arXiv:1303.1209v1 [cs.DS] 5 Mar 2013

Sample-Optimal Average-Case Sparse Fourier Transforrvon T
Dimensions

Badih Ghazi Haitham Hassanieh Piotr Indyk Dina Katabi Eric®
Lixin Shi
Massachusetts Institute of Technology

{badi h, hai t hanmh, i ndyk, dk, ecprice, lixshi }@r t. edu

Abstract

We present the first sample-optimal sublinear time algoritfior the sparse Discrete Fourier Transform over
a two-dimensional/n x /n grid. Our algorithms are analyzed fawerage casaignals. For signals whose
spectrum is exactly sparse, our algorithms G$&) samples and run i®(k log k) time, wherek is the expected
sparsity of the signal. For signals whose spectrum is apmately sparse, our algorithm us@sk log n) samples
and runs inO(k log® n) time; the latter algorithm works fde = ©(,/n). The number of samples used by our
algorithms matches the known lower bounds for the respestgnal models.

By a known reduction, our algorithms give similar results floe one-dimensional sparse Discrete Fourier
Transform whem is a power of a small composite number (exg= 6°).

1 Introduction

The Discrete Fourier Transform (DFT) is a powerful tool ugednany domains. Multimedia data sets,
including video and images, are typically processed in tegudency domain to compress the data [Wal91,
HPN97,/BK95]. Medicine and biology rely on the Fourier trimmen to analyze the output of a variety
of tests and experiments including MRI_[Nis10], NMR [MEHQ@)d ultrasound imaging [KS01]. Other
applications include astronomy and radar systems.

The fastest known algorithm for computing the DFT is the Famtrier Transform (FFT). It computes
the DFT of a signal with size in O(nlogn) time. Although it is not known whether this algorithm is
optimal, any general algorithm for computing the exact DFilistrtake time at least proportional to its
output size, i.e.f2(n). In many applications, however, most of the Fourier coeffits of a signal are small
or equal to zero, i.e., the output of the DFT is (approximatsparse This sparsity provides the rationale
underlying compression schemes for image and video signals as JPEG and MPEG. In fact, all of the
aforementioned applications involve sparse data.

For sparse signals, the(n) lower bound for the complexity of DFT no longer applies. Ifignal has
a small numbet of nonzero Fourier coefficients—thexactly k-sparsecase—the output of the Fourier
transform can be represented succinctly using éntpefficients. Hence, for such signals, one may hope
for a DFT algorithm whose runtime is sublinear in the sigmet 8. Even in the more generapproximately
k-sparsecase, it is possible in principle to find the large componeifitéss Fourier transform in sublinear
time.

The past two decades have withessed significant advanceblinesar sparse Fourier algorithms. The
first such algorithm (for the Hadamard transform) appeandikM91] (building on [GL89]). Since then,


http://arxiv.org/abs/1303.1209v1

several sublinear sparse Fourier algorithms for complextis have been discovered [Man92, GG2,
AGS03,/GMS05, Iwel0, Akal0, HIKP1Rb, HIKP12a, [WC12, BCIZ,[HAKI1Z]. The most efficient of
those algorithnﬂs given in [HIKP124], offers the following performance gaatees:

e For signals that are exacthrsparse, the algorithm runs (% log n) time.
e For the approximately sparse signals, the algorithm ruidg(fnlog n log(n/k)) time.

Although the aforementioned algorithms are very efficiéhnéy nevertheless suffer from limitations.
Perhaps the main limitation is that their sample complekitynds are equal to the their running times.
In particular, the sample complexity of the first algorithfor(the exactlyk-sparse case) i®(klogn),
while the sample complexity of the second algorithm (appnately sparse) i®(k log(n) log(n/k)). The
first bound is suboptimal by a logarithmic factor, as it is wmnothat one can recover any signal with
nonzero Fourier coefficients fro (k) samples[[AT0B], albeit in super-linear time. The secondnigou
is a logarithmic factor away from the lower bound@f% log(n/k)) [PW11] established for non-adaptive
algorithm; a slightly weaker lower bound d®(% log(n/k)/loglogn) applies to adaptive algorithms as
well [HIKP12d]. In most applications, low sample complgxi at least as important as efficient running
time, as it implies reduced signal acquisition or commuicacost.

Another limitation of the prior algorithms is that most o&th are designed for one-dimensional signals.
This is unfortunate, since multi-dimensional instanceBlBT are often particularly sparse. This situation is
somewhat alleviated by the fact that the two- dimensional B¥erp x ¢ grids can be reduced to the one-
dimensional DFT over a signal of length [GMSO05, lwel2]. However, the reduction applies only énd
q are relatively prime, which excludes the most typical cdseo< m grids wherem is a power of2. The
only prior algorithm that applies to general x m grids, due to[[GMSQ05], ha® (k log® n) sample and time
complexity for a rather large value of If n is a power oR2, a two-dimensional adaptation of the [HIKP12b]
algorithm (outlined in the appendix) has rougliNk log® n) time and sample complexity.

Our results In this paper, we present the first sample-optimal sublitieze algorithms for the Discrete
Fourier Transform over a two- dimensiongh x \/n grid. Unlike the aforementioned results, our algo-
rithms are analyzed in theverage caseOur input distributions are natural. For the exactly sparase,
we assume the Bernoulli model: each spectrum coordinatensano with probabilityk /n, in which case
the entry assumes an arbitrary value predetermined forptbsitiorﬁ. For the approximately sparse case,
we assume that the spectruimof the signal is a sum of two vectors: the signal vector, chdsem the
Bernoulli distribution, and the noise vector, chosen friva Gaussian distribution (see Secti@hPrelimi-
naries for the complete definition). These or sirffilaistributions are often used as test cases for empirical
evaluations of sparse Fourier Transform algorithms [IGHIKP12h,[LWC12] or theoretical analysis of
their performance [LWC12].

The algorithms succeed with a constant probability. Theéonodf success depends on the scenario
considered. For the exactly sparse case, an algorithm cessiul if it recovers the spectrum exactly. For

!See the discussion in the Related Work section.

2An algorithm isadaptiveif it selects the samples based on the values of the preyisashpled coordinates. If the positions of
the samples are chosen in advance of the sampling procesdgtrithm is calleshon-adaptive All algorithms given in this paper
are non-adaptive.

3Note that this model subsumes the scenario where the véltlesmonzero coordinates are chosen i.i.d. from some bligtadn.

4A popular alternative is to use the hypergeometric disti@muover the set of nonzero entries instead of the Berndisttibu-
tion. The advantage of the former is that it yields vectorsprsityexactlyequal tok. In this paper we opted for the Bernoulli
model since it is simpler to analyze. However, both modedsjaiite similar. In particular, for large enoughthe actual sparsity of
vectors in the Bernoulli model is sharply concentrated addu



the approximately sparse case, the algorithm is succat#tfteports a signal with spectrumsuch that
IZ = Z[I3 = O(o?n) + ||Z[|3/n° 1)

whereo? denotes the variance of the normal distributions definira emordinate of the noise vector, and
wherec is any constant. Note that aysparse approximation t has error2(o%n) with overwhelming
probability, and that the second term in the bound in Equdliés subsumed by the first term as long as the
signal-to-noise ratio is at most polynomial, i.z|; < n°(Meo. See Sectiof2 for further discussion.

The running time and sample complexity bounds are depictedd following table. We assume that
v/n is a power of2.

Input Samples Time Assumptions
Sparse k klog k k= 0O(y/n)
Sparse k klogk

+k(log log n)°0™)
Approx. sparse klogn klog?n k=0(/n)

The key feature of our algorithms is that their sample corigldoounds are optimal, at least in the non-
adaptive case. For the exactly sparse case, the lower bdunfkpis immediate. For the approximately
sparse case, we note that &k log(n/k)) lower bound of [PW11] holds even if the spectrum is the sum
of a k-sparse signal vector {0, 1, —1}"™ and Gaussian noise. The latter is essentially a specialofdke
distributions handled by our algorithm, and we give a fulluetion in AppendiXCA. From the running time
perspective, our algorithms are slightly faster than thgelIKP122], with the improvement occurring for
low values ofk.

An additional feature of the first algorithm is its simplicéind therefore its low “big-Oh” overhead. Our
preliminary experiments on random sparse data indicatethleaalgorithm for exactly sparse case yields
substantial improvement over 2D FFTW, a highly efficient iempentation of 2D FFT. In particular, for
n = 222 (22048 x 2048 signal) andk = 1024, the algorithm is 108 faster than 2D FFTW. To the best
of our knowledge, this is the first implementation of a 2D spdfFT algorithm. For the sameandk, the
algorithm has a comparable running time (1.faster) to the 1D exactly sparse FFT in [HIKP12a] while
using 8x fewer samples. We expect that the algorithm or its variafithei efficient on non-random data
as well, since the algorithm can randomize the positionsi@tcbefficients using random two-dimensional
affine transformations (cf. AppendiX B). Even though theultasg distribution is not fully random, it has
been observed that random affine transformations work isimgly well on real data [MV0B].

Our techniques Our first algorithm fork-sparse signals is based on the following idea. Recall that o
way to compute the two-dimensional DFT of a signas to apply the one-dimensional DFT to each column
and then to each row. Suppose that a+/n for a < 1. In this case, the expected number of nonzero entries
in each row is less thah If everyrow contained exactly one nonzero entry, then the DFT coelcbimputed

via the following two step process. In the first step, we gselee first two columns of:, denoted byu(®)
andu()), and compute their DFT&? andua(!). Let j; be the index of the unique nonzero entry in ik

row of z, and leta be its value. Observe thfa’lﬁo) — g andaV = aw i (wherew is a primitive y/n-th

1

root of unity), as these are the first two entries of the irvéfeurier transform of a-sparse signake;; .
Thus, in the second step, we can retrieve the value of thesnomntry, equal t@@, as well as the indey;

from the phase of the rat@(l)/ﬂf.o) (this technique was introduced [n [HIKP12a, [WC12] and wedsnred
to as the “OFDM trick”). The total time is dominated by the to&the two DFTs of the columns, which

3



Pl 14l

%
ﬁ
(a) Original Spectrum (b) Step 1: Row recovery (c) Step 2: Column recovery
| 1
_>
_>
= 1 H 1
%
%
ﬁ
(d) Step 3: Row recovery (e) Step 4: Column recovery (f) Step 5: Row Recovery

Figure 1: An illustration of the “peeling” recovery process an8 x 8 signal with 15 nonzero frequencies.
In each step, the algorithm recovers Blparse columns and rows (the recovered entries are dgpicte
red). The process converges after a few steps.

is O(y/nlogn). Since the algorithm queries only a constant number of colyrits sample complexity is
O(v/n).

In general, the distribution of the nonzero entries overrtves can be non-uniform. Thus, our actual
algorithm alternates the above recovery process betweecolomns and rows (see Figlde 1 for an illus-
tration). Since the OFDM trick works only oh-sparse columns/rows, we check thaparsity of each
column/row by sampling a constant number of additionaliesntiWe then show that, as long as the sparsity
constanta is small enough, this process recovers all entries in a iigaic number steps with constant
probability. The proof uses the fact that the probabilitytied existence of an “obstructing configuration”
of nonzero entries which makes the process deadlocked ¢eg.Figuré]2) is upper bounded by a small
constant.

The algorithm is extended to the casekof= o(y/n) via a reduction. Specifically, we subsample the
signal z by the reduction raticdk = a+/n/k for some small enough constamtin each dimension. The
subsampled signat’ has dimension/m x /m, wherey/m = . Since subsampling in time domain
corresponds to “spectrum folding”, i.e., adding togetHefraquencies with indices that are equal modulo
\/m, the nonzero entries afare mapped into the entries:of It can be seen that, with constant probability,
the mapping is one-to-one. If this is the case, we can useattieraalgorithm for sparse DFT to compute the
nonzero frequencies i@ (/mlogm) = O(vklogk) time, usingO(k) samples. We then use the OFDM
trick to identify the positions of those frequenciestin



- 1

_
=] -l

@ (b)

Figure 2: Examples of obstructing sequences of nonzergesntNone of the remaining rows or columns
has a sparsity of 1.

Our second algorithm for the exactly sparse case works faralles ofk. The main idea behind it
is to decode rows/columns with higher sparsity tHanFirst, we give adeterministi¢ worst-casealgo-
rithm for 1-dimensional sparse Fourier transforms thaesaR(k? + k(loglogn)°™) time. This algo-
rithm uses the relationship between sparse recovery ardt@aye decoding of Reed-Solomon codes (due
to [AT08]). Although a simple application of the decoderlgieO(n?) decoding time, we show that by
using appropriate numerical subroutines one can in facve¥cak-sparse vector fron® (k) samples in
time O(k? + k(log log n)o(l))ﬁ. In particular, we use Berlekamp-Massey’s algorithm fanstoucting the
error-locator polynomial and Pan’s algorithm for finding fibots. For our fast average-cagajimensional
sparse Fourier transform algorithm, we fold the spectruim B = ﬁ bins for some large constaat.
Since the positions of thie nonzero frequencies are random, it follows that each bieivest = ©(log k)
frequencies with high probability. We then takdt) samples of the time domain signal corresponding to
each bin, and recover the frequencies corresponding te thias inO(t> + t(log log n)°()) time per bin,
for a total time ofO(k log k + k(log logn)°™M).

The above approach works as long as the number of nonzerfica®t per column/row are highly
concentrated. However, this is not the casekfex /nlogn. We overcome this difficulty by replacing a
row by a sequence of rows. A technical difficulty is that thegaeiss might lead to collisions of coefficients.
We resolve this issue by using a two level procedure, wherérst level returns the syndromes of colliding
coefficients as opposed to the coefficients themselvesytidr@mes are then decoded at the second level.

Our third algorithm works foapproximatelysparse data, at sparsi®(/n). Its general outline mimics
that of the first algorithm. Specifically, it alternates beém decoding columns and rows, assuming that they
arel-sparse. The decoding subroutine itself is similar to th§flKP12a] and use$)(log n) samples. The
subroutine first checks whether the decoded entry is lafgegtj the spectrum is unlikely to contain any
large entry, and the subroutine terminates. The algoritien subtracts the decoded entry from the column
and checks whether the resulting signal contains no largeesin the spectrum (which would be the case
if the original spectrum was approximatelysparse and the decoding was successful). The check is done
by samplingO(log n) coordinates and checking whether their sum of squares i8. shwaprove that this
check works with high probability, we use the fact that aexibn of random rows of the Fourier matrix is
likely to satisfy the Restricted Isometry Property (RIP]GT06].

A technical difficulty in the analysis of the algorithm is ttiae noise accumulates in successive itera-

We note that, folk = o(log n), this is the fastest knowworst-casealgorithm for the exactly sparse DFT.



tions. This means that®/ logo(l) n fraction of the steps of the algorithm will fail. However, wkBow that
the dependencies are “local”, which means that our anadydlispplies to a vast majority of the recovered
entries. We continue the iterative decoding fog log n steps, which ensures that all butlAlogO(l) n
fraction of the large frequencies are correctly recovel@decover the remaining frequencies, we resort to
algorithms with worst-case guarantees.

Extensions Our algorithms have natural extensions to dimensions hitjtaa2. We do not include them
in this paper as the description and analysis are rather ergoine.

While no optimal result is known for the-dimensional case, one can achieve optimal sample complex-
ity and efficient robust recovery in theg n-dimensional (Hadamard) case ([Lev93], see also Appendix C
of [Gol99]). Our result demonstrates that even two dimamsigive enough flexibility for optimal sample
complexity in the average case. Due to the equivalence ketwee two-dimensional case and the one-
dimensional case whereis a product of different prime powels [GMS05, Iwé12], ogaithm also gives
optimal sample complexity bounds for e.g.= 6 in the average case.

1.1 Related work

As described in the introduction, currently the most effitialgorithms for computing the sparse DFT
are due to[[HIKP12a]. For signals that are exadtigparse, the first algorithm runs ®(klogn) time.
For approximately sparse signals, the second algorithra i@ (k log nlog(n/k)) time. Formally, the
latter algorithm works for any signal, and computes an approximation vecidrthat satisfies thé, //-
approximation guarantee, i.4% — 7’||2 < C ming.sparse, ||Z — yl|2, whereC' is some approximation factor
and the minimization is ovet-sparse signals. Note that this guarantee generalizesftiauation[(1).

We also mention another efficient algorithm, due_to [LWCH#signed for the exactly-sparse model.
The average case analysis presented in that paper showiselegorithm ha$) (k) expected sample com-
plexity and runs irO(k log k) time. However, the algorithm assumes that the input signsspecified as a
functionover an interval0, 1] that can be sampled at arbitrary positions, as opposed tcea discrete se-
guence of, samples as in our case. Thus, although very efficient, thatithm does not solve the Discrete
Fourier Transform problem.

2 Preliminaries

This section introduces the notation, assumptions anditiefie used in the rest of this paper.

Notation Throughout the paper we assume théat is a power of2. We use[m] to denote the set
{0,...,m — 1}, and[m] x [m] = [m]? to denote then x m grid {(i,7) : i € [m],7 € [m]}. We de-

finew = e~27/V7" to be a primitivey/n-th root of unity andw’ = e~27/" to be a primitiven-th root of

unity. For any complex number, we use¢(a) € [0,27) to denote thephaseof a. For a 2D matrix

x € CV™*V7 its support is denoted byupp(z) C [v/7n] x [v/n]. We use||z||o to denotesupp(z)], the

number of nonzero coordinates of Its 2D Fourier spectrum is denoted Bywith

~ 1 il+jm
T = % Z Z Wit Tl -
le[v/n] me[v/n]



Similarly, if y is a frequency-domain signal, its inverse Fourier tramsf@r denoted byj.

Definitions The paper uses the comb filter used[in [Iwe10, HIKP12b] (cfafl92]). The filter can be
generalized t@ dimensions as follows:
Given(r,,7.) € [v/n] X [y/n], andB,, B.. that divide/n, then for all(i, j) € [B,] x [B.] set

Yi.i = Ti(v/n/Br)+7r,§(/n/Be)+7e:
Then, compute the 2D DFJ of . Observe thaf is a folded version of:

EEDY Y BBerimpee BTG,
e[V B.] me[y/r/Be]

Distributions  In the exactly sparse case, we assume a Bernoulli modeléasutpport ofc. This means

that for all (7, j) € [v/n] x [V/n],
Pr{(i, ) € supp (Z)} = k/n

and thusE[|supp (Z)|] = k. We assume an unknown predefined madsix of values inC; if z; ; is selected
to be nonzero, its value is setdg;.

In the approximately sparse case, we assume that the sigmatjual tar* + @ € CV™*Vn, Whereﬁm
is the “signal” and? is the “noise”. In particularz* is drawn from the Bernoulli model, wheze; ; is drawn
from {0, a; ; } at random independently for eath j) for some values; ; and withEE]| supp(z*)[] = k. We
also require thaf; ;| > L for some parametel. w is a complex Gaussian vector with variarcein both
the real and imaginary axes independently on each cooeginat notate this a& ~ N¢ (0, 0%1,,). We will
need thatl, = C'o+/n/k for a sufficiently large constar, so that&[|[z*||2] > C'E[||@|2].

3 Basic Algorithm for the Exactly Sparse Case

The algorithm for the noiseless case depends on the sparsityerek = E[|supp (Z)|] for a Bernoulli
distribution of the support.

3.1 Basic Exact Algorithm: k = ©(y/n)

In this section, we focus on the reginke= O(y/n). Specifically, we will assume thdt = a/n for a
(sufficiently small) constant > 0.

The algorithm B\SICEXACT2DSFFT is described as Algorithm B.1. The key idea is to fhiel¢pec-
trum into bins using the comb filter definedJ# and estimate frequencies which are isolated in a bin. The
algorithm takes the FFT of a row and as a result frequenciéiseirsame columns will get folded into the
same row bin. It also takes the FFT of a column and consequéretjuencies in the same rows wil get
folded into the same column bin. The algorithm then uses tRBID trick introduced in[[HIKP12a] to
recover the columns and rows whose sparsity is 1. It itefaéseen the column bins and row bins, sub-
tracting the recovered frequencies and estimating theingmgacolumns and rows whose sparsity is 1. An
illustration of the algorithm running on ahx 8 signal with 15 nonzero frequencies is shown in FEig. 1 in
Section 1. The algorithm also takes a constant number o &#Ts of columns and rows to check for
collisions within a bin and avoid errors resulting from esiting bins where the sparsity is greater than 1.
The algorithm uses three functions:



e FOLDTOBINS. This procedure folds the spectrum imBp x B, bins using the comb filter describ&d.

e BASICESTFREQ. Given the FFT of rows or columns, it estimates the frequéndkie large bins. If there
is no collision, i.e. if there is a single nonzero frequentyhie bin, it adds this frequency to the resilt
and subtracts its contribution to the row and column bins.

e BASICEXACT2DSFFT. This performs the FFT of the rows and columns and itleeates B\SICEST
FREQ between the rows and columns until is recovers

Analysis of BASICEXACT 2DSFFT

Lemma 3.1. For any constaniv > 0, if a > 0 is a sufficiently small constant, then assuming that all
1-sparsity tests in the proceduBASICESTFREQ are correct, the algorithm reports the correct output with
probability at leastl — O(«).

Proof. The algorithm fails if there is a pair of nonzero entries incddumn or row ofZz that “survives”
tmaz = Clogn iterations. For this to happen there must be an “obstrut8eguence of nonzero entries
D1,q41,P2,92 - - - Pt, 3 < t < tmas, SUCh that for each > 1, p; andg; are in the same column (“vertical
collision”), while ¢; andp;,1 are in the same row (“horizontal collision”). Moreover, iust be the case
that either the sequence “loops around”, ig.= p;, Ort > t,,4.. We need to prove that the probability of
either case is less than We focus on the first case; the second one is similar.

Assume that there is a sequengeqi,...p:—1,q:—1 such that the elements in this sequence are all
distinct, whilep; = p;. If such a sequence exists, we say that the ekgolds. The number of sequences
satisfying E, is at mosty/n>" ", while the probability that the entries corresponding te fioints in a
specific sequence are nonzero is at nfgg)2(~1) = (a/\/n)2¢=1. Thus the probability of?; is at most

\/ﬁz(t_l) . (a/\/ﬁ)%t—l) _ a2(t—1)'

Therefore, the probability that one of the evenis. . . , E;,, .. holds is at mosp 72, a>*—1) = a*/(1—a?),
which is smaller tham for ¢ small enough. O

Lemma 3.2. The probability that any 1-sparsity test invoked by the @thm is incorrect is at most
O(1/n(c=9)/2),

To prove Lemma 312, we first need the following lemma.

Lemma 3.3. Lety € C™ be drawn from a permutation invariant distribution with> 2 nonzero values.
LetT = [2¢|. Then the probability that there existsyjasuch that||y'[|o < 1 and (7 — 7’)r = 0 is at most

. c—2
()

Proof. Let A = Fr be the firsc rows of the inverse Fourier matrix. Because &y 2¢ submatrix ofA
is Vandermonde and hence non-singular, the system of lewpaations

Az =D

has at most one-sparse solution ia, for anyb.
If r <c—1,then|ly—y|lo < csoA(y—y') = 0impliesy —y' = 0. Butr > 2so|ly —¢/||o > 0. This
is a contradiction, so if < ¢ then the probability thaty — y’)r = 0 is zero. Henceforth, we assume> c.

8



procedure FOLDTOBINS(x, B;, Be, T, Te)
Yij = Ti(y/n/Br)+rrj(y/in/Be)+re 1OF (4,7) € [Br] x [Be],
return y, the DFT ofy

end procedure

procedure BasiIcESTFReQ(@(D), o), T, I1sCol)

w <+ 0.

Compute] = {j : 3. [al”| > 0}.

for j € Jdo
b aMjal,
i< rounc(¢(b)§) mod /n. > ¢(b) is the phase of.
s ﬂg-o).

> Test whether the row or column is 1-sparse
if (ZTeT a7 — swTi| == o) then
if IsColthen > whether decoding column or rgw
’L/ﬁi,j — S.
else
’L/ﬁjﬂ' — S.
end if
for 7 € T'do
ﬂy) 0
57 o)
end for
end if
end for
return @, 2™, 5(7)
end procedure
procedure BASICEXACT2DSFFT(, k)
T «+ [2c] > We setc > 6
for 7 € T'do
4" « FOLDTOBINS(z, v/n,1,0,7).
(") « FOLDTOBINS(z, 1, /n, T, 0).
end for
2+ 0
for t € [C'logn] do >l = {a" . reT}
{w,a™ 5™} « BasicESTFReEQ(™), o), T, true).
Z < Z+w.
{@,2D), M} « BasicESTFREQ(Z(™), (1), T, false).
2 Z+w.
end for
return z
end procedure

o Sw—ﬂ'i

Algorithm 3.1: Basic Exact 2D sparse FFT algorithm ko= ©(y/n)



When drawingy, first placer — (¢ — 1) coordinates inta: then place the other— 1 values intov, so
thaty = u + v. Condition onu, sov is a permutation distribution over — r + ¢ — 1 coordinates. We know
there exists at most onesparse vectow with Aw = —Au. Then

Pr[3y" : Ay —y') = 0and|jy'[lo < 1]
)

=Pr[3y : A(v —¢') = —Au and||y/|o < 1]
<Pr[Fy :v—vy =wand|y|o < 1] = Pr[|lv — w|o < 1]
< Pr[[supp(v) A supp(w)| < 1]

m—r+4+c—1 c e=2
< (m—r—i—c—l) <c m—r
c—1

where the penultimate inequality follows from considering casegw||o € {c—2,c—1, ¢} separately. [

We now proceed with the proof of LemrhaB.2 .

Proof. W.L.O.G. consider the row case. Lgtbe thejth row of . Note thatﬂy) = 7y,. Observe that
with probability at leasti — 1/n° we havel||y|lo < r for r = clogn. Moreover, the distribution of is
permutation-invariant, and the test im8CESTFREQ corresponds to checking whethgr— 3')r = 0 for
somel-sparse)/’ = ae;. Hence, LemmBa3]3 witm = /n implies the probability that any specific test fails
is less thare(2¢/+/n)°~2. Taking a union bound over thgn log n total tests gives a failure probability of
4¢3 log n(2¢//n)e~* < O(1/nle=5)/2), O

Theorem 3.4. For any constanty, the algorithmBASICEXACT2DSFFTusesO(y/n) samples, runs in time
O(y/nlogn) and returns the correct vectar with probablility at leastl — O(«) as long asa is a small
enough constant.

Proof. From Lemma 3J1 and Lemrha 8.2, the algorithm returns the ciovextorz with probability at least
1—0(a) —O(n~(9/2) =1 - O(a) for ¢ > 5.

The algorithm uses onl@)(T)) = O(1) rows and columns of, which yieldsO(y/n) samples. The
running time is bounded by the time needed to perfarth) FFTs of rows and columns (indtDTOBINS)
procedure, and(log n) invocations of BSICESTFREQ. Both components take tim@(/n logn).

U

3.2 Reduction to Basic Exact Algorithm: & = o(y/n)

Algorithm ReDUCEEXACT2DSFFT, which is for the case wheke = o(y/n), is described in Algo-
rithm [3.2). The key idea is to reduce the problem from the celserek = o(y/n) to the case where
k = O(y/n). To do that, we subsample the input time domain signdly the reduction ratioR
a+/n/k for some small enough. The subsampled signal has dimension/m x \/m, where\/m =
This implies that the probability that any coefficienthis nonzero is at mosk? x k/n = a?/k
(a?/k) x (k?/a®)/m = k/m, sincem = k?/a?. This means that we can use the algorithwsBNOISE-
LESS2DSFFT in subsectiof3.1 to recoverz’. Each of the entries of’ is a frequency it which was
folded intoz’. We employ the same phase technique used in [HIKP12a] arsgstitng3.1 to recover their
original frequency position if.
The algorithm uses 2 functions:

Il &r=

10



o REDUCETOBASICSFFT: This folds the spectrum int@(k) x O(k) dimensions and performs the reduc-
tion to BASICEXACT2DSFFT. Note that only th®(k) elements ofe” which will be used in BSICEX-
ACT2DSFFT need to be computed.

¢ REDUCEEXACT2DSFFT: This invokes the reduction as well as the phase igeérno recoveft.

procedure REDUCETOBASICSFFTE, R, 7, 7¢)
Definex;j = TiR+4r,jRtre > With lazy evaluation
return BASICEXACT2DSFFT(2/, k)

end procedure

procedure REDUCEEXACT2DSFFT(, k)
R+ # for some constant < 1 such thatR|/n.
100 « REDUCETOBASICSFFT(z, R, 0,0)
(19 « REDUCETOBASICSFFT(z, R, 1,0)
2% «+ REDUCETOBASICSFFT(z, R,0,1)
Z+0
L « supda®9) N suppa™?) N supga®1)
for (¢,m) € L do

by Uy /“e,m

i< rounc(qb(b,n)%) mod+/n

be +— Uy [Ug

j « round é(b.) \2/—7?) mod+/n

end for
return z
end procedure

Algorithm 3.2: Exact 2D sparse FFT algorithm for= o(y/n)

Analysis of REDUCEEXACT 2DSFFT

Lemma 3.5. For any constanty, for sufficiently smalk there is a one-to-one mapping of frequency coeffi-
cients fromz to 7’ with probability at leastl — «.

Proof. The probability that there are at le@shonzero coefficients among & coefficients inz that are
folded together i/, is at most

<]:;2> (k/n)? < (a*n/k*)%(k/n)? = a* /K>

The probability that this event holds for any of thepositions inz” is at mostma®/k? = (k?/a?)a* /k? =
a® which is less tham for small enoughu. Thus, with probability at least — o any nonzero coefficient in
7’ comes from only one nonzero coefficientiin O

11



Theorem 3.6.For any constantv > 0, there exists a constant> 0 such that ifc < ¢\/n then the algorithm
REDUCEEXACT2DSFFTusesO(k) samples, runs in tim@(k log k) and returns the correct vectar with
probablility at leastl — a.

Proof. By Theoren{ 34 and the fact that each coefficient’iis nonzero with probabilityO(1/k), each

invocation of the function RDUCETOBASICSFFT fails with probability at most. By Lemma3.5, with

probability at least — «, we could recovef correctly if each of the calls to B0 TOBASICSFFT returns the
correct result. By the union bound, the algorithrBIRICEEXACT2DSFFT fails with probability at most
a+3xa=0().

The algorithm use®) (1) invocations of B.\SICEXACT2DSFFT on a signal of siz&(k) x O(k) in
addition toO(k) time to recover the support using the OFDM trick. Noting tbeitulating the intersection
L of supports take®)(k) time, the stated number of samples and running time theawadlirectly from
Theoreni 3.1. O

4 Algorithm for Exactly Sparse Case of any sparsityk = O(n)

4.1 Exact 1D Algorithm for & = O(n)

We will first present a deterministic algorithm for the oneadnsional exactly sparse case. The algorithm
1DSFFT, described in Al§. 4.1, computes the spectrumtedarse signat € C" and has worst case run-
ning time of O (¢ + t(log log n)°M) for t = O(log n). This deterministic algorithm has the fastest known
worst case running time fdr = o(logn). We will later use it to construct the algorithmxBECT1DSFFT
that has the fastest known average case running time fo0(n).

procedure ADSFFT, t)

T+ 0

{(fi,vi) }iep < SIGNALFROMSYNDROME(n, {wp, -+ , T21-1})-

zy, < v foralli e [I]. > < tisresult size
return =

end procedure

procedure SIGNAL FROMSYNDROME(n, {sg, -+ - , S2t—1})
A(z) + BERLEKAMPMASSEY({sq, " ,S2t—1})-
f <+ PAN(A(2)). > This finds{f : |z| > 0} of lengthl <t
V < VANDERMONDE((w')f0, .-+ | (w)/i-1)
V1 « INVERSEVANDERMONDE(V)
U V_lsm
return {(fi, vi) biep
end procedure

Algorithm 4.1: Algorithm for computing the exact 1D FFT of-®parse signal of size

1DSFFT is a wrapper for the “Signal From Syndrome” procedsieNAL FROMSYNDROME which
uses the following procedures:

e BERLEKAMPMASSEY: This function finds the coefficients of the error locatorywmmial A(z) based on
the inputsyndromes;; = >, ;(w’)". The error locator polynomial, which only depends on thetimns

12



of the nonzero frequency componentsepfs given by:
t
A=) =]] (1 - z(w')fe) @)

/=1

Constructing the error locator polynomial is a commonlydustep in decoding Reed-Solomon codes [MS77]
In our case, the main difference is that the coefficientd (af) lie in C whereas they lie in a finite field in

the case of Reed-Solomon codes. By Lerhima 4.1 below, thekBenie-Massey algorithm [Masb59] solves
this problem in time quadratic in

Lemma 4.1([Mas69]) Given the firstt time-domain samples oftafrequency sparse signal, Algorithm
BERLEKAMPMASSEY finds the error locator polynomial(z) (given by Equatiofil2) in time(¢?).

Proof. As shown in [AT08], finding the positions of the nonzero freguaies is equivalent to a gener-
alization of the Reed-Solomon decoding problem to the cempeld; then, solving this complex-field
Reed-Solomon problem reduces to recovering the lowestrdirtear recurrence)(z)) that generates a
given sequence of “syndromes” (which equal i#hén our case)[Var97]. The running timed(t?) where
t is the degree of the polynomial_[Mas69]. O

e PaN: By the definition of the error locator polynomial (given bygiation 2), its roots determine the set
{f1,--+, ft} of nonzero frequencies af Thus, we can use the Pan root-finding algorithm [Pan02] tb fin
the complex roots oA\ (z).

Lemma 4.2. ([Pan02]) For a polynomialp(z) of degreet with complex coefficients and whose complex
roots are located in the unit diskz : |z| < 1}, the PaN algorithm approximates all the roots of z)
with an absolute error of at mo&t* and usingO(t log? t(log? t + log b)) arithmetic operations oh-bit
numbers, assuming that> t log t.

¢ VANDERMONDE: Given the nonzero frequencies ofthe problem reduces to solving a system of linear
equations in the values of those frequencies. The coefiomirix of this system is a Vandermonde
matrix. Thus, this system has the form:

U1
V| | =5 whereV;; = ()i (3)

Ut

e INVERSEVANDERMONDE: The Vandermonde matrix can be inverted using the optinggdrthm given
in [Zip90] to find the values of the nonzero coordinates of

Lemma 4.3. ([Zip90]) Given at x t Vandermonde matri¥/, its inverse can be computed in tirgt?).

Analysis of IDSFFT

Theorem 4.4. If x is a t-sparse signal of size wheret < O(logn), then on input{zg,--- ,z91} the
procedureSIGNAL FROMSYNDROME (and hence the algorithhDSFFT) computes the spectruinin time
O(t? + t(log log n)°M),

13



Proof. By Lemmd4.1, the time needed to construct the error locatynpmial A(z) is O(t?). By Lemma
4.2 and since < logn, running the BN algorithm withb = log n log log n requiresO(tlog? t(log? t +
loglogn)) arithmetic operations oflog n log log n)-bit numbers. Since é@log n loglog n)-bit arithmetic
operation can be implemented usifg(log log n)°™M) log n-bit operations and since we are assuming that
arithmetic operations oivg n bits can be performed in constant time, the total runningetohthe RAN
algorithm isO(t(loglogn)®™). Note that since the roots df(z) aren-th roots (or later,/n-roots) of
unity, the precision of the algorithm is sufficient. Notirttat, by Lemma_ 413, inverting the Vandermonde
matrix requiresO(¢?) time completes the proof of the Theorem. O

Description and Analysis of EXACT1DSFFT The algorithm KACT1DSFFT(Algorithm [4.2) com-
putes the 1D spectrum with high probability over a randesparse input for ang. It usesO(k) samples
and runs in timeO(k(log k + (loglogn)®M)) . The idea is the following: We fold the spectrum into
0(k/ log k) bins using the 1D version of the comb filter (cf. Secti@). As shown in Lemm@a4l5, with high
probability, each of the bins h&(log k) nonzero frequencies. In this caseGSAL FROMSYNDROME(n, ag.T))
will then recover the original spectrum values. The gemeatibn of this algorithm to the 2D case can be
found in Section 4]2.

procedure EXACT1IDSFFT(, k)
T+ 0
B <+ O(k/log k) > Such thatB | n
T <+ [2C log k] for a sufficiently large constardt.
for r € T'do
W\ = g fori € [B]
i i(n/B)+T
Computea(7), the DFT ofu(™)
end for
for j € [B] do >al) =@ : re T
{(vs, fi) Yiejcrog k) SIGNALFROMSYNDROME(n,?ZET))
Ty, « v; foralli € [Clogk].
end for
return =

end procedure

Algorithm 4.2: Exact 1D sparse FFT algorithm for any spgrkit

Lemma 4.5. Assume thaf is distributed according to the Bernoulli model of Sectf@h If we fold the
spectrum intaB = #(k/log k) bins, then for a sufficiently large constafit the probability that there is a
bin with more tharC'log k nonzero frequencies is smaller thax{(1/k)°->¢ 1os ¢,

Proof. The probability P¢B, k, m) that there is a bin with more than nonzero frequencies is bounded by:

o (1) () <032

SinceB = dk/log k (for some constand > 0), m = C'log k, we get:

ek \™ _ dk [ed\“'8" 1
PI(B <B(Z) < ca —of(- L
(B, k,m) < <Bm> = logk <C> O<k0~5010g0>

14




O

Theorem 4.6. If Z is distributed according to the Bernoulli model of Secti§h then AlgorithmEx-
ACTIDSFFTruns in timeO(k(log k + (loglogn)°(1)), usesO(k) samples and returns the correct spec-
trum 7 with probability at leastl — O((1/k)%-¢ 10e¢),

Proof. By Lemmal4.5, with probability at least— O((1/k)%°¢1°e¢) all the bins have at most log k

nonzero frequencies each. Then, Thedremh 4.4 guarantegssctess of &NAL FROMSYNDROME(n, ﬂET))
for every;j € [B]. This proves the correctness okECT1DSFFT.

The running time of the for loop overis O(k log k). By Theoreni 4.4, & NAL FROMSYNDROME(n, ﬁg.T))
takes timeO(log? k + log k(loglogn)©() for everyj € [B]. Thus, the total running time of &
ACT1DSFFT isO(k(log k + (loglogn)®M)). For everyr € [Clog k], computinga(”) requiresB =
k/log k samples. Thus, the total number of samples needédis. O

4.2 Exact 2D Algorithm for & = O(n)

Here, we generalize thextACT1DSFFT to the 2D case. Fa&r log k > \/n, the generalization is straight-
forward and can be found in Alf. 4.3:XECT2DSFFT1. Foik/log k < /n, the generaliztion requires an
extra step and can be found in Alg. 4.4 xAT2DSFFT?2.

Whenk/logk > +/n, the desired bucket size/B is less than,/n, so we can have one-dimensional
buckets and recover the locations with a single applicatiosyndrome decoding. Wheky log k < +/n,
we heed to have two dimensional buckets to make them largegbndut this means syndrome decoding
will not uniquely identify the locations, and we will need Hhiple tests.

procedure EXACT2DSFFT1(, k)

Bl < \/ﬁ

By + 0(k/(log ky/n)).

T <+ [2C log k] for a sufficiently large constardt.

for r € T do
Defineu.”) = &; (/)1 fOF (i,4) € [B1] % [Bal.
Compute the 2D FFT(") of »(7)

end for

T+ 0.

for (i,7) € [Bi] x [Bs] do >al) = {a) : reTh.
{(f1;v1) higc10g k) < SIGNALFROMSYNDROME(y/7, ﬂg))
Zy g < vy foralll € [Clogkl.

end for

return x

end procedure

Algorithm 4.3: Exact 2D sparse FFT algorithm for spardifMog & > \/n

Description and Analysis of EXACT2DSFFT1 The algorithm KACT2DSFFT1 applies to the case
where
k/logk > /n. Asin the 1D case, we usB = O(k/log k) buckets each of which having(n log k/k)

15



frequencies mapping to it. We construct the buckets cooredipg to a phase shift af along the second
dimension for allr € [2C'log k|. As in the 1D case, with high probability, each of those btekell have
at mostC'log k nonzero frequencies. The particular choice of the bucketsewill ensure that the inputs
to the SGNAL FROMSYNDROME procedure have the appropriate “syndrome” form.

Theorem 4.7.If = is a k-sparse signal (withk/ log k > +/n) distributed according to the Bernoulli model
of Sectiong2, then AlgorithmEXACT2DSFFT1runs in timeO(klog k), usesO(k) samples and recovers
the spectrunt of = with probability at leastl — O (1/k%C 10 ),

Proof. For every(i,j) € [Bi] x [B2] and everyr € [2C log k], ﬂfTJ) = Z Zi p,w 2. Using
f2=7 mod Bs

) has at most log k nonzero

.
7]

frequencies. Noting that the functionGlAL FROMSYNDROME(y/n, ﬁg?) succeeds whenevé?f? are the

syndromes of &' log k-sparse signal, implies the correctness sRET2DSFFT1.

Computinga(”) for all 7 € T takes timeD (k log k). Each call to 8NAL FROMSYNDROME(+/7, i)

' g
takes timeD (log? k + log k(log log n)°(M) by TheoreniZ}4. Thus, the overall running timeigk(log k +
(loglogn)®M)) = O(klogk). For everyr € [Clog k], computing(™) requiresB; x By = k/logk
samples. Thus, the total number of samples neededks. O

the same argument as in Leminal4.5, with high probabilityryetsn ﬂl(

procedure EXACT2DSFFT2(, k)
B+ 6(k/logk).
T« {0,1,--- ,2Clog k — 1} for a sufficiently large constardt.
for (7,s) € T x [4] do
Compute the FFTi™ of u™* where for every € [B], u{™™ = Ty (/) By
end for
T+ 0.
for i € [B] do
for s € [4] do sa = {al* : T eT).
{(fl(s),vl(s))}le[mogk] + SIGNAL FROMSYNDROME(+/72, . **)
end for
({for - Foroem - (087 Uohogny teerm) < MATCHU{(A o) }eeqa, 1e(Crog )
for [ € [O(log k)] do > yl(s) = {yls) cse S =[]}
{(g0,w0), (g1, w1)} + SIGNALFROMSYNDROME(+/7, yl(s))
Ty, 4, < wjforall j € [2].
end for
end for
return =
end procedure

Algorithm 4.4: Exact 2D sparse FFT algorithm for spardifMog k < \/n

Description and Analysis of EXACT2DSFFT2 The algorithm KACT2DSFFT2 above applies to the
case wherd:/logk < /n. As in thelD case, we us& = O(k/log k) buckets, each of which having

16



©(nlogk/k) frequencies mapping to it (i.eO(y/nlogk/k) columns). We construct sets of buckets
(as opposed ta set in the 1D case). Those sets correspond to the phase (shifts (,1), (7,2) and
(1,3) for all 7 € [2C'logk]. We run the 85NALFROMSYNDROME procedure on each of thosesets.
As opposed to the 1D case, the resulting values can be thepsgiieon of2 or more nonzero frequency
components. However, as shown in Lenimd 4.9, with high pribtalall the obtained values correspond
to the superposition of at mogtnonzero frequency components. Theorresponding superpositions (one
from each of thel sets) are then combined (by theaWcH procedure) to get the uniofo, - - - , fo(og k) }

of the sets{ f§”, -, f&1,, ) for all s € [4] along with the associated valugs”, - - ,yg()log o} (with a
valueO if the frequency did not appear for sorse Then, we give thd resulting superpositions as inputs to
the SGNAL FROMSYNDROME procedure again. The particular choice of #reets of buckets above ensures
that those inputs have the appropriate “syndrome” form. diiput of this procedure will then consist of
original spectrum values.

Lemma 4.8. With probability at leastl — O (1/k%-°¢1°eC), for everyi € [B] ands € [4], the output of

SIGNAL FROMSYNDROME(y/7, @, **) consists of all nonzero values of the formz gy w502 for
f2=imodB

somef; € [v/n].

Proof. As in Lemmd 4.5, we have that the probability that there isreviith more thanT’| /2 = C'log k
nonzero frequencies is at mast(1/k%-> ¢ ¢). Moreover, for every- € T', i € [B] ands € [4], we have:

a;—,s = Z Z thfzw_Tfl_SfQ (4)

f1€[v/n] fa=imod B

= Z ( Z fp‘fthw—sz)w—Tfl (5)

fi€lv/n] f2=imodB

Noting that the function &NALFROMSYNDROME(4/n, aiT’s) succeeds whenevégT’S are the syndromes
of a|T'| /2-sparse signal, we get the desired statement. O

Lemma 4.9. The probability that there are more th&mnonzero frequency components that superimpose in
a power ofw (i.e., as in Equation[{4), 7, and Ef{,fé superimpose if; = f{ and fo = f;, modB) is at

mostO (A1’ k),

Proof. Since/n/B = O(y/nlog k/k) frequencies map to each powerwoin each bucket, the probability

is upper bounded by
vn/BY (k\? K klog? k
. . — < =
n-k/n ( 2 n) ~ 2nB? o n )

Lemma 4.10. With probability at least
1-0 <k‘ 10g2 k/n _ l/kO.SClogC) ’

for all i € [B] the outputs 0BIGNALFROMSYNDROME(+y/72, 37 ) for all I € [C log k] consist of all nonzero
zy, s, wherefy =i modB.

17



Proof. By Lemmas 4.8 and 4.8, the probability that all bins have astr@dog k£ nonzero frequencies and
all powers ofw have at mose nonzero frequencies is at ledst- O (klog? k/n — 1/k%5¢106¢) Then for

everyi € [B] ands € S = [4], there are at most log k nonzero values of the form Z Tpy w2
fo=i mod B

where f1 € [\/n], and each of those sums consists of at n2astrms. ThUSyl(S) are the syndromes of a

2-sparse signal of the formy, , w™9" + Ty, ,,w™9'" wherer is the time-domain index. This yields the

desired statement. O

Theorem 4.11.If x is a k-sparse signal (withk/ log k < /n) distributed according to the Bernoulli model
of Section§Z, then AlgorithmEXACT2DSFFT2runs in timeO(k(log k + (loglogn)®M)), usesO(k)
samples and recovers the spectriirof z with probability at leastl — k log? k/n — O (1/k%-5¢ 108 ),

Proof. Lemmd4.1D implies that Algorithm>cT2DSFFT2 succeeds with the desired probability.
Computingu™® for all 7 € T and alls € [4] takes timeO(klog k). The running time of the MrcH
procedure i) (log k). By Theoreni 4.4, each call ta@AL FROMSYNDROME in the for loop overs takes
time O(log? k 4 log k(log log n)°()) whereas each one in the for loop ovéakes timeO((log log n)°™M).
Thus, the overall running time 9 (k(log k + (log log n)°M)).
For everyr € [C'log k], computinga(™) requiresB = k/log k samples. Thus, the total number of
samples needed 3(k). O

5 Algorithm for Robust Recovery

5.1 Preliminaries

Following [CT06] we say that a matrid satisfies arestricted isometry propertyRIP) of ordert with
constan > 0 if, for all t-sparse vectorg, we have||Ay|3/||y||3 € [1 — 5,1 + 4].

Suppose all columngl; of an N x M matrix A have unit norm. Le = max;-; |A; - A;| be the
coherenceof A. It is folklordf that A satisfies the RIP of orderwith the constans = (t—1)u.

Suppose that the matrid is anM x N submatrix of thelV x N Fourier matrixF', with each thelM/
rows of A chosen uniformly at random from the rows Bf It is immediate from the Hoeffding bound that
if M = bu?log(N/~) for some large enough constant- 1 then the matrix4 has coherence at mogt
with probability 1 — ~. Thus, forM = O(¢? - tlog V), A satisfies the RIP of ordémwith constanty = 0.5
with probability 1 — 1/N*.

The algorithm appears in Algorithim 5.1.

5.2 Correctness of each stage of recovery

Lemma 5.1. Consider the recovery of a column/royvin ROBUSTESTIMATECOL, whereu and v are

the results of FOLDTOBINS onZ. Lety € CV™ denote thejth column/row ofz. Suppose; is drawn

from a permutation invariant distributiop = ¢ 4- yresidue 4 ygauss whereminge g,y (yhead) [yil > L,

ly"esidue]|; < eL, andy9ess is drawn from the,/n-dimensional normal distributioVc (0, o1 ;) with

standard deviationr = ¢L/n'/* in each coordinate on both real and imaginary axes. We do eqtire

thaty/ead, yresidue gndy99uss gre independent except for the permutation invariance eif um.
Consider the following bad events:

81t is a direct corollary of Gershgorin's theorem applied by &columns ofA.

18



procedure ROBUSTESTIMATECOL(u, v, T, T’, IsCol, J, Ranks)
w < 0.
S« {} > Set of changes, to be tested next round.
for j € Jdo
continue if Rankg(IsCol, j)] > loglogn.
i < HIKPLOCATESIGNAL (™), T") > Procedure froni [HIKP12a]0 (log? n) time
a + median,cr ﬂ;w”
continueif |a| < L/2 > Nothing significant recovergd
continueif 3> . [a} — aw™"* > L?*|T| /10 > Bad recovery: probably not 1-sparse
b < mean,cr u’\Tjw”.
if IsColthen > whether decoding column or rqw
’L/EZ‘J' —b.
else
’L/Ejﬂ' <~ b.
end if
S« SuU{i}.
Rankg(1 — IsCol, 7)] += Ranks(IsCol, 5)].
forre TUT do
R N
57 ")
end for
end for
return w, u, v, S
end procedure
procedure ROBUST2DSFFT(, k)
T, 7' C [ﬁ]? 1T| = ’T/‘ = O(log n)
forre TUT' do
4" « FOLDTOBINS(z, /n,1,0,7).
9" « FOLDTOBINS(z,1,/n, T, 0).

_ bw—Ti

end for

Z+0

Ranks« 1[21>[vn] > Rank of vertex (iscolumn, index)
Seol < [V > Which columns to test

for t € [C'logn| do
{W, U, 0, Spow} ¢ ROBUSTESTIMATECOL (u,v,T,T", true,S.,;, Ranks).
Z<+ Z+w.
Srow < [v/n]ift =0 > Try every row the first time
{W,V,u, Sep} + ROBUSTESTIMATECOL (v, u, T, T false,S, o, Ranks).
Z<+ Z+w.

end for

return z

end procedure

Algorithm 5.1: Robust 2D sparse FFT algorithm foe= ©(y/n)

19



e False negativesupp(y°®?) = {i} and ROBUSTESTIMATECOL does not update coordinate

e False positive:ROBUSTESTIMATECOL updates some coordinatéout supp(y¢4) # {i}.

e Bad update:supp(y"**?) = {i} and coordinatei is estimated by with [b — yfead| > |jyresidue|, 4
For any constant: ande below a sufficiently small constant, there exists a distiitsuover setd’, 7" of

sizeO(logn), such that as a distribution overand T, 7" we have

e The probability of a false negative 1g log® n.

e The probability of a false positive is/n°.

e The probability of a bad update i/ log® n.

Proof. Lety denote the 1-dimensional inverse DFTyofNote that

~(1) _ ~
g = Yr

by definition. Therefore, the goal ofdBUSTESTIMATECOL is simply to perform reliablé-sparse recovery
with O(log n) queries. Fortunately, [HIKP12a] solved basically the sanoblem, although with more false
positives than we want here.

We choosd” according to the bcATEINNER procedure from [HIKP1Za]; the sgtis chosen uniformly

at random fromj/n|. We have that
agfr) _ Z yiw_ﬂ-

i€[v/n]
This is exactly what the procedureaAdHTOBINS of [HIKP128] approximates up to a small error term.
Therefore, the same analysis goes through (Lemma 4/5 of PHIZ4]) to get that HIKPOCATESIGNAL
returnsi with 1 — 1/log® n probability if [y;| > |ly—i||2, where we defing_; := y; m)\ (;}-
DefineA € CT1*v7™ to be the rows of the inverse Fourier matrix indexedhyormalized s94; ;| = 1.
Thena!” = (Ay)-.
First, we prove

Hyresidue + ygaussH2 — O(EL) (6)

with all but n=¢ probability. We have thaE[||y9%4ss||3] = 2€2L?, so ||y9%*%||; < 3eL with all but
e~ V) < 1/n¢ probability by concentration of chi-square variables. W dave that|y"esidu||, <
||yresidueH1 < eL.

Next, we show

[y e 4 y92u%) ||z = O(eL+/|T) (7)

with all butn = probability. We have thatiy944ss is drawn fromN¢ (0, €2 L1 7)) by the rotation invariance
of Gaussians, so

[Ay?****|l2 < 3eL\/|T| (8)

20



with all but e=*(T) < n=¢ probability. FurthermoreA has entries of magnitude so || Ay du¢||, <

ly"es €|l \/IT] = eL\/TT].

Consider the case whesepp(y"°??) = {i}. From Equation[{6) we have
ly—ill3 < lly92>® + yre=®e|3 < O(EL?) < L* < ||yill3 9)
soi is located withl — 1/1log®n probability by HIKPLOCATESIGNAL.

Next, we note that for any, as a distribution over € [\/n],

2
E[[@l” — yiw ™| ] = [ly—il3

T

and so (analogously to Lemma 4.6 lof [HIKP12a], and for §ngincea = median,¢7 ag.%ﬂ' we have

la — yil* < 5lly—il3 (10)

with probability 1 — e~ 20T = 1 — 1/n° for some constant. Hence if{i} = supp(y"°*?), we have
la — y;|* < O(e2L?) and thereforea| > L/2, passing the first check on whethds valid.
For the other check, we have that with- 1/n¢ probability

([ awi[ 172 = 1 AGy ~ ae:)l

TeT
< HA(ygauss + yresidue + (ylhead )ez)H2

< HA( gauss +yreszdue) head ‘ \/m

residue auss
+ y!

< HA( gauss +yreszdue)|’ +(

< O(eLV/IT)).

where the last step uses Equafidon 7. This gives

12
E ‘ﬂy) —aw Y =

TeT

+ lyi — a))V/|T]

O(’L?|T)) < L*|T| /10

so the true coordinatepasses both checks. Hence the probability of a false negatly log® n as desired.
Now we bound the probability of a false positive. First colesiwhat happens to any other coordinate

i’ # i when|supp(y"°?)| = {i}. We get some estimateé of its value. Sinced/,/|T satisfies an RIP of

order 2 and constant/4, by the triangle inequality and Equatibh 7 we have that withn~¢ probability,

1Ay — d'ein)ll2 > || Ay Te; — deir) o — [ A(yo"*> + y7*"") |2
> gfread \Ty (3/4) — O(eLA/|T))

> L/|T]/2.

Hence the second condition will be violated, ahdill not pass. Thus ifsupp(y"“*4)| = 1, the probability
of a false positive is at most—¢.

Next, consider what happens to the resudf HIKPLOCATESIGNAL when |supp(y"**?)| = 0. From
Equation[(6) and Equatiofil(7) we have that with- n~¢ probability:

la — yil* < 5|ly_ill3 < O(L?).

21



Therefore, from Equatidnl 6,
lal < Jyil + la — il < [y + 47" ||z + |a — yi| = O(eL) < L2

so the first check is not passed arid not recovered.
Now supposesupp(yneqaq)| > 1. LemmdE.R says that with— n~¢ probability over the permutation,
no (i, a) satisfies
1Ay ! — ae;)|[5 < L*|T) /5.

But then, from Equatiohl8

[A(y — ae)ll2 > AW ™ — ae;)||2 — || Ay?™ 5|2
> LV/|T| /5~ O(eLy/|TY)
> L+\/|T| /10

so no: will pass the second check. Thus the probability of a falsgtpe is1/n°.
Finally, consider the probability of a bad update. We haat th

b= mean(Ay)TwTi — ylhead + mean(Ayresidue + Aygauss)TwTi

TeT TeT
and so
‘b . yzhead < mean(AyresidUE)TwTi + mean(AygauSS)Tw'ri )
€T TeT
We have that
mean(AyresidUE)TwTi < max ‘(AyresidUE)T‘ < Hyresidueul
TeT TeT

We know thatAy9%“** is N¢ (0, e2L21|T|). Hence its mean is a complex Gaussian with standard devia-
tion eL/+/|T| in both the real and imaginary axes. This means the probatiat

‘ h— yzhead

> [y ey + teL/ /1T

is at moste=2(**), Settingt = +/loglog® n gives al/ log® n chance of a bad update, for sufficiently large
7| = O(log ). O

The following is the robust analog of Lemmal3.3.

Lemma 5.2. Lety € C™ be drawn from a permutation invariant distribution with> 2 nonzero values.
Suppose that all the nonzero entriesyofhave absolute value at leagt Choosel’ C [m] uniformly at
random witht := |T'| = O(c3 log m)

Then, the probability that there existgjawith ||3/'||o < 1 and

17 = 97l < eL?t/n

is at mostc?(—<-)~2 whenever < 1/8.

m—r

22



Proof. Let A = /1/tFr«. be/1/t times the submatrix of the Fourier matrix with rows frdmso

17 = 9)zll3 = [ Aly — ) 3t/n.

By a coherence bound (see Secfion 5.1), with 1/m° probability A satisfies the RIP of orde¥c with
constan®.5. We would like to bound

Pi=Pr3y : [|Aly — ¢)II5 < eL* and|ly’[lo < 1]
If r <c—1,theny — ¢ is c-sparse and

1A = )13 = lly = ¥'113/2
> (r—1)L?/2
> eL?
aslong as < 1/2, giving P = 0. Henceforth, we can assume> ¢. When drawingy, first placer — (¢—1)

coordinates inta: then place the othar — 1 values intov, so thaty = « 4+ v. Condition onu, sov is a
permutation distribution overn. — r + ¢ — 1 coordinates. We would like to bound

P =Pr[3y": [|A(u+v —y)|3 < eL” and]ly/[lo < 1].

Letw be anyc-sparse vector such thiatl(u +w)||3 < eL? (and note that if no such exists, then since
v —y' is c-sparse,P = 0). Then recalling that for any nortt ||, |la||?> < 2|[b]|? + 2|la + b]|*> and hence
lla + BlJ* > [|afl/2 — [1B]|?,

JA@+v = )3 > [A@ -y —w)[3/2 - [ A +w)3
> flo—y/ + wl3/4 — L2

Hence
P <Pr3y : v—y + w3 <8L*and|y[lo < 1].
v

Furthermore, we know thdty — v’ + w||3 > L?(|supp(v) \ supp(w)| — 1). Thus ife < 1/8,

P < Pr{[supp(v) \ supp(w)| < 1]

c+(m—r+c—1c(lc—1)/2

- ("

)0—2

<

m—r

as desired. O

5.3 Overall Recovery

Recall that we are considering the recovery of a si@nal? +@ € CV™V7 wherez* is drawn from the
Bernoulli model with expectetl = a+/n nonzeros for a sufficiently small constantand@ ~ Nc¢(0,021,,)
with o = eL/k/n = O(eL/n'/*) for sufficiently smalle.

23



It will be useful to consider a bipartite graph representadr of z*. We construct a bipartite graph with
v/n nodes on each side, where the left side corresponds to ravthamight side corresponds to columns.
For each(i, j) € supp(?), we place an edge between left nadend right node of Weight?(m).

Our algorithm is a “peeling” procedure on this graph. Itates over the vertices, and can with a “good
probability” recover an edge if it is the only incident edgeaovertex. Once the algorithm recovers an edge,
it can remove it from the graph. The algorithm will look at #@umn vertices, then the row vertices, then
repeat; these are referred tostages Supposing that the algorithm succeeds at recovery on estéxy
this gives a canonical order to the removal of edges. Callitt@ideal ordering.

In the ideal ordering, an edgdas removed based on one of its incident vertice$his happens after all
other edges reachable franwithout passing through are removed. Define thank of v to be the number
of such reachable edges, and r@s)k= rank(v) + 1 (with rank(v) undefined ifv is not used for recovery of
any edge).

Lemma 5.3. Let ¢, a be arbitrary constants, and a sufficiently small constant depending @mx. Then
with 1—« probability every component i is a tree and at most/ log® n edges have rank at leastg log n.

Proof. Each edge of; appears independently with probabilityn = a/\/n. There are at mosyn' cycles
of lengtht. Hence the probability that any cycle of lengtlexists is at most:’, so the chance any cycle
exists is less than? /(1 — a?) < «/2 for sufficiently smalla.

Each vertex has expected degree 1. Exploring the component for any vertexs then a subcritical
branching process, so the probability thatcomponent has size at ledsg log n is 1/ log® n for sufficiently
small a. Then for each edge, we know that removing it causes eacls ofv@ incident vertices to have
component size less thaog logn — 1 with 1 — 1/log®n probability. Since the rank is one more than the
size of one of these components, the rank is lesslihglog n with 1 — 2/log® n probability.

Therefore, the expected number of edges with rank at legétg n is 2k/log®n. Hence with proba-
bility 1 — a/2 there are at mostl /«)4k/ log® n such edges; adjustinggives the result. O

Lemma 5.4. Let RoBUST2DSFFT’ be a modifiedRoBusT2DSFFTthat avoids false negatives or bad
updates: whenever a false negative or bad update would paawracle corrects the algorithm. With large
constant probabilityRoBusT2DSFFT’ recoversz such that there exists @&/ log® n)-sparsez’ satisfying

|Z2—2 — 2|2 < 602n.
Furthermore, onlyO(k/ log® n) false positives or bad updates are caught by the oracle.

Proof. One can choose the randarm by first selecting the topology of the grapgh and then selecting the
random ordering of the columns and rows of the matrix. No& thordering the vertices only affects the
ideal ordering by a permutation within each stage of regguitie set of edges recovered at each stage in
the ideal ordering depends only on the topology-0fSuppose that the choice of the topology of the graph
satisfies the thesis of Lemihab.3 (which occurs with largetzom probability). We will show that with large
constant probability (over the space of random permutatafrthe rows and columns),dBUST2DSFFT’
follows the ideal ordering and the requirements of Lerhméabelsatisfied at every stage.

—

For a recovered edge we define the “residuet*, — z.. We will show that ife has rankr, then
To—z| <ryfopEneL
During attempted recovery at any vertexduring the ideal ordering (including attempts on vertices

which do not have exactly one incident edge)glet CV™ be the associated column/rowf- 2. We split
y into three partg) = yfead 4 yresidue g gauss \whereyhead contains the elements af not insupp(2),

24



yresidue containsz* — Z over the support of, andy9e*** containsw (all restricted to the column/row
corresponding t@). Let S = supp(y"°**¥ ) contain the set of edges incident othat have been recovered
so far. We have by the inductive hypothesis thate=? ||, < 3 _granke),/ 5% L. Since the

algorithm verifies thad _ __ ¢ rank(e) < loglog n, we have

: log®1
ety < 4= el < el

Furthermorey is permutation invariant: if we condition on the values aethpute the rows and columns
of the matrix, the algorithm will consider the permutgdh the same stage of the algorithm.

Therefore the conditions for Lemrha b.1 hold. This means ttitchance of a false positive ign¢,
so by a union bound this never occurs. Because false negaiixer occur by assumption, this means we
continue following the ideal ordering. Because bad updager occur, new residuals have magnitude at

most
, log 1
HyreszdueHl + og OgnEL.
\/ logn

Because|y"c*idue||; / (, /“’ﬁ(}%d) < Y .csranke) = rank(v) = rank(e) — 1, each new residual has

magnitude at most
loglogn
rank(e)y/ ————eL < €eL. (11)
logn

as needed to complete the induction.

Given that we follow the ideal ordering, we recover everyeedfrank at mostog log n. Furthermore,
the residue on every edge we recover is at mbsBy Lemmd 5.8 there are at mdstlog® n edges that we
do not recover. From Equatidn (|11), the squatedorm of the residues is at mastL.?k = 2C%02n/k-k <
o?n for e small enough. Sincgw||3 < 20%n with overwhelming probability, there existszaso that

12— 2 - 2|3 < 2|2 - z° — 2|3 + 2|[wll3 < 60%n.

Finally, we need to bound the number of times the oracle estéalse positives or bad updates. The
algorithm applies Lemma3.1 on/n + O(k) = O(k) times. Each time has¥ log®n chance of a false
positive or bad update. Hence the expected number of falsiéyes or bad updates 3(k/ log® n). O

Lemma 5.5. For any constantx > 0, the algorithmRoBUST2DSFFT can with probabilityl — « recover
2 such that there exists (& / log®~! n)-sparse?’ satisfying

|2 -2 — 2|3 < 60°n
usingO(k log n) samples and (k log? n) time.

Proof. To do this, we will show that changing the effect of a singlé# t ROBUSTESTIMATECOL can
only affectlog n positions in the output of 88UsT2DSFFT. By Lemma5l4 we can, with large constant
probability turn ROBUST2DSFFT into RBUST2DSFFT’ with onlyO(k/log®n) changes to calls to®
BUSTESTIMATECOL. This means the output ofd8usT2DSFFT and of RBUST2DSFFT’ only differ in
O(k/log®™ ! n) positions.

25



We view ROBUSTESTIMATECOL as trying to estimate a vertex. Modifying it can change frecover-
ing one edge (or none) to recovering a different edge (or narteus, a change can only affect at most two
calls to ROBUSTESTIMATECOL in the next stage. Hence instages, at mogt'—! calls may be affected, so
at most2” edges may be recovered differently.

Because we refuse to recover any edge with rank at legébg n, the algorithm has at mosig log n
stages. Hence at mdsk n edges may be recovered differently as a result of a singlegehto ROBUSTES-
TIMATE COL. O

Theorem 5.6. Our overall algorithm can recovet’ satisfying
|17 =23 < 120%n + |23 /n°

with probability 1 — o for any constants:,a > 0 in O(klogn) samples and)(klog®n) time, where
k = a+/n for some constant > 0.

Proof. By Lemma[5.b, we can recover @\ k)-sparsez such that there exists d&/log®~! n)-sparsez’
with
|2 —2— 7|3 < 60*n.

with arbitrarily large constant probability for any consta usingO(k log? n) time andO(k log n) samples.
Then by Theorerh Bl1 in AppendiX B, we can recovet @ O(klog®n) time andO(k log~¢n) samples
satisfying

|17 -2 =23 < 120°n + || 2[5 /n°

and hence’ := Z + 2’ is a good reconstruction far. O

References

[AGS03] A. Akavia, S. Goldwasser, and S. Safra. Proving ‘wameé predicates using list decoding.
FOCS 44:146-159, 2003.

[AkalO] A. Akavia. Deterministic sparse Fourier approxtioa via fooling arithmetic progressions.
COLT, pages 381-393, 2010.

[ATO8] M. Akcakaya and V. Tarokh. A frame construction andraversal distortion bound for sparse
representationsSignal Processing, IEEE Transactions, &®(6):2443 —2450, june 2008.

[BCG™12] P.Boufounos, V.Cevher, A. C. Gilbert, Y. Li, and M. J.&tss. What's the frequency, kenneth?:
Sublinear fourier sampling off the grilRANDOM/APPROX2012.

[BK95] V. Bahskarna and K. Konstantinidelsnage and video compression standards : algorithms and

architectures Kluwer Academic Publishers, 1995.

[CTO6] E. Candes and T. Tao. Near optimal signal recoversnfrandom projections: Universal en-
coding strategiedEEE Trans. on Info.Theor2006.

[GGIT02] A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan, and Mrasiss. Near-optimal sparse Fourier
representations via samplin§TOG 2002.

26



[GL8Y]

[GMSO05]

[Gol99]

[HAKI12]

O. Goldreich and L. Levin. A hard-corepredicate fdoae-way functionsSTOGC pages 25-32,
1989.

A. Gilbert, M. Muthukrishnan, and M. Strauss. Imped time bounds for near-optimal space
Fourier representation§PIE Conference, Wavelef05.

O. Goldreich. Modern cryptography, probabilispmofs and pseudorandomnegsgorithms
and Combinatorics17, 1999.

H. Hassanieh, F. Adib, D. Katabi, and P. Indyk. Fearsgips via the sparse fourier transform.
MOBICOM, 2012.

[HIKP12a] H. Hassanieh, P. Indyk, D. Katabi, and E. Price.alNaptimal algorithm for sparse Fourier

transform.STOGC 2012.

[HIKP12b] H. Hassanieh, P. Indyk, D. Katabi, and E. Pricem@e and practical algorithm for sparse

[HPN97]

[1GS07]

[lwel0]

[lwel2]

[KMO1]

[KSO01]

[Lev93]
[LWC12]

[Man92]
[Mas69]

[MEH09]

IMS77]

Fourier transformSODA 2012.

B. G. Haskell, A. Puri, and A. N. NetravaliDigital video : an introduction to MPEG-2
Chapman and Hall, 1997.

M. A. lwen, A. Gilbert, and M. Strauss. Empirical évation of a sub-linear time sparse dft
algorithm. Communications in Mathematical Sciencg&s2007.

M. A. lwen. Combinatorial sublinear-time Fouridgarithms. Foundations of Computational
Mathematics 10:303—-338, 2010.

M.A. Iwen. Improved approximation guarantees fablnear-time Fourier algorithmgpplied
And Computational Harmonic Analysig012.

E. Kushilevitz and Y. Mansour. Learning decisiondgeusing the Fourier spectrun8TOG
1991.

A. Kak and M. SlaneyPrinciples of Computerized Tomographic Imagi&pciety for Industrial
and Applied Mathematics, 2001.

L.A. Levin. Randomness and non-determinismSymb. Logic58(3):1102-1103, 1993.

D. Lawlor, Y. Wang, and A. Christlieb. Adaptive slipear time fourier algorithms.
arXiv:1207.63682012.

Y. Mansour. Randomized interpolation and appration of sparse polynomialsCALP, 1992.

J. Massey. Shift-register synthesis and bch degodhformation Theory, IEEE Transactions
on, 15(1):122 — 127, jan 1969.

Y. Matsuki, M. Eddy, and J. Herzfeld. Spectroscopy ibtegration of frequency and time
domain information (sift) for fast acquisition of high rdstion dark spectra.J. Am. Chem.
Soc, 2009.

F.J. MacWilliams and N.J.A. Sloan&.he Theory of Error-Correcting CodesdNorth-Holland
Mathematical Library, 1977.

27



[MVO08] M. Mitzenmacher and S. Vadhan. Why simple hash fumtdi work: Exploiting the entropy in
a data streamSODA 2008.

[Nis10] D. Nishimura.Principles of Magnetic Resonance Imagir§pciety for Industrial and, 2010.

[Pan02] V. Y. Pan. Univariate polynomials: Nearly optimigaithms for numerical factorization and
root-finding. J. Symbolic Computatiqr2002.

[PW11] E. Price and D. P. Woodruffl + ¢)-approximate sparse recoveOCS 2011.

[Var97] A. Vardy. Algorithmic complexity in coding theorynd the minimum distance probler8TOG
1997.

[Wal91] G. Wallace. The JPEG still picture compression dgsad. Communications of the ACM991.

[Zip90] R. Zippel. Interpolating polynomials from their la@s. Journal of Symbolic Computation
9(3):375 — 403, 1990.

A Sample lower bound for our distribution

We will show that the lower bound ofy/¢> recovery from [[PW11] applies to our setting with a simple
reduction. First, we state their bound:

Lemma A.1 ([PW11] section 4) For any k < n/logn and constant > 0, there exists a distribution
Dy, over k-sparse vectors i{0, 1,—1}" such that, for every distribution of matrice$ € R™*"™ with
m = o(klog(n/k)) and recovery algorithmsi,

Pr[||A(A(z + w)) — 2|2 < VE/5] < 1/2
as a distribution overr ~ D;, andw ~ N(0,0%1,,) with 02 = ¢k /n, as well as overd and A.

First, we note that we can replagk, with Uy, the uniform distribution ovek-sparse vectors if0, 1, —1}"
in LemmalA.l. To see this, suppose we have(dnA) that works with1/2 probability overU,. Then
for any k-sparser € {0,1,—1}", if we choose a random permutation matfxand sign flip matrixs,
PSx ~ Uy. Hence, the distribution of matricesPS and algorithmA’(z) = A((PS)~x) works with1/2
probability for anyz, and therefore on average ovly,. This implies thatd hasQ(klog(n/k)) rows by
LemmdA.1l. Hence, we can sBy, = U, in LemmdA.l.

Our algorithm works with3/4 probability over vectors: that are not necessarily-sparse, but have
a binomial numbeB(n, k/n) of nonzeros. That is, it works over the distributibhthat isUy : k' ~
B(n,k/n). With 1 — e=%*) > 3/4 probability, ¥’ € [k/2,2k]. Hence, our algorithm works with at least
1/2 probability over(Uy: : k' ~ B(n,k/n) Nk’ € [k/2,2k]). By an averaging argument, there must exist a
k' € [k/2,2k] where our algorithm works with at leakt2 probability overUy; but the lemma implies that
it must therefore take (k' log(n/k')) = Q(klog(n/k)) samples.

B Robust 2D FFTs

This section outlines the straightforward generalizatibfHIKP122] to two dimensions, as well as how to
incorporate the extra parameteof already recovered coefficients. Relative to our resulfleéoreni 5.6,

28



this result takes more samples. However, it does not rethuatehe input be from a random distribution and
is used as a subroutine by Theorleni 5.6 after decreasing dngitgby alog® n factor.

Because we use this as a subroutine after computing an éstihad Z, we actually want to estimate
7 — z where we have oracle accessitand toz.

Theorem B.1. There is a variant of [HIKP12a] algorithm that will, given, Z € CV"*V7, return 2’ with

IB—2—a|a<2- min_|[F—2— 23+ |Z]2/n°
k-sparsec*

with probability 1 — « for any constantg, « > 0 in time
O(klog(n/k)log?n + [supp(2)|log(n/k)logn),
usingO(k log(n/k)log® n) samples of:.

Proof. We need to modify [HIKP1Za] in two ways: by extending it to teimensions and by allowing the
parametek. We will start by describing the adaptation to two dimension

The basic idea of [HIKP12a] is to construct from Fourier meaments a way to “hash” the coordinates
in B = O(k) bins. There are three basic components that are needpdrnautationthat gives nearly
pairwise independent hashing to binsfileer that allows for computing the sum of bins using Fourier
measurements; and thecation estimation needs to search in both axes. The permutatidmeisntin
subtlety.

Permutation Let M C [,/n]**? be the set of matrices with odd determinant. For notationgp@ses, for
v = (1,7) we definex, := x; ;.
Definition B.2. For M € M anda,b € [\/n]? we define th@ermutationP,, , ,CV**V? — CV*V7 py

T Mb
(PJ\/[,a,bw)v = xM(v—a)wv :

We also definery; ;(v) = M (v —b) mod v/n.

. — A~ Ty T
Claim B.3. PMva’bwaT,b(v) = Tpw? @
Proof.
— T
PMﬂvaM(U—b) T Z M(U b)(P]\/[ab(L')
rom?
T T
T Z\:ﬁ M (v—b) M(u—a)wu Mb

T, 1 T AT (4y—
vaa E:va(ua)

v uely/n]?

vITMTq

LM (u—a)

&)
€

)

where we used that/” is a bijection over/n]? becauselet(M) is odd. O

This gives a lemma analogous to Lemma 2.4 of [HIKP12a].

29



Lemma B.4. Suppose € [/n]? is not0. Then

02
_ 2 <

L [Mu e [=C.CFF - (mod va)] < O(—).
Proof. For anyu, defineG(u) to be the largest power @fthat divides bothi, andu;. Defineg = G(v),
and letS = {u € [v/n]? | G(u) = g}. We have thaf\/v is uniform overS: M is a group and is the orbit

of (0, g).

BecauseS lies on a lattice of distance and does not include the origin, there are at n{@$C'/g| +

1)2 —1<8(C/g)% elements inS N [-C, C]?, and(3/4)n/g* total elements irs. Hence the probability is
at most(32/3)C? /n. O

We can then define the “hash functiohy,, : [/n]?> — [V/B]? given by (hass(u)) = round(mas s (u) -
v/n/B); i.e., round to the nearest multiple Q;fn/B in each coordinate and scale down. We also define
the “offset” o/ 5(u) = marp(w) — \/n/Bhary(u). This lets us give results analogous to Claims 3.1 and 3.2
of [HIKP12&]:

° Pr[hMb( ) = harp(v) < O(1/B)] for u # v. In order forh(u) = h(v), we need thatry;,(u) —

Trp(v —24/n/B,2+/n/B]?. But LemmdB.} implies this probability ©§(1/B).
o Prloprp(u) ¢ [—(1— oz)\/n/B,( a)\/n/B)?] < O(«a) foranya > 0. Because of the offsét o ,(u)

is uniform over \V/n/B,+\/n/B)%. Hence the probability i8a — o + o(1) by a volume argument.

which are all we need of the hash function.

Filter  Modifying the filter is pretty simple. Specifically,[HIKP22 defined afiltelG € RV™ with support
size O(v/Blogn) such thatG is essentially zero outsize-/n/B, \/n/B] and is essentiallyl inside
[—(1 — a)y/n/B, (1 — a)y/n/B] for constanta. We compute the/B x v/B 2-dimensional DFT of
;n;J = z;,;G;G; to sum up the element in each bin. This ta@dg? n samples and time rather than
Blog n, which is the reason for the extlag »n factor compared to the one dimensional case.

Location Location is easy to modify; we simply run it twice to find thewand column separately.
In summary, the aforementioned adaptations leads to awaridhe [HIKP124a] algorithm that works
in two dimensions, with running timé (k log(n/k) log? n), usingO(k log(n/k) log® n) samples.

Adding extra coefficient list z The modification of the algorithm of [HIKP12a] (as well as variant
above) is straightforward. The algorithm performs a seqgeesf iterations, where each iteration involves
hashing the frequencies of the signal into bins, followedsblgtracting the already recovered coefficients
from the bins. Since the algorithm recovedsk) coefficients in the first iteration, the subtracted list is
always of sized (k).

Given the extra coefficient list, the only modification to @lgorithm is that the list of the subtracted
coefficients needs to be appended with coefficients. iBince this step does not affect the samples taken
by the algorithm, the sample bound remains unchanged. Tigzandéne running time, let’ be the number
of nonzero coefficients ii. Observe that the total time of the original algorithm spamtsubtracting the
coefficients from a list of siz&® (k) was O(klog(n/k)logn), or O(log(n/k)logn) per list coefficient.
Since in our case the number of coefficients in the list issased fron® (k) to &’ + ©(k), the running time
is increased by an additive factor ©f k' log(n/k) log n). O

30



	1 Introduction
	1.1 Related work

	2 Preliminaries
	3 Basic Algorithm for the Exactly Sparse Case
	3.1 Basic Exact Algorithm: k = (n)
	3.2 Reduction to Basic Exact Algorithm: k = o(n)

	4 Algorithm for Exactly Sparse Case of any sparsity k= O(n)
	4.1 Exact 1D Algorithm for k=O(n)
	4.2 Exact 2D Algorithm for k=O(n)

	5 Algorithm for Robust Recovery
	5.1 Preliminaries
	5.2 Correctness of each stage of recovery
	5.3 Overall Recovery

	A Sample lower bound for our distribution
	B Robust 2D FFTs

