
The Sketch Programmers Manual

For Sketch Version 1.5.0

1 Overview

This section provides a brief tutorial on how to run a very simple example through the compiler. The sections
that follow provide detailed descriptions of all language constructs.

1.1 Hello World

To illustrate the process of sketching, we begin with the simplest sketch one can possibly write: the "hello
world" of sketching.

harness void doubleSketch(int x){
int t = x * ??;
assert t == x + x;

}

The syntax of the code fragment above should be familiar to anyone who has programmed in C or Java.
The only new feature is the symbol ??, which is Sketch syntax to represent an unknown constant. The
synthesizer will replace this symbol with a suitable constant to satisfy the programmer's requirements. In
the case of this example, the programmer's requirements are stated in the form of an assertion. The keyword
harness indicates to the synthesizer that it should �nd a value for ?? that satis�es the assertion for all
possible inputs x.

Flag bndinbits In practice, the solver only searches a bounded space of inputs ranging from zero to
2bndinbits−1. The default for this �ag is 5; attempting numbers much bigger than this is not recommended.

1.2 Running the synthesizer

To try this sketch out on your own, place it in a �le, say test1.sk. Then, run the synthesizer with the
following command line:

> sketch test1.sk

When you run the synthesizer in this way, the synthesized program is simply written to the console. If
instead you want the synthesizer to produce standard C code, you can run with the �ag feoutputcode.
The synthesizer can even produce a test harness for the generated code, which is useful as a sanity check to
make sure the generated code is behaving correctly.

Flag feoutputcode This �ag forces the code generator to produce a C++ implementation from the
sketch. Without it, the synthesizer simply outputs the code to the console

1

Flag feoutputtest This �ag causes the synthesizer to produce a test harness to run the C++ code on a
set of random inputs. Flags can be passed to the compiler in two ways. The �rst and most traditional one
is by passing them in the command line. For the example above, you can get code generated by invoking
the compiler as follows.

> sketch feoutputcode test1.sk

An alternative way is to use the pragma construct in the language. Anywhere in the top level scope of
the program, you can write the following statement:

pragma options " flags ";

This is very useful if your sketch requires a particular set of �ags to synthesize. Flags passed through the
command line take precedence over �ags passed with pragma, so you can always use the command line to
override options embedded in the �le.

2 Core language

The core sketch language is a simple imperative language that borrows most of its syntax from Java and C.

2.1 Primitive Types

The sketch language contains only two primitive types, int and bit. The bit type is actually a subtype of
int, so bit variables can be used wherever an integer is required. There are only two bit constants, 0, and 1.
Bits are also used to represent Booleans; the bit-value 0 corresponds to false, and 1 corresponds to true.

2.2 Arrays

The Sketch language supports �xed size arrays of any supported type. The syntax for the type constructor
is as follows; if we want to declare a variable a to be an array of size N with elements of type T, we can declare
it as:

T[N] a;

The syntax for array access is similar to that in other languages; namely, the expression a[x] produces
an element of type T when the type of a is T[N], provided that x<N. All array accesses are automatically
checked for array bounds violations.

The constructor above works for any type T including other array types. This makes the semantics very
simple, although it can be a little confusing for people who are used to working in languages with support
for multi-dimensional arrays. To illustrate this point, consider the following example:

Example 1. Consider the declaration below.

int[N][M] a;

The type of a is int[N][M]. This means that for an x < M, a[x] is of type int[N], and for any y < N, a[x][y]
is of type int.

Bulk array access The indexing operation we just saw will read a single element from an array. The
Sketch language also contains support for extracting sub-arrays out of an array. If a is an array of type
T[N], we can extract a sub-array of size M using the following expression.

a[x::M]

2

If M is a constant greater than zero and x + M≤N, then the expression a[x::M] produces an array of type
T[M] containing the elements a[x], ..., a[x+M1]. The expression M should be �nal, i.e. it cannot include
any expressions with side e�ects (array accesses, function calls or unary increments) and any variables within
it should be assigned only once and never changed (just like �nals in Java; see more info in Section 2.3).
Bulk array access of the form a[x::M] will generate an exception if any index between x and x+M1 is out of
bounds. Speci�cally, the system checks that x>=0 and x+M <= N, where N is the size of a. Notice that if M is
zero, then it is legal for x to equal N.

Array assignment The language also supports bulk copy from one array to another through array as-
signment operator. If a and b are arrays of type T[N], then the elements of a can be copied into b by using
the assignment operator:

b = a;

If a:T[N] and b:T[M] are of di�erent size, then the assignment will be legal as long as M≥N. If M̸=N, the rhs
will be padded with zeros or nulls according to the rules in Section 2.5.

Bulk array access operations can also serve as lvalues. For example, the assignment

b[2::4] = a[5::4]

is legal�assuming of course that a and b are big enough for the bulk accesses to be legal. The e�ect of this
operation is to write values a[5], a[6], a[7], a[8] into locations b[2], b[3], b[4], b[5]. For such an assignment,
the compiler will read all the values in the right hand side before writing anything to the left hand side. This
is relevant when reading and writing to the same array. For example, the assignment

a[0::3] = a[1::3]

will read values a[1], a[2], a[3] before writing to locations a[0], a[1], a[2].

Array constants Sketch supports C-style array constants. An array constant of k-elements is expressed
with the following syntax.

{ a1, a2, ... , ak}

Array constants in Sketch are more �exible than in C. They are not restricted to array initialization; they
can be used anywhere an array rvalue can be used. In particular, the following are all valid statements in
sketch:

int[3] x = {1,2,3};
x[{1,2}[a]] = 3;
x[0] = {4,5,6}[b];
x[{0,1}[a]::2] = {0,1,2,3,4,5,6}[b::2];

Nested array constants The entries a1 through ak in the array initializer can themselves be arrays,
which makes it possible for the system to support nested array initializers. The type for an array initializer
will be de�ned by the following rule:

τ =
⊔

τi Γ ⊢ ai : τi
Γ ⊢ {a0, a1, . . . ak−1} : τ [k]

Given two array types τ1[N] and τ2[M], the type τ1[N]⊔τ2[M] is equal to (τ1⊔τ2)[max(N,M)]. The system
pads the nested array initializers according to the rules in Section 2.5. For example, an array of the form

{{1,2},{1},{1,2,3},{1}}

will be of type int[3][4], and will be equivalent to the following array:

{{1,2,0},{1,0,0},{1,2,3},{1,0,0}}

3

Array Equality. The equality comparison recursively compares each element of the array and works for
arrays of arbitrary types. In addition to comparing each element of the array, the equality comparison
also compares the sizes of the array, so arrays of di�erent sizes will be judged as being di�erent even if
after padding they would have been the same. In general, two arrays a:T[n] and b:T[m] will be compared
according to the following recursive de�nition:

a:T[n] == b:T[m] ⇒ n==m ∧∀ i < n a[i]==b[i]
a:T[n] == b:τ ⇒ n==1 ∧ a[0] == b

In the second line, it is assumed that τ is a non-array type. There is a symmetric case when a is of a
non-array type.

Example 2. Given two arrays, int[n][m] y and int[m][n] z, the following assertion will always succeed:

if(x==y){
assert n==m;

}

That is because the only way x and y can be equal is if their dimensions are equal. Similarly, given two arrays
int[p][n][m] a and int[t] b, the assertion below will always succeed:

if(a==b){
assert t==m && n==1 && p == 1;

}

Bit Vectors While a sketch programmer can create arrays of any arbitrary type, arrays of bits allow an
extended set of operations to allow programmers to easily write bit-vector algorithms. The set of allowed
operators is listed below, and the semantics of each operator is the same as the equivalent operator for
unsigned integers in C.

bit[N] & bit[M] → bit[max(N,M)]
bit[N] | bit[M] → bit[max(N,M)]
bit[N] ^ bit[M] → bit[max(N,M)]
bit[N] + bit[M] → bit[max(N,M)]

bit[N] >> int → bit[N]
bit[N] << int → bit[N]

!bit[N] → bit[N]

Notice that most operators support operands of di�erent sizes; the smaller array is padded to match the
size of the bigger array according to the rules of padding from Section 2.5.

2.3 Dynamic Length Arrays

When you declare an array of type T[N], it is possible for N to be an arbitrary expression. For example,
consider the following code:

harness void main(int n, int[n] in){
int[n] out = addone(n, in);
}
int[n] addone(int n, int[n] in){
int[n] out;
for(int i=0; i<n; ++i){

out[i] = in[i]+1;
}
return out;

}

4

The code above illustrates one of the most common uses of dynamic length arrays: allowing functions to
take arrays of arbitrary size. There are a few points worth mentioning. First, note that the size in the return
array of addone refers to one of the parameters of the function. In general, the output type can refer to any
of the input parameters, as well as to any constant global variables�i.e. global variables that are assigned
a constant value upon declaration and are never changed again. Similarly, the type of an input parameter
can refer to any variable that comes before it. However, output types and types of input parameters can not
involve any function calls.

If a variable is used in the size of an array, its value should be �nal; i.e. the value of that variable should
not change during its scope. This rules out the use of reference parameters in array length expressions. It
also means that some care must be taken if the length of the array is to be computed by the function.

Example 3. Consider a function that �lters an array to return only those elements that are even. One
cannot know the length of the return array a priori, because it depends on the data in the original array.
One way to write such a function is as follows:

int[N] filter(int N, int[N] in, ref int outsz){
outsz = 0;
int[N] out;
for(int i=0; i<N; ++i){

if(in[i]%2 == 0){
out[outsz++] = in[i];

}
}
return out;

}

Notice that the function returns an array of size N, even though in reality, only the �rst outsz elements
matter. We may use the function as follows:

int[N] tmp = filter(N, in, tsz);
int sz = tsz;
int[sz] filteredArray = tmp[0::sz];

This is admittedly awkward, and we hope to have better idioms for this in future versions of the language,
but for know, that is the simplest way of producing an array of unknown length.

Flag bndarrsize If an input array is dynamically sized, the �ag bndarrsize can be used to control
the maximum size arrays to be considered by the system. For any non-constant variable in the array size,
the system will assume that that variable can have a maximum value of bndarrsize. For example, if a
sketch takes as input an array int[N] x, if N is another parameter, the system will consider arrays up to
size bndarrsize. On the other hand, for an array parameter of type int[N*N] x, the system will consider
arrays up to size bndarrsize2.

2.4 Structs

In addition to arrays, the Sketch language supports heap allocated records.
To de�ne a new record type, the programmer uses the following syntax (borrowed from C):

struct name{
type1 field1;
...
typek fieldk;

}

5

One restriction on the types of �elds is that you cannot have dynamic sized arrays; all array sizes must be
compile time constants.

To allocate a new record in the heap, the programmer uses the keyword new; the syntax is the same as
that for constructing an object in Java using the default constructor.

Records are manipulated through references, which behave the same way as references in Java. The
following example illustrates the main properties of records and references in Sketch.

Example 4. The example below will behave the same way as an equivalent example would behave in Java.
In particular, all the asserts will be satis�ed.

struct Car{
int license;

}

void main(){
Car c = new Car();
Car d = c;
c.license = 123;
assert d.license == 123;
strange(c, d);
assert d.license == 123;
assert d == c;

}

void strange(Car x, Car y){
x = new Car();
y = new Car();
x.license = 456;
y.license = 456;
assert x.license == y.license;
assert x != y;

}

Just like in Java, references are typesafe and the heap is assumed to be garbage collected (which is
another way of saying the synthesizer doesn't model deallocation). A consequence of this is that a reference
to a record of type T must either be null or point to a valid object of type T. Also, just like in Java, all
pointer dereferences have an implicit null pointer check.

2.5 Automatic Padding and Typecasting

Many operations on arrays support arrays of di�erent sizes through padding. This padding can be thought
of as an implicit typecast from small arrays to bigger arrays. The objects used to pad the array depend on
the type of the array. Given an array of type T[N], the objects used to pad the array will be de�ned by the
function pad(T) de�ned by the following rules:

pad(int) = 0
pad(bit) = 0
pad(struct) = null
pad(T[N]) = {pad(T), . . . , pad(T)} //N copies of pad(T)

Example 5. In the statement int[4] x = {1,2};, the right hand side has size 2, but will be implicitly cast
to an array of size 4 by padding it with the value pad(int)=0, so after the assignment, x will equal {1,2,0,0}.

6

A second form of implicit typecasting happens when a scalar is used in place of an array. In this case,
the scalar is automatically typecast into an array of size 1.

Example 6. Consider the following block of code

struct Car{ ... }
...
Car[4] x;
Car t = new Car();
x = t;

This code actually involves two typecasts. First, t will be typecast from the scalar type Car to the array
type Car[1]. Then, the array type Car[1] will be typecast to a bigger array of type Car[4] by padding with
pad(Car) = null. The result is that array will be equal to {t, null, null, null}.

Example 7. Padding also works for assignments involving nested arrays.

int[2][2] x = {{2,2}, {2,2}};
int [4][4] y = x;

The code above involves the following implicit typecasts: �rst, the array x of type int[2][2] is typecast
into an array of type int[2][4] by padding with pad(int[2])={ pad(int), pad(int)} = {0, 0} to produce
the array {{2,2}, {2,2}, {0,0}, {0,0}}. Then, each entry in this array is typecast from int[2] to int[4],
so after the assignment, the value of y will be equal to {{2,2,0,0}, {2,2,0,0}, {0,0,0,0}, {0,0,0,0}}

It is important to note that implicit casts only occur for r-values; l-values will never be implicitly typecast.
In particular, this means that reference parameters to a function will never be implicitly cast and must always
be of the exact size required by the signature of the callee.

2.6 Explicit Typecasting

The Sketch language also o�ers some limited explicit typecasting. In particular, the language o�ers only
two explicit typecasts:

• An array a of type T[N] can be explicitly typecast into an array of type T[M] by using the syntax
(T[M])a (standard typecast notation from C). When an array is typecast to a smaller size, the remaining
elements are simply truncated.

• A bit array bit[N] can be explicitly typecast into an integer. When this happens, the �rst bit in the
array is interpreted as the least signi�cant bit and the last one as the most signi�cant bit. The reverse
cast from an integer to a bit array is not supported.

Example 8. One instance where explicit casting is useful is when comparing an array against the zero array.

int[N] x=...;
assert x == (bit[N])0;

Notice that in the code above, if we had written simply x==0 in the assertion, the assertion would have been
violated when N>1, because the scalar zero is treated as an array of size 1. By casting the constant zero into
an array of size N, we ensure that x is compared against an array of size N consisting of all zeros.

Example 9. Explicit casting is also useful when copying one dynamically sized array into another one.

int[N] x=...;
int[M] y = (bit[M])x;

If we knew that N is smaller than M, we could have written simply y=x, and the automatic padding would have
made the assignment correct. Similarly, if we knew that M is smaller than or equal to N, assigning y=x[0::M]
would have been legal. However, y=x fails when M is smaller than N, and x[0::M] fails when M>N. The cast on
the other hand succeeds in both cases and has the expected behavior.

7

2.7 Control Flow

The language supports the following constructs for control �ow: ifthen, while, dowhile, for. These have
the same syntax and semantics as in C/C++ or Java. The language does not have a switch statement, although
it is likely to be added in a future version of the language. The language also does not support continue and
break, although they can easily be emulated with return by using closures (see Section 2.11).

The synthesizer reasons about loops by unrolling them. The degree of unrolling is controlled by a �ag
bndunrollamnt. If the loop iteration bounds are static, however, the loop will be unrolled as many times
as necessary to satisfy the static bounds.

Flag bndunrollamnt This �ag controls the degree of unrolling for both loops and repeat constructs

Example 10. Consider the three loops below.

for(int i=0; i<N; ++i){...}
for(int i=0; i<100; ++i){...}
for(int i=0; i<N && i<7; ++i){...}

If N is an input variable, the �rst loop will be unrolled as many times as speci�ed by bndunrollamnt. The
second loop will be unrolled 100 times regardless of the value of the �ag. For the third loop, the unroll factor
will be controlled by the �ag, but will never exceed seven.

2.8 Global variables

The sketch language supports global variables with one important restriction: global arrays must be of
constant dimension. You can use global variables for the dimension of an array as long as the global variable
is constant. Global variables that are passed as reference parameters, or that are passed as parameters to
function parameters will be considered to be non-constant.

2.9 Functions

The sketch language also supports functions. The syntax for declaring a function is the same as in C.

ret_type name(args){
body

}

Recursion The synthesizer reasons about function calls by inlining them into their calling context. In
principle, this could be problematic for recursive functions, but in practice this usually is not a problem.
The synthesizer uses a �ag bndinlineamnt to bound the maximum number of times a function can be
inlined. If any input requires inlining more than the allowed number of times, synthesis will fail.

Flag bndinlineamnt Bounds the amount of inlining for any function call. The value of this parameter
corresponds to the maximum number of times any function can appear in the stack.

Reference Vs. Value Parameter Passing By default, parameter passing is done by value; however, it
is possible to pass parameters by reference by pre�xing them with the keyword ref.

Only local variables should ever be passed by reference, and reference parameters should never be aliased.
The reason for this restriction is that the synthesizer models reference parameters using copy-in-copy-out
semantics. If the parameters are local variables and are not aliased, then copy-in-copy-out is indistinguishable
from pass-by-reference.

8

2.10 Function parameters

Functions can also take functions as parameters. We use the keyword fun to denote a function type. The
example below illustrates the use of function parameters.

int apply(fun f, int x){
return f(x);

}
int timesTwo(int x){

return x+x;
}

harness void main(int x){
assert apply(timesTwo, x) == 2*x;

}

The language imposes several restrictions on the use of the fun type. First, the type can only be used for
parameters. You cannot declare a variable or a data-structure �eld of type fun. There are also no operators
de�ned for functions; in particular, the ternary operator ?: cannot be used with functions. You can also
not create arrays of functions, and you cannot use functions as return values or reference parameters to a
function. In short, functions are not quite �rst class citizens in sketch, but function parameters do enable
some very useful idioms.

2.11 Local functions and closures

Sketch supports the de�nition of functions inside other functions. The syntax for doing this is the same as
when the function is de�ned outside a function. The body of the locally de�ned function can access any
variable that is in scope in the context of the function de�nition. The example below illustrates how local
functions can be used together with high-order functions.

void ForLoop(fun f, int i, int N){
if(i<N){

f(i);
ForLoop(f, i+1, N);

}
}

harness void main(int N, int[N] A){
int[N] B;
void copy(int i){

B[i] = A[i];
}
ForLoop(copy, 0, N);
assert A == B;

}

In the sketch above, ForLoop takes the closure involving the function copy and its local environment; the
e�ect of the call to ForLoop is the same as if the body of copy had been placed in a traditional for loop.

2.12 Packages

The Sketch language supports packages. A package is identi�ed by the package statement at the beginning
of a �le.

package PACKAGENAME;

9

All the functions and structures de�ned in a �le must belong to the same package, so the compiler will
produce an error if there is more than one package de�nition in a �le. If a �le does not have a package
command, then by default its contents will belong to the package ANONIMOUS. Also, note that unlike Java,
package names cannot have periods or other special symbols.

A �le can import other packages by using the include command. The syntax of the command is shown
below. The string in quotes corresponds to the name of the �le where the package resides.

include "file.sk";

The include command should not be confused with the #include preprocessor directive, which simply
inlines the contents of a �le and is not really part of the language.

Flag feinc The command line �ag �fe-inc can be used to tell the compiler what directories to search
when looking for included packages. The �ag works much like the I �ag in gcc, and can be used multiple
times to list several di�erent directories.

Each package de�nes its own namespace, allowing the system to avoid name con�icts. Code in one package
can explicitly refer to functions or structures de�ned in another package by using the @ notation. For example,
a call of the form foo@pk() will call a function foo de�ned in package pk. Similarly, a declaration of the
form Car@vehicles c = new Car@vehicles() de�nes a new object of type Car, where the type was de�ned in
the package vehicles. In the absence of an explicit package name, the system will search for de�nitions of
functions and structures as follows:

• If the name is de�ned locally in the same package, the local de�nition will be used.

• If the name is not de�ned locally in the same package, but is only de�ned in one other package (so
there is no ambiguity), then the de�nition in that other package will be used.

• If the name is not de�ned locally in the same package and the same name is de�ned in multiple
packages, then you need to explicitly name the package or you will get a compiler error.

Example 11. The example below illustrates the use of packages.
// Begin file farm.sk
package farm;
struct Goat{

int weight; }
struct Ram{

int age; }
struct Mouse{

int age; }
// End file farm.sk

// Begin file computer.sk
package computer;
struct Cpu{

int freq; }
struct Ram{

int size; }
struct Mouse{

bit isWireless; }
// End file computer.sk

//Begin file test.sk
include "computer.sk";
include "farm.sk"
struct Mouse{

int t;
}
harness main(){

Cpu c = new Cpu(); // No ambiguity here.
Ram@farm r = new Ram@farm() //Without @farm, this would be an error.
Ram@computer rc = new Ram@computer();
Mouse m = new Mouse(); // Give preference to the locally defined mouse.
m.t = 10;

}
//End file test.sk

10

3 Constant Generators and Specs

Sketching extends a simple procedural language with the ability to leave holes in place of code fragments
that are to be derived by the synthesizer. Each hole is marked by a generator which de�nes the set of code
fragments that can be used to �ll a hole. Sketch o�ers a rich set of constructs to de�ne generators, but all
of these constructs can be described as syntactic sugar over a simple core language that contains only one
kind of generator: an unknown integer constant denoted by the token ??.

From the point of view of the programmer, the integer generator is a placeholder that the synthesizer
must replace with a suitable integer constant. The synthesizer ensures that the resulting code will avoid any
assertion failures under any input in the input space under consideration. For example, the following code
snippet can be regarded as the �Hello World� of sketching.

harness void main(int x){
int y = x * ??;
assert y == x + x;

}

This program illustrates the basic structure of a sketch. It contains three elements you are likely to �nd in
every sketch: (i) a harness procedure, (ii) holes marked by generators, and (iii) assertions.

The harness procedure is the entry point of the sketch, and together with the assertion it serves as an
operational speci�cation for the desired program. The goal of the synthesizer is to derive an integer constant
C such that when ?? is replaced by C, the resulting program will satisfy the assertion for all inputs under
consideration by the veri�er. For the sketch above, the synthesized code will look like this.

void main(int x){
int y = x * 2;
assert y == x + x;

}

3.1 Types for Constant Generators

The constant hole ?? can actually stand for any of the following di�erent types of constants:

• Integers (int)

• Booleans (bit)

• Constant sized arrays and nested constant sized arrays

The system will use a simple form of type inference to determine the exact type of a given hole.

3.2 Ranges for holes

When searching for the value of a constant hole, the synthesizer will only search values greater than or equal
to zero and less than 2N , where N is a parameter given by the �ag bndctrlbits. If you wan to be explicit
about the number of bits for a given hole, you can state it as ??(N), where N is an integer constant.

Flag bndctrlbits The �ag bndctrlbits tells the synthesizer what range of values to consider for all
integer holes. If one wants a given integer hole to span a di�erent range of values, one can use the extended
notation ??(N), where N is the number of bits to use for that hole.

11

3.3 Generator functions

A generator describes a space of possible code fragments that can be used to �ll a hole. The constant
generator we have seen so far corresponds to the simplest such space of code fragments: the space of integers
in a particular range. More complex generators can be created by composing simple generators into generator
functions.

As a simple example, consider the problem of specifying the set of linear functions of two parameters x
and y. That space of functions can be described with the following simple generator function:

generator int legen(int i, int j){
return ??*i + ??*j+??;

}

The generator function can be used anywhere in the code in the same way a function would, but the
semantics of generators are di�erent from functions. In particular, every call to the generator will be replaced
by a concrete piece of code in the space of code fragments de�ned by the generator. Di�erent calls to the
generator function can produce di�erent code fragments. For example, consider the following use of the
generator.

harness void main(int x, int y){

assert legen(x, y) == 2*x + 3;
assert legen(x,y) == 3*x + 2*y;

}

Calling the solver on the above code produces the following output

void _main (int x, int y){
assert ((((2 * x) + (0 * y)) + 3) == ((2 * x) + 3));
assert (((3 * x) + (2 * y)) == ((3 * x) + (2 * y)));

}

Note that each invocation of the generator function was replaced by a concrete code fragment in the
space of code fragments de�ned by the generator.

The behavior of generator functions is very di�erent from standard functions. If a standard function has
generators inside it, those generators are resolved to produce code that will behave correctly in all the calling
contexts of the function as illustrated by the example below.

int linexp(int x, int y){
return ??*x + ??*y + ??;

}
harness void main(int x, int y){

assert linexp(x,y) >= 2*x + y;
assert linexp(x,y) <= 2*x + y+2;

}

For the routines above, there are many di�erent solutions for the holes in linexp that will satisfy the �rst
assertion, and there are many that will satisfy the second assertion, but the synthesizer will chose one of the
candidates that satisfy them both and produce the code shown below. Note that the compiler always replaces
return values for reference parameters, but other than that, the code below is what you would expect.

void linexp (int x, int y, ref int _out){
_out = 0;
_out = (2 * x) + (1 * y);
return;

}

12

void _main (int x, int y){
int _out = 0;
linexp(x, y, _out);
assert (_out >= ((2 * x) + y));
int _out_0 = 0;
linexp(x, y, _out_0);
assert (_out_0 <= (((2 * x) + y) + 2));

}

3.4 Recursive Generator Functions

Generators derive much of their expressive power from their ability to recursively de�ne a space of expressions.

generator int rec(int x, int y, int z){
int t = ??;
if(t == 0){return x;}
if(t == 1){return y;}
if(t == 2){return z;}

int a = rec(x,y,z);
int b = rec(x,y,z);

if(t == 3){return a * b;}
if(t == 4){return a + b;}
if(t == 5){return a b;}

}
harness void sketch(int x, int y, int z){

assert rec(x,y, z) == (x + x) * (y z);
}

3.5 Regular Expression Generators

Sketch provides some shorthand to make it easy to express simple sets of expressions. This shorthand is
based on regular expressions. Regular expression generators describe to the synthesizer a set of choices from
which to choose in searching for a correct solution to the sketch. The basic syntax is

| regexp |
Where the regexp can use the operator | to describe choices, and the operator ? to de�ne optional

subexpressions.
For example, the sketch from the previous subsections can be made more succinct by using the regular

expression shorthand.

generator int rec(int x, int y, int z){
if(??){

return {| x | y | z |};
}else{

return {| rec(x,y,z) (+ | | *) rec(x,y,z) |};
}

}

harness void sketch(int x, int y, int z){
assert rec(x,y, z) == (x + x) * (y z);

}

13

Regular expression holes can also be used with pointer expressions. For example, suppose you want to
create a method to push a value into a stack, represented as a linked list. You could sketch the method with
the following code:

push(Stack s, int val){
Node n = new Node();
n.val = val;
{| (s.head | n)(.next)? |} = {| (s.head | n)(.next)? |};
{| (s.head | n)(.next)? |} = {| (s.head | n)(.next)? |};

}

3.6 High order generators

Generators can take other generators as parameters, and they can be passed as parameters to either gen-
erators or functions. This can be very useful in de�ning very �exible classes of generators. For example,
the generator rec above assumes that you want expressions involving three integer variables, but in some
cases you may only want two variables, or you may want �ve variables. The following code describes a more
�exible generator:

generator int rec(fun choices){
if(??){

return choices();
}else{

return {| rec(choices) (+ | | *) rec(choices) |};
}

}

We can use this generator in the context of the previous example as follows:

harness void sketch(int x, int y, int z){
generator int F(){

return {| x | y | z |};
}
assert rec(F) == (x + x) * (y z);

}

In a di�erent context, we may want an expression involving some very speci�c sub-expressions, but the
same generator can be reused in the new context.

harness void sketch(int N, int[N] A, int x, int y){
generator int F(){

return {| A[x] | x | y |};
}
if(x<N){

assert rec(F) == (A[x]+y)*x;
}

}

14

High order generators can also be used to describe patterns in the expected structure of the desired code.
For example, if we believe the resulting code will have a repeating structure, we can express this with the
following high-order generator:

generator void rep(int n, fun f){
if(n>0){

f();
rep(n1, f);

}
}

4 Glossary of Flags

This is a glossary of �ags

bndarrsize If an input array is dynamically sized, the �ag bndarrsize can be used to control the
maximum size arrays to be considered by the system. For any non-constant variable in the array size,
the system will assume that that variable can have a maximum value of bndarrsize. For example,
if a sketch takes as input an array int[N] x, if N is another parameter, the system will consider arrays
up to size bndarrsize. On the other hand, for an array parameter of type int[N*N] x, the system
will consider arrays up to size bndarrsize2.. 5

bndctrlbits The �ag bndctrlbits tells the synthesizer what range of values to consider for all integer
holes. If one wants a given integer hole to span a di�erent range of values, one can use the extended
notation ??(N), where N is the number of bits to use for that hole.. 11

bndinbits In practice, the solver only searches a bounded space of inputs ranging from zero to 2bndinbits−
1. The default for this �ag is 5; attempting numbers much bigger than this is not recommended.. 1

bndinlineamnt Bounds the amount of inlining for any function call. The value of this parameter corre-
sponds to the maximum number of times any function can appear in the stack.. 8

bndunrollamnt This �ag controls the degree of unrolling for both loops and repeat constructs. 8

feinc The command line �ag �fe-inc can be used to tell the compiler what directories to search when
looking for included packages. The �ag works much like the I �ag in gcc, and can be used multiple
times to list several di�erent directories.. 10

feoutputcode This �ag forces the code generator to produce a C++ implementation from the sketch.
Without it, the synthesizer simply outputs the code to the console. 1

feoutputtest This �ag causes the synthesizer to produce a test harness to run the C++ code on a set of
random inputs.. 2

15

