
The Sketch Programmers Manual

Armando Solar-Lezama

For Sketch Version 1.6.7

Contents

1 Overview 3
1.1 Hello World . 3
1.2 Running the synthesizer . 3

2 Core language 4
2.1 Primitive Types . 4
2.2 Structs . 4
2.3 Temporary Structures . 5
2.4 Final Types . 6
2.5 Arrays . 7
2.6 Algebraic Data types . 11
2.7 Automatic Padding and Typecasting . 13
2.8 Explicit Typecasting . 14
2.9 Control Flow . 15
2.10 Functions . 15
2.11 Function parameters . 17
2.12 Local functions and closures . 18
2.13 Uninterpreted Functions . 19
2.14 Packages . 19
2.15 Global variables . 20
2.16 Annotation System . 21

3 Constant Generators and Specs 22
3.1 Harnesses and function equivalence requirement . 23
3.2 Assumptions . 24
3.3 Types for Constant Generators . 25
3.4 Ranges for holes . 25
3.5 Minimizing Hole Values . 25

4 Generator functions 26
4.1 Recursive Generator Functions . 27
4.2 Regular Expression Generators . 29
4.3 High order generators . 30

5 Regression tests and Benchmark Suite 31

1

6 Advanced Usage and Diagnostics 31
6.1 Extracting the intermediate representation . 31
6.2 Custom Code Generators . 31
6.3 Temporary Files and Frontend Backend Communication . 32

7 Credits 33

8 Glossary of Flags 33

2

1 Overview

This section provides a brief tutorial on how to run a very simple example through the compiler. The sections
that follow provide detailed descriptions of all language constructs.

1.1 Hello World

To illustrate the process of sketching, we begin with the simplest sketch one can possibly write: the "hello
world" of sketching.

harness void doubleSketch(int x){
int t = x * ??;
assert t == x + x;

}

The syntax of the code fragment above should be familiar to anyone who has programmed in C or Java.
The only new feature is the symbol ??, which is Sketch syntax to represent an unknown constant. The
synthesizer will replace this symbol with a suitable constant to satisfy the programmer's requirements. In
the case of this example, the programmer's requirements are stated in the form of an assertion. The keyword
harness indicates to the synthesizer that it should �nd a value for ?? that satis�es the assertion for all
possible inputs x.

Flag --bnd-inbits In practice, the solver only searches a bounded space of inputs ranging from zero to
2bnd-inbits−1. The default for this �ag is 5; attempting numbers much bigger than this is not recommended.

1.2 Running the synthesizer

To try this sketch out on your own, place it in a �le, say test1.sk. Then, run the synthesizer with the
following command line:

> sketch test1.sk

When you run the synthesizer in this way, the synthesized program is simply written to the console. If
instead you want the synthesizer to produce standard C code, you can run with the �ag --fe-output-code.
The synthesizer can even produce a test harness for the generated code, which is useful as a sanity check to
make sure the generated code is behaving correctly.

Flag --fe-output-code This �ag forces the code generator to produce a C++ implementation from the
sketch. Without it, the synthesizer simply outputs the code to the console

Flag --fe-output-test This �ag causes the synthesizer to produce a test harness to run the C++ code on
a set of random inputs.

Flags can be passed to the compiler in two ways. The �rst and most traditional one is by passing them in
the command line. For the example above, you can get code generated by invoking the compiler as follows.

> sketch --fe-output-code test1.sk

An alternative way is to use the pragma construct in the language. Anywhere in the top level scope of
the program, you can write the following statement:

pragma options " flags ";

This is very useful if your sketch requires a particular set of �ags to synthesize. Flags passed through the
command line take precedence over �ags passed with pragma, so you can always use the command line to
override options embedded in the �le.

3

2 Core language

The core sketch language is a simple imperative language that borrows most of its syntax from Java and C.

2.1 Primitive Types

The sketch language contains �ve primitive types, bit, int, char, double and float. There is a subtyping
relation between three of them: bitvcharvint, so bit variables can be used wherever a character or integer
is required. float and double are completely interchangeable, but there is no subtyping relationship between
them and the other types, so for example, you cannot use 1 in place of 1.0, or 0 in place of 0.0.

There are two bit constants, 0, and 1. Bits are also used to represent Booleans; the constants false
and true are syntactic sugar for 0 and 1 respectively. In the case of characters, you can use the standard C
syntax to represent character constants.

Modeling �oating point Floating point values (either float or double) are not handled natively by the
synthesizer, so they have to be modeled using other mechanisms. The sketch synthesizer currently supports
three di�erent encodings for �oating point values, which can be controlled by the �ag --fe-fpencoding.

Flag --fe-fpencoding This �ag controls which of three possible encodings are used for �oating point values.
AS_BIT encodes �oating point values using a single bit; addition and subtraction are replaced with xor, and
multiplication is replaced with and. Division and comparisons are not supported in this representation, nor
are casts to and from integers. AS_FFIELD will encode �oating points using a �nite �eld of integers mod 7.
This representation does support division, but not comparisons or casts. Finally, AS_FIXPOINT represents
�oats as �xed point values; this representation supports all the operations, but it is the most expensive.

2.2 Structs

More interesting types can be constructed from simpler types in two ways: by creating arrays of them (see
Section 2.5) and by de�ning new types of heap allocated records.

To de�ne a new record type, the programmer uses the following syntax (borrowed from C):

struct name{
type1 field1;
...
typek fieldk;

}

To allocate a new record in the heap, the programmer uses the keyword new; the syntax is the same
as that for constructing an object in Java using the default constructor, but the programmer can also use
named parameters to directly initialize certain �elds upon allocation as shown in the following example.

Example 1. Use of named parameters to initialize the �elds of a struct.

struct Point{
int x;
int y;

}
void main(){

Point p1 = new Point();
assert p1.x == 0 && p1.y == 0; //Fields initialized to default values.

Point p2 = new Point(x=5, y=7);
assert p2.x == 5 && p2.y == 7; //Fields initialized by constructor.

}

4

Records are manipulated through references, which behave the same way as references in Java. The
following example illustrates the main properties of records and references in Sketch.

Example 2. The example below will behave the same way as an equivalent example would behave in Java.
In particular, all the asserts will be satis�ed.

struct Car{
int license;

}

void main(){
Car c = new Car(); // Object C1
Car d = c; // after assignment d points to C1
c.license = 123; // the field of C1 is updated.
assert d.license == 123;
strange(c, d);
assert d.license == 123; //Object C1 unaffected by call
assert d == c;

}

void strange(Car x, Car y){
x = new Car(); //x now points to a new object C2
y = new Car(); //y now points to a new object C3
x.license = 456;
y.license = 456;
assert x.license == y.license;
assert x != y; //x and y point to different objects

}

Just like in Java, references are typesafe and the heap is assumed to be garbage collected (which is
another way of saying the synthesizer doesn't model deallocation). A consequence of this is that a reference
to a record of type T must either be null or point to a valid object of type T. All dereferences have an
implicit null pointer check, so dereferencing null will cause an assertion failure.

2.3 Temporary Structures

There are instances where it is desirable to have the convenience of structures but without the cost of
allocation and dereferencing, and without the burden of reasoning about aliasing.

The language supports temporary structures, which are unboxed, so they do not incur many of the
usual costs associated with heap allocated structures. Temporary structures have copy semantics, so the
programmer can think of them as primitive values and does not have to worry about aliasing.

One can use temporary structures as local variables and parameters by enclosing the type of the structure
in vertical bars |type|. Temporary structures can be created with a constructor |type|(args), where args
are named parameters just like with a normal constructor, but the keyword new is not used since nothing is
being allocated in the heap.

Temporary structures have the following properties:

• Assignment: assignment of a temporary structure to another results in a copy.

• Equality comparison: an equality comparison of two temporary structures is equivalent to the con-
junction of their �eld-by-�eld comparison.

The following example illustrates the use of unboxed functions.

5

Example 3. struct Point{
int x;
int y;

}

...
|Point| p1 = |Point|(x=5, y=3); // temporary point initialized to (5,3).
Point p2 = new Point(x=3, y=2); // heap allocated point initialized to (3,2).
|Point| p3 = p1; // temporary point p3 is a copy of p1.
p3.x = 10;
Point p4 = p2; // p4 and p2 point to the same heap allocated object.
p4.x= 15;
assert p1.x == 5;
assert p2.x == 15;
assert p3.x = 10;
assert p4.x == 15;
if(??) assert p1 == p2; // equivalent to p1.x == p2.x && p1.y==p2.y
if(??) assert p1 != p2; // equivalent to !(p1==p2)

Interaction of temporary and heap allocated structures An assignment from a heap allocated
structure to a temporary structure is interpreted as a �eld-by-�eld copy. In the above example, an assignment
p3 = p2; would be equivalent to

p3.x = px.x; p3.y = p2.y;

Such an assignment requires that p2 not be null. Similarly, an assignment from a temporary structure to a
heap allocated structure is also interpreted as a �eld-by-�eld copy, with a similar assertion that the reference
will not be null. Failure to satisfy the assumption will cause an assertion failure.

Similarly, an equality comparison of a heap allocated structure and a temporary structure will be equiv-
alent to a �eld-by-�eld comparison.

Restrictions In the current version of the language, temporary structures are only allowed for local vari-
ables and function parameters. In particular, the language currently does not allow arrays of temporary
structures or temporary structure �elds in other structures. These restrictions are likely to be lifted in
future versions of the language. Finally, structures with lists inside them are not allowed to be temporary
structures.

2.4 Final Types

Just like in Java, Sketch has a notion of �nal variables and �elds. Unlike Java, however, the language does
not have a final keyword; �nality is inferred based on a couple of simple rules. The rules for variables are
shown below�there are analogous rules for �elds of a record.

• Any variable used as an l-value cannot be �nal; this includes variables used as the left hand side of an
assignment, variables used with pre and post increments and decrements (++x or --y), and variables
passed as reference parameters to another function (see Section 2.10) .

• Arrays cannot be �nal.

• Global variables can only be �nal if they are of scalar type (not references to records).

Since assignments to �nal variables are disallowed by the rules, �nal variables must be initialized upon
declaration. For �elds, �nal �elds must be initialized upon allocation through the use of named parameters
to the constructor.

6

Expressions can also be �nal if they are composed from �nal sub-expressions. In particular:

• Final variables are �nal.

• A binary expression a op b is �nal if a and b are �nal.

• A ternary expression a ? b : c is �nal if a,b and c are �nal.

• A �eld dereference e.f is �nal if e is a �nal expression and f is a �nal �eld.

Note that expressions involving function calls or side e�ects cannot be �nal. As we will see in the next
section, �nal types will be relevant when specifying the sizes of arrays.

2.5 Arrays

The syntax for the array type constructor is as follows: if we want to declare a variable a to be an array of
size N with elements of type T, we can declare it as:

T[N] a;

The language will automatically check that N≥0.
The syntax for array access is similar to that in other languages; namely, the expression a[x] produces

an element of type T when the type of a is T[N], provided that x<N. All array accesses are automatically
checked for array bounds violations.

The constructor above works for any type T, including other array types. This makes the semantics very
simple, although it can be a little confusing for people who are used to working in languages with support
for multi-dimensional arrays. To illustrate this point, consider the following example:

Example 4. Consider the declaration below.

int[N][M] a;

The type of a is int[N][M]. This means that for an x < M, a[x] is of type int[N], and for any y < N, a[x][y]
is of type int.

Dynamic Length Arrays When you declare an array of type T[N], it is possible for N to be an arbitrary
expression, as long as the expression is �nal as de�ned in Section 2.4. For example, consider the following
code:

harness void main(int n, int[n] in){
int[n] out = addone(n, in);
}
int[n] addone(int n, int[n] in){
int[n] out;
for(int i=0; i<n; ++i){

out[i] = in[i]+1;
}
return out;

}

The code above illustrates one of the most common uses of dynamic length arrays: allowing functions
to take arrays of arbitrary size. There are a few points worth mentioning. First, note that the size in the
return array of addone refers to one of the parameters of the function. In general, the output type can refer
to any of the input parameters, as well as to any �nal global variables�i.e. global variables that are assigned
a constant value upon declaration and are never changed again. Similarly, the type of an input parameter
can refer to any variable that comes before it. It is important to remember, however, that any expression
used as the size of the array must be �nal, so in particular, they cannot involve any function calls.

7

When the size of the array needs to be computed by the function itself, there are two ways to proceed.
One option is to give an over approximation of the size of the array as indicated by the example below. The
other option is to package the array into a struct as shown in the next paragraph.

Example 5. Consider a function that �lters an array to return only those elements that are even. One
cannot know the length of the return array a priori, because it depends on the data in the original array.
One way to write such a function is as follows:

int[N] filter(int N, int[N] in, ref int outsz){
outsz = 0;
int[N] out;
for(int i=0; i<N; ++i){

if(in[i]%2 == 0){
out[outsz++] = in[i];

}
}
return out;

}

Notice that the function returns an array of size N, even though in reality, only the �rst outsz elements
matter. The function uses a reference parameter (see Section 2.10) to return outsz. We may use the
function as follows:

int[N] tmp = filter(N, in, tsz);
int sz = tsz;
int[sz] filteredArray = tmp[0::sz];

The function uses the bulk array access tmp[0::sz], which will be de�ned properly later in the section. A
cleaner way of writing this example is to use records as shown in the next paragraph.

Array �elds Records can also have arrays as �elds. The expression for the array size can involve any
�nal expression in scope, which in practice means �nal expressions involving global variables and other �nal
�elds. Keep in mind that if a �eld is �nal, then it must be initialized by the constructor of the record.

Example 6. Using array �leds, we can write a cleaner version of the �lter function from before:

struct Array{
int sz;
int[sz] A;

}

Array filter(Array arr){
int outsz = 0;
int[arr.sz] out;
for(int i=0; i<arr.sz; ++i){

if(arr.A[i]%2 == 0){
out[outsz++] = arr.A[i];

}
}
return new Array(sz=outsz, A=out[0::outsz]);

}

One interesting point to note is the size of out; because it uses arr.sz, that forces both the variable arr and
the �eld sz to be �nal. The �eld sz was already �nal because it was used in the size of �eld A, but now

8

that arr is also required to be �nal; assigning anything to it inside the function would be illegal and would
be �agged by the type checker. Finally, the function uses the bulk array access out[0::outsz], which will be
de�ned in the next section.

Flag --bnd-arr-size If an input array is dynamically sized, the �ag --bnd-arr-size can be used to control
the maximum size arrays to be considered by the system. For any non-constant variable in the array size,
the system will assume that that variable can have a maximum value of --bnd-arr-size. For example, if a
sketch takes as input an array int[N] x, if N is another parameter, the system will consider arrays up to
size bnd-arr-size. On the other hand, for an array parameter of type int[N*N] x, the system will consider
arrays up to size bnd-arr-size2.

Multi-dimensional arrays In sketch you can declare a multi-dimensional array as follows.

T[sz0, sz1, . . ., szn] A;

You can then access an element A[i0,i1,. . .,in], where 0 ≤ ij < szn.
Multi-dimensional arrays are actually just syntactic sugar for nested arrays; so a declaration like the one

above would be desugared to the one below.

T[szn]. . .[sz1][sz0] A;

And similarly, the access A[i0,i1,. . .,in] is desugared to A[i0][i1]. . .[in]. The nested array notation and the
multi-dimensional array notation are completely interchangeable, so for example, it is �ne to pass a nested
array to a function expecting a multi-dimensional array, and vice-versa.

The main advantage of the multi-dimensional array notation over the nested array notation is that the
bounds in the declaration appear in the same order as the indexes in the array access, instead of being
reversed as happens with the nested array notation.

Bulk array access The indexing operation we just saw will read a single element from an array. The
Sketch language also includes support for extracting sub-arrays out of an array. If a is an array of type
T[N], we can extract a sub-array of size M using the following expression:

a[x::M]

If M is greater than or equal to zero and x + M≤N, then the expression a[x::M] produces an array of type
T[M] containing the elements a[x], ..., a[x+M-1].

Bulk array access of the form a[x::M] will generate an exception if any index between x and x+M-1 is out
of bounds. Speci�cally, the system checks that x>=0 and x+M <= N, where N is the size of a. Notice that if M
is zero, then it is legal for x to equal N.

Array assignment The language also supports bulk copy from one array to another through array as-
signment operator. If a and b are arrays of type T[N], then the elements of a can be copied into b by using
the assignment operator:

b = a;

If a:T[N] and b:T[M] are of di�erent size, then the assignment will be legal as long as M≥N. If M6=N, the rhs
will be padded with zeros or nulls according to the rules in Section 2.7.

Bulk array access operations can also serve as lvalues. For example, the assignment

b[2::4] = a[5::4]

is legal�assuming of course that a and b are big enough for the bulk accesses to be legal. The e�ect of this
operation is to write values a[5], a[6], a[7], a[8] into locations b[2], b[3], b[4], b[5]. For such an assignment,
the compiler will read all the values in the right hand side before writing anything to the left hand side. This
is relevant when reading and writing to the same array. For example, the assignment

9

a[0::3] = a[1::3]

will read values a[1], a[2], a[3] before writing to locations a[0], a[1], a[2].

Array constants Sketch supports C-style array constants. An array constant of k-elements is expressed
with the following syntax.

{ a1, a2, ... , ak}

Array constants in Sketch are more �exible than in C. They are not restricted to array initialization; they
can be used anywhere an array rvalue can be used. In particular, the following are all valid statements in
sketch:

int[3] x = {1,2,3};
x[{1,2}[a]] = 3;
x[0] = {4,5,6}[b];
x[{0,1}[a]::2] = {0,1,2,3,4,5,6}[b::2];

String literals (Character array constants) Like C, sketch supports strings in double quotes as a
shorthand for a null-terminated character arrays. So for example, the string "a string" is a shorthand for
the array constant:

{’a’, ’ ’, ’s’, ’t’, ’r’, ’i’, ’n’, ’g’, ’\0’}

Nested array constants The entries a1 through ak in the array initializer can themselves be arrays,
which makes it possible for the system to support nested array initializers. The type for an array initializer
will be de�ned by the following rule:

τ =
⊔
τi Γ ` ai : τi

Γ ` {a0, a1, . . . ak−1} : τ [k]

Given two array types τ1[N] and τ2[M], the type τ1[N]tτ2[M] is equal to (τ1tτ2)[max(N,M)]. The system
pads the nested array initializers according to the rules in Section 2.7. For example, an array of the form

{{1,2},{1},{1,2,3},{1}}

will be of type int[3][4], and will be equivalent to the following array:

{{1,2,0},{1,0,0},{1,2,3},{1,0,0}}

Array Equality. The equality comparison recursively compares each element of the array and works for
arrays of arbitrary types. In addition to comparing each element of the array, the equality comparison
also compares the sizes of the array, so arrays of di�erent sizes will be judged as being di�erent even if
after padding they would have been the same. In general, two arrays a:T[n] and b:T[m] will be compared
according to the following recursive de�nition:

a == b when a and b have type T[n] ⇒ n==m ∧∀ i < n a[i]==b[i]
a == b when a is of type T[n] and b is of type T ⇒ n==1 ∧ a[0] == b

In the second line, it is assumed that T is a non-array type. There is a symmetric case when a is of a
non-array type.

Example 7. Given two arrays, int[n][m] y and int[m][n] z, the following assertion will always succeed:

if(x==y){
assert n==m;

}

10

That is because the only way x and y can be equal is if their dimensions are equal. Similarly, given two arrays
int[p][n][m] a and int[t] b, the assertion below will always succeed:

if(a==b){
assert t==m && n==1 && p == 1;

}

Bit Vectors While a sketch programmer can create arrays of any arbitrary type, arrays of bits allow an
extended set of operations to allow programmers to easily write bit-vector algorithms. The set of allowed
operators is listed below, and the semantics of each operator is the same as the equivalent operator for
unsigned integers in C.

bit[N] & bit[M] → bit[max(N,M)]
bit[N] | bit[M] → bit[max(N,M)]
bit[N] ^ bit[M] → bit[max(N,M)]
bit[N] + bit[M] → bit[max(N,M)]

bit[N] >> int → bit[N]
bit[N] << int → bit[N]

!bit[N] → bit[N]

Notice that most operators support operands of di�erent sizes; the smaller array is padded to match the
size of the bigger array according to the rules of padding from Section 2.7.

2.6 Algebraic Data types

Sketch also supports algebraic data types, or case classes as they are known in Scala. To illustrate the use
of algebraic data types (ADTs), consider the Tree ADT de�ned below.

struct Tree{}

struct Leaf extends Tree{
int value;

}
struct Branch extends Tree{

Tree left;
Tree right;

}

Tree is an ADT by virtue of having two variants that extend it: Leaf and Branch. Both Leaf and Branch
can be instantiated just like any other kind of record, and they are both subtypes of Tree. For example, the
code below instantiates a small tree.

Tree t1 = new Leaf(value=5);
Tree t2 = new Leaf(value=6);
Tree t3 = new Leaf(value=7);
Tree t = new Branch(left=t1, right=new Branch(left=t2, right=t3));

The fact that Leaf and Branch extend Tree causes Tree to be abstract, so Tree itself cannot be instantiated.
Pattern matching in Sketch is done through the switch construct. The basic syntax is as follows:

switch(var){
case C1:
...
case Cn:

}

11

The argument var passed to switch must be a variable whose type is an ADT, and each case must be
labeled with a di�erent variant Ci. Within that case, the variable var will automatically acquire the type
corresponding to the case. This is illustrated by the function below:

int sum(Tree t){
int v=0;
switch(t){

case Leaf:{
/*t is now of type Leaf in this block */
v = t.value;

}
case Branch:{
/*t is now of type Branch is this block */
v = sum(t.left)+sum(t.right);

}
}
/*Outside the switch, t goes back to being of type Tree*/
return v;

}

The switch construct looks a lot like the switch construct in C or Java, but its semantics are very di�erent.
First, the cases correspond to the possible types of t, as opposed to di�erent values of an integer expression.
Second, the argument to switch must be a variable, and the type of this variable will be di�erent in each of
the cases. And �nally, the cases do not �fall through� the way they do in C; only one case can match, and
only the block of code associated with the matching case will execute.

The language allows hierarchies of ADTs. For example:

struct ASTNode{}
struct Expression extends ASTNode{}
struct Statement extends ASTNode{}
struct Plus extends Expression{Expression left; Expression right;}
struct Times extends Expression{Expression left; Expression right;}
struct IfStmt extends Statement{Expression cond; Statement tpart; Statement epart;}
struct WhileStmt extends Statement{Expression cond; Statement body;}

So in this case, one can create instances of Plus, Times, IfStmt and WhileStmt, but not of ASTNode or
of Expression and Statement. When pattern matching, however , one can have cases for Expression or
Statement and those cases will match on any variant that is a subtype of them.

The following are some additional rules associated with ADTs.

• Records representing an ADT can have �elds, and those �elds will be inherited by all the variant types.

• A parent and a variant struct cannot both have a �eld with the same name.

• The type extended by a variant class should exist and be de�ned in the same package, so ADT
de�nitions cannot span multiple packages (see Section 2.14 for more on packages).

• The expression that is passed to switch(e) should always be a variable, and the labels for the cases
should be variants of the type of that variable.

• Switch statements should cover all the cases.

• Implicit casting occurs from a subtype to a super type.

• Explicit casts can happen only from a supertype to a subtype. An incorrect cast will cause an assertion
failure.

12

2.7 Automatic Padding and Typecasting

When arrays are assigned or passed as parameters, they can be implicitly typecast through padding. Padding
is also supported by bit vector operations, but not for reference parameters. This padding can be thought
of as an implicit typecast from small arrays to bigger arrays. The objects used to pad the array depend on
the type of the array. Given an array of type T[N], the objects used to pad the array will be de�ned by the
function pad(T) de�ned by the following rules:

pad(int) = 0
pad(bit) = 0
pad(struct) = null
pad(T[N]) = {pad(T), . . . , pad(T)} //N copies of pad(T)

Example 8. In the statement int[4] x = {1,2};, the right hand side has size 2, but will be implicitly cast
to an array of size 4 by padding it with the value pad(int)=0, so after the assignment, x will equal {1,2,0,0}.

Example 9. Padding also works for assignments involving nested arrays.

int[2][2] x = {{2,2}, {2,2}};
int [4][4] y = x;

The code above involves the following implicit typecasts: �rst, the array x of type int[2][2] is typecast
into an array of type int[2][4] by padding with pad(int[2])={ pad(int), pad(int)} = {0, 0} to produce
the array {{2,2}, {2,2}, {0,0}, {0,0}}. Then, each entry in this array is typecast from int[2] to int[4],
so after the assignment, the value of y will be equal to {{2,2,0,0}, {2,2,0,0}, {0,0,0,0}, {0,0,0,0}}

A second form of implicit typecasting happens when a scalar is used in place of an array. In this case,
the scalar is automatically typecast into an array of size 1 or zero depending on the context.

Example 10. Consider the following block of code

struct Car{ ... }
...
Car[4] x;
Car t = new Car();
x = t;

This code actually involves two typecasts. First, t will be typecast from the scalar type Car to the array
type Car[1]. Then, the array type Car[1] will be typecast to a bigger array of type Car[4] by padding with
pad(Car) = null. The result is that array will be equal to {t, null, null, null}.

There are some cases where it is desirable to assign a constant to an array of size n, where n may be an
input to the function. If n is zero, however, the constant will automatically be cast to an empty array of size
zero in order to avoid an error.

Example 11. int[n] x;
...
x = 0; // This will zero out the array; will not cause an error when n==0

The casting of scalars to arrays of size 1 also works in the context of multidimensional arrays.

Example 12. The following block of code illustrates padding for multi-dimensional arrays.

struct Car{ ... }
...
Car[2] x = {new Car(), new Car()};
Car[4][3] y = x;

13

assert y[0][0] == x[0];
assert y[1][0] == x[1];
assert y[1][1::3] == {null, null, null};
assert y[2] == {null, null, null, null};

To understand the example above, it is worth thinking of an array assignment of the form y=x where y is
of type T[N] as a loop of the form

for(int i=0; i<N; ++i){
if(i<M)//where M<=N is the size of x

y[i] = x[i];
else

y[i] = pad(T);
}

So in the example above, y[i] will be of type Car[4] and x[i] will be of type Car, which means each
assignment involves an implicit typecast from Car to Car[4].

2.8 Explicit Typecasting

The Sketch language also o�ers some limited explicit typecasting. In particular, the language o�ers only
four explicit typecasts:

• An array a of type T[N] can be explicitly typecast into an array of type T[M] by using the syntax
(T[M])a (standard typecast notation from C). When an array is typecast to a smaller size, the remaining
elements are simply truncated.

• A bit array bit[N] can be explicitly typecast into an integer. When this happens, the �rst bit in the
array is interpreted as the least signi�cant bit and the last one as the most signi�cant bit. The reverse
cast from an integer to a bit array is not supported.

• If using --fe-fpencoding AS_FIXPOINT, explicit casts from integers to �oating point values and vice
versa are also allowed.

• An object of an algebraic data type can be explicitly typecast to one of its variants. The system will
automatically introduce an assertion to ensure that the value is of the right type. For example, in the
Tree example from Section 2.6, one can cast a value of type Tree into a value of type Leaf, but if the
value is a Branch instead of a Leaf, the cast will trigger an assertion failure.

Example 13. One instance where explicit casting is useful is when comparing an array against the zero
array.

int[N] x=...;
assert x == (bit[N])0;

Notice that in the code above, if we had written simply x==0 in the assertion, the assertion would have been
violated when N>1, because the scalar zero is treated as an array of size 1. By casting the constant zero into
an array of size N, we ensure that x is compared against an array of size N consisting of all zeros.

Example 14. Explicit casting is also useful when copying one dynamically sized array into another one.

int[N] x=...;
int[M] y = (bit[M])x;

If we knew that N is smaller than M, we could have written simply y=x, and the automatic padding would have
made the assignment correct. Similarly, if we knew that M is smaller than or equal to N, assigning y=x[0::M]
would have been legal. However, y=x fails when M is smaller than N, and x[0::M] fails when M>N. The cast on
the other hand succeeds in both cases and has the expected behavior.

14

2.9 Control Flow

The language supports the following constructs for control �ow: if-then, while, do-while, for. These
have the same syntax and semantics as in C/C++ or Java. The language does not support a C-like switch
statement, since switch is used for pattern matching instead (see Section 2.6). The language also does
not support continue and break, although they can easily be emulated with return by using closures (see
Section 2.12).

The synthesizer reasons about loops by unrolling them. The degree of unrolling is controlled by a �ag
--bnd-unroll-amnt. If the loop iteration bounds are static, however, the loop will be unrolled as many times
as necessary to satisfy the static bounds.

Flag --bnd-unroll-amnt This �ag controls the degree of unrolling for both loops and repeat constructs

Example 15. Consider the three loops below.

for(int i=0; i<N; ++i){...}
for(int i=0; i<100; ++i){...}
for(int i=0; i<N && i<7; ++i){...}

If N is an input variable, the �rst loop will be unrolled as many times as speci�ed by --bnd-unroll-amnt.
The second loop will be unrolled 100 times regardless of the value of the �ag (as long as there are no return
statements in its body). For the third loop, the unroll factor will be controlled by the �ag, but will never
exceed seven.

2.10 Functions

The sketch language also supports functions. The syntax for declaring a function is the same as in C.

ret_type name(args){
body

}

Recursion The synthesizer reasons about function calls by inlining them into their calling context. In
principle, this could be problematic for recursive functions, but in practice this usually is not a problem.
The synthesizer uses a �ag bnd-inline-amnt to bound the maximum number of times a function can be
inlined. If any input requires inlining more than the allowed number of times, synthesis will fail.

Flag --bnd-inline-amnt Bounds the amount of inlining for any function call. The value of this parameter
corresponds to the maximum number of times any function can appear in the stack.

Flag --bnd-bound-mode The solver supports two bound modes: CALLSITE and CALLNAME. In CALLNAME mode
(the default), the �ag bnd-inline-amnt will bound the number of times any function appears in the stack. In
the CALLSITE mode, the bnd-inline-amnt �ag will bound the number of times a given call site appears on the
stack, so if the same function is called recursively multiple times, each site is counted independently.

Reference Vs. Value Parameter Passing By default, parameter passing is done by value, so even if
parameters are modi�ed inside the function, the change will not be visible outside. We can make changes
to a parameter visible to the caller by pre�xing the formal parameter with the keyword ref as shown in the
example below.

Example 16. Pre�xing the formal parameter with ref makes changes visible outside the function.

15

void foo(int in, ref int out){
in = in + 1; // changes to in are not visible to the caller

out = in + 1; //changes to out are
}
harness void main(int x){

int y = x;
int z = y+10;

foo(y, z); // call to foo can change z but not y
assert y == x && z == x+2;

}

A very important point about ref parameters is that their semantics is not actually pass-by-reference; it
is copy-in-copy-out. If you pass only local variables by reference and you never alias ref parameters, copy-
in-copy-out semantics and pass-by-reference semantics are indistinguishable, and the compiler will actually
generate pass-by-reference code. However, if you alias parameters or if you pass a �eld of a record by
reference, the copy-in-copy-out semantics will become apparent.

Example 17. This example illustrates copy-in-copy-out semantics.

void foo(ref int p1, ref int p2){
int t=p1;
p1 = p1 + 1;
p2 = p2 + 2;
assert p1 == t + 1;

}
harness void main(int x){

int z = x;
foo(z, z);
assert z == x+2;

}

Note that copy-in-copy-out semantics make it possible to reason about foo in isolation; the assertion will hold
regardless of whether or not the user passes the same parameter to foo twice. The copy-out happens in the
order of the parameter list, so the �nal value of z is the value of p2.

Another very important point is that the ref modi�er can also be used in generator functions ((see
Section 4), but in that case, ref parameters do have pass-by-reference semantics.

Implicit size parameters When passing arrays as parameters, it is common to have to separately pass
the size of the array, so a typical function signature will look like this:

double[n] foo(int n, double[n] in)

Sketch allows you to declare the size parameter n as an implicit parameter so that you do not have to
pass it when calling the function.

double[n/2] foo([int n], double[n] in){//brackets signify implicit parameter
return in[0::n/2];

}
harness void main(int n, double[n] in){

double[n/2] res = foo(in); //we don’t have to pass n.
double[n] res = foo(2*n, in);//but we can if we want.

}

The syntax for a function de�nition that uses implicit parameters is shown below.

16

ret_type name([implicit args], args){
body

}

Speci�cally, implicit parameters must be at the beginning of the parameter list, and the complete list of
implicit parameters must be enclosed in square brackets.

There are two important semantic requirements for implicit parameters. First, all implicit parameters
must be of integer type, since they must correspond to sizes of arrays passed as parameters. The second
requirement is that every implicit parameter must be equal to the size of at least one array argument.

Example 18. The following de�nitions correspond to legal uses of implicit parameters:

int[n] foo([int n, int m], int[n] a, int[m] b)...
int[m] foo([int n], int[n] a, int m, int[m] b)...
int[n+m] foo([int n, int m], int[n][m] a, int[m] b)...
int[n+m] foo([int n, int m], int[n][m] a, int[2*m] b)...

By contrast, the following are all illegal:

int[n] foo([int n, int m], int[n] a)... // m is not used
int[n] foo([int n], int[n*2] a)... //n is not the size of any array param
int[n+m] foo([int n, int m], int[n][m*2] a, int[m-1] b)... //m is not the size of any array param

When calling a function with implicit parameters, there are two rules to keep in mind.

• You can decide to pass all implicit parameters, or you can pass none of them, but you cannot selectively
pass only a subset of them.

• If a given implicit parameter is used by multiple array parameters, all array parameters must be
consistent regarding the value of that parameter.

Example 19. Given the following function de�nition and declarations

void foo([int n, int m], int[n] a, int[m][n] b)...
...
int[5] w;
int[5] x;
int[3][5] y;
int[10] z;

The following calls are valid:

foo(x, y); // n==5, m==n
foo(w, x); // n==5, m==1
foo(10, 3, z, y); // Involves an implicit cast for y.

By contrast, the following are all illegal:

foo(z, y); //different value of n for the two arrays
foo(3, z, y); //Passes only a subset of implicit parameters

2.11 Function parameters

Functions can also take other functions as parameters. We use the keyword fun to denote a function type.
The example below illustrates the use of function parameters.

Example 20. Functions as parameters.

17

int apply(fun f, int x){
return f(x);

}
int timesTwo(int x){

return x+x;
}

harness void main(int x){
assert apply(timesTwo, x) == 2*x;

}

The language imposes several restrictions on the use of the fun type. First, the type can only be used for
parameters. You cannot declare a variable or a data-structure �eld of type fun. There are also no operators
de�ned for functions; in particular, the ternary operator ?: cannot be used with functions. You can also
not create arrays of functions, and you cannot use functions as return values or reference parameters to a
function. In short, functions are not quite �rst class citizens in Sketch, but function parameters do enable
some very useful idioms.

One important point to notice about function parameters is that the signature does not specify what
parameters it expects. This gives the language some �exibility, and in some cases allows one to make up
for the fact that we don't have generics. However, it also has an important implication. Namely, when a
function parameter is called, it is not possible to know which parameters will be reference parameters and
which parameters will not, so any variable that is passed to a function that came as a parameter will be
considered non-�nal.

2.12 Local functions and closures

Sketch supports the de�nition of functions inside other functions. The syntax for doing this is the same as
when the function is de�ned outside a function. The body of the locally de�ned function can access any
variable that is in scope in the context of the function de�nition. The example below illustrates how local
functions can be used together with high-order functions.

void ForLoop(fun f, int i, int N){
if(i<N){

f(i);
ForLoop(f, i+1, N);

}
}

harness void main(int N, int[N] A){
int[N] B;
void copy(int i){

B[i] = A[i];
}
ForLoop(copy, 0, N);
assert A == B;

}

In the sketch above, ForLoop takes the closure involving the function copy and its local environment; the
e�ect of the call to ForLoop is the same as if the body of copy had been placed in a traditional for loop.
One important aspect of closures in Sketch is that because functions cannot be returned by other functions
or written into the heap, a local function can never escape the context in which it was declared. This allows
local functions to modify local variables de�ned in their host function without any messy semantic issues.

18

Finally, local functions can only be used after they are declared, unlike top level functions for which the
order of declaration does not matter. One important implication of this is that you cannot de�ne mutually
recursive local functions.

harness void main(int N, int[N] A){
int foo(int i){

if(i>0){
return moo(i-1); // not allowed because moo has not been declared.

}
return i;

}
int moo(int i){

return foo(i);
}

}
int fooTop(int i){

if(i>0){
return mooTop(i-1); // This is ok, for top level functions the

} // order of declaration does not matter.
return i;

}
int mooTop(int i){

return fooTop(i);
}

2.13 Uninterpreted Functions

Sketch also supports uninterpreted functions, which can be de�ned with the following syntax.

ret_type name(args);

An uninterpreted function is a function whose body is unknown, so from the point of view of the synthesis
and veri�cation engine; there is nothing known about this function other than the fact that it is a pure
function, so when fed with the same inputs it will produce the same outputs. Importantly, if you are using
an uninterpreted function to model some complex routine in the program, you need to make sure that routine
behaves as a mathematical function; i.e. it should not access the heap or global variables. For this reason,
we restrict uninterpreted functions so they can not involve structures.

2.14 Packages

The Sketch language supports packages. A package is identi�ed by the package statement at the beginning
of a �le.

package PACKAGENAME;

All the functions and structures de�ned in a �le must belong to the same package, so the compiler will
produce an error if there is more than one package de�nition in a �le. If a �le does not have a package
command, then by default its contents will belong to the package ANONIMOUS. Also, note that unlike Java,
package names cannot have periods or other special symbols.

A �le can import other packages by using the include command. The syntax of the command is shown
below. The string in quotes corresponds to the name of the �le where the package resides.

include "file.sk";

The include command should not be confused with the #include preprocessor directive, which simply
inlines the contents of a �le and is not really part of the language.

19

Flag --fe-inc The command line �ag �fe-inc can be used to tell the compiler what directories to search
when looking for included packages. The �ag works much like the -I �ag in gcc, and can be used multiple
times to list several di�erent directories.

Each package de�nes its own namespace, allowing the system to avoid name con�icts. Code in one package
can explicitly refer to functions or structures de�ned in another package by using the @ notation. For example,
a call of the form foo@pk() will call a function foo de�ned in package pk. Similarly, a declaration of the
form Car@vehicles c = new Car@vehicles() de�nes a new object of type Car, where the type was de�ned in
the package vehicles. In the absence of an explicit package name, the system will search for de�nitions of
functions and structures as follows:

• If the name is de�ned locally in the same package, the local de�nition will be used.

• If the name is not de�ned locally in the same package, but is only de�ned in one other package (so
there is no ambiguity), then the de�nition in that other package will be used.

• If the name is not de�ned locally in the same package and the same name is de�ned in multiple
packages, then you need to explicitly name the package or you will get a compiler error.

Example 21. The example below illustrates the use of packages.

// Begin file farm.sk
package farm;
struct Goat{

int weight; }
struct Ram{

int age; }
struct Mouse{

int age; }
// End file farm.sk

// Begin file computer.sk
package computer;
struct Cpu{

int freq; }
struct Ram{

int size; }
struct Mouse{

bit isWireless; }
// End file computer.sk

//Begin file test.sk
include "computer.sk";
include "farm.sk";
struct Mouse{

int t;
}
harness main(){

Cpu c = new Cpu(); // No ambiguity here.
Ram@farm r = new Ram@farm() //Without @farm, this would be an error.
Ram@computer rc = new Ram@computer();
Mouse m = new Mouse(); // Give preference to the locally defined mouse.
m.t = 10;

}
//End file test.sk

2.15 Global variables

The sketch language supports global variables with a few important restrictions.

• First, global variables are always private to the package in which they are de�ned; they cannot be made
public, although you can have functions in a package that read and write to a given global variable.

• The second restriction is a consequence of the fact that only scalar global variables can be �nal; this
means that global arrays must have constant dimensions since, in that scope, constants are the only
thing that can be �nal.

20

• The initializers for global variables can only involve side-e�ect-free expressions of constants and �nal
global variables. An expression that allocates a struct (e.g. new C(a=x)) is considered a side-e�ect-free
expression as long as the arguments to the constructor (e.g. x) are side e�ect free. Division, array
access and function calls are not considered side-e�ect free since they may fail.

2.16 Annotation System

The Sketch language includes an annotation system that is meant to simplify the process of adding language
extensions. The general syntax for annotations is as follows:

@Name(parameter-string)

Name is the name of the annotation and parameter-string is a string describing the parameters of the
annotation. Annotations are currently only supported for function and record de�nitions.

The synthesizer currently supports two annotations. The �rst is @Native, which allows the user to override
the standard code generator and tell the synthesizer exactly what code to synthesize for a particular function.
The second one is @NeedsInclude which is used to tell the code generator that a particular function requires
some speci�c header �le to be included.

For example, the following code shows how the two @Native annotations can be used to write a set of
routines that read form a �le.

Example 22. In Sketch, one can use the following classes to model the process of reading from a �le.

int NDCNT=0;

int getND_private(int i);
int getND(){

//Every time this function is called
//it produces a new non-deterministic value.
return getND_private(NDCNT++);

}

struct FileHandle{
int maxReads; //Number of values left in the file.

}

FileHandle getFile(){
//Number of values in the file is some non-deterministic value.
return new FileHandle(maxReads=getND());

}

bit moreValues(FileHandle fh){
//maxReads should never drop below zero.
assert fh.maxReads >= 0;
return fh.maxReads!=0;

}

int readInt(FileHandle fh){
//Reads past the end of the file are not allowed.
assert fh.maxReads > 0;
--fh.maxReads;
return getND();

}

21

The FileHandle is initialized with the maximum number of values to read. Every time the client calls
readInt, the synthesizer reads checks if the maximum number of reads has been reached and reads another
non-deterministic value. This de�nition of the operations on a �le is very good if we are interested in
synthesizing or verifying a client that needs to read a �le and do something with its contents. However, if
we want to generate code to read real �les, the class above is not so useful.

Using the @Native annotations, however, we can instruct the synthesizer on how to generate code for the
structure and functions above. For example, the code for the struct would be as follows:

struct FileHandle{
int maxReads;
@NeedsInclude("#include <fstream>")
@NeedsInclude("#include <string>")
@Native("ifstream in;")
@Native("int last;")
@Native("bool goon;")
@Native("FileHandle(const string& s):in(s.c_str()){ in>>last; goon = !in.eof() && !in.fail(); }")
@Native("int readInt(){ int x = last; in>>last; goon = !in.eof() && !in.fail(); return x;}")

}

The functions annotations are used to introduce additional �elds and methods which are invisible to the
analysis engine, but which are needed by the generated code.

With their annotations, the moreValues and readInt functions are as follows:

@Native("{ _out = fh->goon; }")
bit moreValues(FileHandle fh){

assert fh.maxReads >= 0;
return fh.maxReads!=0;

}

@Native("{ _out = fh->readInt(); }")
int readInt(FileHandle fh){

assert fh.maxReads > 0;
--fh.maxReads;
return getND();

}

When analyzing code, the annotations are invisible to the synthesizer, and it will focus on the high-level
model in the body. When generating code, on the other hand, the code generator will produce the code
instructed by the @Native annotation.

The @Native annotation allows the programmer to use simple models in place of very complex or low-level
functions. It is the responsibility of the programmer to ensure that the model matches the relevant behavior
of the code that is being generated.

More generally, if you want to write custom extensions to the Sketch synthesizer, you can use annotations
to pass information to your custom extension without a�ecting any of the existing synthesizer infrastructure.

3 Constant Generators and Specs

Sketching extends a simple procedural language with the ability to leave holes in place of code fragments
that are to be derived by the synthesizer. Each hole is marked by a generator which de�nes the set of code
fragments that can be used to �ll a hole. Sketch o�ers a rich set of constructs to de�ne generators, but all
of these constructs can be described as syntactic sugar over a simple core language that contains only one
kind of generator: an unknown integer constant denoted by the token ??.

22

From the point of view of the programmer, the integer generator is a placeholder that the synthesizer
must replace with a suitable integer constant. The synthesizer ensures that the resulting code will avoid any
assertion failures under any input in the input space under consideration. For example, the following code
snippet can be regarded as the �Hello World� of sketching.

harness void main(int x){
int y = x * ??;
assert y == x + x;

}

This program illustrates the basic structure of a sketch. It contains three elements you are likely to �nd in
every sketch: (i) a harness procedure, (ii) holes marked by generators, and (iii) assertions.

The harness procedure is the entry point of the sketch, and together with the assertion it serves as an
operational speci�cation for the desired program. The goal of the synthesizer is to derive an integer constant
C such that when ?? is replaced by C, the resulting program will satisfy the assertion for all inputs under
consideration by the veri�er. For the sketch above, the synthesized code will look like this.

void main(int x){
int y = x * 2;
assert y == x + x;

}

3.1 Harnesses and function equivalence requirement

A program in sketch can have multiple harness functions each encoding di�erent requirements of the problem.
Sketch will guarantee that all harnesses will run to completion without triggering assertion failures for all
inputs within bounds. Harness functions are not allowed to take heap allocated objects as inputs and all
global variables are reset to their initial values before the evaluation of each harness. Because of this, the
order of evaluation of the harnesses does not matter.

Sketch also allows the programmer to express that a function�we call it the implementation�must be
functionally equivalent to another function�the speci�cation�by writing implementsfname at the end of
the signature of the implementation function. When the speci�cation and implementation do not access
global variables, the equivalence constraint created by implements can be seen as syntactic sugar for a
harness that calls both the implementation and the speci�cation and compares their results. However, using
implements is preferable to writing such a harness because it lets the compiler know that it can replace
one function for the other when reasoning about the program. The implements directive imposes stronger
constraints than harness; same function cannot have a harness and an implements directive.

If the implementation or the speci�cation access global variables, then their equivalence must hold for
all possible values of those global variables�not just for their initial values�and they must leave the global
variables in the same state after they terminate. This is to ensure that replacing the speci�cation with its
implementation will always be semantics preserving. For this same reason, the spec and the sketch cannot
access global variables that point to heap allocated values.

Example 23. As a simple example of the use of harnesses and implements, consider the following sketch.

int count=0;
int twox(int x, int y){

++count;
return x + x;

}

int expr1(int x, int y){
return x*?? + y*??;

}

23

int expr2(int x, int y) implements twox{
count = count+??;
return x*?? + y*??;

}

harness void foo(){
assert expr1(5,2)*expr2(2,4)== 24;

}

The harness imposes a constraint on the product of the two functions. The implements in the declaration
of expr2 imposes the additional constraint that expr2 must be equivalent to twox. Because twox modi�es the
global variable count, expr2 must modify the variable in the same way.

Implementation note As of the current Sketch release, there is a requirement that the speci�cation
should not have any unknowns. It is likely that this requirement will be relaxed in future releases. Also, when
two functions are related by an implements directive, the compiler assumes that the speci�cation is simpler
than the implementation. The compiler exploits this by replacing every call to the implementation with a
call to the speci�cation during the analysis phase. This generally leads to big performance improvements
for the solver, but it means that if the implementation calls itself recursively the system will not catch bugs
that lead to in�nite recursion.

3.2 Assumptions

Starting in Sketch 1.6.7, the compiler not supports standard assume statements. The semantics of assumecond;
dictate that when the condition cond is false, execution stops and any subsequent assertions are ignored.
When a function is called by another function, any assumptions in the callee become assertions from the
point of view of the caller; i.e. the caller must guarantee that the inputs and environment it passes to the
callee satisfy the assumptions. Note that this is not true of generator functions (Section 4); as we will de-
scribe later, generators get inlined into their calling context, so any assume statement in the generator is an
assume statement in the function that invokes the generator.

Also, when a function implements a speci�cation, its assumptions must be weaker than those of the
speci�cation. In other words, any input that is legal for the speci�cation must be legal for the implementation.

Example 24. Assume and implements

harness int foo(int x){
assume x > 10;
int t= x-10;
assert t > 0;
return t;

}

int moo(int x) implements foo{
assume x > 3;
int t = x-??;
assert t > 0;
return t;

}

harness void main(int x){
assume x > 5;
int t = ??;

24

moo(x+t);
minimize(t);

}

In the example above, the harness foo assumes x>10, which allows it to satisfy the assertion t>0. In the
case of moo, the unknown will resolve to 10 because of the constraint of equivalence with foo. Note that the
assumption in moo is not strong enough to prove the assertion, but because moo implements foo, it inherits
its preconditions.

3.3 Types for Constant Generators

The constant hole ?? can actually stand for any of the following di�erent types of constants:

• Integers (int)

• Booleans (bit)

• Constant sized arrays and nested constant sized arrays

The system will use a simple form of type inference to determine the exact type of a given hole.

3.4 Ranges for holes

When searching for the value of a constant hole, the synthesizer will only search values greater than or equal
to zero and less than 2N , where N is a parameter given by the �ag --bnd-ctrlbits. If you wan to be explicit
about the number of bits for a given hole, you can state it as ??(N), where N is an integer constant.

Flag --bnd-ctrlbits The �ag bnd-ctrlbits tells the synthesizer what range of values to consider for all
integer holes. If one wants a given integer hole to span a di�erent range of values, one can use the extended
notation ??(N), where N is the number of bits to use for that hole.

3.5 Minimizing Hole Values

In many cases, it is useful to ask the synthesizer for the smallest constant that will satisfy a speci�cation. For
such cases, the synthesizer supports a function minimize(e), which asks the synthesizer to make e as small
as possible. More speci�cally, the synthesizer will �nd a minimal bnd such that e < bnd for all inputs. If
the program includes multiple minimize statements, the synthesizer will �nd a locally minimal set of bounds
such that there is no other set of bounds that is strictly better than the one found.

Flag --bnd-mbits The �ag bnd-mbits tells the synthesizer how many bits to use to represent all bounds
introduced by minimize(e)(default 5). Note that the largest value of (e) will be less than the bound, so if e
can have value n, the bound needs enough bits to be able to reach n+ 1.

Example 25. For example, consider the following simple program:

harness void main(int i, int j){
int i_orig=i, j_orig=j;
if(i > ??){ // we’ll call this unknown u1

i = ??; // u2
}
if(j > ??){ // u3

j = ??; // u4
}
if(i_orig > 3 && j_orig > 3)

25

assert 2*i + j > 6;
minimize(i);
minimize(j);

}

In the program above, synthesizer will try to minimize the upper bound on i (we'll call it bi) and the upper
bound on j (bj). One possible solution is to have u1 = 3, u2 = 4, u3 = 0, u4 = 0. This will allow the upper
bounds (b1, b2) to be (5, 1). A di�erent possible solution is to have u1 = 0, u2 = 0, u3 = 0, u4 = 7, which
will allow the upper bounds to be (1, 8). While the �rst set of bounds appears better than the second, they
are actually incomparable. By contrast, a solution that had (b1, b2) = (6, 1) would not be allowed because the
solution with bounds (5, 1) is strictly better.

The synthesizer has some syntactic sugar on top of minimize to support the synthesis of a minimal number
of statements, a common idiom in Sketch. For example, the code below will produce the minimal number
of assignments required to swap x and y.

void swap(ref bit[W] x, ref bit[W] y){
minrepeat{

if(??){ x = x ^ y;}else{ y = x ^ y; }
}

}

harness void main(bit[W] x, bit[W] y){
bit[W] tx = x; bit[W] ty = y;
swap(x, y);
assert x==ty && y == tx;

}

4 Generator functions

A generator describes a space of possible code fragments that can be used to �ll a hole. The constant
generator we have seen so far corresponds to the simplest such space of code fragments: the space of integers
in a particular range. More complex generators can be created by composing simple generators into generator
functions.

As a simple example, consider the problem of specifying the set of linear functions of two parameters x
and y. That space of functions can be described with the following simple generator function:

generator int legen(int i, int j){
return ??*i + ??*j+??;

}

The generator function can be used anywhere in the code in the same way a function would, but the
semantics of generators are di�erent from functions. In particular, every call to the generator will be replaced
by a concrete piece of code in the space of code fragments de�ned by the generator. Di�erent calls to the
generator function can produce di�erent code fragments. For example, consider the following use of the
generator.

harness void main(int x, int y){

assert legen(x, y) == 2*x + 3;
assert legen(x,y) == 3*x + 2*y;

}

26

Calling the solver on the above code produces the following output

void _main (int x, int y){
assert ((((2 * x) + (0 * y)) + 3) == ((2 * x) + 3));
assert (((3 * x) + (2 * y)) == ((3 * x) + (2 * y)));

}

Note that each invocation of the generator function was replaced by a concrete code fragment in the
space of code fragments de�ned by the generator.

The behavior of generator functions is very di�erent from standard functions. If a standard function has
generators inside it, those generators are resolved to produce code that will behave correctly in all the calling
contexts of the function as illustrated by the example below.

int linexp(int x, int y){
return ??*x + ??*y + ??;

}
harness void main(int x, int y){

assert linexp(x,y) >= 2*x + y;
assert linexp(x,y) <= 2*x + y+2;

}

For the routines above, there are many di�erent solutions for the holes in linexp that will satisfy the �rst
assertion, and there are many that will satisfy the second assertion, but the synthesizer will chose one of the
candidates that satisfy them both and produce the code shown below. Note that the compiler always replaces
return values for reference parameters, but other than that, the code below is what you would expect.

void linexp (int x, int y, ref int _out){
_out = 0;
_out = (2 * x) + (1 * y);
return;

}
void _main (int x, int y){

int _out = 0;
linexp(x, y, _out);
assert (_out >= ((2 * x) + y));
int _out_0 = 0;
linexp(x, y, _out_0);
assert (_out_0 <= (((2 * x) + y) + 2));

}

4.1 Recursive Generator Functions

Generators derive much of their expressive power from their ability to recursively de�ne a space of expressions.
For example, the code below shows how to use a recursive generator to de�ne a context free grammar of
possible expressions.

Example 26. Recursive Generator

generator int rec(int x, int y, int z){
int t = ??;
if(t == 0){return x;}
if(t == 1){return y;}
if(t == 2){return z;}

int a = rec(x,y,z);

27

int b = rec(x,y,z);

if(t == 3){return a * b;}
if(t == 4){return a + b;}
if(t == 5){return a - b;}

}
harness void sketch(int x, int y, int z){

assert rec(x,y, z) == (x + x) * (y - z);
}

One must be careful when de�ning recursive generators, however, because the way the generator is de�ned
can have a dramatic impact on the solution time of the resulting code. In particular, there are two aspects
that the writer must keep in mind when writing a generator: recursion and symmetries.

Recursion control in generators The compiler handles recursive generators by inlining them number of
times as guided by the bnd-inline-amnt �ag. This simple approach can cause problems if recursive generators
are not written carefully. For example, an alternative way of writing the generator above is shown below.

Example 27. Ine�cient recursive generator

generator int rec(int x, int y, int z){
int t = ??;
if(t == 0){return x;}
if(t == 1){return y;}
if(t == 2){return z;}
if(t == 3){return rec(x,y,z) * rec(x,y,z);}
if(t == 4){return rec(x,y,z) + rec(x,y,z);}
if(t == 5){return rec(x,y,z) - rec(x,y,z);}

}
harness void sketch(int x, int y, int z){

assert rec(x,y, z) == (x + x) * (y - z);
}

Both generators describe the same grammar, and therefore in principle the same space of possible ex-
pressions, but the second generator will cause problems because each recursive call to rec will be inlined
independently, so each level of inlining will increase the size of the program by a factor of six, instead of only
a factor of two.

Another potential issue with recursive generators is that the amount of inlining is controlled by the same
�ag used to control inlining of functions during analysis. This can be problematic because recursive functions
in the program will often require much more inlining than generators. To address this problem, the user can
take additional control over inlining by explicitly adding a bound parameter into the generator as shown
below.

Example 28. Generator with manual inlining control

generator int rec(int x, int y, int z, int bnd){
assert bnd >= 0;
int t = ??;
if(t == 0){return x;}
if(t == 1){return y;}
if(t == 2){return z;}

int a = rec(x,y,z, bnd-1);

28

int b = rec(x,y,z, bnd-1);
...

}

The synthesizer performs partial evaluation in tandem with inlining, so if we call rec with a constant
value for the bnd parameter, the synthesizer will stop inlining when it determines that this parameter will
be less than zero.

Avoiding symmetries Another aspect to be careful with when de�ning recursive generators are symme-
tries. These happen when di�erent assignments to unknown values can result in the exact same expression.
An important source of symmetries are commutative and associative operations. For example, consider two
generators shown below.

Example 29. E�ect of symmetries on generators

generator int sum(int x, int y, int z, int bnd){
assert bnd > 0;

generator int factor(){
return {| x | y | z|} * {| x | y | z | ?? |};

}
if(??){ return factor(); }
else{return sum(x,y,z, bnd-1) + sum(x,y,z, bnd-1);}

}

generator int sumB(int x, int y, int z, int bnd){
assert bnd > 0;
generator int factor(){

return {| x | y | z|} * {| x | y | z | ?? |};
}
if(??){ return factor(); }
else{ return factor() + sumB(x,y,z, bnd-1);}

}

Both represent the same space of expressions, but the generator sumB forces a right-associativity on the
expression, whereas the generator sum can produce all possible associations, making the generator sumB more
e�cient than sum. Additionally, in sumB the bnd parameter has a clear meaning: it is the number of terms in
the sum, whereas in generator sum, the parameter bnd is the depth of the AST, which is not as straightforward
to map to something meaningful to the programmer.

4.2 Regular Expression Generators

Sketch provides some shorthand to make it easy to express simple sets of expressions. This shorthand is
based on regular expressions. Regular expression generators describe to the synthesizer a set of choices from
which to choose in searching for a correct solution to the sketch. The basic syntax is

{| regexp |}

Where the regexp can use the operator | to describe choices, and the operator ? to de�ne optional
subexpressions.

For example, the sketch from the previous subsections can be made more succinct by using the regular
expression shorthand.

generator int rec(int x, int y, int z){
if(??){

29

return {| x | y | z |};
}else{

return {| rec(x,y,z) (+ | - | *) rec(x,y,z) |};
}

}

harness void sketch(int x, int y, int z){
assert rec(x,y, z) == (x + x) * (y - z);

}

Regular expression holes can also be used with pointer expressions. For example, suppose you want to
create a method to push a value into a stack, represented as a linked list. You could sketch the method with
the following code:

push(Stack s, int val){
Node n = new Node();
n.val = val;
{| (s.head | n)(.next)? |} = {| (s.head | n)(.next)? |};
{| (s.head | n)(.next)? |} = {| (s.head | n)(.next)? |};

}

4.3 High order generators

Generators can take other generators as parameters, and they can be passed as parameters to either gen-
erators or functions. This can be very useful in de�ning very �exible classes of generators. For example,
the generator rec above assumes that you want expressions involving three integer variables, but in some
cases you may only want two variables, or you may want �ve variables. The following code describes a more
�exible generator:

generator int rec(fun choices){
if(??){

return choices();
}else{

return {| rec(choices) (+ | - | *) rec(choices) |};
}

}

We can use this generator in the context of the previous example as follows:

harness void sketch(int x, int y, int z){
generator int F(){

return {| x | y | z |};
}
assert rec(F) == (x + x) * (y - z);

}

In a di�erent context, we may want an expression involving some very speci�c sub-expressions, but the
same generator can be reused in the new context.

harness void sketch(int N, int[N] A, int x, int y){
generator int F(){

return {| A[x] | x | y |};
}
if(x<N){

assert rec(F) == (A[x]+y)*x;

30

}
}

High order generators can also be used to describe patterns in the expected structure of the desired code.
For example, if we believe the resulting code will have a repeating structure, we can express this with the
following high-order generator:

generator void rep(int n, fun f){
if(n>0){

f();
rep(n-1, f);

}
}

5 Regression tests and Benchmark Suite

The sketch distribution includes a set of regression tests that exercise the di�erent corner cases of the
language and is important if you are making modi�cations to the compiler. The tests can be found in the
directory src/test/sk/seq if you are using the mercurial distribution, or test/sk/seq if you are using the
easy-to-install version. After having installed the synthesizer, you can run make long or make if you want the
short version of the test. The main di�erence between the long and the short tests is that the long tests do
code generation and test the generated code on random inputs, whereas the short test only checks that the
synthesizer doesn't crash.

The distribution also includes a benchmark suite that you can use to evaluate new synthesis algo-
rithms and compare their e�ect against the standard sketch distribution. This can be run from the
release_benchmarks directory (or src/release_benchmarks) by running bash perftest.sh OUTDIR, where OUTDIR
is a directory where logs should be written. Running the full benchmark suite takes about a day because
every test is run 15 times to gather meaningful statistics, but you can modify the script to make it run faster.
Once the benchmark suite is running, you can view relevant statistics by running

> cat OUTDIR/* | awk -f ../scripts/stats.awk.

6 Advanced Usage and Diagnostics

6.1 Extracting the intermediate representation

If you have your own SMT solver with support for quanti�ers and you want to compare your performance
with Sketch, you can ask the solver for the intermediate representation of the synthesis problem after it is
done optimizing and desugaring the high-level language features.

Flag --debug-output-dag This �ag outputs the intermediate representation in an easy to parse (although
not necessarily easy to read) format suitable for mechanical conversion into other solver formats. The �ag
takes as a parameter the �le name to which to write the output.

The �le will show all the nodes in the intermediate representation in topological order. There listing in
Figure 1 shows all the di�erent types of nodes and the format in which they are written.

6.2 Custom Code Generators

For many applications, the user's goal is not to generate C code, but instead to derive code details that will
later be used by other applications. In order to simplify this process, Sketch makes it easy to create custom
code generators that will be invoked by the sketch compiler at code generation time.

31

id = ARR_R TYPE index inputarr
id = ARR_W TYPE index old-array new-value
id = ARR_CREATE TYPE size v0 v1
id = BINOP TYPE left right

// where BINOP can be AND, OR, XOR, PLUS, TIMES, DIV, MOD, LT, EQ
id = UNOP TYPE parent // where UNOP can be NOT or NEG
id = SRC TYPE NAME bits
id = CTRL TYPE NAME bits
id = DST TYPE NAME val
id = UFUN TYPE NAME OUT_NAME CALLID ((size p1 p2 ...) | (***))
id = ARRACC TYPE index size v0 v1 ...
id = CONST TYPE val
id = ARRASS TYPE val == c noval yesval
id = ACTRL TYPE nbits b0 b1 b2 ...
id = ASSERT val "msg"

Figure 1: Format for intermediate representation.

Custom code generators must implement the FEVisitor interface de�ned in the sketch.compiler.ast.core
package and must have a default constructor that the compiler can use to instantiate them. In order to ask the
compiler to use a custom code generator, you must label your custom code generator with the @CodeGenerator
annotation. You must then package your code generator together with any additional classes it uses into a
single jar �le, and you must tell Sketch to use this jar �le by using the �ag --fe-custom-codegen.

Flag ---fe-custom-codegen Flag takes as an argument the name of a jar �le and forces Sketch to use
the �rst code generator it �nds in that �le.

To illustrate how to create a custom code generator, the Sketch distribution includes a folder called
sketch-frontend/customcodegen that contains a custom code generator called SCP that simply pretty-prints
the program to the terminal. In order to get Sketch to use this class as a code generator, follow these
simple steps:

• From the sketch-frontend directory, compile the code generator by running
> javac -cp sketch-1.6.7-noarch.jar customcodegen/SCP.java

• Create a jar �le by running
> jar -cvf customcodegen.jar customcodegen/

• Try out your new code generator by running
> sketch --fe-custom-codegen customcodegen.jar test/sk/seq/miniTest1.sk

When you run, you should see the following messages in the output:

Class customcodegen.SCP is a code generator.
Generating code with customcodegen.SCP
(followed by the pretty-printed version of your code).

6.3 Temporary Files and Frontend Backend Communication

The sketch frontend communicates with the solver through temporary �les. By default, these �les are named
after the sketch you are solving and are placed in your temporary directory and deleted right afterwards.
One unfortunate consequence of this is that if you run two instances of sketch at the same time on the

32

same sketch (or on two sketch �les with the same name), the temporary �le can get corrupted, leading to a
compiler crash. In order to avoid this problem, you can use the �ag --fe-output to direct the frontend to
put the temporary �les in a di�erent directory.

Flag --fe-output Temporary output directory used to communicate with backend solver.
Also, if you are doing advanced development on the system, you will sometimes want to keep the tem-

porary �les from being deleted. You can do this by using the --fe-keep-tmp �ag.

Flag --fe-keep-tmp Keep intermediate �les used by the sketch frontend to communicate with the solver.

7 Credits

The sketch project was started at UC Berkeley in 2005 by Armando Solar-Lezama and Ras Bodik and has
been led by Solar-Lezama at MIT since 2009. The current code base includes important contributions by
the following individuals (in chronological order): Gilad Arnold, Liviu Tancau, Chris Jones, Nicholas Tung,
Lexin Shan, Jean Yang, Rishabh Singh, Zhilei Xu, Rohit Singh, Jeevana Priya Inala, Xiaokang Qui. The
project also relies heavily on code from MiniSat (Niklas Een, Niklas Sorensson), StreamIt (led by Bill Theis
and Saman Amarasinghe with code from David Maze, Michal Karczmarek and others), as well as the open
source systems ANTLR (Terence Parr), Apache Commons CLI and Rats/xtc (Robert Grimm).

Over the years, the project has bene�ted from funding by the following projects:

• NSF-1049406 EAGER:Human-Centered Software Synthesis

• NSF-1116362 SHF: Small: Human-Centered Software Synthesis

• NSF-1161775 SHF: Medium: Collaborative Research: Marrying program analysis and numerical Search

• DOE: ER25998/DE-SC0005372: Software Synthesis for High Productivity Exascale Computing

• NSF-1139056 Collaborative Research: Expeditions in Computer Augmented Programming

• DARPA: UHPC Program

• DOE: ER26116/DE-SC0008923: D-TEC: DSL Technology for Exascale Computing

8 Glossary of Flags

This is a glossary of �ags

---fe-custom-codegen Flag takes as an argument the name of a jar �le and forces Sketch to use the �rst
code generator it �nds in that �le.. 32

--bnd-arr-size If an input array is dynamically sized, the �ag --bnd-arr-size can be used to control the
maximum size arrays to be considered by the system. For any non-constant variable in the array size,
the system will assume that that variable can have a maximum value of --bnd-arr-size. For example,
if a sketch takes as input an array int[N] x, if N is another parameter, the system will consider arrays
up to size bnd-arr-size. On the other hand, for an array parameter of type int[N*N] x, the system
will consider arrays up to size bnd-arr-size2.. 9

--bnd-bound-mode The solver supports two bound modes: CALLSITE and CALLNAME. In CALLNAME mode (the
default), the �ag bnd-inline-amnt will bound the number of times any function appears in the stack.
In the CALLSITE mode, the bnd-inline-amnt �ag will bound the number of times a given call site
appears on the stack, so if the same function is called recursively multiple times, each site is counted
independently.. 15

33

--bnd-ctrlbits The �ag bnd-ctrlbits tells the synthesizer what range of values to consider for all integer
holes. If one wants a given integer hole to span a di�erent range of values, one can use the extended
notation ??(N), where N is the number of bits to use for that hole.. 25

--bnd-inbits In practice, the solver only searches a bounded space of inputs ranging from zero to 2bnd-inbits−
1. The default for this �ag is 5; attempting numbers much bigger than this is not recommended.. 3

--bnd-inline-amnt Bounds the amount of inlining for any function call. The value of this parameter corre-
sponds to the maximum number of times any function can appear in the stack.. 15

--bnd-mbits The �ag bnd-mbits tells the synthesizer how many bits to use to represent all bounds introduced
by minimize(e)(default 5). Note that the largest value of (e) will be less than the bound, so if e can
have value n, the bound needs enough bits to be able to reach n+ 1.. 25

--bnd-unroll-amnt This �ag controls the degree of unrolling for both loops and repeat constructs. 15

--debug-output-dag This �ag outputs the intermediate representation in an easy to parse (although not
necessarily easy to read) format suitable for mechanical conversion into other solver formats. The �ag
takes as a parameter the �le name to which to write the output.. 31

--fe-fpencoding This �ag controls which of three possible encodings are used for �oating point values.
AS_BIT encodes �oating point values using a single bit; addition and subtraction are replaced with
xor, and multiplication is replaced with and. Division and comparisons are not supported in this
representation, nor are casts to and from integers. AS_FFIELD will encode �oating points using a �nite
�eld of integers mod 7. This representation does support division, but not comparisons or casts. Finally,
AS_FIXPOINT represents �oats as �xed point values; this representation supports all the operations, but
it is the most expensive.. 4

--fe-inc The command line �ag �fe-inc can be used to tell the compiler what directories to search when
looking for included packages. The �ag works much like the -I �ag in gcc, and can be used multiple
times to list several di�erent directories.. 20

--fe-keep-tmp Keep intermediate �les used by the sketch frontend to communicate with the solver.. 33

--fe-output-code This �ag forces the code generator to produce a C++ implementation from the sketch.
Without it, the synthesizer simply outputs the code to the console. 3

--fe-output-test This �ag causes the synthesizer to produce a test harness to run the C++ code on a set
of random inputs.. 3

--fe-output Temporary output directory used to communicate with backend solver.. 33

34

	Overview
	Hello World
	Running the synthesizer

	Core language
	Primitive Types
	Structs
	Temporary Structures
	Final Types
	Arrays
	Algebraic Data types
	Automatic Padding and Typecasting
	Explicit Typecasting
	Control Flow
	Functions
	Function parameters
	Local functions and closures
	Uninterpreted Functions
	Packages
	Global variables
	Annotation System

	Constant Generators and Specs
	Harnesses and function equivalence requirement
	Assumptions
	Types for Constant Generators
	Ranges for holes
	Minimizing Hole Values

	Generator functions
	Recursive Generator Functions
	Regular Expression Generators
	High order generators

	Regression tests and Benchmark Suite
	Advanced Usage and Diagnostics
	Extracting the intermediate representation
	Custom Code Generators
	Temporary Files and Frontend Backend Communication

	Credits
	Glossary of Flags

