
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014 4677

Linear Programming Decoding of
Spatially Coupled Codes
Louay Bazzi, Badih Ghazi, and Rüdiger L. Urbanke

Abstract— For a given family of spatially coupled codes, we
prove that the linear programming (LP) threshold on the binary-
symmetric channel (BSC) of the tail-biting graph cover ensemble
is the same as the LP threshold on the BSC of the derived
spatially coupled ensemble. This result is in contrast with the fact
that spatial coupling significantly increases the belief propagation
threshold. To prove this, we establish some properties related to
the dual witness for LP decoding. More precisely, we prove that
the existence of a dual witness, which was previously known
to be sufficient for LP decoding success, is also necessary and
is equivalent to the existence of certain acyclic hyperflows.
We also derive a sublinear (in the block length) upper bound
on the weight of any edge in such hyperflows, both for regular
low-density parity-check (LPDC) codes and spatially coupled
codes and we prove that the bound is asymptotically tight for
regular LDPC codes. Moreover, we show how to trade crossover
probability for LP excess on all the variable nodes, for any binary
linear code.

Index Terms— Linear programming (LP) decoding, spatially-
coupled codes, binary-symmetric channel (BSC), low-density
parity-check (LDPC) codes, factor graphs.

I. INTRODUCTION

IN RECENT years, Linear Programming (LP) decoding has
been extensively studied as a potential approach to decod-

ing an arbitrary binary linear code when transmitting over
a noisy communication channel. Following its introduction
in [11], it has been shown to have a good performance in
different setups. For instance, LP decoding corrects a constant
fraction of errors on certain codes [9] and achieves capacity
on a wide range of probabilistic channels [10]. In parallel,
spatial coupling emerged as a successful method for designing
capacity-achieving channel-coding schemes since its introduc-
tion by [14]. In particular, recent work by [17] and [18]
showed that spatially coupled codes significantly improve the

Manuscript received March 4, 2013; revised January 27, 2014; accepted
May 1, 2014. Date of publication June 2, 2014, date of current version
July 10, 2014. This paper was presented at the 2013 International Symposium
on Information Theory [BGU13].

L. Bazzi is with the Department of Electrical and Computer Engineer-
ing, American University of Beirut, Beirut 1107 2020, Lebanon (e-mail:
lb13@aub.edu.lb).

B. Ghazi was with the American University of Beirut, Beirut 1107
2020, Lebanon. He is now with the Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA (e-mail: badih@mit.edu).

R. Urbanke is with the Department of Electrical and Computer Engineering,
École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
(e-mail: ruediger.urbanke@epfl.ch).

Communicated by D. Burshtein, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2014.2325903

performance of BP decoding on any binary-input memoryless
output-symmetric channel.

However, the performance of LP decoding on spatially
coupled codes has remained elusive. In this work, we initiate
this study by proving that for a given family of spatially
coupled codes, the LP threshold on the BSC of the tail-biting
graph cover ensemble is the same as the LP threshold on
the BSC of the derived spatially coupled ensemble. (Roughly
speaking, a tail-biting graph cover code is a “circular version”
of a spatially coupled code. See Section II for the formal
definition of the tail-biting graph cover ensemble and for
some illustrating figures.) This result is in contrast with the
fact that spatial coupling significantly increases the Belief
Propagation (BP) threshold as shown in [17] and [18].

In the remainder of this introductory section, we give some
background on binary linear codes, LP decoding and spatially
coupled codes. We then state our technical contributions and
outline the remaining parts of the paper.

A. Binary Linear Codes

A binary linear code ζ of block length n is a subspace of the
F2-vector space F

n
2. The ε-BSC (Binary Symmetric Channel)

with input X ∈ F
n
2 and output Y ∈ F

n
2 flips each input bit

independently with probability ε. Let γ be the log-likelihood
ratio vector which is given by γi = log

(pYi |Xi (yi |0)

pYi |Xi (yi |1)

) =
(−1)yi log 1−ε

ε for any i ∈ {1, . . . , n}. The optimal decoder
is the Maximum Likelihood (ML) decoder which is given by

x̂ML = argmax
x∈ζ

pY |X (y|x)

= argmax
x∈ζ

n∏

i=1

pYi |Xi (yi |xi)

= argmax
x∈ζ

∏n
i=1 pYi |Xi (yi |xi)∏n
i=1 pYi |Xi (yi |0)

= argmax
x∈ζ

log

(n∏

i=1

pYi |Xi (yi |xi)

pYi |Xi (yi |0)

)

= argmax
x∈ζ

n∑

i=1

log

(
pYi |Xi (yi |xi)

pYi |Xi (yi |0)

)

= argmin
x∈ζ

n∑

i=1

γi xi

where the second equality follows from the fact that the
channel is memoryless. Since the objective function is linear

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4678 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

in x , replacing ζ by the convex hull conv(ζ) of ζ does not
change the value of the minimal solution. Hence, we get

x̂ML = argmin
x∈conv(ζ)

n∑

i=1

γi xi (1)

ML decoding is known to be NP-hard for general binary linear
codes [3]. This motivates the study of suboptimal decoding
algorithms that have small running times.

B. Linear Programming Decoding

LP decoding was introduced by [11], [8] and is based on
the idea of replacing conv(ζ) in (1) with a larger subset of R

n ,
with the goal of reducing the running time while maintaining a
good error correction performance. First, note that conv(ζ) =
conv(

⋂
j∈C ζ j) where ζ j = {z ∈ {0, 1}n : wt (z|N(j)) is even}1

for all j in the set C of check nodes corresponding to a fixed
Tanner graph of ζ and where N(j) is the set of all neighbors
of check node j . Then, LP decoding is given by relaxing
conv(

⋂
j∈C ζ j) to

⋂
j∈C conv(ζ j):

x̂L P = argmin
x∈P

n∑

i=1

γi xi (2)

where P = ⋂
j∈C conv(ζ j) is the so-called “fundamental

polytope” that will be carefully considered in the proof of
Theorem 3.2. A central property of P is that, in the case of
LDPC codes, it can be described by a number of inequalities
that is linear in n, which implies that the linear program (2) can
be solved in time polynomial in n using the ellipsoid algorithm
or interior point methods.

When analyzing the operation of LP decoding, one can
assume that the all-zeros codeword was transmitted [11]. Then,
by normalizing the expression for the log-likelihood ratio γ
given in Section I-A by the positive constant log(1−ε

ε), we
can assume that the log-likelihood ratio is given by γi = 1 if
yi = 0 and γi = −1 if yi = 1 for all i ∈ {1, . . . , n}. As in
previous work, we make the conservative assumption that LP
decoding fails whenever there are multiple optimal solutions
to the linear program (2). In other words, under the all-zeros
codeword assumption, LP decoding succeeds if and only if
the zero codeword is the unique optimal solution to the linear
program (2). In order to show that LP decoding corrects a
constant fraction of errors when the Tanner graph has sufficient
expansion, [9] introduced the concept of a dual witness, which
is a dual feasible solution with zero cost and with a given
set of constraints having a positive slack. By complementary
slackness, it follows that the existence of a dual witness
implies LP decoding success [9]. A simplified (but equivalent)
version of this dual witness, called a hyperflow, was introduced
in [6] (and later generalized in [13]) and used to prove
that LP decoding can correct a larger fraction of errors in
a probabilistic setting. This hyperflow will be described in
Section III. However, it was unkown whether the existence
of a hyperflow (or equivalently that of a dual witness) is

1For x ∈ {0, 1}n and S ⊆ {1, . . . , n}, x|S ∈ {0, 1}n denotes the restriction
of x to S, i.e., (x|S)i = xi if i ∈ S and (x|S)i = 0 otherwise, and wt (x)
denotes the Hamming weight of x .

necessary for LP decoding success. We will show, by careful
consideration of the fundamental polytope P , that this is
indeed the case.

C. Spatially Coupled Codes

The idea of spatial coupling has been recently used in
coding theory, compressive sensing and other fields. Spatially
coupled codes (or convolutional LDPC codes) were introduced
in [14]. Recently, [17] showed that the BP threshold of
spatially coupled codes is the same as the MAP (Maximum
A posteriori Probability) threshold of the base LDPC code in
the case of the Binary Erasure Channel (BEC). Moreover, [18]
showed that spatially coupled codes achieve capacity under
belief propagation. In compressive sensing, [7], [15], [16]
showed that spatial coupling can be used to design dense
sensing matrices that achieve, under an approximate message
passing algorithm, the same peformance as the optimal l0-
norm minimizing compressive sensing decoder. In coding
theory, the intuition behind the improvement in performance
due to spatial coupling is that the check nodes located at the
boundaries have low degrees which enables the BP algorithm
to initially recover the transmitted bits at the boundaries.
Then, the other transmitted bits are progressively recovered
from the boundaries to the center of the code. A similar
intuition is behind the good performance of spatial coupling
in compressive sensing [7].

D. Contributions

We prove that the LP threshold of the spatially coupled
ensemble on the BSC is the same as that of the tail-biting
graph cover ensemble (Theorem 9.1). To do so, we prove some
general results about LP decoding of LDPC codes that may
be of independent interest:

1) We prove that the existence of a dual witness which was
previously known to be sufficient for LP decoding suc-
cess is also necessary and is equivalent to the existence
of certain acyclic hyperflows (Theorem 3.2).

2) We derive a sublinear (in the block length) upper bound
on the weight of any edge in the hyperflow, for regular
LDPC codes (Theorem 5.1) and spatially coupled codes
(Theorem 6.1). In the regular case, we show that our
bound is asymptotically tight (Theorem 5.11).

3) We show how to trade crossover probability for “LP
excess” on all the variable nodes, for any binary linear
code (Theorem 8.1).

E. Outline

The paper is organized as follows. In Section II, we formally
state the main result of the paper and give a high-level sketch
of the proof. In Section III, we prove that the existence of
a dual witness which was previously known to be sufficient
for LP decoding success is also necessary and is equivalent
to the existence of certain weighted directed acyclic graphs.
In Section IV, we show how to transform those weighted
directed acyclic graphs into weighted directed forests while
preserving their central properties. In Section V, we prove,

BAZZI et al.: LP DECODING OF SPATIALLY COUPLED CODES 4679

using the result of Section IV, a sublinear (in the block
length) upper bound on the weight of any edge in such graphs,
for regular codes. An analogous upper bound is proved in
Section VI for spatially coupled codes. In Section VII, we
relate LP decoding on a tail-biting graph cover code and on a
spatially coupled code. In Section VIII, we show how to trade
crossover probability for “LP excess” on all the variable nodes,
for any binary linear code. The results of Sections VI, VII
and VIII are finally used in Section IX, where we prove the
main result of the paper.

F. Notation and Terminology

We denote the set of all non-negative integers by N. For
any integers n, a, b with n ≥ 1, we denote by [n] the set
{1, . . . , n} and by [a : b] the set {a, . . . , b}. For any event A,
let A be the complement of A. For any vertex v of a graph G,
we let N(v) denote the set of all neighbors of v in G. For any
x ∈ {0, 1}n and any S ⊆ [n], let x |S ∈ {0, 1}n s.t. (x |S)i = xi

if i ∈ S and (x |S)i = 0 otherwise. A binary linear code ζ can
be fully described as the nullspace of a matrix H ∈ F

r×n
2 (with

r ≥ n−k), called the parity check matrix of ζ . For a fixed H ,
ζ can be graphically represented by a Tanner graph (V , C, E)
which is a bipartite graph where V = {v1, . . . , vn} is the set
of variable nodes, C = {c1, . . . , cr } is the set of check nodes
and for any i ∈ [n] and any j ∈ [r], (vi , c j) ∈ E if and only
if H j,i = 1. If H is sparse, then ζ is called a Low-Density
Parity-Check (LDPC) code. LDPC codes were introduced and
first analyzed by Gallager [12]. If the number of ones in each
column of H is dv and the number of ones in each row of H is
dc, ζ is called a (dv, dc)-regular code. We let d̂v = (dv−1)/2.
Throughout the paper, we assume that n, dc, dv > 2.

II. MAIN RESULT

First, we define the spatially coupled codes under consider-
ation.

Definition 2.1 (Spatially Coupled Code): A (dv, dc = kdv,
L, M) spatially coupled code, with dv an odd integer and
M divisible by k, is constructed by considering the index set
[−L − d̂v : L + d̂v] and satisfying the following conditions:2

1) M variable nodes are placed at each position in [−L :
L] and M dv

dc
check nodes are placed at each position in

[−L − d̂v : L + d̂v].
2) For any j ∈ [−L+ d̂v : L− d̂v], a check node at position

j is connected to k variable nodes at position j + i for
all i ∈ [−d̂v : d̂v].

3) For any j ∈ [−L − d̂v : −L + d̂v − 1], a check node at
position j is connected to k variable nodes at position
i for all i ∈ [−L : j + d̂v].

4) For any j ∈ [L − d̂v + 1 : L + d̂v], a check node at
position j is connected to k variable nodes at position
i for all i ∈ [j − d̂v : L].

5) No two check nodes at the same position are connected
to the same variable node.3

2Informally, 2L + 1 is the number of “layers” and M is the number of
variable nodes per “layer”.

3This implies that for any i ∈ [−L : L], a variable node at position i is
connected to exactly one check node at position i+ j for every j ∈ [−d̂v : d̂v].
This also implies that every variable node has degree dv.

Fig. 1. Example of a spatially coupled codes with 2L + dv vertical layers.

An example of a spatially-coupled code is given in Figure 1.
With the exception of the non-degeneracy condition 5,
Definition 2.1 above is the same as that given in Section II-A
of [17]. We next define the tail-biting graph cover codes
under consideration which are similar to the tail-biting LDPC
convolutional codes introduced by [22].

Definition 2.2 (Tail-Biting Graph Cover Code): A (dv, dc=
kdv, L, M) tail-biting graph cover code, with dv an odd
integer and M divisible by k, is constructed by considering
the index set [−L : L] and satisfying the following conditions:

1) M variable nodes and M dv
dc

check nodes are placed at
each position in [−L : L].

2) For any j ∈ [−L : L], a check node at position j
is connected to k variable nodes at position (j + i)
mod [−L : L] for all i ∈ [−d̂v : d̂v].

3) No two check nodes at the same position are connected
to the same variable node.4

Figure 2 shows the construction of a tail-biting graph cover
code with L layers. Note that “cutting” a tail-biting graph
cover code at any position i ∈ [−L : L] yields a spatially
coupled code. This motivates the following definition.

Definition 2.3 (Derived Spatially Coupled Codes): Let ζ
be a (dv, dc = kdv, L, M) tail-biting graph cover code. For
each i ∈ [−L : L], the (dv, dc = kdv, L − d̂v, M) spatially
coupled code ζ ′i is obtained from ζ by removing all M
variable nodes and their adjacent edges at each position
i + j mod [−L : L] for every j ∈ [0 : 2d̂v − 1]. Then,
D(ζ) = {ζ ′−L , . . . , ζ ′L} is the set of all 2L + 1 derived
spatially coupled codes of ζ .
Figure 3 shows how to obtain a derived spatially coupled code.

Definition 2.4 (Ensembles and Thresholds): Let � be an
ensemble, i.e., a probability distribution over codes. The LP
threshold ξ of � on the BSC is defined as ξ = sup{ε >
0 | Pr ζ∼�

ε-BSC
[LP decoding error on ζ] = o(1)}.5

We are now ready to state the main result of this paper.
Theorem 2.5 (Main Result: ξGC = ξSC): Let �GC be a

(dv, dc = kdv, L, M) tail-biting graph cover ensemble with
dv an odd integer and M divisible by k. Let �SC be the
(dv, dc = kdv, L− d̂v, M) spatially coupled ensemble which is
sampled by choosing a tail-biting graph cover code ζ ∼ �GC

4This implies that for all i ∈ [−L : L], a variable node at position i is
connected to exactly one check node at position (i + j) mod [−L : L] for
each j ∈ [−d̂v : d̂v]. This also implies that every variable node has degree dv.

5Here, the o(1) is w.r.t. the block length n of the codes in the ensemble �.
In the case of spatially coupled codes and tail-biting graph cover codes where
dv and dc are constants, we have that n = O(L ×M) where we will express
M as a function of L . Thus, in our case, the o(1) can be equivalently be taken
to be w.r.t. L .

4680 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Fig. 2. Construction of a tail-biting graph cover ensemble.

and returning a element of D(ζ) chosen uniformly at random6.
Denote by ξGC and ξSC the respective LP threholds of �GC

and �SC on the BSC. Then, there exists ν > 0 depending only
on dv and dc s.t. if M = o(Lν) and �SC satisfies the property
that for any constant � > 0,

Pr ζ ′∼�SC
(ξSC−�)-BSC

[LP decoding error on ζ ′] = o(
1

L2) (3)

then, ξGC = ξSC .
Note that for M = ω(log L), condition (3) above is

expected to hold for the spatially coupled ensemble �SC

since under iterative decoding algorithms, the error proba-
bility on the (ξSC − �)-BSC is expected to decay to zero
as O(Le−c×�2×M) for some constant c > 0. Moreover,
note that in the regime M =
(Lδ) (for any positive
constant δ), spatial coupling provides empirical improvements
under iterative decoding and in fact, the improvement is
expected to take place as long as L is subexponential in
M [20].

A. High Level Sketch of the Proof

The main part of the proof is to show that ξGC ≥ ξSC .
We need to show that, for any ε ≤ ξSC , the LP decoder
succeeds with high probability on the tail-biting graph cover
code when we transmit on the ε-BSC. Since ε ≤ ξSC , when
transmitting on a random spatially-coupled code over the
ε-BSC, the LP decoder succeeds with high probability. First,

6Here, D(ζ) refers to Definition 2.3.

Fig. 3. Derived spatially coupled codes: This figure shows 3 out of the 2L+1
spatially coupled codes that are derived from the tail-biting graph cover code
constructed in Figure 2.

we show that this LP decoding success implies the existence
of a dual witness (Theorem 3.2). Then, we prove that the
maximum weight of an edge in an acyclic version of this
dual witness is sublinear in the block length (Theorem 6.1).
We next show that if we instead transmit on a derived spatially-
coupled code over the (ε−δ)-BSC, then with high probability,
there exists a dual witness with slack at least δ/2 in all the
variable node inequalities (Theorem 8.1). We finally use this
slack along with the sublinear upper bound on the edge weight
in order to prove that the average of the dual witnesses for
each of the 2L + 1 derived spatially coupled codes forms
a dual witness for the tail-biting graph cover code (Proof
of Theorem 9.1). Thus, we conclude that, with high proba-
bility, there is LP decoding success on the tail-biting graph
cover code.

On a high level, the reason why LP decoding does not
benefit from spatial coupling is the sublinear (in the block
length) upper bound on the edge weight in an acyclic dual
witness. This sublinear upper bound prevents the correction
that might be taking place at the boundaries of the code from
significantly propagating toward the center of the code. Such
a propagation was at the basis of the improvement in the
performance of BP due to spatial coupling.

BAZZI et al.: LP DECODING OF SPATIALLY COUPLED CODES 4681

III. LP DECODING, DUAL WITNESSES,
HYPERFLOWS AND WDAGS

The dual of the LP decoder was first examined in [9] (and
further studied in [4], [23] and [24]). The following definition
is based on Definition 1 of [9].

Definition 3.1 (Dual Witness): For a given Tanner graph
T = (V , C, E) and a (possibly scaled) log-likelihood ratio
function γ : V → R, a dual witness w is a function
w : E → R that satisfies the following 2 properties:

∀v ∈ V :
∑

c∈N(v):
w(v,c)>0

w(v, c) <
∑

c∈N(v):
w(v,c)≤0

(−w(v, c))+ γ (v) (4)

∀c ∈ C,∀v, v ′ ∈ N(c) : w(v, c)+ w(v ′, c) ≥ 0 (5)
The following theorem relates the existence of a dual

witness to LP decoding success. The fact that the existence
of a dual witness implies LP decoding success was shown
in [9]. We prove that the converse of this statement is also
true. This converse will be used in the proof of Theorem 8.1.

Theorem 3.2 (Existence of a Dual Witness and LP
Decoding Success): Let T = (V , C, E) be a Tanner graph of
a binary linear code with block length n and let η ∈ {0, 1}n
be any error pattern. Then, there is LP decoding success for
η on T if and only if there is a dual witness for η on T .

Proof of Theorem 3.2: See Appendix -A. �
Remark 3.3: The proof of Theorem 3.2 holds for non-binary

error patterns, i.e., for arbitrary log-likelihood ratios.
The following definition is based on Definition 1 of [6].

Definition 3.4 (Hyperflow): For a given Tanner graph T =
(V , C, E) and a (possibly scaled) log-likelihood ratio function
γ : V → R, a hyperflow w is a function w : E → R that
satisfies property (4) above as well as the following property:

∀c ∈ C, ∃Pc ≥ 0, ∃v ∈ N(c) s.t. w(v, c) = −Pc

and ∀v ′ ∈ N(c) s.t. v ′ �= v,w(v ′, c) = Pc (6)
By Proposition 1 of [6], the existence of a hyperflow is

equivalent to that of a dual witness. Hence, by Theorem 3.2
above, we get:

Corollary 3.5 (Existence of a Hyperflow and LP Decoding
Success): Let T = (V , C, E) be a Tanner graph of a binary
linear code with block length n and let η ∈ {0, 1}n be any
error pattern. Then, there is LP decoding success for η on T
if and only if there is a hyperflow for η on T .

Definition 3.6 (WDG and WDAG Corresponding to a
Hyperflow or a Dual Witness): Let T = (V , C, E) be a Tanner
graph, γ : V → R a (possibly scaled) log-likelihood ratio
function and w : E → R a dual witness or a hyperflow. The
weighted directed graph (WDG) (V , C, E, w, γ) associated
with T ,γ and w has vertex set V ∪C and for any v ∈ V and
any c ∈ C, an arrow is directed from v to c if w(v, c) > 0,
an arrow is directed from c to v if w(v, c) < 0 and v and c
are not connected by an arrow if w(v, c) = 0. Moreover, a
directed edge between v ∈ V and c ∈ C has weight |w(v, c)|.
If the arrows of (V, C, E, w, γ) contain no directed cycles,
then (V , C, E, w, γ) is said to be weighted directed acyclic
graph (WDAG).

The following theorem shows that whenever there exists a
WDG corresponding to a hyperflow or a dual witness, there
also exists a WDAG corresponding to a hyperflow.

Algorithm 1 Transforming the Dual Witness WDG G for γ
Into a Hyperflow WDAG G′′ for γ

Input: G = (V , C, E, w, γ)
Output: G′′ = (V , C, E, w′′, γ)

G′ = (V , C, E, w′, γ) ← G
while G′ has a directed cycle do

c ← any directed cycle of G′
wmin ← minimum weight of an edge of c � All edges

along c have a positive weight.
Subtract wmin from the weights of all edges of c
Remove all zero weight edges
Store the resulting WDG in G′

end while

for all j ∈ C do
d(j) ← degree of j
{v1, . . . , vd(j)} ← neighbours of j in order of increasing

w′(vi , j)
if w′(v1, j) ≥ 0 then � All edges are directed toward j

and can thus be removed.
w′′(vi , j) ← 0 ∀i ∈ [d(j)]

else � (v1, j) is the only edge directed away from j .
w′′(v1, j) ← w′(v1, j)
w′′(vi , j) ← |w′(v1, j)| ∀i ∈ {2, . . . , d(j)}

end if
end for

Theorem 3.7 (Existence of a WDAG): Let T = (V , C, E)
be a Tanner graph of a binary linear code with block
length n and let η ∈ {0, 1}n be any error pattern. If G =
(V , C, E, w, γ) is a WDG (Weighted Directed Graph) corre-
sponding to a dual witness for η on T , then there is an WDAG
G′′ = (V , C, E, w′′, γ) corresponding to a hyperflow for
η on T .

Before proving Theorem 3.7, we summarize the different
characterizations of LP decoding success.

Theorem 3.8: Let T = (V , C, E) be a Tanner graph of a
binary linear code with block length n and let η ∈ {0, 1}n be
any error pattern. Then, the following are equivalent:

1) There is LP decoding success for η on T .
2) There is a dual witness for η on T .
3) There is a hyperflow for η on T .
4) There is a WDAG for η on T .
In order to prove Theorem 3.7, we give an algorithm that

transforms a WDG G satisfying Equations (4) and (5) into
an acyclic WDG G′′ satisfying Equations (4) and (6). The
description of this algorithm is given in Algorithm 1.

The output of Algorithm 1 on a particular input is given in
Figure 4.

The next lemma is used to complete the proof of
Theorem 3.7.

Lemma 3.9: After each iteration of the while loop of
Algorithm 1, we have

(I) The number of cycles of G′ decreases by at least 1.
(II) G′ satsifies the dual witness equations (4) and (5).

4682 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Fig. 4. Output of Algorithm 1 on a given input.

Proof of Lemma 3.9: (I) follows from the fact that cycle
c is being broken in every iteration of the while loop and
no new cycle is added by reducing the absolute weights
of some edges of the WDG. (II) follows from the fact
that during any iteration of the while loop, we are possi-
bly repeatedly reducing the absolute weights of one ingoing
and one outgoing edge of a variable or check node by the
same amount, which maintains the original LP constraints (4)
and (5). �

Proof of Theorem 3.7: First, note that the while loop of
Algorithm 1 will be executed a number of times no larger than
the number of cycles of G, which is finite. By Lemma 3.9,
after the last iteration of the while loop, G′ is an acyclic
WDG that satisfies (4) and (5). The for loop of Algorithm 1
decreases the weights of edges that are directed away from
variable nodes; thus, it maintains (4) and G′′ inherits the
acyclic property of G′. Moreover, G′′ satsifies (6), which
completes the proof Theorem 3.7. �

Remark 3.10: We note the following:

• If we let G be a WDG of a (dv, dc)-regular code and let
G′ be the WDAG obtained by running Algorithm 1 on
G, then each check node of G ′ has either degree dc or
degree 0, and every variable node of G′ has degree at
most dv.

• In virtue of Theorem 3.2, Theorem 3.5 and Theorem 3.7,
we will use the terms “hyperflow”, “dual witness” and
“WDAG” interchangeably in the rest of this paper.

IV. TRANSFORMING A WDAG INTO A DIRECTED

WEIGHTED FOREST

The WDAG corresponding to a hyperflow has no directed
cycles but it possibly has cycles when viewed as an undirected
graph. In this section, we show how to transform the WDAG
corresponding to a hyperflow into a directed weighted forest
(which is by definition a directed graph that is acyclic even
when viewed as an undirected graph). This forest has possibly
a larger number of variable and check nodes than the original

WDAG but it still satisfies Equations (4) and (6). Each variable
node v ′ of the forest will correspond to one variable node v
of the original WDAG. Similarly, each check node c′ of the
forest will correspond to one check node c of the original
WDAG. Moreover, the set of variable nodes of the forest
corresponding to a particular variable node v of the original
WDAG will have their weights sum up to the original weight
of v.7 Furthermore, the directed paths of the forest will be
in a bijective correspondence with the directed paths of the
original WDAG. This transformation will be used when we
derive an upper bound on the weight of an edge in a WDAG
of a (dv, dc)-regular LDPC code in Section V and of a spatially
coupled code in Section VI.

Theorem 4.1 (Transforming a WDAG Into a Directed
Weighted Forest): Let G = (V , C, E, w, γ) be a WDAG.
Then, G can be transformed into a directed weighted forest
T = (V ′, C ′, E ′, w′, γ ′) that has the following properties:

1) V ′ = ⋃

v∈V
V ′v where V ′x ∩ V ′y = ∅ for all x, y ∈ V s.t.

x �= y. For every v ∈ V , each variable node in V ′v is
called a “replicate” of v.

2) C ′ = ⋃

c∈C
C ′c where C ′x ∩ C ′y = ∅ for all x, y ∈ C s.t.

x �= y. For every c ∈ C, each check node in C ′c is called
a “replicate” of c.

3) For all v ∈ V ,
∑

v ′∈V ′v γ ′(v ′) = γ (v).
4) For all v ∈ V and all v ′ ∈ Vv , γ ′(v ′) has the same sign

as γ (v).
5) The forest T satisfies the hyperflow equations (4)

and (6).
6) The directed paths of G are in a bijective correspon-

dence with the directed paths of T . Moreover, if the
directed path h′ of T corresponds to the directed path
h of G, then the variable and check nodes of h′ are
replicates of the corresponding variable and check nodes
of h. For instance, if

h = v1 → c1→ · · · → vl → cl → vl+1

and

h′ = v ′1 → c′1 → · · · → v ′l → c′l → v ′l+1

then v ′i ∈ V ′vi
for all i ∈ [l + 1] and c′i ∈ C ′ci

for all
i ∈ [l] where V ′vi

and C ′ci
are given in 1. and in 2. above

respectively.
7) If G has a single sink node with a single incoming edge

that has weight α, then T has a single sink node with a
single incoming edge and that has the same weight α.

The proof of Theorem 4.1 (given in Appendix -B) is based
on the following algorithm which transforms the WDAG G
into the directed weighted forest T .

Note that the notion of “ancestors” in Algorithm 2 is with
respect to the directions of the arrows of the WDAG. A sample
execution of this algorithm is shown in Figure 5 and Figure 6.

The analysis of Algorithm 2 and the proof of Theorem 4.1
are given in Appendix -B.

7In a WDAG G = (V, C, E, w, γ), the weight of vertex v ∈ V is γ (v).
8A topological ordering of a directed graph is an ordering of its vertices

s.t. for every directed edge (u, v), u comes before v in the ordering.

BAZZI et al.: LP DECODING OF SPATIALLY COUPLED CODES 4683

Algorithm 2 Transforming the WDAG G Into the Directed
Weighted Forest T
Input: G = (V , C, E, w, γ)
Output: T = (V ′, C ′, E ′, w′, γ ′)

for each v ∈ V taken in topological order8 do
p ← number of outgoing edges of v

{e(v)
j }pj=1← weights of outgoing edges of v

e(v)
T ←

p∑

j=1

e(v)
j

Create p replicates of the subtree rooted at v �
Contains all ancestors of v in the current WDAG

for each l ∈ [p] do
Scale the lth subtree by e(v)

l /e(v)
T � The weights of

all variable nodes and edges are scaled
Connect the lth subtree to the lth outgoing edge of v

end for
end for

Fig. 5. Input to Algorithm 2 which is a (dv = 3, dc = 4)-regular graph.
The labels on the edges correspond to the e(v)

j variables in the description of
Algorithm 2. See Figure 6 for the output of Algorithm 2 on this input.

V. MAXIMUM WEIGHT OF AN EDGE IN A WDAG
OF A REGULAR CODE ON THE BSC

In this section, we present a sublinear (in the block length n)
upper bound on the weight of an edge in a WDAG of a regular
code. On a high level, the reason why such an upper bound
will be useful to us in later sections is that the larger the edge
weight can be, the easier it is for variables received correctly
to help correct variables in error that are located far away
in the graph. The main idea of the proof of the sublinear
upper bound on the edge weight in a WDAG of a regular code
is the following. Consider a WDAG G of a (dv, dc)-regular
LDPC code. Note that each variable node has a log-likelihood
ratio of ±1. Thus, the total amount of flow available in the

Fig. 6. Output of Algorithm 2 on the input given in Figure 5. Note that v9,
v ′9 and v ′′9 are replicates of each other and that v ′′9 is created in the iteration
corresponding to node v12.

WDAG is most n. Moreover, for a substantial weight to get
“concentrated” on an edge in the WDAG, the +1’s should
“move” from variable nodes across the WDAG toward that
edge. By the hyperflow equation (6), each check node cuts its
incoming flow by a factor of dc− 1. Thus, it can be seen that
the maximum weight that can get concentrated on an edge is
asymptotically smaller than n.

Theorem 5.1 (Maximum Weight of an Edge in the WDAG
of a Regular Code on the BSC): Let G = (V , C, E, w, γ) be
a WDAG corresponding to LP decoding of a (dv, dc)-regular
LDPC code (with dv, dc > 2) on the BSC. Let n = |V | and
αmax = max

e∈E
|w(e)| be the maximum weight of an edge in G.

Then,

αmax ≤ cn
ln(dv−1)

ln(dv−1)+ln(dc−1) = o(n) (7)

for some constant c > 0 depending only on dv.
We now state and prove a series of lemmas that leads to

the proof of Theorem 5.1.
Definition 5.2 (Root-Oriented Tree): A root-oriented tree is

defined in the same way as the WDAG in Definition 3.4 and
Theorem 3.7 but with the further constraints that T has a
single sink node (which is a variable node) and that T is a
tree when viewed as an undirected graph. Note that the name
“root-oriented” is due to the fact that the edges are oriented
toward the root of the tree, as shown in Figure 7.

Remark 5.3: Algorithm 2 can also be used to generate the
directed weighted forest corresponding to the subset of the

4684 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Fig. 7. An example of a root-oriented tree with its root being the variable
node v0.

WDAG consisting of all variable and check nodes that are
ancestors9 of a given variable node v. In this case, the output
is a root-oriented tree with its single sink node being the
unique replicate of v.

Definition 5.4 (Gmax, αmax): Let G = (V , C, E, w, γ)
be a WDAG. Let emax = (vmax , cmax) =
argmax(v,c):w(v,c)≤0 |w(v, c)| and let αmax = |w(vmax , cmax)|.
Let Vmax = Vreach ∪ {vmax } where Vreach is the set of all
variable nodes v ∈ V s.t. cmax is reachable from v in G and let
Cmax be the set of all check nodes c ∈ C s.t. cmax is reachable
from c in G.10 Let Gmax = (Vmax , Cmax , Emax , wmax , γmax)
be the corresponding WDAG.

Definition 5.5 (Depth of a Variable Node in a Root-
Oriented Tree): Let T be a root-oriented tree with root v0.
For any variable node v in T , the depth of v in T is defined
to be the number of check nodes on the unique directed path
from v to v0 in T .

Definition 5.6 (F-Function): Let G = (V , C, E, w, γ)
be a WDAG. For any S ⊆ V , define F(S) =∑

v∈S
∑

c∈N(v):w(v,c)≥0 w(v, c). In other words, F(S) is the
sum of all the “flow” leaving variable nodes in S to adjacent
check nodes.

Lemma 5.7: Let G = (V , C, E, w, γ) be a WDAG cor-
responding to LP decoding of a (dv, dc)-regular LDPC
code (with dv, dc > 2) on the BSC and let Gmax =
(Vmax , Cmax , Emax , wmax , γmax) be the WDAG correspond-
ing to Definition 5.4. Let nmax = |Vmax | and T =
(V ′, C ′, E ′, w′, γ ′) be the output of Algorithm 2 on input
Gmax .11 Note that T is a root-oriented tree with root vmax

which has a single incoming edge with weight αmax (by
Theorem 4.1). Let dmax be the maximum depth of a variable
node in T and for any m ∈ {0, . . . , dmax}, let Sm be the set
of all variable nodes in T with depth equal to m. Moreover,
for all i ∈ {0, . . . , dmax} and all j ∈ [nmax], let di, j denote
the number of replicates of variable node v j having depth
equal to i in T . Furthermore, for every k ∈ [di, j], let �i, j,k be
the γ ′ value of the kth replicate of v j among those having
depth equal to i in T . Then, for all m ∈ {1, . . . , dmax},

9The notion of “ancestors” here is with respect to the directions of the
arrows. For example, in Figure 7, check node c1 and variable node v1 are
both ancestors of variable node v0.

10Note that cmax ∈ Cmax .
11Note that by Definition 5.4, Gmax has a single sink node vmax which has

a single incoming edge emax = (vmax , cmax). Hence, part 7 of Theorem 4.1
applies to Gmax .

we have: (Pm):

F(Sm)≥ (dc − 1)mαmax−
m−1∑

i=0

(dc − 1)m−i
nmax∑

j=1

di, j∑

k=1

�i, j,k (8)

Proof of Lemma 5.7: For any S ⊆ V ′, let �(S) be the set of
all v ∈ V ′ for which there exist s ∈ S and a directed path from
v to s in T containing exactly one check node. We proceed
by induction on m.
Base Case: m = 1. We note that S1 = �({vmax}) and that vmax

is the only variable node in T having depth equal to 0 in T .
Hence, for the hyperflow to satisfy (6), we should have12:

F(S1) ≥ (dc − 1)(αmax − γ ′(vmax))

= (dc − 1)αmax −
0∑

i=0

(dc − 1)1
nmax∑

j=1

di, j∑

k=1

�i, j,k

Note that the last equality follows from the facts that d0, j = 1
if v j = vmax and d0, j = 0 otherwise, and that �i, j,k =
γ ′(vmax) if v j = vmax and k = 1 and �i, j,k = 0 otherwise.
Inductive Step: We need to show that if (Pm) is true for some
1 ≤ m ≤ dmax − 1, then (Pm+1) is also true. Assuming that
(Pm) is true, Sm satisfies Equation (8). Since T is a root-
oriented tree, Sm+1 = �(Sm). Hence, for the hyperflow to
satisfy (6), we should have:

F(Sm+1) ≥ (dc − 1)
(
F(Sm)−

nmax∑

j=1

dm, j∑

k=1

�m, j,k
)

≥ (dc − 1)[(dc − 1)mαmax

−
m−1∑

i=0

(dc − 1)m−i
nmax∑

j=1

di, j∑

k=1

�i, j,k−
nmax∑

j=1

dm, j∑

k=1

�m, j,k]

= (dc − 1)m+1αmax

−
m∑

i=0

(dc − 1)m+1−i
nmax∑

j=1

di, j∑

k=1

�i, j,k

�
Definition 5.8 (Depth of a Variable Node in a WDAG With

a Single Sink Node): Let G = (V , C, E, w, γ) be a WDAG
with a single sink node v0 ∈ V and let v ∈ V . The depth of v
in G is defined to be the minimal number of check nodes on
a directed path from v to v0 in G.

Corollary 5.9: Let gmax be the maximum depth of a vari-
able node v ∈ Vmax in the WDAG Gmax (which has a single
sink node vmax).13 Then,

αmax ≤ max
(T0,...,Tgmax)∈W

f (T0, . . . , Tgmax) (9)

where:

f (T0, . . . , Tgmax) =
gmax∑

i=0

Ti

(dc − 1)i

12In the terminology of (6), we here have that Pc ≥ αmax − γ ′(vmax).
13Note that in general gmax ≤ dmax but the two quantities need not be

equal.

BAZZI et al.: LP DECODING OF SPATIALLY COUPLED CODES 4685

and W is the set of all tuples (T0, . . . , Tgmax) ∈ N
gmax+1

satisfying the following three equations:
gmax∑

i=0

Ti = nmax (10)

T0 = 1 (11)

For all i ∈ {0, . . . , gmax − 1}, Ti+1 ≤ (dc − 1)(dv − 1)Ti

(12)
Proof of Corollary 5.9: Setting m = dmax in Lemma 5.7

and noting that the leaves of T have no entering flow, we get:

nmax∑

j=1

ddmax , j∑

k=1

�dmax , j,k ≥ F(Sdmax)

≥ (dc − 1)dmax αmax

−
dmax−1∑

i=0

(dc − 1)dmax−i
nmax∑

j=1

di, j∑

k=1

�i, j,k

Thus,

αmax ≤
dmax∑

i=0

1

(dc − 1)i

nmax∑

j=1

di, j∑

k=1

�i, j,k

Part 6 of Theorem 4.1 implies that for all v ∈ Vmax , the
depth of v in Gmax is equal to the minimum depth in T of a
replicate of v. By parts 3 and 4 of Theorem 4.1, we also have
that for all j ∈ [nmax], ∑dmax

i=0

∑di, j
k=1 �i, j,k ≤ 1 and for all i ∈

{0, . . . , dmax} and all k ∈ [di, j], �i, j,k ≤ 1 and {�i, j,k}i,k all
have the same sign. For every j ∈ [nmax], let d j be the depth
of v j in Gmax and note that d j ≤ i for every i ∈ {0, . . . , dmax}
for which there exists k ∈ [di, j] s.t. �i, j,k �= 0. Thus, we get
that:

αmax ≤
dmax∑

i=0

1

(dc − 1)i

nmax∑

j=1

di, j∑

k=1

|�i, j,k |

≤
nmax∑

j=1

1

(dc − 1)d j

dmax∑

i=0

di, j∑

k=1

|�i, j,k |

=
dmax∑

i=0

1

(dc − 1)i
Ti

where the last equality follows from the fact that∑dmax
i=0

∑di, j
k=1 |�i, j,k | = |∑dmax

i=0

∑di, j
k=1 �i, j,k | = 1 for every

j ∈ [nmax] with Ti being the number of variable nodes with
depth equal to i in Gmax for every i ∈ [dmax]. Note that the
notion of depth used here is the one given in Definition 5.8
since Gmax is a WDAG with a single sink node vmax . Since
Ti = 0 for all gmax < i ≤ dmax , we get:

αmax ≤
gmax∑

i=0

1

(dc − 1)i
Ti

Equations (10), (11) and (12) follow from the definitions of
Ti and gmax . �

Lemma 5.10: The RHS of Equation (9) is at most c ×
(nmax)

ln(dv−1)
ln(dv−1)+ln(dc−1) for some constant c > 0 depending only

on dv.

Proof of Lemma 5.10: Follows from Theorem A.8 in
Appendix -C with λ = 1, β = (dc−1)(dv−1) and m = nmax .

�
Proof of Theorem 5.1: Theorem 5.1 follows from Corol-

lary 5.9 and Lemma 5.10 by noting that |Vmax | ≤ |V | since
Vmax ⊆ V and that max

e∈E
|w(e)| = �(max

(v,c):w(v,c)≤0
|w(v, c)|)

by the hyperflow equation (6). �
We now show that the bound given in Theorem 5.1 is

asymptotically tight in the case of (dv, dc)-regular LDPC
codes.

Theorem 5.11 (Asymptotic Tightness of Theorem 5.1 for
(dv, dc)-Regular LDPC Codes): There exists an infinite family
of (dv, dc)-regular Tanner graphs {(Vn, Cn, En)}n, an infi-
nite family of error patterns {γn}n and a positive constant
c s.t.:

1) There exists a hyperflow for γn on (Vn, Cn , En). (Hence,
by Theorem 3.7, there exists a WDAG corresponding to
a hyperflow for γn on (Vn, Cn , En).)

2) Any WDAG (Vn, Cn, En, w, γn) corresponding to a
hyperflow for γn on (Vn, Cn, En) must have

max
e∈En
|w(e)| ≥ cn

ln(dv−1)
ln(dv−1)+ln(dc−1)

Proof of Theorem 5.11: See Appendix -D. �

VI. MAXIMUM WEIGHT OF AN EDGE IN THE WDAG OF A

SPATIALLY COUPLED CODE ON THE BSC

The upper bound of Theorem 5.1 holds for (dv, dc)-regular
LDPC codes. In this section, we derive a similar sublinear
(in the block length n) upper bound that holds for spatially
coupled codes.

Theorem 6.1 (Maximum Weight of an Edge in a Spatially
Coupled Code): Let G = (V , C, E, w, γ) be a WDAG
corresponding to LP decoding of any code of the (dv, dc =
kdv, L, M) spatially coupled ensemble on the BSC. Let n =
(2L+1)M = |V | be the block length of the code. Let αmax =
max
e∈E
|w(e)| be the maximum weight of an edge in G. Then,

αmax ≤ cn
ln(q)−ln(dc−1)

ln(q) = cn1−ε = o(n) (13)

for some constant c > 0 depending only on dv and where
q = dv(dc − 1) (dv−1)dv−1

dv−2 and 0 < ε = ln(dc−1)
ln(q) < 1.

We now state and prove a series of lemmas that leads to the
proof of Theorem 6.1. Note that a central idea in the proof
of Section V is that all check nodes being dc-regular in that
case, the flow at every check node is “cut” by a factor of
dc − 1. On the other hand, a (dv = 3, dc = 6, L, M) spatially
coupled code has 2M check nodes with degree 2 and the flow
is preserved at such check nodes. To show that even in this
case, the maximum weight of an edge is sublinear in the block
length, we argue that a check node that is not dc-regular should
have a dc-regular check node that is “close by” in the WDAG.
To simplify the argument, we first “clean” the WDAG of the
spatially coupled code to obtain a “reduced WDAG” with all
check nodes having either degree dc or degree 2. We also
use a notion of “regular check depth” which is the same as
the notion of depth of Section 6.1 except that only dc-regular
check nodes are now counted.

4686 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Definition 6.2 (Reduced WDAG): Let G = (V , C, E,
w, γ) be a WDAG and Gmax = (Vmax , Cmax , Emax , wmax ,
γmax) be the WDAG corresponding to Definition 5.4. The
reduced WDAG Gr of Gmax is obtained by processing Gmax

as follows so that each check node has either degree dc or
degree 2:

1) For every check node c of Gr with spatial index14 <
(−L+ d̂v), we remove all the incoming edges to c except
one that comes from a parent15 of c having maximal
spatial index.

2) For every check node c of T ′ with spatial index
>(L − d̂v), we remove all the incoming edges to c
except for one edge that comes from a parent of c having
minimal spatial index.

3) We keep only the variable nodes v s.t. vmax is still
reachable from v and the check nodes c s.t. vmax is
still reachable from c.

Note that in steps 1 and 2 above, the check nodes of Gr are
considered in an arbitrary order.

Definition 6.3 (Reduced Tree): A reduced tree with root v0
is a root-oriented tree with root v0 and where every check
node has either degree dc or degree 2.
Note that if we run Algorithm 2 on a reduced WDAG, the
output will be a reduced tree.

Definition 6.4 (Regular Check Depth of a Variable Node in
a Reduced Tree): Let T be a reduced tree with root v0. For
any variable node v of T , the regular check depth of v in T
is the number of dc-regular check nodes on the directed path
from v to v0 in T .

Lemma 6.5: Let G = (V , C, E, w, γ) be a WDAG corre-
sponding to LP decoding of a spatially coupled code on the
BSC, Gmax = (Vmax, Cmax , Emax , wmax , γmax) be the WDAG
corresponding to Definition 5.4, Gr = (Vr , Cr , Er , wr , γr)
be the reduced WDAG corresponding to Gmax and T =
(V ′r , C ′r , E ′r , w′r , γ ′r) be the output of Algorithm 2 on input
Gr . Let nr = |Vr |. Note that T is a reduced tree with root
vmax which has a single incoming edge with weight αmax (by
Theorem 4.1). Let rmax be the maximum regular check depth
in T of a variable node v ∈ V ′r . For all i ∈ {0, . . . , rmax}
and all j ∈ [nr], let yi, j be the number of replicates of
variable node v j having regular check depth equal to i in
T . Moreover, for all k ∈ [yi, j], let �i, j,k denote the γ ′r value
of the kth replicate of v j among those having regular check
depth equal to i in T . Then, for all m ∈ {1, . . . , rmax },
we have (Pm): There exists Um ⊆ V ′r consisting of vari-
able nodes having regular check depth m in T and s.t. all
variable nodes of T having regular check depth between
m + 1 and rmax (inclusive) are ancestors of Um in T
and s.t.:

F(Um)≥ (dc − 1)mαmax −
m−1∑

i=0

(dc − 1)m−i
nr∑

j=1

yi, j∑

k=1

�i, j,k (14)

Proof of Lemma 6.5: For any S ⊆ V ′r , let �(S) be the set
of all v ∈ V ′r for which there exist s ∈ S and a directed path

14The notion of “spatial index” used here is the one from Definition 2.1.
15The notion of “parent” of a node is the one induced by the direction of

the edges of Gr .

from v to s in T with the child of v on this path being the
unique dc-regular check node on the path.16 We proceed by
induction on m.
Base Case: m = 1. Let U1 = �({vmax}). Note that the
ancestors of vmax (inlcuding vmax) that are proper descendants
of nodes in U1 are exactly those variable nodes having regular
check depth equal to 0 in T . Hence, for the hyperflow to satisfy
Equation (6), we should have:

F(U1) ≥ (dc − 1)
(
αmax −

nr∑

j=1

y0, j∑

k=1

�0, j,k
)

= (dc − 1)1αmax −
0∑

i=0

(dc − 1)1
nr∑

j=1

yi, j∑

k=1

�i, j,k

Inductive Step: We need to show that if (Pm) is true for some
1 ≤ m ≤ (rmax − 1) then (Pm+1) is also true. Assuming that
(Pm) is true, there exists Um ⊆ V ′r that satisfies Equation (14)
and s.t. Um consists of variable nodes having regular check
depth m in T , and all variable nodes of T with regular check
depth between m+1 and rmax (inclusive) are ancestors of Um

in T . Let Um+1 = �(Um). Note that the variable nodes that
are ancestors of nodes in Um and proper descendants of nodes
in Um+1 are exactly those having regular check depth equal
to m in T . Hence, for the hyperflow to satisfy Equation (6),
we should have:

F(Um+1) ≥ (dc − 1)
(
F(Um)−

nr∑

j=1

ym, j∑

k=1

�m, j,k
)

≥ (dc − 1)[(dc − 1)mαmax

−
m−1∑

i=0

(dc − 1)m−i
nr∑

j=1

yi, j∑

k=1

�i, j,k−
nr∑

j=1

ym, j∑

k=1

�m, j,k]

= (dc − 1)m+1αmax

−
m−1∑

i=0

(dc − 1)m+1−i
nr∑

j=1

yi, j∑

k=1

�i, j,k

−(dc − 1)

nr∑

j=1

ym, j∑

k=1

�m, j,k

= (dc − 1)m+1αmax

−
m∑

i=0

(dc − 1)m+1−i
nr∑

j=1

yi, j∑

k=1

�i, j,k

Definition 6.6 (Regular Check Depth of a Variable Node
in a Reduced WDAG): Let Gr be a reduced WDAG with its
single sink node denoted by v0. For any variable node v of
Gr , the regular check depth of v in Gr is the minimum number
of dc-regular check nodes on a directed path from v to v0
in Gr .

Lemma 6.7: Let Gr be a reduced WDAG and zmax be the
maximum regular check depth of a variable node in Gr . For
all i ∈ {0, . . . , zmax}, let Ti be the number of variable nodes
in Gr with regular check depth equal to i . Then, for all

16Again, the notion of “child” here is the one induced by the direction of
the edges of T .

BAZZI et al.: LP DECODING OF SPATIALLY COUPLED CODES 4687

i ∈ {0, . . . , zmax − 1}:
Ti+1 ≤ qTi

where q = dv(dc − 1) (dv−1)dv−1
dv−2 . Moreover,

T0 ≤ 1+ (dv − 1)dv−1 − 1

dv − 2
= q0

Proof of Lemma 6.7: If, for any i ∈ {0, . . . , zmax }, we let
Wi be the set of all variable nodes in Gr with regular check
depth equal to i , then Ti = |Wi |. Fix i ∈ {0, . . . , zmax − 1}.
For a variable node v of Gr , define �′(v) to be the set of
all variable nodes v0 in Gr s.t. there exists a directed path
P from v0 to v in Gr s.t. the parent of v on P is the only
dc-regular check node on P . Note that for every variable node
u ∈ Wi+1, there exists a variable node v ∈ Wi s.t. u ∈ �′(v).
Thus, Wi+1 ⊆ ⋃

v∈Wi

�′(v) which implies that

|Wi+1| ≤ |Wi | × max
v∈Wi
|�′(v)| ≤ |Wi | ×max

v∈Vr
|�′(v)|

where Vr is the set of all variable nodes of Gr . We now show
that for every v ∈ Vr , |�′(v)| ≤ q . Fix v ∈ Vr . We claim
that for all u ∈ �′(v), there exists a directed path from u to v
in Gr containing a single dc-regular check node which is the
parent of v on this path and at most (dv − 1) 2-regular check
nodes. To show this, let P be a directed path from u to v in
Gr containing no dc-regular check nodes other than the parent
of v on this path. If P does not contain any 2-regular check
nodes, then the needed property holds. If P contains at least
one 2-regular check node, then,

P : u � c1 � v1 � c2 � v2 � · · ·� cl � vl � c∗ � v

(15)

where l is a positive integer, c1, c2, . . . , cl are 2-regular check
nodes of Gr , c∗ is a dc-regular check node of Gr and
v1, v2, . . . , vl are variable nodes of Gr . For any check node c,
we denote by si(c) the spatial index of c. Since c1 is 2-regular,
its spatial index si(c1) is either in the interval [−L − d̂v :
−L+ d̂v− 1] or in the interval [L− d̂v+ 1 : L+ d̂v]. Without
loss of generality, assume that si(c1) ∈ [L − d̂v + 1 : L + d̂v].
For any i ∈ {0, . . . , l − 1}, Definition 6.2 implies that vi is at
a minimal position w.r.t. ci+1. By Definition 2.1, if variable
node v is at a minimal position w.r.t. check node c, then c is at
a maximal position w.r.t. v. So for any i ∈ {0, . . . , l−1}, ci+1
is at a maximal position w.r.t vi and thus si(ci) ≤ si(ci+1).
By condition 5 of Definition 2.1, variable node vi is not
connected to two check nodes at the same position, which
implies that si(ci) �= si(ci+1) for all i ∈ {0, . . . , l−1}. So we
conclude that si(ci) < si(ci+1) for all i ∈ {0, . . . , l − 1}.
Therefore,

L − d̂v + 1 ≤ si(c1) < si(c2) < · · · < si(cl) ≤ L + d̂v

Hence, l ≤ 2d̂v = dv − 1. So P satisfies the needed property.
For all i ∈ [dv − 1], let ni be the number of variable nodes u
in Gr for which the smallest integer l for which Equation (15)
holds is l = i . Also, let n0 be the number of variable nodes
u in Gr for which there exists a path P of the form

P : u � c∗ � v (16)

where c∗ is a dc-regular check node of Gr . Since in Equation
(16) v has at most dv neighbors in Gr and c∗ is dc-regular,
n0 ≤ dv(dc − 1). Considering Equation (15) with l = 1, we
note that v1 has at most dv neighbors in Gr and c1 is 2-regular.
Thus, n1 ≤ dv(dc−1)(dv−1). Note that if u is a variable node
in Gr for which the smallest integer l for which Equation (15)
holds is l = i+1 (where i ∈ [dv−2]), then there exists a path
P that satisfies Equation (15) with v1 being a variable node in
Gr for which the smallest integer l for which Equation (15)
holds is l = i . Since for every l ∈ [dv − 1] and every i ∈ [l],
vi has at most dv neighbors in Gr and ci is 2-regular, we have
that ni+1 ≤ (dv − 1)ni for all i ∈ [dv − 2]. By induction on
i , we get that ni ≤ dv(dc − 1)(dv − 1)i for all i ∈ [dv − 1].
Thus,

|�′(v)| =
dv−1∑

i=0

ni

≤
dv−1∑

i=0

dv(dc − 1)(dv − 1)i

= dv(dc − 1)
(dv − 1)dv − 1

dv − 2= q

To show that T0 ≤ q0, note that u ∈ W0 if and only if there
exists a directed path from u to vmax in Gr containing only
2-regular check nodes. An analogous argument to the above
implies that

T0 ≤ 1+
dv−1∑

i=1

(dv − 1)i−1 ≤ 1+ (dv − 1)dv−1 − 1

dv − 2
= q0

�
Corollary 6.8: Let Gr be the WDAG (with a single sink

node) given in Lemma 6.5 and zmax be the maximum regular
check depth of a variable node in Gr .17 Then,

αmax ≤ max
(T0,...,Tzmax)∈W

f (T0, ..., Tzmax) (17)

where:

f (T0, ..., Tzmax) =
zmax∑

i=0

Ti

(dc − 1)i

and W is the set of all tuples (T0, ..., Tzmax) ∈ N
zmax+1

satisfying the following three equations:

zmax∑

i=0

Ti = nr (18)

T0 ≤ q0 (19)

For all i ∈ {0, . . . , zmax − 1}, Ti+1 ≤ qTi (20)

where q = dv(dc − 1) (dv−1)dv−1
dv−2 and q0 = 1+ (dv−1)dv−1−1

dv−2 .
Proof of Corollary 6.8: The proof is similar to that of

Corollary 5.9. Setting m = rmax in Lemma 6.5 and noting

17Note that in general zmax ≤ rmax but the two quantities need not be
equal.

4688 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

that the leaves of T have no entering flow, we get:

nr∑

j=1

yrmax , j∑

k=1

�rmax , j,k ≥ F(Urmax)

≥ (dc − 1)rmax αmax

−
rmax−1∑

i=0

(dc − 1)rmax−i
nr∑

j=1

yi, j∑

k=1

�i, j,k

Thus,

αmax ≤
rmax∑

i=0

1

(dc − 1)i

nr∑

j=1

yi, j∑

k=1

�i, j,k

Part 6 of Theorem 4.1 implies that for every v ∈ Vr , the regular
check depth of v in Gr is equal to the minimum regular check
depth in T of a replicate of v. By parts 3 and 4 of Theorem 4.1,
we also have that for all j ∈ [nr], ∑rmax

i=0

∑yi, j
k=1 �i, j,k ≤

1 and for all i ∈ {0, . . . , rmax} and all k ∈ [yi, j],
�i, j,k ≤ 1 and {�i, j,k}i,k all have the same sign. Thus, we
get that:

αmax ≤
rmax∑

i=0

1

(dc − 1)i
Ti

where for every i ∈ {0, . . . , rmax }, Ti is the number of variable
nodes with regular check depth equal to i in Gr . Since Ti = 0
for all zmax < i ≤ rmax , we get that:

αmax ≤
zmax∑

i=0

1

(dc − 1)i
Ti

By the definitions of Ti and zmax ,
∑zmax

i=0 Ti = nr . The facts
that Ti+1 ≤ qTi for all i ∈ {0, . . . , zmax − 1} and T0 ≤ q0
follow from Lemma 6.7. �

Lemma 6.9: The RHS of (17) is < c × n1−ε
r for some

constant c > 0 depending only on dv and where 0 < ε =
ln(dc−1)

ln(q) < 1.

Proof of Lemma 6.9: Let c = q0

(
q

dc−1

)2

q
dc−1−1

. If nr ≥ q0, the

claim follows from Theorem A.8 in Appendix -C with λ = q0,
β = q and m = nr . If nr < q0, then the RHS of (17) is at
most nr < q0 < c, so the claim is also true. �

Proof of Theorem 6.1: Theorem 6.1 follows from Corol-
lary 6.8 and Lemma 6.9 by noting that |Vr | ≤ |V | since
Vr ⊆ V and that max

e∈E
|w(e)| = �(max(v,c):w(v,c)≤0 |w(v, c)|)

by the hyperflow equation (6). �

VII. RELATION BETWEEN LP DECODING ON A

TAIL-BITING GRAPH COVER CODE AND ON A

DERIVED SPATIALLY COUPLED CODE

Definition 7.1 (Special Variable Nodes and Extra Flow):
Let ζ be a tail-biting graph cover code and ζ ′ be a fixed
element of D(ζ).18 Then, the “special variable nodes” of ζ
are all those variable nodes that appear in ζ but not in ζ ′. If η
is an error pattern on ζ , a dual witness for η on ζ with “extra
flow” f is a dual witness satisfying Definition 3.1 with the

18Here, D(ζ) refers to Definition 2.3.

exception that for every special variable node v, Equation 4
is replaced by

∑

c∈N(v):w(v,c)>0

w(v, c)<
∑

c∈N(v):w(v,c)≤0

(−w(v, c))+γ (v)+ f

(21)

where γ is the log-likelihood ratio corresponding to η.
Lemma 7.2: Let ζ be a (dv, dc = kdv, L, M) tail-biting

graph cover code and let ζ ′ be a be a fixed element of D(ζ).
Let n = (2L + 1)M be the block length of ζ and consider
transmission over the BSC. Assume that there is an α(n) s.t.,
for any error pattern η′ on ζ ′, the existence of a dual witness
for η′ on ζ ′ implies the existence of a dual witness for η′ on
ζ ′ with maximum edge weight < α(n).
Then, for any error pattern η′ on ζ ′ and any extension η of η′
into an error pattern on ζ , the existence of a dual witness for
η′ on ζ ′ is equivalent to the existence of a dual witness for η
on ζ with the special variable nodes having an extra flow of
dvα(n) + 1.

Proof of Lemma 7.2: First, we prove the forward direction
of the equivalence. Assume that there exists a dual witness for
η′ on ζ ′. Then, there exists a dual witness for η′ on ζ ′ and with
maximum edge weight < α(n). This implies the existence of
a dual witness for η on ζ with the special variable nodes being
source nodes and having an extra flow of dvα(n) + 1.
The reverse direction follows from the fact that given a dual
witness for η on ζ , we can get a dual witness for η′ on ζ ′ by
repeatedly removing the special variable nodes. The WDAG
satisfies the LP constraints after each step since every check
node in ζ ′ has degree ≥ 2. �

Corollary 7.3 (Relation Between LP Decoding on a
Tail-Biting Graph Cover Code and on a Derived Spatially
Coupled Code): Let ζ be a (dv, dc = kdv, L, M) tail-biting
graph cover code and let ζ ′ be a be a fixed element of D(ζ).
Let n = (2L + 1)M be the block length of ζ and consider
transmission over the BSC. Then, for any error pattern η′ on
ζ ′ and any extension η of η′ into an error pattern on ζ , the
existence of a dual witness for η′ on ζ ′ is equivalent to the
existence of a dual witness for η on ζ with the special variable
nodes having an extra flow of dvcn1−ε + 1 for some c > 0
and 0 < ε < 1 given in Theorem 6.1.

Proof of Corollary 7.3: By Theorem 6.1, the existence of a
dual witness for η′ on ζ ′ is equivalent to the existence of a dual
witness for η′ on ζ ′ and with maximum edge weight < cn1−ε

for some c > 0. Plugging this expression in Lemma 7.2, we
get the statement of Corollary 7.3. �

VIII. INTERPLAY BETWEEN CROSSOVER

PROBABILITY AND LP EXCESS

In this section, we show that if the probability of LP
decoding success is large on some BSC, then if we slightly
decrease the crossover probability of the BSC, we can find a
dual witness with a non-negligible “gap” in the inequalities
(4) with high probability.

Theorem 8.1 (Interplay Between Crossover Probability and
LP Excess): Let ζ be a binary linear code with Tanner
graph (V , C, E) where V = {v1, · · · , vn}. Let ε, δ > 0 and

BAZZI et al.: LP DECODING OF SPATIALLY COUPLED CODES 4689

ε′ = ε + (1 − ε)δ. Assume that ε, ε′, δ < 1. Let qε′ be the
probability of LP decoding error on the ε′-BSC. For every
error pattern x ∈ {0, 1}n, if G = (V , C, E, w, γ) is a WDAG
corresponding to a dual witness for x, let f (w) ∈ R

n be
defined by

fi (w) =
∑

c∈N(vi):
w(vi ,c)>0

w(vi , c)−
∑

c∈N(vi):
w(vi ,c)≤0

(−w(vi , c))

=
∑

c∈N(vi)

w(vi , c) (22)

for all i ∈ [n]. Then, for x ∼ Ber(ε, n), we have:

Prx{∃ a dual witness w for x s.t. fi (w) < γ (vi)− δ
2 , ∀i}

≥ 1− 2qε′
δ

In other words, if we let γ (vi) − fi (w) be the “LP excess”
on variable node i , then the probability (over the ε-BSC) that
there exists a dual witness with LP excess at least δ/2 on all
the variable nodes is at least 1− 2qε′

δ .
Proof of Theorem 8.1: Decompose the ε′-BSC into the

bitwise OR of the ε-BSC and the δ-BSC as follows. Let
x ∼ Ber(ε, n), e′′ ∼ Ber(δ, n) and e = x ∨ e′′. Hence,
e ∼ Ber(ε′, n). For every x ∈ {0, 1}n , we will construct a
dual witness wx with excess δ/2 on all variable nodes by
averaging and scaling the dual witnesses of x ∨ e′′ where
e′′ ∼ Ber(δ, n). More precisely, for every x ∈ {0, 1}n , let

wx = (1+ δ
2)

(1− δ
2)

Ee′′∼Ber(δ,n){vx∨e′′ } where vx is an arbitrary dual

witness for x if x has one and vx is the zero vector otherwise.
Note that wx always satisfies the check node constraints, i.e.
for any x ∈ {0, 1}n , any c ∈ C and any v, v ′ ∈ V , we have
wx (v, c)+wx (v ′, c) ≥ 0. We now show that, with probability
at least 1 − 2qε′

δ over x ∼ Ber(ε, n), wx satisfies (4) with
LP excess at least δ/2 on all variable nodes. For any weight
function w : V × C → R on the Tanner graph (V , C, E),
we define f (w) by Equation (22). For every x ∈ {0, 1}n,
define the event Lx = {x has a dual witness} and define x̃
by x̃i = (−1)xi for all i ∈ [n]. We have that:

f (wx) = (1+ δ
2)

(1− δ
2)

Ee′′∼Ber(δ,n){ f (wx∨e′′)}

= (1+ δ
2)

(1− δ
2)

(
Ee′′ { f (wx∨e′′)|Lx∨e′′ } Pre′′ {Lx∨e′′ }

+ Ee′′ { f (wx∨e′′)|Lx∨e′′ } Pre′′ {Lx∨e′′ }
)

(a)= (1+ δ
2)

(1− δ
2)

Ee′′ { f (wx∨e′′)|Lx∨e′′ } Pre′′ {Lx∨e′′ }

(b)≤ (1+ δ
2)

(1− δ
2)

Ee′′ {x̃ ∨ e′′|Lx∨e′′ } Pre′′ {Lx∨e′′ }

= (1+ δ
2)

(1− δ
2)

(
Ee′′ {x̃ ∨ e′′} − Ee′′ {x̃ ∨ e′′|Lx∨e′′ } × φx

)

where (a) follows from Ee′′∼Ber(δ,n){ f (wx∨e′′)|Lx∨e′′ } = 0, (b)
follows from Equation (4) and φx := Pre′′∼Ber(δ,n)

{
Lx∨e′′}.

Note that for e′′ ∼ Ber(δ, n) and for every i ∈ [n], we have

(Ee′′ {x̃ ∨ e′′})i =
{
−1 if xi = 1

δ(−1)+ (1− δ)(1) = 1− 2δ if xi = 0

Moreover, Ee′′∼Ber(δ,n){x̃ ∨ e′′|Lx∨e′′ } ≥ −1 since every coor-

dinate of x̃ ∨ e′′ is ≥ −1. Therefore,

fi (w
x) ≤

⎧
⎪⎨

⎪⎩

(1+ δ
2)

(1− δ
2)

(−1+ φx) if xi = 1

(1+ δ
2)

(1− δ
2)

(1− 2δ + φx) if xi = 0

We now find an upper bound on φx . Note that φx is a non-
negative random variable with mean

Ex∼Ber(ε,n){φx } = Ex∼Ber(ε,n)

{
Pre′′∼Ber(δ,n){Lx∨e′′ }}

= Prx∼Ber(ε,n),e′′∼Ber(δ,n)

{
Lx∨e′′}

= Pre∼Ber(ε′,n)

{
Le

}

= qε′ (by Theorem 3.2)

By Markov’s inequality,

Prx∼Ber(ε,n){φx ≥ δ

2
} ≤ Ex∼Ber(ε,n){φx}

δ
2

= 2qε′

δ

Thus, the probability over x ∼ Ber(ε, n) that for all i ∈ [n],

fi (w
x) <

(1+ δ
2)

(1− δ
2)

(−1+ δ

2
) if xi = 1

and

fi (w
x) <

(1+ δ
2)

(1− δ
2)

(1− 3δ

2
) if xi = 0

is at least

Prx∼Ber(ε,n){φx <
δ

2
} = 1− Prx∼Ber(ε,n){φx ≥ δ

2
} ≥ 1− 2qε′

δ

Note that for all 0 ≤ δ < 1, we have that

(1+ δ
2)

(1− δ
2)

(1− 3δ

2
) ≤ 1− δ

2

Thus, the probability over x ∼ Ber(ε, n) that fi (w
x) <

(−1)xi − δ
2 for all i ∈ [n], is at least 1− 2qε′

δ . So we conclude
that for x ∼ Ber(ε, n), we have

Prx {∃ a dual witness w for x s.t. fi (w) < γ (vi)− δ
2 , ∀i}

≥ 1− 2qε′
δ

�

IX. PROOF OF MAIN RESULT: ξGC = ξSC

In this section, we use the results of Sections VI, VII
and VIII to prove the main result of the paper which is restated
below.

Theorem 9.1 (Main Result: ξGC = ξSC): Let �GC be a
(dv, dc = kdv, L, M) tail-biting graph cover ensemble with dv
an odd integer and M divisible by k. Let �SC be the (dv, dc =
kdv, L − d̂v, M) spatially coupled ensemble which is sampled
by choosing a tail-biting graph cover code ζ ∼ �GC and

4690 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

returning a element of D(ζ) chosen uniformly at random19.
Denote by ξGC and ξSC the respective LP threholds of �GC

and �SC on the BSC. Then, there exists ν > 0 depending only
on dv and dc s.t. if M = o(Lν) and �SC satisfies the property
that for any constant � > 0,

Pr ζ ′∼�SC
(ξSC−�)-BSC

[LP decoding error on ζ ′] = o(
1

L2) (23)

then, ξGC = ξSC .
Lemma 9.2: Assume that the ensemble �SC satisfies the

property (23) for every constant � > 0. Then, for all constants
�1,�2, α, β > 0, there exists a tail-biting graph cover code
ζ ∈ �GC , with derived spatially coupled codes ζ ′−L, . . . , ζ ′L,
satisfying the following two properties for sufficiently large L:

1) Pr(ξGC+�2)-BSC[LP decoding success on ζ] ≤ α.
2) For all i ∈ [−L : L], Pr(ξSC−�1)-BSC[LP

decoding error on ζ ′i] ≤ β/(2L + 1).
Proof of Lemma 9.2: Note that a random code ζ ∼ �GC

satisfies the 2 properties above with high probability:

Prζ∼�GC

[
Pr(ξGC+�2)-BSC[Success on ζ] > α or ∃i

∈ [−L : L] s.t. Pr(ξSC−�1)-BSC[Error on ζ ′i] > β(2L + 1)

]

≤ 1

α
Pr ζ∼�GC

(ξGC+�2)-BSC
[LP decoding success on ζ]

+ (2L + 1)2

β
Pr ζ ′∼�SC

(ξSC−�1)-BSC

[LP decoding error on ζ ′]
= o(1)

Note that the inequality above follows from Markov’s inequal-
ity and the union bound. We conclude that there exists a tail-
biting graph cover code ζ ∈ �GC satisfying the 2 properties
above. �

Lemma 9.3: ξGC ≥ ξSC

Proof of Lemma 9.3: We proceed by contradiction. Assume
that ξGC < ξSC . Let:

δ = (ξSC − ξGC)/2

η = ξSC − δ

λ = η − δ/2 = ξGC + δ/2

Note that η > λ + (1 − λ)δ/2. Let ζ be one of the tail-
biting graph cover codes whose existence is guaranteed by
Lemma 9.2 with �1 = δ, �2 = δ/2 and α, β > 0 with
α < 1 − 2β/δ and let ζ ′−L, . . . , ζ ′L be the spatially coupled
codes that are derived from ζ . Let μ be an error pattern on ζ
and let μi be the restriction of μ to ζ ′i for every i ∈ [−L : L].
Define the event:

E1 =
{
∀i ∈ [−L : L], ∃ a dual witness for μi on ζ

′
i

with excess δ/2 on all variable nodes

}

19Here, D(ζ) refers to Definition 2.3.

Then,

E1 =
{
∃i ∈ [−L : L] s.t. � a dual witness for μi on ζ

′
i

with excess δ/2 on all variable nodes

}

Thus,

Prλ-BSC{E1} ≤
L∑

i=−L

Prλ-BSC

{
� a dual witness for ζ

′
i

with excess
δ

2
on all variable nodes

}

(a)≤
L∑

i=−L

2

δ
Prη-BSC{LP decoding error on ζ

′
i }

≤
L∑

i=−L

2

δ
× β

2L + 1
= 2β

δ

where (a) follows from Theorem 8.1. If event E1 is true, then
by Corollary 7.3, for every l ∈ [−L : L], there exists a dual
witness {τ l

i j | i ∈ V , j ∈ C} for μ on ζ with the special

variable nodes being at positions [l, l + 2d̂v − 1] and having
an extra flow of dvcn1−ε + 1 with c > 0 and ε > 0 given in
Theorem 6.1 and with the non-special variable nodes having
excess δ

2 . Then, we can construct a dual witness for μ on
the tail-biting graph cover code ζ (with no extra flows) by
averaging the above 2L + 1 dual witnesses as follows. For
every i ∈ V and every j ∈ C , let:

τ
avg
i j =

1

2L + 1

L∑

l=−L

τ l
i j

We claim that {τ avg
i j }i, j forms a dual witness for μ on ζ .

In fact, for each i ∈ V , j ∈ C and l ∈ [−L : L], τ l
i j +τ l

i ′ j ≥ 0
which implies that:

τ
avg
i j + τ

avg
i ′ j =

1

2L + 1

L∑

l=−L

(τ l
i j + τ l

i ′ j) ≥ 0

Moreover, for all i ∈ V , we have that:

∑

j∈N(i)

τ
avg
i j =

∑

j∈N(i)

(1

2L + 1

L∑

l=−L

τ l
i j

)

= 1

2L + 1

L∑

l=−L

(∑

j∈N(i)

τ l
i j

)

<
1

2L + 1
((dv − 1)(dvc(M(2L + 1))1−ε + 1+γi)

+(2L + 1− (dv − 1))(γi − δ

2
))

= γi + (dv − 1)dvc
(M(2L + 1))1−ε

2L + 1
+ (dv − 1)δ

2(2L + 1)

+ dv − 1

2L + 1
− δ

2
< γi

BAZZI et al.: LP DECODING OF SPATIALLY COUPLED CODES 4691

where the last inequality holds for M = o(Lν), L sufficiently
large and ν = ε/(1− ε). Since

Prλ-BSC{LP decoding success on ζ } ≥ Prλ-BSC{E1}
= 1− Prλ-BSC{E1}

then,

Prλ-BSC{LP decoding success on ζ } ≥ 1− 2β

δ

which contradicts the fact that:

Prλ-BSC[LP decoding success on ζ]
= Pr(ξGC+�2)-BSC[LP decoding success on ζ]
≤ α < 1− 2β

δ

�
Lemma 9.4: ξGC ≤ ξSC

Proof of Lemma 9.4: Let ζ be a tail-biting graph cover code
and D(ζ) be the set of all derived spatially coupled codes of ζ .
Let μ be an error pattern on ζ and μ′ be the restriction of μ
to ζ ′ for some ζ ′ ∈ D(ζ). Given a dual witness for μ on ζ ,
we can get a dual witness for μ′ on ζ ′ by repeatedly removing
the special variable nodes of ζ . Note that the dual witness is
maintained after each step since every check node in ζ ′ has
degree ≥ 2. So if there is LP decoding success for η on ζ ,
then for every ζ ′ ∈ D(ζ), there is LP decoding success for
η′ on ζ ′, where η′ is the restriction of η to ζ ′. Therefore, for
every ε > 0 and every ζ ′ ∈ D(ζ), we have that:

Prε-BSC[LP error on ζ ′] ≤ Prε-BSC[LP error on ζ]
This implies that for every ε > 0, we have that:

Pr ζ ′∼�SC
ε-BSC

[LP error on ζ ′] ≤ Pr ζ∼�GC
ε-BSC
[LP error on ζ]

So we conclude that ξGC ≤ ξSC . �
Proof of Theorem 9.1: Theorem 9.1 follows from

Lemma 9.3 and Lemma 9.4. �

X. OPEN QUESTIONS

It was reported by [5] that, based on numerical simulations,
spatial coupling does not seem to improve the performance
of LP decoding. This lead to the belief that the LP threshold
of a spatially coupled ensemble on the BSC is the same as
that of the base ensemble, which was the original motivation
behind this work. One possible approach to prove this claim
is twofold:

1) Show that the LP threshold of the spatially coupled
ensemble on the BSC is the same as that of the tail-
biting graph cover ensemble.

2) Show that the LP threshold of the tail-biting graph cover
ensemble on the BSC is the same as that of the base
ensemble.

In this paper, we proved Part 1 of this approach. We leave Part
2 open. While the analogous statement of Part 2 for BP decod-
ing follows from the fact that the base ensemble and the tail-
biting graph-cover ensemble have the same local-tree structure,
such an argument would fail for the LP decoder which is a
global decoder. Since the performance of min-sum is believed

to be generally similar to that of LP decoding, an interesting
related question is whether there is an improvement in the
performance of min-sum under spatial coupling on the BSC,
and if not why do min-sum and BP differ so significantly?

APPENDIX

A. Proof of Theorem 3.2

The goal of this section is to prove Theorem 3.2 which is
restated below.

Theorem 3.2 (Existence of a Dual Witness and LP
Decoding Success): Let T = (V , C, E) be a Tanner graph of
a binary linear code with block length n and let η ∈ {0, 1}n
be any error pattern. Then, there is LP decoding success for
η on T if and only if there is a dual witness for η on T .
Note that the “if” part of the statement was proved in [9].
The argument below establishes both directions. We first state
some definitions and prove some facts from convex geometry
that will be central to the proof of Theorem 3.2.

Definition A.1: Let S be a subset of R
n. The convex hull of

S is defined to be conv(S) = {αx+(1−α)y | x, y ∈ S and α ∈
[0, 1]}. The conic hull of S is defined to be cone(S) = {αx +
βy | x, y ∈ S and α, β ∈ R≥0}. The set S is said to be convex
if S = conv(S) and S is said to be a cone if S = cone(S). Also,
S is said to be a convex polyhedron if S = {x ∈ R

n | Ax ≥ b}
for some matrix A ∈ R

m×n and some b ∈ R
n and S is said

to be a polyhedral cone if S is both a convex polyhedron and
a cone. The interior of S is denoted by int(S) and the closure
of S is denoted by cl(S).
Let K be a polyhedral cone of the form K = {x ∈ R

n | Ax ≥
0} for some matrix A ∈ R

m×n. For any x ∈ K s.t. x �= 0,
the ray of K in the direction of x is defined to be the set
R(x) = {λx | λ ≥ 0}. A ray R(x) of K is said to be an
extreme ray of K if for any y, z ∈ R

n and any α, β ≥ 0,
R(x) = αR(y)+ β R(z) implies that y, z ∈ R(x).

Lemma A.2: If S is a convex subset of R
n, then

int
(
(R≥0)

n + S
) = (R>0)

n + S.
Proof of Lemma A.2: For all α ∈ (R>0)

n + S, α= r + s
where r ∈ (R>0)

n and s ∈ S. Thus, the ball centered
at α and of radius mini∈[n] ri > 0 is contained in(
(R≥0)

n + S
)
. Hence, α ∈ int

(
(R≥0)

n + S
)
. Therefore,

(R>0)
n + S ⊆ int

(
(R≥0)

n + S
)
.

Conversely, for all α ∈ int
(
(R≥0)

n + S
)
, α = r + s where

r ∈ (R≥0)
n and s ∈ S. Moreover, since α ∈ int

(
(R≥0)

n + S
)
,

there exists u ∈ (R>0)
n s.t. α + u ∈ (

(R≥0)
n + S

)
and

α − u ∈ (
(R≥0)

n + S
)
. Note that α + u = r + u + s and

that α − u = r ′ + s′ for some r ′ ∈ (R≥0)
n and s′ ∈ S.

Thus, α = (α+u)+(α−u)
2 = r+u+r ′

2 + s+s ′
2 = r ′′ + s′′ where

r ′′ = r+u+r ′
2 ∈ (R>0)

n and s′′ = s+s ′
2 ∈ S since S is a convex

set. Hence, int
(
(R≥0)

n + S
) ⊆ (R>0)

n + S.
Therefore, int

(
(R≥0)

n + S
) = (R>0)

n + S. �
Lemma A.3: Let S1, .., Sp be finite subsets of R

n each
containing the zero vector. Then,

cone
(p⋂

j=1

conv(Sj)
) =

p⋂

j=1

cone(Sj).

Proof of Lemma A.3: Clearly, cone
(⋂p

j=1 conv(Sj)
) ⊆⋂p

j=1 cone(Sj). To prove the other direction, we first note

4692 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

that 0 ∈ cone
(⋂p

j=1 conv(Sj)
)
. For any non-zero x ∈

⋂p
j=1 cone(Sj), we have that for all j ∈ [p], x =∑
s∈S j

as, j s where for any s ∈ Sj , as, j ≥ 0. Let
jmax = argmax j∈[p]

∑
s∈S j

as, j . Since x �= 0, D =∑
s∈S jmax

as, jmax > 0. Thus, for any j ∈ [p], we have
x
D =

∑
s∈S j

(as, j
D

)
s+ (

1−∑
s∈S j

as, j
D

)
0. Since for all j ∈ [p],

0 ≤ ∑
s∈S j

as, j ≤ D and 0 ∈ Sj , we conclude that x
D ∈

conv(Sj) for all j ∈ [p]. Hence, x ∈ cone
(⋂p

j=1 conv(Sj)
)
.

Therefore,
⋂p

j=1 cone(Sj) ⊆ cone
(⋂p

j=1 conv(Sj)
)
. �

Lemma A.4: Let K be a polyhedral cone of the form K =
{x ∈ R

m | Ax ≥ 0} for some matrix A ∈ R
l×m of rank m.

For any x ∈ K s.t. x �= 0, we have

1) If R(x) is an extreme ray of K , then there exists an
(m − 1)× m submatrix A′ of A s.t. the rows of A′ are
linearly independent and A′x = 0.

2) K = cone(R) where R =⋃
extreme rays R(x) of K R(x).

Proof of Lemma A.4: See Section 8.8 of [21]. �
The following lemma has been used in previous work on

LP decoding. We provide a proof for completeness.
Lemma A.5: For all m ≥ 2, we have that

{
y ∈ (R≥0)

m |
m∑

i=1, i �=i0

yi ≥ yi0 ,∀i0 ∈ [m]
}

= cone{z ∈ {0, 1}m | wt (z) = 2}
Proof of Lemma A.5: Let

Km =
{

y ∈ (R≥0)
m |

m∑

i=1, i �=i0

yi ≥ yi0 ,∀i0 ∈ [m]
}

and Xm = cone{z ∈ {0, 1}m | wt (z) = 2}.20 Clearly,
Xm ⊆ Km . We now prove that Km ⊆ Xm . Note that Km can
be written in the following form:

Km =
{

y∈R
m |yi≥0 ∀i ∈ [m] and

m∑

i=1,i �=i0

yi≥ yi0 ,∀i0∈[m]
}

={y ∈ R
m | Ay ≥ 0} where A ∈ R

2m×m has rank m

By part 2 of Lemma A.4, we then have: Km = cone(R)
where R = ⋃

extreme rays R(y) of Km
R(y). Therefore, by part 1

of Lemma A.4, it is sufficient to show that if y ∈ R
m satisfies

any (m − 1) equations of Km with equality, then y should be
an element of cone{z ∈ {0, 1}m | wt (z) = 2}. Note that we
have two types of equations:

(I)
∑m

i=1, i �=i0 yi − yi0 = 0 for some i0 ∈ [m].
(II) yi = 0 for some i ∈ [m].

Consider any (m−1) equations of Km , satisfied with equality.
We distinguish two cases:
Case 1: At least (m − 2) of those equations are of Type (II).
Without loss of generality, we can assume that yi = 0 for
all i ∈ {3, . . . , m}. Moreover, since y ∈ Km , we have that
y1 − y2 ≥ 0 and y2 − y1 ≥ 0, which implies that y1 = y2.
Therefore, we conclude that y = y1(1 1 0 . . . 0)T ∈ Xm .

20Here, wt (z) denotes the Hamming weight of z ∈ {0, 1}n , i.e., the number
of non-zero coordinates of z.

Case 2: At most (m− 3) equations are of Type (II). Hence, at
least 2 equations are of Type (I). Without loss of generality,
we can assume that

∑m
i=1, i �=1 yi = y1 and

∑m
i=1, i �=2 yi = y2.

Adding up the last 2 equations, we get
∑m

i=3 yi = 0. Since
y ∈ Km , we have yi ≥ 0 for all i ∈ {3, . . . , m}. Therefore, we
get yi = 0 for all i ∈ {3, . . . , m}. Similarily to Case 1 above,
this implies that y ∈ Xm . �

Proof of Theorem 3.2: The “fundamental polytope” P
considered by the LP decoder was introduced by [19] and
is defined by P = ⋂

j∈C conv(C j) where C j = {z ∈ {0, 1}n :
wt (z|N(j)) is even} for any j ∈ C . For any error pattern

η ∈ {0, 1}n , let η̃ ∈ {−1, 1}n be given by η̃i = (−1)ηi

for all i ∈ [n]. Also, for any x, y ∈ R
n , let their inner

product be 〈x, y〉 = ∑n
i=1 xi yi . Then, under the all-zeros

codeword assumption, there is LP decoding success for η
on ζ if and only if the zero vector is the unique optimal
solution to the LP in (2), i.e., if and only if 〈̃η, 0〉 < 〈̃η, y〉
for every non-zero y ∈ P , which is equivalent to η̃ ∈
int(P∗) = int(K∗) where K = cone{P} is the “fundamental
cone” and for any S ⊆ R

n , the dual S∗ of S is given by
S∗ = {z ∈ R

n | 〈z, x〉 ≥ 0 ∀x ∈ S}. By Lemmas A.3 and A.5,
we have

K = cone
(⋂

j∈C

conv(C j)
)

=
⋂

j∈C

cone(C j)

=
⋂

j∈C

cone{z ∈ {0, 1}n | wt (z|N(j)) is even}

=
⋂

j∈C

cone{z ∈ {0, 1}n | wt (z|N(j)) = 2}

=
⋂

j∈C

{
y ∈ (R≥0)

n |
∑

i∈N(j)\{i0}
yi ≥ yi0 ,∀i0 ∈ N(j)

}

= {
y ∈ (R≥0)

n | 〈y, vi0, j 〉 ≥ 0 ∀i0 ∈ N(j), ∀ j ∈ C
}

where vi0, j ∈ {−1, 0, 1}n is defined as follows: For all i ∈ [n],

(
vi0, j

)
i =

⎧
⎪⎨

⎪⎩

0 if i /∈ N(j).

−1 if i = i0.

1 if i ∈ N(j) \ {i0}.

Thus,

K = (R≥0)
n ∩

⋂

j∈C

(
cone{vi0, j |i0 ∈ N(j)})∗

= (R≥0)
n ∩

⋂

j∈C

(
D j

)∗

where for any j ∈ C , D j = cone{vi0, j |i0 ∈ N(j)}. Note
that if L ⊆ R

n is a cone, then its dual L∗ is also a cone.
We will use below the following basic properties of dual
cones:

i) If L1, L2 ⊆ R
n are cones, then (L1 + L2)

∗ = L∗1 ∩ L∗2.
ii) If L ⊆ R

n is a cone, then (L∗)∗ = cl(L).

BAZZI et al.: LP DECODING OF SPATIALLY COUPLED CODES 4693

Therefore, there is LP decoding success for η on K if and
only if η̃ ∈ D where:

D = int(K∗)

= int

((
(R≥0)

n ∩
⋂

j∈C

D∗j
)∗)

= int

(((
(R≥0)

n)∗ ∩
⋂

j∈C

D∗j
)∗)

= int

(((
(R≥0)

n +
∑

j∈C

D j
)∗)∗

)

and where the third equality follows from the fact that (R≥0)
n

is a self-dual cone and the last equality follows from property
(i) above. Note that for any j ∈ C, D j is a cone. Moreover,
since (R≥0)

n is a cone and the sum of any two cones
is also a cone, it follows that (R≥0)

n + ∑
j∈C D j is also

a cone. Furthermore, by property (ii) above, we get that
D = int

(
cl

(
(R≥0)

n +∑
j∈C D j

))
. Being a cone, (R≥0)

n +∑
j∈C D j is a convex set. For any convex set S ⊆ R

n , we have
that int(cl(S)) = int(S) (See Lemma 5.28 of [1]). Therefore,

D = int
(
(R≥0)

n +
∑

j∈C

D j
)

(a)= (R>0)
n +

∑

j∈C

D j

= { ∑

i0∈N(j),
j∈C

λi0, jvi0, j+u|λi0, j ≥0 ∀(i0, j) and u∈(R>0)
n}

where (a) follows from Lemma A.2 and the fact that
∑

j∈C D j

is a convex subset of R
n . Thus, there is LP decoding success

for η on ζ if and only if there exist λi0, j ≥ 0 for all i0 ∈ N(j)
and all j ∈ C s.t.

∑
i0∈N(j), j∈C λi0 , jvi0, j < η̃. Let wt (i, j) =(∑

i0∈N(j) λi0 , jvi0, j
)

i for all i ∈ [n] and all j ∈ C . Since
(vi0, j)i = 0 whenever i /∈ N(j), we have that for every
i ∈ [n]:

∑

j∈N(i)

wt (i, j) =
∑

j∈N(i)

(∑

i0∈N(j)

λi0, jvi0, j
)

i

=
∑

j∈C

(∑

i0∈N(j)

λi0, jvi0 , j
)

i

= (∑

i0∈N(j), j∈C

λi0, jvi0 , j
)

i < η̃i

Moreover, for all j ∈ C, i1, i2 ∈ N(j) s.t. i1 �= i2, we have

wt (i1, j)+wt (i2, j) =
∑

i0∈N(j)

λi0 , j

((
vi0 , j

)
i1
+ (

vi0, j
)

i2

)
≥ 0

since
(
vi0, j

)
i1
+ (

vi0, j
)

i2
≥ 0 because i1 �= i2 ∈ N(j). We

conclude that LP decoding success for η on ζ is equivalent to
the existence of a dual witness for η on ζ . �

B. Analysis of Algorithm 2 and Proof of Theorem 4.1

In this section, we prove the correctness of Algorithm 2 and
conclude the proof of Theorem 4.1. We start by stating and
proving an algorithm loop invariant that constitutes the main

part of the proof of Theorem 4.1. First, we introduce some
notation related to the operation of Algorithm 2.

Notation A.6: In the following, let V = {v1, . . . , vn}. For
every i, j ∈ [n], let ri, j be the number of replicates of variable
node v j after the i th iteration of the algorithm. Moreover, for
every k ∈ [ri, j], let vi, j,k be the kth replicate of v j after
the i th iteration of the algorithm. For all i ∈ [n], let Vi ,
Ci , Ei , γi and wi be the set of all variable nodes, set of
all check nodes, set of all edges, log-likelihood ratio function
and weight function, respectively, after the i th iteration of the
algorithm and let Gi = (Vi , Ci , Ei , wi , γi). Finally, we set
G0 = (V0, C0, E0, γ0, w0) to (V , C, E, γ ,w).

Lemma A.7: For any i ≥ 0, after the i th iteration of
Algorithm 2, we have21

(I) For all j ∈ [n], ∑ri, j
k=1 γi (vi, j,k) = γ (v j).

(II) For all j ∈ [n] and all k ∈ [ri, j], γi (vi, j,k) has the same
sign as γ (v j).

(III) For all v ∈ Vi ,
∑

c∈N(v):wi (v,c)>0

wi (v, c)<
∑

c∈N(v):wi (v,c)≤0

(−wi (v, c))+γi (v)

(IV) For all c ∈ Ci , there exist Pc ≥ 0 and v ∈ N(c)
s.t. wi (v, c) = −Pc and for all v ′ ∈ N(c) s.t. v ′ �=
v,wi (v

′, c) = Pc.
(V) The directed paths of G are in a bijective correspon-

dence with the directed paths of Gi . Moreover, if the
directed path h′ of Gi corresponds to the directed path
h of G, then the variable and check nodes of h′ are
replicates of the corresponding variable and check nodes
of h.

Proof of Lemma A.7 (Base Case): Before the first iteration,
we have that r0, j = 1 and γ0(v0, j,1) = γ (v j) for all j ∈ [n].
Thus, (I) and (II) are initially true. (III) and (IV) are initially
true because the original WDAG G satisfies the hyperflow
equations (4) and (6). Moreover, (V) is initially true since
G0 = G.

Inductive Step: We show that, for every i ≥ 1, if (I), (III),
(IV) and (V) are true after iteration i −1 of Algorithm 2, then
they are also true after iteration i .

Let i ≥ 1. In iteration i , a variable node v with log-
likelihood ratio γi−1(v) is (possibly) replaced by a num-
ber p of replicates {v ′1, . . . , v ′p} with log-likelihood ratios{ el

e(v)
T

γi−1(v) | l ∈ [p]}. Therefore, the total sum of the added

replicates is
∑p

l=1

(el

e(v)
T

γi−1(v)
) = γi−1(v). Thus, (I) is true.

By the induction assumption and since el/e(v)
T > 0, it follows

that (II) is also true.
To show that (III) is true, we first note that if v ′ ∈ Vi was

not created during the i th iteration, then v ′ will satisfy (III)
after the i th iteration. If v ′ was created during the i th iteration,
we distinguish two cases:

In the first case, v ′ is not a replicate of v (which is the
variable node considered in the i th iteration). Then, v ′ is
a replicate of vi−1 ∈ Vi−1. By the induction assumption,
γi−1(vi−1) and the weights of the adjacent edges to vi−1
satisfy (III) before the i th iteration. Since γi (v

′) and the

21By “after the 0th iteration”, we mean “before the 1st iteration”.

4694 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

weights of the edges adjacent to v ′ will be respectively equal
to γi−1(vi−1) and the weights of the edges adjacent to vi−1,
scaled by the same positive factor, v ′ will satisfy (III) after
the i th iteration.

In the second case, v ′ is a replicate of v. Assume that v ′
is the replicate of v corresponding to the edge (v, c0) where
c0 ∈ N(v) and wi−1(v, c0) > 0. During the i th iteration, the
subtree corresponding to v ′ will be created and in this subtree,
γi (v

′) and the weights of the edges incoming to v ′ will be
respectively equal to γi−1(v) and the weights of the edges
incoming to v, scaled by θ(v, c0) = wi−1(v, c0)/e(v)

T where
e(v)

T =
∑

c∈N(v):wi−1(v,c)>0 wi−1(v, c). The only outgoing edge
of v ′ will be (v ′, c0). Thus,

∑

c∈N(v′):
wi (v
′,c)>0

wi (v
′, c) = wi (v

′, c0) = wi−1(v, c0)

= θ(v, c0)
∑

c∈N(v):wi−1(v,c)>0

wi−1(v, c)

< θ(v, c0)
(∑

c∈N(v):
wi−1(v,c)≤0

(−wi−1(v, c))+ γi−1(v)
)

= θ(v, c0)
∑

c∈N(v):
wi−1(v,c)≤0

(−wi−1(v, c))+ θ(v, c0)γi−1(v)

=
∑

c∈N(v ′):wi (v ′,c)≤0

(−wi (v
′, c))+ γi (v

′)

Therefore, v ′ will satisfy (III) after the i th iteration.
Equation (IV) follows from the induction assumption and

from the fact that we are either uniformly scaling the neigh-
borhood of a check node or leaving it unchanged.

To prove that (V) is true after the i th iteration, let v be
the variable node under consideration in the i th iteration and
consider the function that maps the directed path h of Gi−1
to the directed path h′ of Gi as follows:

1) If h does not contain v, then h′ is set to h.
2) If h contains v, then h can be uniquely decomposed into

the concatenation h1h2 where h1 is a directed path of
Gi−1 that ends at v and h2 is a directed path of Gi−1
that starts at v. Let el be the first edge of h2. Then, h′
is set to h′1h2 where h′1 is the directed path in the lth
created subtree of G′ that corresponds to h1.

This map is a bijection from the set of all directed paths of
Gi−1 to the set of all directed paths of Gi . Moreover, if the
directed path h of Gi−1 is mapped to the directed path h′ of
Gi , then the variable and check nodes of h′ are replicates of
the corresponding variable and check nodes of h. �

Proof of Theorem 4.1: Note that 1 and 2 in Theorem 4.1
follow from the operation of Algorithm 2. Moreover, 3, 4, 5
and 6 follow from Lemma A.7 with γ ′ = γn . To prove 7, note
that if G has a single sink node v, then v will be the last vertex
in any topological ordering of the vertices of G. Furthermore,
if v has a single incoming edge with weight α, then it will
have only one replicate in T , with a single incoming edge
having the same weight α. �

C. Proof of Lemmas 5.10 and 6.9

The goal of this section is prove the following theorem
which is used in the proofs of Lemmas 5.10 and 6.9.

Theorem A.8: Let λ, β, m be positive integers with β >
dc − 1 and m ≥ λ. Consider the optimization problem:

v∗ = max
(T0,...,Th)∈Wh

h∈N,h≥1

f (T0, . . . , Th) (24)

where:

f (T0, . . . , Th) =
h∑

i=0

Ti

(dc − 1)i

and Wh is the set of all tuples (T0, . . . , Th) ∈ N
h+1 satisfying

the following three equations:

h∑

i=0

Ti = m (25)

T0 ≤ λ (26)

Ti+1 ≤ βTi for all i ∈ {0, . . . , h − 1} (27)

Then,

v∗ ≤ λ

(β
dc−1

)2

β
dc−1 − 1

m
ln β−ln(dc−1)

ln β

We will first prove some lemmas which will lead to
Theorem A.8.

Definition A.9: Let l = �logβ(m(β−1)
λ + 1)� − 1.

Note that l ≥ 0 since m ≥ λ.
Lemma A.10: Let (T0, . . . , Th) ∈ Wh . Then, Ti ≤ λβ i for

all i ∈ {0, . . . , h}.
Proof of Lemma A.10: Follows from equations (26)

and (27). �
Lemma A.11: Let

T ′i = λβ i for all i ∈ {0, . . . , l}
T ′l+1 = m − λ

(βl+1 − 1)

(β − 1)

Then, (T ′0, . . . , T ′l+1) ∈ Wl+1.
Proof of Lemma A.11: First, note that (T ′0, . . . , T ′l+1) ∈ N

l+2

since T ′l+1 ≥ 0 by Definition A.9. Moreover,

l+1∑

i=0

T ′i =
l∑

i=0

λβ i + T ′l+1 = λ
(βl+1 − 1)

(β − 1)
+ T ′l+1 = m

We have that T ′0 ≤ λ and for every i ∈ {0, . . . , l − 1}, T ′i+1 ≤
βT ′i . We still need to show that T ′l+1 ≤ βT ′l . We proceed by
contradiction. Assume that T ′l+1 > βT ′l . Then, T ′l+1 > λβl+1.
Thus,

m =
l+1∑

i=0

T ′i >

l+1∑

i=0

λβ i = λ
(βl+2 − 1)

(β − 1)

> λ
(m(β−1)

λ + 1)− 1

(β − 1)
= m

since l + 2=�logβ(m(β−1)
λ + 1)�+ 1 > logβ(m(β−1)

λ + 1). �
Lemma A.12: (T ′0, . . . , T ′l+1) is the unique (up to leading

zeros) element that achieves the maximum in Equation (24).

BAZZI et al.: LP DECODING OF SPATIALLY COUPLED CODES 4695

Proof of Lemma A.12: By Lemma A.11, (T ′0, . . . , T ′l+1) ∈
Wl+1. Let (T0, . . . , Th) ∈ Wh such that (T0, . . . , Th) and
(T ′0, . . . , T ′h) are not equal up to leading zeros and without
loss of generality assume that h ≥ l + 1 by extending T
with zeros if needed. In order to show that f (T0, . . . , Th) <
f (T ′0, . . . , T ′h), we distinguish two cases:
Case 1: (T0, . . . , Tl) �= (T ′0, . . . , T ′l). By Lemma A.10, there
exists k1 ∈ {0, . . . , l} such that Tk1 < λβk1 . Therefore,∑l

i=0 T ′i −
∑l

i=0 Ti > 0. Note that:

f (T0, . . . , Th)− f (T ′0, . . . , T ′l+1)

=
l∑

i=0

Ti − T ′i
(dc − 1)i

+ Tl+1 − T ′l+1

(dc − 1)l+1 +
h∑

i=l+2

Ti

(dc − 1)i

≤ 1

(dc − 1)l

l∑

i=0

(Ti − T ′i)+
Tl+1 − T ′l+1

(dc − 1)l+1

+ 1

(dc − 1)l+1

h∑

i=l+2

Ti

= 1

(dc − 1)l

l∑

i=0

(Ti − T ′i)+
1

(dc − 1)l+1 (

h∑

i=l+1

Ti − T ′l+1)

= 1

(dc − 1)l

l∑

i=0

(Ti − T ′i)+
1

(dc − 1)l+1

l∑

i=0

(T ′i − Ti)

Consequently,

f (T0, . . . , Th) ≤ f (T ′0, . . . , T ′l+1)−
(

l∑

i=0

T ′i −
l∑

i=0

Ti)

(dc − 1)l

+
(

l∑

i=0

T ′i −
l∑

i=0

Ti)

(dc − 1)l+1

= f (T ′0, . . . , T ′l+1)−(dc − 2)

(

l∑

i=0

T ′i −
l∑

i=0

Ti)

(dc − 1)l+1

< f (T ′0, . . . , T ′l+1)

Case 2: (T0, . . . , Tl) = (T ′0, . . . , T ′l). Then, Tl+1 �= T ′l+1. Since
T ′l+1 =

∑h
i=l+1 Ti , we should have T ′l+1− Tl+1 > 0. We have

that

f (T0, . . . , Th)− f (T ′0, . . . , T ′l+1)

= Tl+1 − T ′l+1

(dc − 1)l+1 +
h∑

i=l+2

Ti

(dc − 1)i

≤ Tl+1 − T ′l+1

(dc − 1)l+1 +
1

(dc − 1)l+2

h∑

i=l+2

Ti

= Tl+1 − T ′l+1

(dc − 1)l+1 +
1

(dc − 1)l+2

l+1∑

i=0

(T ′i − Ti)

≤ Tl+1 − T ′l+1

(dc − 1)l+1 +
(T ′l+1 − Tl+1)

(dc − 1)l+2

Consequently,

f (T0, . . . , Th) ≤ f (T ′0, . . . , T ′l+1)−
(T ′l+1 − Tl+1)

(dc − 1)l+1

+ (T ′l+1 − Tl+1)

(dc − 1)l+2

= f (T ′0, . . . , T ′l+1)− (dc − 2)
(T ′l+1 − Tl+1)

(dc − 1)l+2

< f (T ′0, . . . , T ′l+1)

�
Proof of Theorem A.8: Let ν = β/(dc−1). By Lemmas A.12

and A.10, we have that

v∗ ≤
l+1∑

i=0

T ′i
(dc − 1)i

≤
l+1∑

i=0

λ
β i

(dc − 1)i

= λ

l+1∑

i=0

νi

= λ
νl+2 − 1

ν − 1

< λ
νl+2

ν − 1

≤ λ
νlogβ (m(β−1)

λ +1)+1

ν − 1

≤ λ
ν2

ν − 1
νlogβ m

≤ λ
ν2

ν − 1
m

ln ν
ln β

�

D. Proof of Theorem 5.11

The goal of this section is to prove Theorem 5.11 which is
restated below.

Theorem 5.11 (Asymptotic Tightness of Theorem 5.1 for
(dv, dc)-Regular LDPC Codes): There exists an infinite family
of (dv, dc)-regular Tanner graphs {(Vn, Cn, En)}n, an infinite
family of error patterns {γn}n and a positive constant c s.t.:

1) There exists a hyperflow for γn on (Vn, Cn , En). (Hence,
by Theorem 3.7, there exists a WDAG corresponding to
a hyperflow for γn on (Vn, Cn , En).)

2) Any WDAG (Vn, Cn, En, w, γn) corresponding to a
hyperflow for γn on (Vn, Cn, En) must have

max
e∈En
|w(e)| ≥ cn

ln(dv−1)
ln(dv−1)+ln(dc−1)

We now prove some lemmas that lead to the proof of
Theorem 5.11.

Definition A.13 (Construction of {(Vn, Cn, En)}n): Let β =
(dv − 1)(dc − 1). The Tanner graph {(Vn, Cn, En)}n is con-
structed by connecting copies of the following two basic
blocks:

1) The “A block” Ax with parameter the non-negative
integer x. Ax is an undirected complete tree rooted at

4696 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Fig. 8. Example of an A block with parameter x = 1 where dv = 3 and
dc = 4.

Fig. 9. Example of a B block with parameter y = 2 where dv = 3.

a (dv − 1)-regular variable node. The internal nodes of
Ax other than the root are either dc-regular check nodes
or dv-regular variable nodes. The leaves of Ax are all
1-regular variable nodes of depth x.22 Thus, Ax has βx

leaves. An example A block is given in Figure 8.
2) The “B block” By with parameter the non-negative

integer y. By is an undirected tree rooted at a (dv− 1)-
regular variable node. The internal nodes of By other
than the root are either dv-regular variable nodes or
2-regular check nodes. The leaves of By are 1-regular
variable nodes. The nodes of By are divided into y + 1
layers indexed from y to 0. Layer y consists of the root
and the (dv − 1) check nodes that are connected to the
root. Each check node in layer i is connected to a single
variable node in layer i − 1 for all i = y, y − 1, . . . , 1.
Each variable node in layer i is connected to dv − 1
check nodes in the same layer for all i = y, y−1, . . . , 1.
Thus, layer 0 consists of (dv − 1)y leaves which are all
1-regular variable nodes. An example B block is given
in Figure 9.

Let γ = ln(dv−1)
ln(dv−1)+ln(dc−1) . For every non-negative integer n, let

yn = �log(dv−1) nγ � and bn = (dv−1)yn =
(nγ). The Tanner
graph {(Vn, Cn, En)}n is constructed using a root check node,
one B block, many A blocks and some auxiliary variable and

22The depth of a variable node v is the number of check nodes on the
unique path from the root to v .

check nodes as follows:

1) Start with a check node c0.
2) Connect c0 to the roots of dc − 1 Ayn+1 blocks and to

the root of one Byn block. Note that Byn has bn leaves.
3) For every i = yn, yn−1, . . . , 1, connect each check node

in layer i of Byn to the roots of (dc−2) Ai blocks. Note
that there are (dv − 1)yn−i+1 check nodes in layer i .

4) Let Tn be the tree constructed so far and ln be its number
of leaves. Note that all the leaves of Tn are 1-regular
variable nodes. Complete Tn into a (dv, dc)-regular
graph by adding O(ln) dc-regular new check nodes and
(if needed) O(ln) dv-regular new variable nodes in such
a way that each new check is either connected to zero
or to at least two leaves of the B block.23

We call the check and variable nodes added in step 4 the
“connecting” check and variable nodes respectively.

Definition A.14 (Construction of {γn}n):Let {(Vn, Cn, En)}n
be the Tanner graph given in Definition A.13. The error pattern
γn is defined by:

1) For every variable node v in an A block, γn(v) = 1.
2) For every variable node v in the B block, γn(v) = −1.
3) For every connecting variable node v, γn(v) = 1.
Lemma A.15 (Size of the Code): For any positive integer

n, the Tanner graph {(Vn, Cn, En)}n given in Definition A.13
is a (dv, dc)-regular code with
(n) variable nodes.

Proof of Lemma A.15: It is enough to show that the number
ln of leaves of Tn is O(n). The number of leaves of block Byn

is bn =
(nγ). The number of leaves of block Ay is (dv−1)y .
Thus, the number of leaves in all the A-blocks is

an = (dc − 1)(dv − 1)yn+1 + (dc − 2)

yn∑

i=1

(dv − 1)yn−i+1β i

= O((dv − 1)yn)+ O((dv − 1)yn

yn∑

i=1

(dc − 1)i)

= O(bn + β yn)

because (dv− 1)yn = bn and
∑yn

i=1(dv− 1)i = O((dc− 1)yn).
Since β yn =
(n) and bn = o(n), we get that ln = bn + an =

(n). �

Lemma A.16 (Existence of a Hyperflow for {γn}n on
{(Vn, Cn, En)}n): Let {(Vn, Cn, En)}n be the Tanner graph
given in Definition A.13 and let γn be the error pattern given
in Definition A.14. Then, for every positive integer n, there
exists a hyperflow for γn on (Vn, Cn, En).

Proof of Lemma A.16: Let ε > 0. We will further specify ε
at the end of the proof. Consider the following assignment of
weigths to edges of En:

1) In every A block, the edges are directed toward the
root of the block. The edges outgoing from the leaves
have weight 1 − ε. For every check node, the weight
of the outgoing edge is equal to the common weight of
its incoming edges. For each variable node, the sum of
the weights of the outgoing edges is equal to the sum

23Note that if (dv−1)ln is divisible by dc, we don’t need any extra variable
nodes. In the worst case, we can add dc copies of Tn so that (dv − 1)dcln is
divisible by dc.

BAZZI et al.: LP DECODING OF SPATIALLY COUPLED CODES 4697

of the weights of the incoming edges plus 1− ε. Thus,
the weight of the edge outgoing from the root of the
Ax block is

rx = (1− ε)

x∑

t=0

(dv − 1)t = (1− ε)
(dv − 1)x+1 − 1

dv − 2

2) In the B block, the edges are directed toward the
leaves. The edge connecting c0 to the root of block B
has weight wyn where for any i ∈ {0, . . . , yn}:

wi := (1+ ε)

i∑

j=0

(dv − 1) j = (1+ ε)
(dv − 1)i+1 − 1

dv − 2

For every internal variable node v, the weight of each
outgoing edge from v is z−(1+ε)

dv−1 where z is the weight
of the edge incoming to v. For every internal check
node c, the weight of the edge outgoing from c is equal
to the weight of the edge incoming to c. By induction on
the layer index i = yn, yn−1, . . . , 0, for every variable
node v in layer i , the weight of its incoming edge is
wi and (if v is not a leaf) the weight of each of its
outgoing edges is wi−1 (since wi satisfies the recurrence
wi−1 = wi−(1+ε)

dv−1 for all i = yn, yn−1, . . . , 1).
3) All edges adjacent to connecting check or variable

nodes have weight zero.

By construction, the weights satisfy the dual witness equations
(4) and (5) for all check and variable nodes in A blocks, all
internal variable nodes in the B block and all the connecting
check and variable nodes. To guarantee that equations (4) and
(5) hold for the root check node c0, we need that ryn+1 ≥ wyn .
To guarantee them for the internal check nodes of the B block,
we need that ri+1 ≥ wi for all i = yn − 1, . . . , 1. To
guarantee them for the leaves of the B block, we need that
w0 − 1 > 0, which holds since w0 = 1 + ε. Thus, for every
i = yn, yn−1, . . . , 1, we need that ri+1 ≥ wi , i.e.,

(1− ε)
(dv − 1)i+2 − 1

dv − 2
≥ (1+ ε)

(dv − 1)i+1 − 1

dv − 2

which can be guaranteed by letting 0 < ε < 1− 2
dv

. �
Lemma A.17 (Lower Bound for Any Hyperflow for {γn}n

on {(Vn, Cn , En)}n): For any positive integer n, any WDAG
(Vn, Cn, En, w, γn) corresponding to a hyperflow for γn on
(Vn, Cn, En) must have

max
e∈En
|w(e)| ≥ cn

ln(dv−1)
ln(dv−1)+ln(dc−1)

for some constant c > 0.
Proof of Lemma A.17: Let (Vn, Cn, En, w, γn) be a WDAG

corresponding to a hyperflow for γn on (Vn, Cn, En). Since
γn(v) = −1 for every leaf v of the B block (which has bn

leaves) and since each connecting check node adjacent to a leaf
of the B block is connected to at least two leaves of the B
block, there should be a flow of total value larger than bn from
the non-leaf and non-connecting nodes of the B block to its
leaves. Applying the same argument inductively and using the
fact that for every variable node v of the B block γn(v) = −1,
we get that all the edges of the B block should be oriented
toward its leaves and that there should be a flow of value

larger than bn entering the root of the B block. Thus, the edge
connecting c0 to the root of the B block should be oriented
toward the B block and should have value larger than bn =

(n

ln(dv−1)
ln(dv−1)+ln(dc−1)). �

Proof of Theorem 5.11: Follows from Lemmas A.15, A.16
and A.17. �

ACKNOWLEDGMENTS

The authors would like to thank Pascal Vontobel and the
anonymous reviewers for very helpful comments.

REFERENCES

[1] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: A
Hitchhiker’s Guide. New York, NY, USA: Springer-Verlag, 2006.

[2] L. Bazzi, B. Ghazi, and R. Urbanke, “Linear programming decod-
ing of spatially coupled codes,” in Proc. IEEE ISIT, Jul. 2013,
pp. 1486–1490.

[3] E. Berlekamp, R. J. McEliece, and H. C. A. V. Tilborg, “On the inherent
intractability of certain coding problems (corresp.),” IEEE Trans. Inf.
Theory, vol. 24, no. 3, pp. 384–386, May 1978.

[4] D. Burshtein, “Iterative approximate linear programming decoding of
LDPC codes with linear complexity,” IEEE Trans. Inf. Theory, vol. 55,
no. 11, pp. 4835–4859, Nov. 2009.

[5] D. Burshtein, private communication, 2011.
[6] C. Daskalakis, A. G. Dimakis, R. M. Karp, and

M. J. Wainwright, “Probabilistic analysis of linear programming
decoding,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3565–3578,
Aug. 2008.

[7] D. L. Donoho, A. Javanmard, and A. Montanari, “Information-
theoretically optimal compressed sensing via spatial coupling and
approximate message passing,” in Proc. IEEE ISIT, Cambridge, MA,
USA, Jul. 2012, pp. 1231–1235.

[8] J. Feldman, “Decoding error-correcting codes via linear programming,”
Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst.
Technol., Cambridge, MA, USA, 2003.

[9] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and
M. J. Wainwright, “LP decoding corrects a constant fraction of
errors,” IEEE Trans. Inf. Theory, vol. 53, no. 1, pp. 82–89, Jan. 2007.

[10] J. Feldman and C. Stein, “LP decoding achieves capacity,” in
Proc. 16th Annu. ACM-SIAM SODA, Philadelphia, PA, USA, 2005,
pp. 460–469.

[11] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear program-
ming to decode binary linear codes,” IEEE Trans. Inf. Theory, vol. 51,
no. 3, pp. 954–972, Mar. 2005.

[12] R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[13] N. Halabi and G. Even, “Linear-programming decoding of Tanner codes
with local-optimality certificates,” in Proc. IEEE ISIT, Cambridge, MA,
USA, 2012, pp. 2686–2690.

[14] A. J. Felstrom and K. S. Zigangirov, “Time-varying periodic convo-
lutional codes with low-density parity-check matrix,” IEEE Trans. Inf.
Theory, vol. 45, no. 6, pp. 2181–2191, Sep. 1999.

[15] F. Krzakala, M. Mézard, F. Sausset, Y. F. Sun, and L. Zdeborová,
“Statistical-physics-based reconstruction in compressed sensing,” Phys.
Rev. X, vol. 2, no. 2, p. 021005, May 2012.

[16] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová,
“Probabilistic reconstruction in compressed sensing: Algorithms, phase
diagrams, and threshold achieving matrices,” J. Statist. Mech., Theory
Experim., vol. 2012, no. 08, p. 08009, Jun. 2012.

[17] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold Saturation
via Spatial Coupling: Why Convolutional LDPC Ensembles Perform
So Well over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2,
pp. 803–834, Feb. 2011.

[18] S. Kudekar, T. Richardson, and R. Urbanke, “Spatially coupled ensem-
bles universally achieve capacity under belief propagation,” in Proc.
IEEE ISIT, Cambridge, MA, USA, Jul. 2012, pp. 453–457.

[19] R. Koetter and P. O. Vontobel, “Graph-covers and iterative decoding of
finite length codes,” in Proc. IEEE Int. Symp. Turbo Codes Appl., 2003,
pp. 75–82.

[20] P. M. Olmos and R. Urbanke, “Scaling behavior of convolutional LDPC
ensembles over the BEC,” in Proc. IEEE ISIT, St. Petersburg, Russia,
Feb. 2011, pp. 1816–1820.

4698 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

[21] A. Schrijver, Theory of Linear and Integer Programming. New York,
NY, USA: Wiley, 1998.

[22] M. B. S. Tavares, K. S. Zigangirov, and G. P. Fettweis, “Tail-
biting LDPC convolutional codes,” in Proc. IEEE ISIT, Nice, France,
Jun. 2007, pp. 2341–2345.

[23] P. O. Vontobel and R. Koetter, “Towards low-complexity linear-
programming decoding,” in Proc. 6th Int. ITG-Conf. Sour. Channel
Coding, 4th Int. Symp. Turbo Codes Rel. Topics, Apr. 2006, pp. 1–9.

[24] P. O. Vontobel and R. Koetter, “On low-complexity linear-programming
decoding of LDPC codes,” Eur. Trans. Telecommun., vol. 18, no. 5,
pp. 509–517, Aug. 2007.

Louay Bazzi received his Ph.D. degree from the department of Electrical
Engineering and Computer Science at MIT in 2003. He is currently an
associate Professor in the Electrical and Computer Engineering department
at the American University of Beirut. His research interests include coding
theory, pseudorandomness, and complexity theory.

Badih Ghazi received his BE in Computer and Communications Engineering
at the American University of Beirut in 2012. He is currently a graduate
student at the EECS department at MIT. His research interests include coding
theory and complexity theory.

Rüdiger L. Urbanke obtained his Dipl. Ing. degree from the Vienna
University of Technology, Austria in 1990 and the M.Sc. and PhD degrees
in Electrical Engineering from Washington University in St. Louis, MO, in
1992 and 1995, respectively.

He held a position at the Mathematics of Communications Department
at Bell Labs from 1995 till 1999 before becoming a faculty member at the
School of Computer & Communication Sciences of EPFL. He is a member
of the Information Processing Group.

He is principally interested in the analysis and design of iterative coding
schemes, which allow reliable transmission close to theoretical limits at
low complexities. Such schemes are part of most modern communications
standards, including wireless transmission, optical communication and hard
disk storage. More broadly, his research focuses on the analysis of graphical
models and the application of methods from statistical physics to problems
in communications.

From 2000–2004 he was an Associate Editor of the IEEE TRANSACTIONS

ON INFORMATION THEORY and he is currently on the board of the series
Foundations and Trends in Communications and Information Theory. Since
2013 he has been a Member of the Board of the Information Theory Society
as well as a Distinguished Speaker. In 2013 he served a short stint as Dean
a. i. of I&C.

Dr. Urbanke is a recipient of a Fulbright Scholarship. He is a co-author of
the book Modern Coding Theory (Cambridge University Press) a co-recipient
of the 2002 and the 2013 IEEE Information Theory Society Paper Award,
the 2011 IEEE Koji Kobayashi Award, as well as the 2014 IEEE Hamming
Medal.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

