), and likewise forunlock. The correctness criteria for this
sketch were the same as for thefineset* benchmarks.

When we ran this benchmark with two threads performing both
add andremove, the synthesizer returned “NO”, as expected. Sur-
prisingly,PSKETCH wasactually able to find a solution that worked
for the case where one thread performs only adds and another
thread performs only removes.

8.2.5 Dining philosophers

This problem hasP philosophers at a circular table, with a plate
of spaghetti in the center. A philosopher needs two chopsticks
to eat. Each philosopher has chopsticks at his left and right, but
because the table is circular, there are onlyP total chopsticks.
The problem is to find a chopstick-acquisition policy which avoids
deadlock, in which no philosopher can eat; and starvation, in which

particular philosophers cannot eat. Thus, we want a resource policy
that satisfies the properties (1) some philosopher can always eat;
and (2) every philosopher will always eventually eat.

We modeled the problem inPSKETCH as follows: there areP
philosophers encoded as afork(int p; P) block, each contend-
ing for its left and right ofP locks. The philosophers attempt to eat
T times, blocking if they cannot acquire their left and right chop-
sticks. The resource acquisition policy was sketched as an expres-
sion oft, p, P , which indicated whether the right or left chopstick
should be acquired first. The order in which the chopsticks were
released was also left unspecified. As to correctness,PSKETCH
implicitly enforces property (1) above by ensuring that the execu-
tion is deadlock free. As we described earlier, we can only enforce
livenes properties by approximating them as a safety property in a
bounded execution. Our sketch approximates property (2) by en-
suring that all philosophers are able to eatT times in theP ∗ T
steps of the execution. With this sketch and this correctness condi-
tions, the synthesizer was able to produce a correct implementation
of the protocol; a minor variant over the standard solution presented
in textbooks [16].

8.3 Performance

We tried to synthesize each benchmark for workloads with various
numbers of threads and operations, and patterns of operations when
possible. The particular tests of thequeue*, fineset*, andlazyset
benchmarks are labeled with the following scheme: a test named
ed(ed|ed) means that first a sequential enqueuee was performed ,
next a sequential dequeued, and finally two threads were forked to
each perform an enqueue then dequeue(ed|ed). The set tests use
the same scheme, witha andr standing for “add” and “remove”,
respectively. For each test, we gathered the following data:

• Resolvable– whether the sketch could be completed into a
correct implementation.

• Itns– the number of observations required for CEGIS to termi-
nate.

• Ssolve, V solve– for the synthesizer, the time for its SAT solver
to return SAT or UNSAT; for the verifier, the time forSPINto
complete its search for a counterexample schedule.

• Smodel, Smodel– for the synthesizer, the time to build a boolean
satisfiability problem; for the verifier, the time to compile an
input model into a verification program.

• Time:Total – total elapsed time between invokingPSKETCH
and it returning an answer. This time does not equalSsolve+
Smodel+ V solve+ Smodel because part of the time is spent in
our compiler frontend.

• Memory– the maximum memory used by the synthesizer, ver-
ifier, and PSKETCH. The maximum total memory includes
memory used by our Java frontend.

We testedPSKETCH on a laptop with a 2 GHz Core 2 Duo
processor and 2 GB of RAM, running version 2.6.20-16 of the
Linux kernel. The results are tabulated in Figure 9.

The data in Figure 9 reveal a few interesting trends. First, there
is an approximately linear correlation between thelog of the size
of the candidate spaceC and number of iterations before finding
a solution, as observed in a sequential sketch synthesizer [20]. We
have plottedlog C against number of iterations in Figure 10, for se-
lected tests. Second, neither synthesis nor verification clearly dom-
inated the total solution time across the test suite, though verifi-
cation tended to be more expensive. Third, we see that for each
benchmark, changing the number of threads or the methods called
on each thread had a big effect on verification times, but synthesis
stayed fairly constant. A fourth trend is the large amount of time

y = e2.3592x

1

10

100

1000

10000

100000

100000
0

1E+07

1E+08

1E+09

1E+10

1E+11

0 2 4 6 8 10 12

Number of Observations

S
iz

e
o

f
th

e
ca

n
d

id
at

e
sp

ac
e

Figure 10. Candidates Vs. Observations

needed to generate and compile theSPIN verifiers, which domi-
nated the total time for several tests.

8.3.1 Limitations

PSKETCH’s most severe limitation is that it only guarantees cor-
rectness of synthesized programs with respect to safety properties,
up to a bounded number of executed instructions. However, we be-
lieve that with future work,PSKETCH can handle liveness prop-
erties. A second limitation is thatPSKETCH only returns a single
correct implementation of a sketch. In many contexts, one wishes to
find all correct solutions, then search these for an optimal one (e.g.,
with autotuning [6]). The CEGIS algorithm can trivially produce
multiple correct candidates, but future research might additionally
guide its search by optimality criteria.

PSKETCH is also hampered by engineering limitations, mostly
due to the delicate connection between theSPIN verifier and the
SAT synthesizer. As mentioned above, for some programs we saw
a large discrepancy between the time needed to verify the unsim-
plified models emitted byPSKETCH and hand-simplified versions
of the same models. Applying traditional compiler optimizations
to these models was difficult, because they threatened to upset the
correlation of counterexamples betweenSPINand our synthesizer.
Another practical problem was the large overhead of compiling
SPIN verifiers, which were C programs with up to tens of thou-
sands of lines of code. Both problems are amenable to better engi-
neering.

Synthesizing data structures that are correct with respect to
linearizability is a future goal. Our current CEGIS algorithm can
synthesize and verify data structures with respect to linearizability
criteria, but it is difficult to embed these criteria in sketches. We
believe that this problem can be solved with richer specifications in
thePSKETCH language.

9. Related Work
In previous work we have proposed sketching as a methodology for
developing efficient algorithms from a low-level outline thereof.
This line of work proved useful for writing bit-streaming pro-
grams [19] and was later extended to work for arbitrary finite
computations [20] and unbounded stencil computations [18]. The
sketching approach is related to earlier research in control infer-
ence, including foundational work on Prolog [14], as well as efforts
in the field of AI for determinizing an agent’s behavior via learn-
ing techniques [3]. Alternatively, transformational synthesis frame-
works (e.g., [8, 17]) are largely domain-specific and apply sepa-
rately provided programmer insights through an interactive synthe-
sis process.

Synthesis of Concurrent Algorithms. While computer-aided
verification of concurrent programs has gained significant momen-

Test Resolvable Itns
Time (s) Maximum Memory (MiB)

Total Ssolve Smodel Vsolve Vmodel Total Smem Vmem

queueE1 ed(ee|dd) yes 1 8.79 0.01 0.04 0.07 5.55 54.41 13.72 5.13
ed(ed|ed) yes 1 9.24 0.02 0.04 0.86 6.1 67.04 13.73 8.25
(e|e|e)ddd yes 1 13 0.05 0.12 5.67 5.05 72.81 17.54 31.69

queueDE1 ed(ee|dd) yes 4 46.97 2.63 4.76 0.32 31.95 135.51 54.7 6.69
ed(ed|ed) yes 4 64.18 5.27 7.98 7.09 33.76 172.92 66.73 22.31

queueE2 ed(ed|ed) yes 5 114.7 16.22 9.93 5.32 71.98 171.69 69.31 17.63
(e|e|e)ddd yes 8 249.2 44.74 23.3 104.59 60.98 213.69 92.64 114.69

queueDE2 ed(ed|ed) yes 10 3091.37 2676.07 147.07 16.28 184.72 489.26 313.2 30.13

barrier1 N = 3, B = 2 yes 4 49.74 0.11 0.57 37.3 8.07 177.31 17.54 130.31
N = 3, B = 3 yes 8 120.21 0.39 2.37 97.03 14.69 398.19 19.85 331.06

barrier2 N = 2, B = 3 yes 9 66.46 4.375 13.613 1.272 35.243 153.67 54.73 10.70

fineset1 ar(ar|ar) yes 2 130.44 2.5 4.21 2.55 110.97 161.14 55.46 23.88
ar(ar|ar|ar) yes 1 363.89 0.56 1.03 279.02 74.29 249 29.03 169.38
ar(a|r|a|r) yes 1 196.52 0.73 1.25 112.02 73.86 153.56 29.17 73.88
ar(arar|arar) yes 1 165.43 0.66 1.26 80.02 73.85 259.25 29.14 136.38
ar(aaaa|rrrr) yes 2 225.54 8.63 12.94 74.12 111.07 345.62 156.81 145.75

fineset2 ar(ar|ar) yes 3 281.46 13.41 15.17 4.03 229.24 260.14 123.77 34.81
ar(ar|ar|ar) yes 3 795.19 12.95 20.58 509.59 232.38 376.63 149.32 233.44
ar(a|r|a|r) yes 2 384.83 11.57 13.7 170.42 171.1 325.26 169.07 95.75
ar(arar|arar) yes 2 299.97 4.85 6.33 99.82 174.01 346.56 75.68 212.94
ar(aaaa|rrrr) yes 3 468.7 40.86 46.3 107.69 228.61 563.1 287.41 227

lazyset ar(aa|rr) yes 12 179.17 5.32 16.6 11.43 107.4 294.03 54.28 11.38
ar(ar|ar) NO 7 100.24 1.88 5.41 2.51 66.49 246.81 41.87 9.81

dinphilo N = 3, T = 5 yes 4 34.03 4.34 4.39 6.22 12.61 194.08 114.33 19.19
N = 4, T = 3 yes 3 54.46 1.96 2.23 36.11 9.93 158.69 53.15 78.75
N = 5, T = 3 yes 3 745.94 3.06 2.99 724.5 10.2 1419.5 83.98 1340.31

Figure 9. Performance results.

tum in recent years, the automatedsynthesisof concurrent algo-
rithms is a relatively new research direction, and most of the pre-
vious work in the field is designed for synthesis within in a spe-
cific domain of algorithms (e.g., [5]). Notable in this context is
the recent work on synthesis of concurrent garbage collectors by
Vechevet al.. In an earlier work [23] the authors apply an auto-
mated transformational-style space exploration to derive provably
correct variants from a basic (correct) concurrent GC implemen-
tation. In a more recent work [24] an exhaustive exploration pro-
cedure is applied to a space of implementationstion variants with
varying degrees of atomicity and instruction reordering, and com-
bined with effective pruning of vacuously incorrect implementa-
tion sub-spaces. In this approach the authors deploy a separate
verification procedure based on the SPIN model checker [13] to
check the absence of concurrency bugs in each of the generated
candidate implmenetations. Their framework, unlike ours, is capa-
ble of verifying concurrent implementations that manipulate arbi-
trary unbounded data structures, thanks to the use of abstraction in
the verification procedure. This, however, is not an inherent lim-
itation of our approach and the use of abstraction-capable veri-
fiers is a work in progress. Also, the generation method used in
their approach heavily depends on tailored semantic rules to prune
the search space effectively, and is restricted to a predefined set
of concurrency-related transformations and synchronization prim-
itives. In contrast, our synthesizer applies generic transformations
to reduce the problem into its 2QBF representation and delegates
the effort of conducting an effective search to an efficient, general
purpose SAT-based solver.

Verification of Concurrent Data Structures. Particular con-
current data structures are often checked for correctness using au-
tomated provers. Examples include the verification of a prominent
wait-free concurrent set implementation [9, 22]. Such efforts often
rely on massive proof scripts and associated domain-specific logic
(e.g., in PVS or some other proof system) that need to be writ-
ten per verification task. In contrast, our framework can be used to
synthesisandautomatically verify arbitrary concurrent implemen-
tations with only few assumptions about the underlying execution
model. CheckFence [7] is a tool that can find subtle concurrency
bugs occurring under various memory consistency models and gen-
erates a counter example that can be used to infer the apporpriate fix
(i.e., adding memory fences to enforce consistency). Similar to our
approach, checking an imperative concurrent program is reduced
to a SAT problem, and as such bears similar limitations. It is dif-
ferent from ours in the way that imperative programs are encoded
into Boolean circuits. In recent work [2], verifying linearizability of
concurrent heap-manipulating algorithms was done using 3-valued
logic abstraction. Here, an abstract interpreter (TVLA) was applied
to capture the (finite) differences between states exhibited by two
implementations of the same data structure, and to verify their uni-
fication at linearization points. Although sound and highly expres-
sive, this framework requires apriori knowledge of the linearization
points in a concurrent implementation, and is known to have inher-
ent scalability problems due to the size of the abstract domain that
is being used.

10. Conclusion
The paper describes a new sketch synthesizer for the development
of concurrent programs, with an emphasis on concurrent data struc-
tures. Sketching affords the programmer the same fine control over
the structure of the resulting program as manual coding, while at
the same time allowing him to leave unspecified those parts of the
program which are hard to derive by hand.

Our system relies on a CEGIS algorithm to generate candidate
implementations by analyzing traces of failed implementations to
try to prevent the new candidates from exhibiting the same bugs.
To our knowledge, ours is the first synthesizer capable of using
counterexample traces from failed concurrent programs to guide
the search for a correct implementation.

We implementedPSKETCH relying on theSPIN verifier and
the SKETCH synthesis infrastructure. With the system, we have
sketched and synthesized concurrent data structures including a
Lock-free queue, and a list with hand-over-hand locking. In each
of these programs, the tricky fragments were exclusively sketched
and successfully synthesized.

Acknowledgment

We want to thank Gilad Arnold for his help with preparation of
the submission manuscript. This paper was influenced by the many
discussions we had with Martin Vechev, Eran Yahav, and Mooly
Sagiv. We are grateful to the anonymous referees for their helpful
comments. This work is supported in part by the National Science
Foundation with grants CCF-0085949, CNS-0326577, and CNS-
0524815, a generous gift from IBM Corporation, an IBM Fellow-
ship, and the University of California MICRO program.

References
[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of

control dependence to data dependence. InPOPL ’83: Proceedings
of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 177–189, New York, NY, USA, 1983.
ACM.

[2] D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Comparison
under abstraction for verifying linearizability. InCAV ’07: 19th
International Conference on Computer Aided Verification, volume
4590, pages 477–490. Springer, 2007.

[3] D. Andre and S. Russell. Programmable reinforcement learning
agents. Advances in Neural Information Processing Systems, 13,
2001. MIT Press.

[4] D. Angluin and C. H. Smith. Inductive inference: Theory and
methods.ACM Comput. Surv., 15(3):237–269, 1983.

[5] Y. Bar-David and G. Taubenfeld. Automatic discovery of mutual
exclusion algorithms. InPODC ’03: Proceedings of the twenty-
second annual symposium on Principles of distributed computing,
pages 305–305, New York, NY, USA, 2003. ACM.

[6] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing
matrix multiply using phipac: A portable, high-performance,
ansi c coding methodology. InInternational Conference on
Supercomputing, pages 340–347, 1997.

[7] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence: checking
consistency of concurrent data types on relaxed memory models.
In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation, volume 42,
pages 12–21, New York, NY, USA, 2007. ACM.

[8] B. Fischer and J. Schumann. Autobayes: a system for generating
data analysis programs from statistical models.Journal of Functional
Programming, 13(3):483–508, May 2003.

[9] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. S. III, and
N. Shavit. A lazy concurrent list-based set algorithm. InOPODIS ’05:

9th International Conference on Principles of Distributed Systems,
volume 3974, pages 3–16. Springer, 2005.

[10] D. Hensgen, R. Finkel, and U. Manber. Two algorithms for barrier
synchronization. International Journal of Parallel Programming,
17(1):1–17, 1988.

[11] M. Herlihy and N. Shavit.The art of multiprocessor programming.
Morgan Kaufmann, 2008.

[12] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects.ACM Trans. Program. Lang. Syst., 12(3):463–
492, 1990.

[13] G. J. Holzmann. The model checker SPIN.Software Engineering,
23(5):279–295, 1997.

[14] R. Kowalski. Algorithm = logic + control. Commun. ACM,
22(7):424–436, 1979.

[15] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs.IEEE Transactions on Computers,
28(9):690–691, 1979.

[16] A. Silberschatz and P. B. Galvin.Operating System Concepts. John
Wiley & Sons, Inc., New York, NY, USA, 2000.

[17] D. R. Smith. KIDS: A semiautomatic program development system.
IEEE Transactions on Software Engineering, 16(9):1024–1043, 1990.

[18] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik, V. Saraswat, and
S. Seshia. Sketching stencils. InPLDI ’07: Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and
implementation, volume 42, pages 167–178, New York, NY, USA,
2007. ACM.

[19] A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu. Pro-
gramming by sketching for bit-streaming programs. InPLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 281–294, New York, NY,
USA, 2005. ACM Press.

[20] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. Seshia.
Combinatorial sketching for finite programs. InASPLOS ’06, San
Jose, CA, USA, 2006. ACM Press.

[21] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. Seshia.
Combinatorial sketching for finite programs. In12th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2006), pages 404–415, New York,
NY, USA, 2006. ACM Press.

[22] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving
correctness of highly-concurrent linearisable objects. InPPoPP ’06:
Proceedings of the eleventh ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 129–136, New York,
NY, USA, 2006. ACM.

[23] M. T. Vechev, E. Yahav, and D. F. Bacon. Correctness-preserving
derivation of concurrent garbage collection algorithms. InPLDI ’06:
Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, pages 341–353, New York, NY,
USA, 2006. ACM.

[24] M. T. Vechev, E. Yahav, D. F. Bacon, and N. Rinetzky. Cgcexplorer:
a semi-automated search procedure for provably correct concurrent
collectors. InPLDI ’07: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation,
pages 456–467, New York, NY, USA, 2007. ACM.

