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ABSTRACT This paper explores pricing at time scales where the 
We study the use of real time prices to assist in the 

control of frequency and tie line deviations in electric power 
systems. The role of such prices, if any, would yield the 
practical limit to the trend in electric power systems of varying 
prices on ever faster time scales. Under idealized assumptions, 
we derive prices for load frequency control that reflect 
underlying physical relationships of the power system. 
Applying the theoretical results to a simple example, real time 
prices, determined by a feedback control law of frequency 
deviations, are shown to aid in load frequency control. We 
conclude that real time pricing could potentially serve as an 
economic load shedding policy to assist the direct control by 
the electric utility. 

I .  INTRODUCTION 
The application of prices in electric power systems to 

increase the efficient use of resources is an established 
technique [ 1 I .  Also, the growth of privately owned generation, 
typically industrial cogeneration, and proposals to deregulate 
electric utilities pose further opportunities for the use of prices 
121. Pricing schemes can be classified by time scales. Time of 
day pricing, which varies two or three times a day, has been 
used for decades in Europe as a means of flattening out the 
daily demand curve 131. The power brokerage system of 18 
Florida utilities operates on an hourly time scale. The Florida 
utilities obtain lower costs to the consumers by buying and 
selling power amongst themselves, taking advantage of the 
diversity of generation costs [41. 

In a spot price based energy marketplace, prices adapt to 
system operation conditions such as changes in system lambda, 
the effect of generation shortages, and the effect of line 
overloads. The fastest spot price that has been implemented is 
30 minutes, (most implementations involve 1 hour time steps, 
which may be prespecified 24 hours in advance). Many 
papers have been written on spot pricing, starting with [51 and 
the homeostatic control concepts of [61. The book by 
Schweppe, Caramanis, Tabors, and Bohn [71 summarizes the 
ideas. A key assumption of spot pricing is that the power 
system is in quasi-steady state; i.e. power system dynamics 
involving frequency, voltage, etc. are ignored, and only 
Kirchoffs laws for network flow are considered. The quasi- 
steady state assumption can be used for time scales as fast as 
economic dispatch updates, e.g. 5 minutes. The related 
literature is vast and [11 to [71 are only sample references. 

- -  
quasi-steady siate assumption is no longer valid. In particular, 
we discuss pricing on the time scale of seconds to control 
frequency deviations that are caused by a temporary 
imbalance between mechanical power driving generation shafts 
and electrical power furnished to the loads. (The basic ideas 
extend naturally to control of voltage swings by excitor 
control.) Such pricing could be viewed as very fast spot 
prices, but we choose to reserve the use of the term "spot 
prices" for quasi-steady state conditions. We use the term 
"real time pricing" to refer.to pricing in the presence of system 
dynamics. (Spot pricing is sometimes called dynamics pricing, 
responsive pricing, or real time pricing, depending on the 
author.) 

Real time pricing of system dynamics is contemplated 
for a regulated utility where independently owned' generation 
and major loads have the option to automatically monitor a 
time varying price and to respond according to a criterion 
pre-set by the user. Real time pricing can be conceptually 
applied also to a deregulated environment. Here, we make no 
attempt to discuss the pros and cons of deregulation. 

Real time pricing is a complex topic, and this paper does 
not claim to provide final answers on how, or whether, to 
proceed. The goal of the paper is to stimulate discussion on a 
concept which has the potential to have a major impact in the 
future. The paper uses theoretical results and simplified 
examples; a more detailed presentation can be found in 181. 

In the following section, we present a standard model for 
the frequency and tie line deviations. In Section 3, we 
examine whether pricing to control frequency and tie line 
deviations makes any sense, at least theoretically. In Section 
4, we drop the idealized viewpoint of Section 3, and, by way of 
an example, consider a practical scenario. 

2. LOAD FREQUENCY CONTROL 

Load Frequency Control, or Automatic Generation 
Control, is concerned with the maintenance of frequency at its 
set point of 50 or 60 Hz., and tie line power flows at their 
scheduled levels when the system is subjected to small 
disturbances that do not, or no longer, threaten the 
synchronous operation of the power system. The appropriate 
mathematical model for such phenomena is called the average 
system frequency model. For simplicity, we consider the case 
of two areas and ignore dampening.'. The equations for the 
model are: 
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A glossary of symbols is given at the end of the paper. 
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The load frequency control problem determines the 
speed changer controls uij such that frequency and tie line 
power remain at their set points in face of exogenous 
disturbances. Many direct control strategies have been 
studied; references 191 and [lo] are examples. This paper 
considers indirect control via prices. 

3. ECONOMIC THEORY OF PRICING IN LOAD 
FREQUENCY CONTROL 

In this section, our interest is: if generators and loads 
were to respond to a time varying price, then what should the 
price be so that frequency and tie line deviations are 
controlled? Under idealized assumptions, we derive such 
coordinating prices. The prices have intuitive meaning: they 
reflect the underlying physical relationships of the power 
system. 

We assume generation plants and loads have automatic 
control devices that monitor and react to time varying prices. 
The electric utility company administers the prices via the 
energy control center. The Public Utility Commission (PUC) 
sets the rules that determine the prices. The PUC requires 
that prices be set to maximize social welfare. Social welfare is 
defined to be the sum of the consumers’ satisfaction indices 
minus the costs to the plants minus penalty functions for the 
operating constraints of the power system. The plants operate 
to maximize profits, and the loads operate to maximize a 
satisfaction index. The energy control center has perfect 
information, i.e. it knows the models used in the automatic 
control devices of the plants and the loads. Lastly, all 
computations take zero time. 

The social welfare problem is formulated as: 

2. It is necessary to choose one phase angle, sa 61 (to),  as a reference pint. 
Then for all t > to and for i-1.2. 6,(t3 is measured with respect to 
61 (to).  

subject to the constraints of the load frequency model, 
equation 1 .  

Sij(Dij> is the satisfaction index of load j in area i .  l i j( .)  is 
the instantaneous cost and 4ij(.) is the “excess energy” left in 
the boiler turbine at the terminal time. (The limiting values 
on uij, xij and Dij can be captured by having lij(.) and 
Sij (Di,) respectively increase or decrease precipitously when 
the arguments reach their limiting values.) l/? models the 
concern that at  no time are the frequency deviations too large, 
and the term +,(f ( t f ) )  models the desire that at the terminal 
time the frequency deviations are close to zero. 16(6) models 
the concern that the stability limit of the inter-area tie line is 
met, i.e. that the pooled power system remains coupled 
together. Mathematically this means that the phase angle 
difference, bl - b2, does not become too large. Thus the 
function 1,(6) is in fact a function of 6, - fi2. Lastly, the term 
46(6(tf)) is also a function of 6, - b2 and models the desire 
that at the terminal time the tie line power flows will be close 
to their scheduled values. 

We are not interested in solving the social welfare 
problem per se, but rather, given that the optimal controls 
exists, can they be induced by prices? Thus, we make 
assumptions that guarantee the existence of the social welfare 
optimal controls. Assume the terms in the objective function, 
( 2 ) ,  and the loss function Lossi(.), (Id), are differentiable 
with respect to their arguments. Also, assume that Sij and Qij 

are concave; that l i j ,  If, I s ,  4,, 46 are convex; that lij is 
separable in xij and uij; and that uij and Di. are elements of 
the set of piecewise continuous functions on t t o , t f ] .  Then the 
necessary conditions of Pontryagin’s maximum principle 
become sufficient conditions 1111. Lastly, assume the sufficient 
conditions have a unique solution. The Hamiltonian and 
necessary conditions for the social welfare problem, (21, are 
given in the appendix. 
3.1 Pricing Mechanisms 

We assume the electric utility can solve the social 
welfare problem and hence knows the social welfare optimal 
controls, denoted U?, 07. The interest of this section is: can 
the utility choose prices such that the resulting optimal control 
for the generators and loads is equal to UT, D B  respectively? 

Consider first the viewpoint of the generators. The 
natural entity to price is the electric power generated. This is 
related to the plant’s mechanical power by the individual 
swing equation: 

Suppose that the individual power plant considers the 
frequency deviation to be exogenous to its influence. (This is 
the common infinite bus assumption.) Thus the generator’s 
optimization is: 

max J COGij( Mij’- Hi j j ,  1- lij(xij,~ij)Idt + dij(Xij(t,)) (4) 

subject to equations 1f.g 

where pGi j ( t ) , t  c [ t o , t f ]  is.the price stated by the utility and is 
an exogenous input to the generator. The term: 

- pGijHij i j  dt is also exogenous and thus does not influence 

the individual generator’s optimal control, denoted U$”. We 
have the following result. 

Tbeorem 1: The optimal control for the individual generator 
ij, u i y ( t ) ,  equals the optimal control for social welfare, u?(r), 

‘f 

10 

r0 
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if the price pci, ( t )  is chosen to be p r ( t ) ,  the social welfare 
value for the Lagrange multiplier associated with the 
generator ij’s output function, (lg). Moreover, p y ( t )  equals 
r y ( t ) ,  the social welfare value for the Lagrange multiplier of 
the energy balance equation, (lcd), and equals By(t t ) /Hi ,  the 
costate vector of the swing equation, (lb), divided by the area 
inertial constant. 

The proof of Theorem 1 is given in the appendix. The 
idea of the proof is to choose a price so that the conditions of 
Pontryagin’s Maximum Principle for the generator’s 
optimization match those of the social welfare optimization. 

Before discussing Theorem 1, we present the analogous 
result for the loads. If the entity priced is the power 
consumed, Dij, and the price is denoted pDij then load ij’s 
optimization is: 

11 

This optimization trivializes to maximizing the integrand at 
each point in time. Thus the load’s optimal control satisfies 
the condition: marginal satisfaction equals price. 

as, 
eo, PDij 
-- (6) 

Solving equation (6) for Dij( t )  yields the optimal control for 
the individual load, denoted D b .  Furthermore, from equation 
A.la of the appendix and Theorem 1, we have: 

Corollary: The optimal control for the individual load ij, DiY, 
equals the social welfare value, D k ,  if: 

3.2 Discussion of Prices 

3.2.1 Common Price for Generation Within an Area: Since 
the price for generation pCij  equals - yy ( t )  and B r ( t ) / H i  and 
since these multipliers are the same for all plants in a given 
area (i.e., they do not depend on j ) ,  then the price for 
generation is the same for all plants in a given area. 
Notationally, we can write pcij ( t )  as pGi ( t ) .  Likewise, since 

then, the price for demand is: 

(7) 

and hence is the same for all loads in a given area. Again, 
notationally we can write pDij ( t )  as poi ( t ) .  

The above result is due to a feature of the average 
system frequency d e l .  The model collapses the 
Transmission and Distribution system within a given area to a 
single bus, and thus the spatial losses within an area are 

suppressed. If they had been included then the price would 
have differed between generators and would have differed 
between loads. Note that if there were no losses in the 
transmission and distribution system, LossimO, then equation 
(7) implies that the price would be the same for both the 
generators and the loads, in a given area. 
3.2.2 Constraints on Frequency Deviations and Tie Line 
Power Determine Price: The necessary conditions of social 
welfare, equations A. ldefg of the appendix, yield differential 
equations for the price. 

Lemma 1: The price for generation in area 1, p G I  , satisfies: 

with boundary conditions: 

The price for generation in area 2 satisfies the same equation 
except with the subscripts “1” and “2” reversed. 

Note that what drives the prices from being zero is the 
penalty function for deviation in tie line power and frequency. 
Note also that the equations for the two prices are coupled by 
the term: p c l  - p G 2 ;  this difference is the subject of the next 
section. 
3.2.3 Price Difference Between Areas: The prices also differ 
from area to area. Manipulating equations A.ldefg of the 
appendix, we obtain: 

Lemma 2 The difference in the price for generated power 
between the two areas, Ap - p c l  - p c 2 ,  satisfies: 

with boundary conditions: 

‘I 
I +(-+--)-I  1 

H~ H~ as, sw 

Equation 9 has an intuitive interpretation. The forcing 
function shows that if the areas care differently about 
deviations in frequency then this difference, appropriately 
weighted, causes a difference in price between the two areas. 
Also, the forcing function shows that concern about the 
stability limits of the tie line, i.e. the finite capacity of the tie 
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line, causes a difference in price between the two areas. 

3.2.4 Average System Price: Define the average system price 
for generation for the two areas as: 

Using equations A.lefg of the appendix, we obtain: 

Lemma 3 The average system price satisfies: 

with boundary condition 

(lob) 

The above equation says that the overall price is 
determined by concern about frequency deviations, the inter- 
area concern of tie line power 16( . ) ,  has dropped out. If 
frequency deviations did not matter ( l,(.) and +f(-) equal to 
zero) then the overall price would be zero. This makes sense, 
because if frequency deviations did not matter, then there 
would be a free energy source: infinite stored kinetic energy of 
the turbine-generator shaft. 

4. APPLICATION OF ECONOMIC THEORY 
To apply the results of the previous section to the real 

world, a naive approach would be to try to estimate the social 
welfare optimization problem, and then use the price obtained 
as an open loop control law. Unfortunately, such an approach 
is not robust to modeling errors. One can construct simple 
examples where a small error in the estimated optimization 
yields a price trajectory that causes instability in the 
frequency deviation. 

A more practical approach would be to consider a closed 
loop control law that exploits the results of the idealized 
formulation. We apply this idea to a simple example where 
frequency is controlled both directly by the utility and 
indirectly via time varying prices to independently owned 
generation and loads. In the example, we drop the 
assumptions of perfect information, and of infinite 
computational power that were made in Section 3. 

4.1 Base Case: No Real Time Pricing 

For simplicity, consider a single area, with aggregate 
load D ( t ) ,  no losses, and with two aggregate power plants: 
plant #1 owned by the electric utility and plant #2 owned by 
independent firms. Suppose there is no real time pricing to 
control frequency deviations. The utility plant has a governor 
and automatic generation control yielding proportional plus 
integral feedback, while the independent plant has not 
installed controls. Suppose there is step increase in demand of 
.OS pu. Considering a first order equation for the generator, 
the simple average system frequency model becomes: 

(1 la) 

T , M , ( t )  --MI(?) + u ( t )  M l ( 0 )  -0 (1 lb) 

H j(t> = M, ( t )  + ~ , ( t )  - D ( t )  f (0) - o 

(1 IC) 

D ( t )  - .OS 

Let the plant parameters be: H - 10 secs, and T I  - .1 secs. 
We choose the control parameters, R I  and c 1  to be 0.1 and 
5.0 respectively so that the frequency is tightly controlled. 
Additional decrease in R or increase in c yields increased 
oscillatory response. 
4.2 Real Time Pricing of Generation 

As an alternative to the base case, consider a real time 
price for generation from the independent plants. The utility 
company would need to know how changes in the price would 
approximately affect the independent generation. This would 
largely be obtained by experience, analogous to how changes 
in bus voltages affect demand. For the sake of discussion, we 
will make up some numbers. Suppose that the independent 
plants have 10% of the system capacity, are currently 
operating at 50% of their capacity, and half of this capacity is 
under automatic control that is responsive to the varying price. 
Suppose also that a $O.OOS/kWh increase in price would 
increase the price sensitive generation by 1%. Thus: 

Ageneration ~ .1Opu~SO%*SO%-1% I pu 
&rice $O.OOSlkWh blkWh 

Assume a delay between a change in price and a resulting 
change in mechanical power. The delay would be partially 
due to computation, but mostly due to the plant dynamics. 
Analogous to the T I  - .1 secs assumed for the utility plant, 
assume T 2  - .2 secs for the independent generators. Thus, 
equation 1 Id would change to: 

T , i f , ( t )  - M , ( t )  + .OSp(t) MZ(0) - 0 (1 Id') 

where p ( t )  is the price deviation in $/kWh. 
To choose the price, recall that the social welfare 

maximizing price is determined by penalty functions for 
frequency and tie line deviations, equation 8. Thus, a natural, 
heuristic choice for the price is a feedback control law of 
frequency deviation (there being no tie lines in this example of 
a single area). Furthermore, as a straw man choice, consider 
a proportional plus integral control law: 

p ( t )  - C z f  (2) - C 3 j  f (T)dT (13) 

A key feature of this pricing scheme is that the 
independent power plants can themselves monitor the 
frequency deviations and thus no real time signal needs to be 
sent by the electric utility. This eliminates the problem of 
how the utility could compute and transmit the price faster 
than the time scale to be controlled. The proportionality 
constants, c 2  & c3, would be set off line as part of the utility 
rate schedule, and they could be prescribed to vary with the 
time of day. 

With c 2  - 100 and c3  - 2, the pricing scheme yields 
reasonable closed loop response, as plotted in Figures 1, 2, & 
3. The major difference from the base case is the elimination 
of the overshoot of mechanical power of the utility plants. 
Without pricing, this overshoot would necessarily be present to 
bring frequency back to its set point. With pricing, this action 
has shifted to the independent plants. In addition, the 
frequency deviation is lessened. The price deviation is 
substantial, to handle the shock of the step change in demand, 
but then it settles down to a new steady state value reflecting 
the new steady state operating point. Although the real time 

0 
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pricing has yielded improved response, the improvement is not 
remarkable. However, the utility power plant has the 
potential option not to control as tightly (relax R 1 ,  c 1 ) ,  and to 
let the independent plant and loads (see next section) take up 
the slack, yielding additional assistance to the utility. We 
conclude that a price control law like (13) could play a 
supportive role. This may be the practical limit to the trend 
of using prices on ever faster time scales in electric power 
systems. 
4.3 Real Time Pricing of Demand 

As a second alternative to the base case, suppose the 
demand is offered a time varying price. This would constitute 
economic load shedding. Consumers could elect to receive a 
time varying price, whose average value would be lower than 
the regular static price. During moments of excess demand 
the time varying price would increase. A control device at the 
loads would automatically monitor the price and, at thresholds 
pre-set by the customer, would turn on or off the load. Prime 
candidates for such control would be air conditioning and 
space heating in office buildings where small deviations in the 
natural on off cycle would not be noticeable. 

For the sake of discussion, consider some hypothetical 
numbers. Suppose the demand is at 70% system capacity, .7 
pu, and 10% of the demand is by customers who have elected 
real time pricing. Suppose the current price is $O.lO/kWh 
and a 10% increase in price would cause a 1% decrease in the 
price sensitive demand. Thus: 

. 

Ademand .I .70pu-10%.(-1%) = -.07 pu 
Aprice $O.lO/kWlr.  10% $/km 

Ignoring the delay of turning the load on and off, equation 1 l e  
would change to: 

D ( t )  - .OS - .07p(t) (1 le') 
where p ( t )  is the deviation in price. 

Consider the same proportional plus integral control law 
as before, equation 13 with the same gains. The closed loop 
response is plotted in Figures 1, 2 & 3. Once again the 
overshoot in mechanical power of the utility plant is 
eliminated and, in addition, the frequency deviation is 
lessened. We reach the same conclusion as in Section 4.2. 

5. SUMMARY 

We have studied the use of prices in the control of 
frequency and tie line deviations. Under an idealized social 
welfare formulation, we have shown that the price for 
generation in each area, as well as the difference in .price 
between areas and a system wide price satisfy differential 
equations that are driven by penalty functions for frequency 
and tie line deviations. Dropping the perfect information 
assumption of the social welfare formulation, we have shown 
in a simple example how prices, determined by a proprtional 
plus integral feedback control law of frequency deviations, 
could assist in load-frequency control. This control law solves 
the problem of computing and transmitting the price on a time 
scale faster than the dynamics to be controlled. It allows 
independently owned plants to assist in the control of 
frequency deviations. Likewise, large commercial loads, such 
as space conditioning, could shut off, or turn on, in response to 
sharp deviations in the price, yielding an economic load 
shedding policy, 

We make no conclusions whether real time pricing of 
system dynamics will eventually prove to be worthwhile in the 
real world. We do conclude, however, that it has the potential 
to assist the direct control of the electric utility and should be 

studied further. 
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APPENDIX: PROOF O F  THEOREM 1 
The idea of the proof is to compare the necessary 

The social welfare Hamiltonian is: 
conditions of the generator with those of the coordinator. 

2 Nci  

+ 2 2 (A,( Ai,xij + Bipij + pij( Ci,xi, - Mi, ) 
i-1 j -1 

The social welfare necessary conditions are: 

aH ai.. - .C 0 = - 3 + X:.B.. auij aUij IJ IJ 

j = l ,  ..., NGi i=1,2 

and the system constraints, equation 1. 

(A. 1 a) 

(A. 1 b) 

(A.lc) 

(A.ld) 

(A. 1 e) 

(A. 1 f) 

(A.lg) 

(A. 1 h) 
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Likewise, generator ifs Hamiltonian is: 

and using the individual swing equation: Hijh - G, - Mij, 
we can substitute out Gij. 

where generator ij treats pGij and H i j j  as exogenous, the 
latter stemming from generator ij’s viewpoint that frequency 
deviations are exogenous. 

Generator ij’s necessary conditions are: 

ai, - = o = - -  aH + X:.B.. 
au, auij IJ IJ 

aH * *  ai, - = - xij  - - + h:.A.. + p.. C..  axij ax, rJ V lJ V 

(A.2a) 

(A.2b) 

(A.2c) 

(A.2d) - aH = xij . - Aijxij + Bijuij x i j ( fo)  given ax, 

(A.2e) 

If the price, pGij ,  is chosen to be: p G i j ( t )  Q Bi(t)lHi 
then the generator’s necessary conditions, A.2, match social 
welfare’s conditions A.lb,c,h. Thus the solution to social 
welfare’s necessary conditions, UT, xy, 17, fir, BT, satisfies 
the necessary conditions of the generator. Thus, by the 
assumed uniqueness of the solution to the necessary conditions, 
the optimal control of the generator equals social welfare’s 
value, u r .  Thus, if 

then the optimal control of generator ij equals u y ( t ) .  

conditions A.lcd, we have: 
Furthermore, from the social welfare necessary 

GLOSSARY OF SYMBOLS 

Bi 

Dij 

is the costate variable associated .with the swing 
equations, (lb). 
is the real power demand of the j t h  load in area i. 

NLi 

Di is the real power generated in area i; Di = 2 Dij 
j-1 



is the average mechanical angle of the rotors of the 
generators in area i, which is assumed equal to the 
average electrical phase angle of the voltage of the 
aggregate bus of area i. 6 - the vector (&, 

is the average system frequency deviation from the 
set point in area i. f = the vector (f,, f2). 
is the real power generated by the j" generator in 
area i. 

is the real power generated in area i; Ci - 
is the Lagrange multiplier associated with the energy 
balance equations, (lcd). 
is the sum of the inertial constants of the generators 
in area i. 

means evaluated at the individual generator or load's 
optimal value. 
is the penalty function for tie line deviations. 
is the penalty function for frequency deviations. 
is the instantaneous cost to generator j in area i. 
is the real power losses in area i. 
is the mechanical power to the turbine-generator 
shaft of generator j in area i. 
is the Lagrange multiplier associated with generator 
ij's output function, ( I d .  - the number of generators in area i, i-1,2. - the number of loads in area i, i-1,2. 
is the "excess energy" left in the boiler turbine at the 
terminal time. 
is the penalty function for tie line deviations at the 
terminal time. 
is the penalty function for frequency deviations at the 
terminal time. 

is the price to generator j in area i. 

is the price to load j in area i. 

is the satisfaction index of load j in area i. 
means evaluated at the social welfare optimal value. 
is the tie line power between areas 1 and 2. Without 
loss of generality, Tie is positive for power flowing 
out of area 1. 
is the effective line inductance in the tie lines 
between the two areas. 
is the state of the boiler-turbine of generator j in 
area i. 
is governor control valve position of generator j in 
area i. 

NGi 

G, 
j - 1  
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