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Asymptotic behavior of queues is studied for large closed multi-class queueing networks
consisting of one infinite server station withK classes andM processor sharing (PS) stations.
A simple numerical procedure is derived that allows us to identify all bottleneck PS stations.
The bottleneck station is defined asymptotically as the station where the number of customers
grows proportionally to the total number of customers in the network, as the latter increases
simultaneously with service rates at PS stations. For the case when K = M = 2, the set
of network parameters is identified that corresponds to each of the three possible types of
behavior in heavy traffic: both PS stations are bottlenecks, only one PS station is a bottleneck,
and a group of two PS stations is a bottleneck while neither PS station forms a bottleneck
by itself. In the last case both PS stations are equally loaded by each customer class and
their individual queue lengths, normalized by the large parameter, converge to uniformly
distributed random variables. These results are directly generalized for arbitrary K = M .
Generalizations for K 6= M are also indicated. The case of two bottlenecks is illustrated
by its application to the problem of dimensioning bandwidth for different data sources in
packet-switched communication networks. An engineering rule is provided for determining
the link rates such that a service objective on a per-class throughput is satisfied.
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1. Introduction

This paper is motivated by a new application of closed queueing networks (CQN)
with a large number of customers. The application is the dimensioning of bandwidth
for different data sources subject to feedback control in packet-switched communica-
tion networks when available bandwidth at the servers is shared between all active
sources. In a CQN, data sources are modeled by an infinite server (IS) station, and
network nodes are modeled by processor sharing (PS) stations. It is known that the
steady state queue length distribution in such a CQN has a product form that is defined
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explicitly up to the normalization constant. The distinguishing property of the new
application is that this CQN model is adequate only if one or more PS stations form
a bottleneck. The bottleneck station is defined asymptotically as the station where the
number of customers grows proportionally to the total number of customers in the
network, as the latter increases simultaneously with service rates at PS stations. It
is known [7] that for a single class CQN (K = 1) consisting of IS and PS stations,
in general, only one PS station may be a bottleneck, and the bottleneck node can
be easily identified from the network parameters. Moreover, the asymptotics for the
mean queue length at the bottleneck station are found from a linear equation. For a
multiclass CQN the bottleneck analysis becomes more complicated. For an arbitrary
number of classes, the bottleneck analysis has been done only in the case when the
number of PS stations M = 1 [9]. In this case, the asymptotics of the mean queue
length at the bottleneck node are explicitly expressed through the least positive root of
a polynomial of order K, where K is the number of classes. The relative simplicity
of the results for K = 1, M > 1 or K > 1, M = 1 is explained by their derivation
from asymptotic expansions of one-dimensional integral representations for the parti-
tion function (normalization constant) in complex [2,6,7] or real [9] space. In general,
the integral representations in complex and real space are K- and M -dimensional,
respectively, and their asymptotics can be relatively easily derived only in the case of
normal traffic [7,9] when neither a PS station nor or a group of PS stations forms a bot-
tleneck. The bottleneck case requires residue analysis of a K-dimensional generating
partition function and application of the saddle-point method, which is far from trivial
even in the 2-dimensional case [8], or nontraditional application of the M -dimensional
Laplace method that, to our knowledge, has not been pursued. Moreover, in all cases
but one, the bottleneck conditions given in [8] are quite complicated, their probabilistic
interpretation and generalization for K, M > 2 are unclear, and the case of equally
loaded PS stations is not covered.

Therefore, in this paper, we take a direct approach based on the asymptotic
representation for the steady state queue length distribution π(n) derived by Pittel [11].
This representation has the following form:

π(n) ∼ C exp
{
NF (x)

}
,

where N is a large parameter (e.g., the total number of customers) and x = n/N .
Pittel showed that bottleneck nodes in a large product-form CQN can be identified
by a nonzero maximum point of some multidimensional function F (x) under natural
constraints. Positive components of the maximum point x∗ are the limiting values of
queue lengths, normalized by N , at the bottleneck nodes. Pittel derived these results
under the condition that the optimization problem has a unique solution. Not addressed
were the questions: how is this condition expressed in terms of the network parameters,
what is the range of network parameters for which the maximum point is not zero,
and how to solve the optimization problem.

In our case, the (K ×M )-dimensional function F is found explicitly. We show
that all possible maxima of F under naturally defined constraints can be efficiently
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found by the classical Lagrange multiplier method. Using this method we show that
maximization of F can be reduced to that for an M -dimensional function. Moreover,
for this M -dimensional function we derive a simple formula for its partial derivatives
that plays a pivotal role in the bottleneck identification depending on the network para-
meters. Finally, the calculation of x∗ is reduced to the solution of algebraic equations
and verification of inequalities. The number of equations and inequalities equals the
number of bottleneck and non-bottleneck nodes, respectively. In general, these equa-
tions are nonlinear. But in an important case when K 6 M and K bottlenecks, x∗

can be found by solving two systems of linear equations of order K.
Note that efficient calculation of x∗ is also important for the computation of

the normalization constant in the initial product-form solution for a large network
with bottlenecks. This is because by its construction the function F (x) is a quasi-
potential [4] that provides the logarithmic asymptotic for the product-form solution,
and hence exp{NF (x∗)} can be used as a scaling factor in the computation of the
normalization constant.

The outline of the paper is as follows. In section 2 we describe the closed
queueing network, define the scaling under which we study the asymptotics of the
steady state distribution and provide the expression for the function F . In section 3
we formulate the main results in two theorems. The first theorem addresses a special
case of the normalized queue-length limit behavior which is referred to as oscillation.
The second theorem provides bottleneck classification for all possible combinations
of the network parameters. We consider the case K = M = 2, but whenever it is
possible the results are formulated in a general form. In section 4 we illustrate the
case of two bottlenecks by its application to the problem of dimensioning bandwidth
for elastic data sources in packet-switched communication networks. In section 5 we
first establish in three lemmas important properties of the maximum of the function F
and then use them to prove the theorems. In section 6 we indicate generalizations for
arbitrary K and M .

2. Asymptotic representation for the steady state distribution

We consider a closed queueing network with K classes and M+1 service stations,
one of which is infinite server (IS) and M others are processor sharing (PS) stations.
We assume that customers of each class visit all stations. It is convenient to number
the IS station by 0. Let n denote a K ×M matrix whose element nki represents the
number of class k customers at PS station i. The population of jobs in class k is a
constant Nk, 1 6 k 6 K. The state space is the set S of matrices n which have
integer components, and satisfy the population constraints

S =

{
n | 0 6 nki,

∑
i

nki 6 Nk, 1 6 k 6 K, 1 6 i 6M
}
.
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Then the product form solution has the form

π(n) =
1
Ω

K∏
k=1

Nk!
(Nk −

∑
i nki)!

M∏
i=1

ni!
rnkiki

nki!
, (1)

where Ω is the normalization constant and ni =
∑

k nki. Moreover,

rki =
ekiλk
µki

, (2)

where eki is the relative visiting rate of class k jobs to PS station i as compared to
the IS station, 1/λk is the mean service time of a class k job at the IS station, 1/µki
is the mean service time of an isolated class k job at PS station i.

Denote by Qki the random variable for the number of k-type customers in service
(queue length) at PS station i and by Q the K ×M matrix of these queue lengths.
Random matrix Q takes values n ∈ S. Our goal is to study the limit behavior of Q
under the following assumption:

αk = Nk/N , ρki = Nrki, (3)

where αk and ρki are positive constants while N → ∞. (Note that this scaling is
reasonable for the intended application to data networks, section 4, where large values
of N correspond to the important case of a large number of established connections (or
sessions) and to high-speed transmission facilities, i.e., large values of µki and small
rki.) With this assumption we have the following asymptotic representation [11]:

π(n) = C(N ) exp
{
NF (x) + O(lnN )

}
(4)

with

F (x) =
∑
i

(xi lnxi − xi) +
∑
k,i

xki ln ρki −
∑
k,i

xki lnxki

−
∑
k

(
αk −

∑
i

xki

)
ln

(
αk −

∑
i

xki

)
, (5)

where xki = nki/N , xi =
∑

k xki for 1 6 k 6 K, 1 6 i 6 M , and C(N ) does not
depend on x. From the definition of the variables xki it follows that x ∈ C, where

C =

{
x: xki > 0 and

∑
i

xki 6 αk
}
. (6)

3. Asymptotic behavior of queues at PS stations

In this section we state the asymptotic results in two theorems and briefly com-
ment on them, deferring the proofs to section 5. We consider the case K = M = 2
but whenever it is possible the results are formulated in a general form. In section 6
we discuss generalizations of the results for different cases when K, M > 2.
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Pittel [11] assumed that the function F (x) has a unique maximum point x∗ and
proved the convergence in probability of the normalized queue length matrix Q/N to
x∗ as N →∞. The first theorem characterizes the limit behavior of Q/N in a special
case of network parameters where it does not converge to a deterministic limit.

Theorem 1 (Oscillation). If ρki ≡ ρk and
∑

k ρkαk > 1 then

1
N

∑
k,i

Qki
P→ v∗ (7)

as N →∞, where v∗ is the unique solution of equation∑
k

ρkαk
ρkv + 1

= 1 (8)

in the interval (0,
∑

k αk). Moreover,

Q11 +Q12

N
P→ u∗, (9)

where

u∗ = α1 −
α1

ρ1v∗ + 1
, (10)

and
Q11

N
D→ U

(
u∗
)
, (11)

while
Q21

N
D→ U

(
z∗
)
, (12)

as N → ∞, where U (d) denotes a random variable with the uniform distribution on
[0, d], and z∗ = v∗ − u∗.

The type of the queue length limit behavior at an individual PS station described
by (11) or (12) is referred to as oscillation.

In section 5 we show that the function F (x) has a unique maximum point x∗

except for the special case of network parameters in theorem 1. Moreover,

x∗i =
∑
k

x∗ki > 0

if and only if x∗ki > 0 for each class k. This property in combination with the

convergence Q/N P→ x∗, [11], justifies the following definition.
A PS station i is referred to as bottleneck (non-bottleneck) if x∗i > 0 (x∗i = 0),

given that the maximum point x∗ is unique. Statement (7) addresses a special case,
where the bottleneck condition is satisfied only for a group of stations. We say that a
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group B = (i1, . . . , im) of m 6M PS stations forms a bottleneck if they are equally
loaded, i.e., ρki ≡ ρk(B), i ∈ B, and the following normalized sum of queue lengths

1
N

∑
i∈B

∑
k

Qki

converges to a deterministic limit v∗(B) > 0 in probability as N →∞.
We say that a PS station (a group of equally loaded PS stations) is heavy loaded

if it forms a bottleneck.
Representation (4) implies that distribution (1) is concentrated around maximum

points of the function F (x) in the domain C. It turns out that the function F does not
have the unique maximum only in the case when PS stations are equally heavy loaded
by each class of customers. This results in random “oscillation” of the individual queue
lengths, normalized by N , in contrast to their stabilization to deterministic limits in
the cases of the unique maximum. Load balancing is a plausible design decision in
many applications. However, except for a simple cyclic network consisting of identical
FCFS single servers [5], it was not clear before that although load balancing indeed
equalizes the mean queue lengths at different nodes the actual normalized queue lengths
are uniformly distributed random variables.

Denote by ∆ = ρ11ρ22−ρ12ρ21 the determinant of matrix ‖ρki‖. The next theorem
considers all possible combinations of parameters ρki and αk and provides a complete
bottleneck classification in the case K = M = 2.

Theorem 2 (Bottleneck classification).
1. If

∑
k ρkiαk > 1 for all i, ∆ 6= 0 and the two following systems:∑

k

ρkiβk = 1, i = 1, 2, (13)

∑
i

ρkiγi = (αk − βk)/βk , k = 1, 2, (14)

have positive solutions, then

x∗ki = ρkiβkγi, (15)

and all PS stations are bottlenecks.
2. If

∑
k ρkiαk > 1 for i = 1, 2, ∆ = 0 and equations (13) have a solution

βk ∈ (0,αk), then ρki ≡ ρk and the group of two PS stations forms a bottleneck with
oscillation at the individual PS stations.

3. There is only one bottleneck PS station in the two following cases:

(i)
∑

k ρkiαk > 1 only for one i;

(ii)
∑

k ρkiαk > 1 for i = 1, 2 but equation (13) does not have a solution βk ∈ (0,αk),
or ∆ 6= 0 and (14) does not have a positive solution.
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In case (i) PS station i is the bottleneck. In case (ii) PS station i is the bottleneck if∑
k

ρkjαk
ρkiγ

∗
i + 1

< 1 (16)

for j 6= i, where γ∗i is the unique positive solution of equation∑
k

ρkiαk
ρkiγ + 1

= 1. (17)

If PS station i is the only bottleneck, then

x∗ki =
ρkiαk

ρki + 1/γ∗i
. (18)

4. If
∑

k ρkiαk 6 1 for all i, then x∗ = 0, and all PS station are non-bottleneck.

Condition (16) has the following interpretation. By (18) αk−x∗ki = αk/(ρkiγ∗i +1),
and the left hand side of the inequality (16) equals

∑
k ρkj(αk−x∗ki), which coincides

with the sum of traffic intensities in an open system in which PS station j serves two
types of Poissonian arrivals whose rates are ekjλkN (αk − x∗ki), k = 1, 2. Thus (16)
means that the sum of traffic intensities is less than 1 at a non-bottleneck PS station,
i.e., the open system is stable.

We use the classical Lagrange multiplier method to find all possible local maxima
of the function F (x) in the domain C. Using this method we derive in section 5 the
necessary conditions for a maximum and reduce the initial problem to maximization
of a function of M variables x1, . . . ,xM . It turns out that the latter function depends
only on

∑
i∈B xi if a group of nodes B forms a bottleneck.

4. Bandwidth dimensioning for elastic data sources

In this section we illustrate statement 1 of theorem 2 by its application to the
problem of dimensioning bandwidth for different data sources in packet-switched com-
munication networks, such as Internet Protocol (IP) or Asynchronous Transfer Mode
(ATM) networks. For further details see [1]. In our application, a type-k job is a file
with a mean size of fk bits, and the link rate at server i is Li bits per second (bps).
Then the service rate of a type-k job at node i (given no other job is present) is

µki =
Li
fk
. (19)

Suppose, for simplicity, that there are two job types generated by finite sources and
two bottleneck links. This mirrors the important case in data networks under heavy
load, where a routing algorithm such as Private Network–Network Interface (P-NNI),
[12] directs the traffic to otherwise lightly loaded paths. We model finite data sources
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and network nodes by IS and PS stations, respectively, and obtain a CQN model with
K = M = 2. Let, also for simplicity,

e11 = p, e12 = 1− p, e21 = q, e22 = 1− q, 0 6 p, q 6 1. (20)

We assume that for a given set of parameters {Nk,λk, fk, p, q} the link rates Li are
such that the conditions of statement 1 in theorem 2 are satisfied, i.e., both PS stations
are bottlenecks. Thus we can approximate the sum of the throughputs of type-k jobs
at two nodes by

Tk =
µk1x

∗
k1

x∗11 + x∗21
+

µk2x
∗
k2

x∗12 + x∗22
, (21)

where x∗ki are given by (15). Substituting into (21) the values of µki and x∗ki from (19)
and (15), respectively, we get

Tkfk =
L1ρk1βk

ρ11β1 + ρ21β2
+

L2ρk2βk
ρ12β1 + ρ22β2

= βk(L1ρk1 + L2ρk2), (22)

where the last equality is implied by (13). If we sum the per-class throughputs,
k = 1, 2, in (22) and again apply (13) we obtain

T1f1 + T2f2 = L1 + L2. (23)

(23) is the intuitively clear statement that when both PS stations are bottlenecks, the
total throughput (the sum of the per-class throughputs in bps) equals the total capacity.
Thus, given the conditions of statement 1 in theorem 2, from the viewpoint of total
throughput it does not matter what are the individual values of the link capacities, only
their sum. Likewise, note that (23) does not depend on the particulars of the routing,
the ekis, other than that statement 1 of theorem 2 pertains. This prediction from the
model matches the rule of thumb in data networks that for a given deployed capacity,
the traffic will find the spare bandwidth via the adaptive routing.

Suppose a network designer wants to dimension the capacity of links i = 1, 2
to provide a service objective based on throughput. If the chosen objective is in
terms of the total throughput for both classes, then from (23) the total bandwidth,
L1 + L2, simply needs to be equal to the objective on total throughput. If, however,
the network designer wishes to offer an objective on per-class throughput, say the
bandwidth provided to type-k jobs should be at least Mk bps, then L1 and L2 need to
be chosen such that

Tkfk >Mk, k = 1, 2. (24)

The bandwidth dimensioning problem consists of determination of link rates L1 and
L2 that guarantee the service objective.

Proposition 3. If

L1 = κ[pM1 + qM2], (25)

L2 = κ
[
(1− p)M1 + (1− q)M2

]
, (26)
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where κ > 1, and if the conditions of statement 1 in theorem 2 pertain, then the
per-class throughput objective (24) is satisfied.

Note that for the per-class throughput objective (24), the dimensioned bandwidth
only depends on the given objective Mk and the routing via p and q, and not on any
other system parameters, other than via the conditions of statement 1 in theorem 2.

Proof. Substituting (19) in (2) and using (3) we have

ρki =
Nλkfkeki

Li
. (27)

Substituting (27) and (20) into (22) yields

θk ≡ Tkfk = Nλkfkβk. (28)

One of the conditions of statement 1 in theorem 2 is that ∆ ≡ ρ11ρ22 − ρ12ρ21 6= 0.
From (27) and (20)

∆ =
N2λ1λ2f1f2

L1L2
(e11e22 − e12e21) =

N2λ1λ2f1f2

L1L2
(p− q). (29)

Thus, we require p 6= q. Another condition of statement 1 in theorem 2 is that the
system (13) has a positive solution βk. For ρki in (27), this condition implies

β1 =
1

Nλ1f1
· (1− q)L1 − qL2

p− q > 0, (30)

β2 =
1

Nλ2f2
· pL2 − (1− p)L1

p− q > 0. (31)

Substituting βk, k = 1, 2, from (30) and (31) into (28) yields

θ1 =
(1− q)L1 − qL2

p− q , (32)

θ2 =
pL2 − (1− p)L1

p− q , (33)

where θk > 0, k = 1, 2. Substituting (25) and (26) in (32) and (33) we get

θk = κMk, k = 1, 2,

and condition (24) is implied by the definition of θk in (28) since κ > 1. �

5. Proofs

In this section we first establish in three lemmas properties of the maximum of
the function F (x). Then we prove the two theorems using these properties.
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5.1. Properties of the maximum

Lemma 4. If F (x) has a maximum at point x∗ with x∗ki > 0, k, i = 1, 2, then the
system of linear equations (13) has such a solution βk ∈ (0,αk), k = 1, 2, that
the system of linear equations (14) has a solution γi > 0, i = 1, 2. Moreover,
x∗ki = ρkiβkγi.

Proof. Without the loss of generality we can assume that
∑

i x
∗
ki < αk, k = 1, 2,

since ∂F (x)/∂xki → −∞ as
∑

i xki → αk, k = 1, 2.
Denote x = (x1,x2), y = (y1, y2) and consider the following auxiliary problem:

Maximize

H(x, y, x) =
∑
i

(xi lnxi − xi) +
∑
k,i

xki ln ρki −
∑
k,i

xki lnxki −
∑
k

yk ln yk (34)

subject to constraints∑
k

xki = xi,
∑
i

xki + yk = αk, k, i = 1, 2, (35)

on the set

xki > 0, yk > 0, k, i = 1, 2. (36)

It is clear that x∗ provides a solution for the auxiliary optimization problem. On the
other hand, the classical Lagrange multiplier method provides the following necessary
conditions for a local maximizer for the auxiliary problem [10, theorem 7.2.1]. There
exist (γ1, γ2,β1,β2) such that

∇H
(
x∗, y∗, x∗

)
+
∑
i

γ1
i∇
(∑

k

x∗ki − x∗i
)

+
∑
k

β1
k∇
(∑

i

x∗ki + y∗k − αk
)

= 0

or

lnx∗i − ln γi = 0, i = 1, 2,

− ln y∗k + lnβk = 0, k = 1, 2,

ln ρki − lnx∗ki + ln γi + lnβk = 0, i, k = 1, 2,

where

γi = exp
(
γ1
i

)
, βk = exp

(
β1
k − 1

)
.

Thus, we have

γi = x∗i , βk = y∗k, x∗ki = ρkiγiβk, k = 1, 2. (37)

We have from (37) and the definition of xi that (β1,β2) satisfy the system (13).
Furthermore, (37) and the condition

∑
i x
∗
ki + y∗k = αk imply that (γ1, γ2) satisfy the

system (14). Now, to complete the proof we note that γi and βk satisfy the required
constraints by their definition in (37). �
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Lemma 5. Let x = (x1,x2), y = (y1, y2),

S =

{
x: x1 > 0, x2 > 0,

∑
i

xi 6
∑
k

αk

}
and for any x ∈ S

D(x) =

{
(y, x):

∑
k

xki = xi,
∑
i

xki + yk = αk, yk > 0, xki > 0, k, i = 1, 2

}
.

Let

G(y, x) =
∑
k,i

xki ln ρki −
∑
k,i

xki lnxki −
∑
k

yk ln yk,

K(x) = max
(y,x)∈D(x)

G(y, x)

and

R(x) =
∑
i

(xi lnxi − xi) +K(x).

Then

max
x∈C

F (x) = max
x∈S

R(x). (38)

Moreover, let

xi > 0 and
∑
i

xi <
∑
k

αk, i = 1, 2. (39)

Then a maximum point (y0, x0) of G(y, x) in D(x) satisfies

y0
i > 0, x0

ki > 0, k, i = 1, 2,

and
∂R(x)
∂xi

= ln
∑
k

ρkiy
0
k. (40)

Proof. G(y, x) is a strictly concave function on convex set D(x), and this set has an
interior point in the nondegenerate case when at least one of xi > 0. Therefore, for
any fixed x ∈ S, G(y, x) has the unique maximum, and function K(x) is well defined.
Now, (38) follows from the definition of R(x).

Under conditions (39) the function G cannot have a maximum in D(x) when one
of xki = 0 or yk = 0 since partial derivatives of G with respect to xki and yk tend
to ∞ as the respective variable approaches 0. The Lagrangian for the maximization
problem of G under constraints (35) on the set (36) is the function

L
(
y, x, γ1, γ2,β1,β2) = G(y, x)+

∑
i

γi
(∑

k

xki−xi
)

+
∑
k

βk
(∑

i

xki+yk−αk
)
.
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By the Kuhn–Tucker theorem there is a vector (γ1
0 , γ2

0 ,β1
0 ,β2

0 ) such that

G
(
y0, x0) = max

xki>0,yk>0
L
(
y, x, γ1

0 , γ2
0 ,β1

0 ,β2
0

)
. (41)

The necessary conditions for a local maximum of L imply

− ln y0
k + lnβ0

k = 0, k = 1, 2,

ln ρki − lnx0
ki + ln γ0

i + lnβ0
k = 0, i, k = 1, 2,

where

γ0
i = exp

(
γi0
)
, β0

k = exp
(
βk0 − 1

)
.

Thus, we have

β0
k = y0

k, x0
ki = ρkiγ

0
i β

0
k, k = 1, 2. (42)

From (42) and the definition of xi we have

γi0 = lnxi − ln
∑
k

ρkiy
0
k.

Hence, (40) follows from the definition of R(x) and (41) since ∂L/∂xi = −γi. �

Lemma 6. If ∆ 6= 0 and R(x) has a maximum on the axis x3−i = 0, then γ3−i < 0,
i = 1, 2, where (γ1, γ2) is a solution of system (14).

Proof. First, we derive from lemma 5 that if (x1,x2) tends from inside S to a boundary
point on axis x3−i = 0, and x∗i is a maximum point of R(x) at axis x3−i = 0, then

∂R(x)
∂x3−i

∣∣∣∣
xi=x∗i

→ ln
∑
k

ρk,3−iαk
ρk,iγ

∗
i + 1

, (43)

where γ∗i is the unique positive solution of equation (17).
Indeed, if x3−i → 0, then from the constraints in lemma 5 and (42) we have

y0
k →

αk
1 + ρkiγ

0
i

, k = 1, 2. (44)

Substituting (44) in (40) we get

∂R(x)
∂x3−i

→ ln
∑
k

ρk,3−iαk
ρk,iγ

0
i + 1

. (45)

If xi = x∗i , then similarly

∂R(x)
∂xi

∣∣∣∣
xi=x∗i

→ ln
∑
k

ρk,iαk
ρk,iγ

0
i + 1

= 0. (46)

Now (43) is implied by (45) and (46).
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Next, let i = 1 and a maximum of R(x) be on axis x2 = 0. By (43) this implies∑
k

ρk2αk
ρk1γ

∗
1 + 1

< 1.

Then we show that system (14) has a solution with γ2 < 0. The case i = 2 is similarly
proved.

For t > 1 define a matrix ‖ρki(t)‖ which is obtained from ‖ρki‖ by multiplying
its second column by t. Let (β1(t),β2(t)) be a solution of the system∑

k

ρki(t)βk = 1, i = 1, 2,

and (γ1(t), γ2(t)) be a solution of the system∑
i

ρki(t)γi =
αk − βk(t)
βk(t)

, k = 1, 2.

Let ‖σki‖ be the inverse matrix for ‖ρki‖. Then βk(t) = σ1k + σ2k/t and

tγ2(t) =
∑
k

σ2k

(
αk
βk(t)

− 1

)
=
∑
k

(
σ2k

αk
σ1k + σ2k/t

− σ2k

)
.

Define

t0 =

[∑
k

ρk2αk
ρk1γ

∗
1 + 1

]−1

.

Note that 0 < βk(t) < αk for all t ∈ [1, t0] since βk(t) are monotone functions on
[1, t0] while βk(1) and βk(t0) = αk/(ρk1γ

∗
1 + 1) are in the interval (0,αk). Define

g(t) = tγ2(t). We have: g(1) = γ2,

g(t0) =
∑
k

σ2k

(
αk

βk(t0)
− 1

)
=
ρ11ρ21 − ρ21ρ11

∆
γ∗1 = 0

and

g′(t) =
∑
k

αkσ
2
2k

t2(σ1k + σ2k/t)2

is positive for t ∈ [1, t0]. Therefore, γ2 < 0. �

5.2. Proof of theorem 1

First, we prove that the function F (x) has a maximum only on the set V =
{x ∈ C:

∑
k,i xki = v∗}, where v∗ is the unique root of equation (8) in the interval

(0,α1 + α2). If ρk1 = ρk2, then (40) implies that

∂R(x)
∂x1

=
∂R(x)
∂x2

.
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Therefore, R(x) = f (x1 + x2), where f (v) is a smooth function of one variable on
[0,α1 +α2]. By condition ρ1α1 +ρ2α2 > 1 the function f (v) cannot have a maximum
at v = 0 as f ′(0) > 0 by (40). The function f (v) cannot have also a maximum at
v = α1 +α2 because ∂F (x)/∂xki → −∞ as x1 +x2 → α1 +α2. Therefore, f (v) has
a maximum at a point v∗ ∈ (0,α1 +α2). Consider a set of x∗ki > 0, k, i = 1, 2, whose
sum is v∗. By lemma 4 x∗ki = ρkiγiβk, (β1,β2) satisfy (13) and (γ1, γ2) satisfy (14).
Under the condition ρki ≡ ρk we have from (14)

βk =
αk

1 + ρk(γ1 + γ2)
, k = 1, 2. (47)

By substituting (47) in the first equation of (13) and using the equation x∗i = γi, i =
1, 2, we see that v∗ satisfies equation (8). To complete the proof note that equation (8)
has a single solution in the interval (0,α1 + α2) as under conditions of the theorem
the left hand side of (8), denoted by h(v), has the following properties: h(0) > 1,
h(α1 + α2) < 1 and h′(v) < 0 for v ∈ (0,α1 + α2).

Next, we prove (7), (9) and (10). Assuming r11 = r12 = r1, r21 = r22 = r2 and
using (1) we have

P

{
Q11 = n11,Q12 = m− n11,

∑
k,i

Qki = l

}
=

1
Ω

N1!
(N1 −m)!

· N2!
(N2 − (l −m))!

rl2
∑

n1+n2=l

n1!
n11!n21!

· n2!
n12!n22!

ρm

=
rl2
Ω

N1!
(N1 −m)!

· N2!
(N2 − (l −m))!

(
l + 1
m+ 1

)
ρm, (48)

where ρ = r1/r2. The last equality is obtained from the identity(
l + 1
m+ 1

)
=

l−m∑
i=0

(
i+ j

i

)(
l − j − i
l −m− i

)
, 0 6 j 6 m 6 l. (49)

Using the relation that (
l + 1
m+ 1

)
=

(
l + 1
l −m

)
and rewriting l −m as m, identity (49) can be rewritten as(

l + 1
m

)
=

m∑
i=0

(
i+ j

i

)(
l − j − i
m− i

)
, 0 6 m+ j 6 l, 0 6 m, j.

Further, replacing l by l + j +m, we have(
l + j +m+ 1

m

)
=

m∑
i=0

(
i+ j

i

)(
l +m− i
m− i

)
, m, l, j > 0.
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This formula is nothing but (12.16) in [3, p. 65]. Apparently, the formula represents
the fact that the convolution of negative binomial distributions is binomial. From (48)
we have

P

{
Q11 +Q12 = m,

∑
k,i

Qki = l

}

= (m+ 1)
rl2
Ω
· N1!

(N1 −m)!
· N2!

(N2 − (l −m))!

(
l + 1
m+ 1

)
ρm (50)

and

P

{
Q11 = j | Q11 +Q12 = m,

∑
k,i

Qki = l

}
=

1
m+ 1

, j = 0, 1, . . . ,m. (51)

Similar to [11], one can derive from (50) using assumptions (3) the following asymp-
totic representation:

p(l,m) = P

{
Q11+Q12 = m,

∑
k,i

Qki = l

}
= c(N ) exp

{
NΨ(v,u)+O(lnN )

}
, (52)

where v = l/N , u = m/N , c(N ) does not depend on (u, v) and

Ψ(v,u) = v ln ρ2 − v + v ln v + u ln ρ− (α1 − u) ln(α1 − u)− u lnu

− (v − u) ln(v − u)− (α2 − v + u) ln(α2 − v + u). (53)

We prove that the function Ψ(v,u) has a unique maximum inside

Γ =
{

(v,u): v ∈ (0,α1 + α2), u ∈ (0,α1), (v − u) ∈ (0,α2)
}

,

and the maximum point (v∗,u∗) is defined by the unique solution of equation (8)
and (10). Indeed, the function Ψ(v,u) is strictly concave in Γ because its second
derivative

Ψvv = −
(

1
v − u −

1
v

)
− 1
α2 − (v − u)

< 0, (v,u) ∈ Γ,

and the determinant of matrix of the second derivatives

|Ψvu| =
v − u

uv(α2 − (v − u))
+

u

v(α1 − u)(v − u)
+

1
(α1 − u)(α2 − (v − u))

> 0,

(v,u) ∈ Γ.

Hence, the function Ψ(v,u) has a single maximum inside Γ if the system of two
equations, defined by the necessary conditions for a local maximizer, has a solution
in Γ. The necessary conditions for a local maximizer of Ψ(v,u) have the following
form:

Ψ′v(v,u) = ln ρ2 + ln v − ln(v − u) + ln
(
α2 − (v − u)

)
= 0,

Ψ′u(v,u) = ln ρ− lnu+ ln(α1 − u) + ln(v − u)− ln
(
α2 − (v − u)

)
= 0,
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or
v − u

α2 − (v − u)
= ρ2v, (54)

α1 − u
u

· v − u
α2 − (v − u)

=
ρ2

ρ1
. (55)

(54) and (55) can be rewritten as (8) and (10) as follows. Substitution of ρ2v instead
of the second fraction in the left hand side of (55) yields α1/u− 1 = 1/(ρ1v) or

u =
α1ρ1v

1 + ρ1v
= α1 −

α1

ρ1v + 1
, (56)

which is (10). Using (56) to substitute out u in (54), and rearranging (54) yields (8).
As shown above, (8) has a unique solution v∗ in (0,α1 + α2). Since v∗ is positive,
then u∗ given by (56) is in (0,α1). Lastly, since the right hand side of (54) is positive,
then (54) implies that v∗ − u∗ ∈ (0,α2). Thus, the pair (v∗,u∗) is the unique solution
to the first order conditions and is in Γ.

Finally, using the representation (52) and the fact that the function Ψ(v,u) has a
unique maximum point (v∗,u∗) inside Γ, one can prove similar to [11] that(

1
N

∑
k,i

Qki,
1
N

∑
i

Q1i

)
D→
(
v∗, u∗

)
. (57)

Convergence in probability (7) and (9) is implied by convergence in distribution in (57)
because the limit is deterministic. Now, (7), (9) and (51) imply the convergence (11)
to the uniform distribution. (12) is similarly proved. �

5.3. Proof of theorem 2

We prove below that under conditions of statements 1, 3 and 4 the function F (x)
has a unique maximum point x∗ on C and identify its positive and zero components.
Moreover, we prove that F (x) cannot have a maximum at a point, where xki = 0 while
xi > 0. Hence representation (4) implies the convergence Q/N P→ x∗, [11], while
the positive and zero components of x∗ identify the bottleneck and non-bottleneck PS
stations, respectively.

1. F (x) is a continuous function on a closed set C, and, therefore, it has a
maximum on C. However, F (x) cannot have a maximum on the boundary x1 + x2 =
α1 +α2 or at a point, where xki = 0 while xi > 0. The first statement is true because
∂F (x)/∂xki → −∞ as x1 + x2 → α1 + α2. The second statement is true because
by lemma 5 under conditions (39) the function G cannot have a maximum in D(x)
when one of xki = 0. Moreover, by lemma 6 F (x) cannot have a maximum at the
boundaries x1 = 0 or x2 = 0. Thus, F (x) has a maximum point x∗ inside C with
x∗ki > 0. By lemma 4 the maximum point is unique and given by (15) as ∆ 6= 0.

2. If equations (13) have a solution βk ∈ (0,αk), then the condition ∆ = 0
implies ρki ≡ ρk, and the results of the statement follow from theorem 1.
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3. We consider cases (i) and (ii) separately.
(i) Here we prove that the function F (x) has in C the unique maximum point

(x∗1i,x
∗
2i, 0, 0) defined by equations (18) and (17).

Since
∑

k ρk2αk 6 1 the system of equation (13) does not have a positive solution
with βk < αk. By lemma 4 F (x) cannot have a maximizing x∗, where x∗ki are all
positive. F (x) is a continuous function on a closed set C and, therefore, it has a
maximum on C. However, by the same arguments as before F (x) cannot have a
maximum on the boundary x1 + x2 = α1 + α2 or at a point, where xki = 0 while
xi > 0. Thus, F (x) has a maximum at the boundaries x1 = 0 or x2 = 0.

Similar to the proof of lemma 4 we consider the following auxiliary problem:
Maximize

Hi(xi, y,x1i,x2i) = (xi lnxi−xi) +
∑
k

xki ln ρki−
∑
k

xki lnxki−
∑
k

yk ln yk (58)

subject to constraints∑
k

xki = xi, xki + yk = αk, k = 1, 2,

on the set

xi > 0, y1 > 0, y2 > 0.

The necessary conditions for a local maximizer for the auxiliary problem give

γi = x∗i , βk = y∗k, x∗ki = ρkiγiβk, k = 1, 2. (59)

We have from (59) and the definition of xi that (β1,β2) satisfy the system (13).
Furthermore, (59) and the condition x∗ki + y∗k = αk imply that

βk =
αk

ρkiγi + 1
, k = 1, 2. (60)

Substituting (60) in (13) we obtain equation (17), where the lower index in γ is omitted.
Denote the left hand side of equation (17) by φi(γ). Function φi(γ) in monotonically
decreasing on [0,α1 + α2] and φi(0) =

∑
k ρkiαk. Therefore, if

∑
k ρkiαk < 1, then

equation (17) does not have a solution. This means that the function F (x) may have
a maximum only when xi = 0. If

∑
k ρkiαk = 1, then equation (17) has the only

solution at xi = 0. This implies that the function F (x) may have a maximum only
when xi = 0. If

∑
k ρkiαk > 1, then equation (17) has the unique solution γ∗i since

φ(α1 + α2) < 1. Substituting γi = γ∗i in (60) we obtain β∗k and finally (see (59))
positive components of the maximum point x∗ki = γ∗i β

∗
k that gives (18).

(ii) Here we prove that the function F (x) has the unique maximum at axis
x3−i = 0 if condition (16) is satisfied. (18) is proved similarly to that in (i).

Since the conditions of statements 1 and 2 are not satisfied, the maximum of the
function F (x) is at one of the axes x1 = 0 or x2 = 0. Condition

∑
k ρkiαk > 1,

i = 1, 2, implies that the function F (x) cannot have a maximum at the origin. This
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is because of relation (38), where both partial derivatives of the function R(x) given
by (40) are positive at x = 0. Moreover, one can prove as before that F (x) cannot
have a maximum on the boundary x1 + x2 = α1 + α2 or at a point, where xki = 0
while xi > 0.

First, we consider the case when system (13) does not have a solution βk ∈
(0,αk). Define the two following sets:

Z =

{
z: 0 6 zk 6 αk,

∑
k

ρk1zk = 1

}
,

W =

{
w: 0 6 wk 6 αk,

∑
k

ρk2wk = 1

}
.

Our assumption implies that either

max
z∈Z

∑
k

ρk2zk < 1 (61)

or

min
z∈Z

∑
k

ρk2zk > 1. (62)

It is easy to see that for i = 1, condition (16) is satisfied if and only if (61) holds. For
i = 2, condition (16) is satisfied if and only if (62) holds. This is because our assump-
tion implies that maxw∈W

∑
k ρk1wk < 1 if (62) holds, and minw∈W

∑
k ρk1wk > 1

if (61) holds. Hence, under condition (16), the maximum of function R(x) can be
only on axis x3−i = 0 because this is the only case when the partial derivative (43) is
negative.

Next, we consider the case when ∆ 6= 0, and system (13) has a solution βk ∈
(0,αk) but system (14) has a solution with γ1 6 0 or γ2 6 0. Hence, by lemmas 4
and 5 the function R(x) does not have a maximum inside S. By lemma 6 the function
R(x) cannot have local maximums on both axes simultaneously. These two facts prove
the statement.

4. It was proved in (i) that if
∑

k ρkiαk < 1, then function F (x) may have a
maximum only when xi = 0. This implies that x∗ = 0 is the unique maximum of
F (x) on the set C. �

6. Generalizations

We covered the bottleneck analysis for all cases that can occur when K = M = 2.
When M > 2 and K > 2 the bottleneck analysis becomes more complicated as many
more cases are possible and their complete exposition is beyond the scope of this
paper. However, in this section we state the results for an important subset of the
cases, where bottleneck groups are excluded. Generalizations described in this section
are based on comparison of the case of K = M = 2 with the previously studied cases
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of K = 1, M > 1 and M = 1, K > 1 [7,9,11]. These generalizations can be proved
by the same technique that is used in section 5 for K = M = 2.

In the case K = 1, M > 1, the network consists of one IS station and M single
servers (SS) numbered as 1, . . . ,M . SS 1 is a bottleneck if (see [7])

ρ1 > 1 and ρ1 > ρi, i = 2, . . . ,M. (63)

(Only the second index is used here since K = 1.) When there are multiple classes,
the load at PS station i is defined as a linear combination of the per-class loads, and
station i could be a bottleneck or belong to a bottleneck group if its load exceeds 1:∑

k

ρkiαk > 1. (64)

In the case M = 1, K > 1, the network consists of one IS station with K classes and
one PS station. The bottleneck condition (see [9,11]) is

∑
k ρkαk > 1. (Only the first

index is used here since i = 1.) Under this condition, the equation (cf. (17))∑
k

ρkαk
ρkγ + 1

= 1 (65)

has the unique positive solution γ∗, and x∗k is given by equation (18) with omitted
index i.

When both K,M > 1 the bottleneck identification becomes more complicated
as one can see from theorem 2. This is because more than one bottleneck may exist
and, in general, ordering of the loads for all PS stations (cf. (63)) does not identify
the bottleneck even in the case of one bottleneck (see statement 3 in theorem 2). Note
that (i) in statement 3 and statement 4 of theorem 2 apply for arbitrary K, M and are
already so stated. Moreover, statement 1 in theorem 2 directly generalizes for K > 2
if K = M .

In general, one can solve (14) with respect to βk and substitute this solution in
(13), which gives one system of nonlinear equations∑

k

ρkiαk
1 +

∑
j ρkjγj

= 1 (66)

with respect to γi instead of two systems of linear equations. Equations (66) are valid
only for those i that correspond to bottleneck PS stations for which γi > 0. For
non-bottleneck nodes γj = 0 in (66). To identify the bottleneck nodes it is necessary
to find the maximum subset BL = (i1, . . . , iL) of L (6 K) PS stations for which the
condition (64) is satisfied, and the system∑

k

ρkiαk
1 +

∑
j∈BL ρkjγj

= 1, i ∈ BL, (67)
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has a positive solution {γ∗i > 0, i ∈ BL} such that∑
k

ρkiαk
1 +

∑
j∈BL ρkjγ

∗
j

< 1, i /∈ BL (68)

(cf. (16) and (17)). These two conditions can be used for bottleneck identification
for any M and K, and, in particular, in the case when one of the systems of linear
equations in the generalization of statement 1 in theorem 2 does not have a positive
solution, i.e., not all PS stations are bottlenecks. Moreover, for K > M they cannot
be simplified.

The maximum number of bottleneck stations and groups is min(M ,K). When
M > K one can find K bottleneck nodes (if they exist) by solving linear equations (13)
and (14) for different subsets BK = (i1, . . . , iK) of K nodes, i.e., i ∈ BK in (13)
and (14). The subset B∗K is the bottleneck subset if both systems have positive solutions
for i ∈ B∗K and, in addition, ∑

k

ρkiβ
∗
k < 1, i /∈ B∗K . (69)

For a single class network K = 1 and under conditions (63), B1 = (1) and β1 =
1/ρ1, which in turn implies inequalities (69). However, we do not know whether
condition (69) can be further simplified for a general multiple class network.

Finally, for M > 2 more than one bottleneck group may exist and theorem 1
can be generalized for each group. Thus, in general, a multiple class network with
multiple PS stations may have bottleneck nodes, bottleneck groups and non-bottleneck
nodes.
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