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Abstract

We present the first sample-optimal sublinear time algorithms for the sparse Discrete Fourier Transform over
a two-dimensional

√
n × √n grid. Our algorithms are analyzed foraverage casesignals. For signals whose

spectrum is exactly sparse, our algorithms useO(k) samples and run inO(k log k) time, wherek is the expected
sparsity of the signal. For signals whose spectrum is approximately sparse, our algorithm usesO(k logn) samples
and runs inO(k log2 n) time; the latter algorithm works fork = Θ(

√
n). The number of samples used by our

algorithms matches the known lower bounds for the respective signal models.
By a known reduction, our algorithms give similar results for the one-dimensional sparse Discrete Fourier

Transform whenn is a power of a small composite number (e.g.,n = 6t).

1 Introduction

The Discrete Fourier Transform (DFT) is a powerful tool usedin many domains. Multimedia data sets,
including video and images, are typically processed in the frequency domain to compress the data [Wal91,
HPN97, BK95]. Medicine and biology rely on the Fourier transform to analyze the output of a variety
of tests and experiments including MRI [Nis10], NMR [MEH09]and ultrasound imaging [KS01]. Other
applications include astronomy and radar systems.

The fastest known algorithm for computing the DFT is the FastFourier Transform (FFT). It computes
the DFT of a signal with sizen in O(n log n) time. Although it is not known whether this algorithm is
optimal, any general algorithm for computing the exact DFT must take time at least proportional to its
output size, i.e.,Ω(n). In many applications, however, most of the Fourier coefficients of a signal are small
or equal to zero, i.e., the output of the DFT is (approximately) sparse. This sparsity provides the rationale
underlying compression schemes for image and video signalssuch as JPEG and MPEG. In fact, all of the
aforementioned applications involve sparse data.

For sparse signals, theΩ(n) lower bound for the complexity of DFT no longer applies. If a signal has
a small numberk of nonzero Fourier coefficients—theexactlyk-sparsecase—the output of the Fourier
transform can be represented succinctly using onlyk coefficients. Hence, for such signals, one may hope
for a DFT algorithm whose runtime is sublinear in the signal sizen. Even in the more generalapproximately
k-sparsecase, it is possible in principle to find the large componentsof its Fourier transform in sublinear
time.

The past two decades have witnessed significant advances in sublinear sparse Fourier algorithms. The
first such algorithm (for the Hadamard transform) appeared in [KM91] (building on [GL89]). Since then,
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several sublinear sparse Fourier algorithms for complex inputs have been discovered [Man92, GGI+02,
AGS03, GMS05, Iwe10, Aka10, HIKP12b, HIKP12a, LWC12, BCG+12, HAKI12]. The most efficient of
those algorithms1, given in [HIKP12a], offers the following performance guarantees:

• For signals that are exactlyk-sparse, the algorithm runs inO(k log n) time.
• For the approximately sparse signals, the algorithm runs inO(k log n log(n/k)) time.

Although the aforementioned algorithms are very efficient,they nevertheless suffer from limitations.
Perhaps the main limitation is that their sample complexitybounds are equal to the their running times.
In particular, the sample complexity of the first algorithm (for the exactlyk-sparse case) isΘ(k log n),
while the sample complexity of the second algorithm (approximately sparse) isΘ(k log(n) log(n/k)). The
first bound is suboptimal by a logarithmic factor, as it is known that one can recover any signal withk
nonzero Fourier coefficients fromO(k) samples [AT08], albeit in super-linear time. The second bound
is a logarithmic factor away from the lower bound ofΩ(k log(n/k)) [PW11] established for non-adaptive
algorithms2; a slightly weaker lower bound ofΩ(k log(n/k)/ log log n) applies to adaptive algorithms as
well [HIKP12a]. In most applications, low sample complexity is at least as important as efficient running
time, as it implies reduced signal acquisition or communication cost.

Another limitation of the prior algorithms is that most of them are designed for one-dimensional signals.
This is unfortunate, since multi-dimensional instances ofDFT are often particularly sparse. This situation is
somewhat alleviated by the fact that the two- dimensional DFT overp× q grids can be reduced to the one-
dimensional DFT over a signal of lengthpq [GMS05, Iwe12]. However, the reduction applies only ifp and
q are relatively prime, which excludes the most typical case of m×m grids wherem is a power of2. The
only prior algorithm that applies to generalm×m grids, due to [GMS05], hasO(k logc n) sample and time
complexity for a rather large value ofc. If n is a power of2, a two-dimensional adaptation of the [HIKP12b]
algorithm (outlined in the appendix) has roughlyO(k log3 n) time and sample complexity.

Our results In this paper, we present the first sample-optimal sublineartime algorithms for the Discrete
Fourier Transform over a two- dimensional

√
n × √n grid. Unlike the aforementioned results, our algo-

rithms are analyzed in theaverage case. Our input distributions are natural. For the exactly sparse case,
we assume the Bernoulli model: each spectrum coordinate is nonzero with probabilityk/n, in which case
the entry assumes an arbitrary value predetermined for thatposition3. For the approximately sparse case,
we assume that the spectrum̂x of the signal is a sum of two vectors: the signal vector, chosen from the
Bernoulli distribution, and the noise vector, chosen from the Gaussian distribution (see Section§2 Prelimi-
naries for the complete definition). These or similar4 distributions are often used as test cases for empirical
evaluations of sparse Fourier Transform algorithms [IGS07, HIKP12b, LWC12] or theoretical analysis of
their performance [LWC12].

The algorithms succeed with a constant probability. The notion of success depends on the scenario
considered. For the exactly sparse case, an algorithm is successful if it recovers the spectrum exactly. For

1See the discussion in the Related Work section.
2An algorithm isadaptiveif it selects the samples based on the values of the previously sampled coordinates. If the positions of

the samples are chosen in advance of the sampling process, the algorithm is callednon-adaptive. All algorithms given in this paper
are non-adaptive.

3Note that this model subsumes the scenario where the values of the nonzero coordinates are chosen i.i.d. from some distribution.
4A popular alternative is to use the hypergeometric distribution over the set of nonzero entries instead of the Bernoullidistribu-

tion. The advantage of the former is that it yields vectors ofsparsityexactlyequal tok. In this paper we opted for the Bernoulli
model since it is simpler to analyze. However, both models are quite similar. In particular, for large enoughk, the actual sparsity of
vectors in the Bernoulli model is sharply concentrated aroundk.
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the approximately sparse case, the algorithm is successfulif it reports a signal with spectrum̂z such that

‖ẑ − x̂‖22 = O(σ2n) + ‖x̂‖22/nc (1)

whereσ2 denotes the variance of the normal distributions defining each coordinate of the noise vector, and
wherec is any constant. Note that anyk-sparse approximation tôx has errorΩ(σ2n) with overwhelming
probability, and that the second term in the bound in Equation 1 is subsumed by the first term as long as the
signal-to-noise ratio is at most polynomial, i.e.,‖x̂‖2 ≤ nO(1)σ. See Section§2 for further discussion.

The running time and sample complexity bounds are depicted in the following table. We assume that√
n is a power of2.

Input Samples Time Assumptions
Sparse k k log k k = O(

√
n)

Sparse k k log k

+k(log log n)O(1)

Approx. sparse k log n k log2 n k = Θ(
√
n)

The key feature of our algorithms is that their sample complexity bounds are optimal, at least in the non-
adaptive case. For the exactly sparse case, the lower bound of Ω(k) is immediate. For the approximately
sparse case, we note that theΩ(k log(n/k)) lower bound of [PW11] holds even if the spectrum is the sum
of a k-sparse signal vector in{0, 1,−1}n and Gaussian noise. The latter is essentially a special caseof the
distributions handled by our algorithm, and we give a full reduction in Appendix A. From the running time
perspective, our algorithms are slightly faster than thosein [HIKP12a], with the improvement occurring for
low values ofk.

An additional feature of the first algorithm is its simplicity and therefore its low “big-Oh” overhead. Our
preliminary experiments on random sparse data indicate that the algorithm for exactly sparse case yields
substantial improvement over 2D FFTW, a highly efficient implementation of 2D FFT. In particular, for
n = 222 (a 2048 × 2048 signal) andk = 1024, the algorithm is 100× faster than 2D FFTW. To the best
of our knowledge, this is the first implementation of a 2D sparse FFT algorithm. For the samen andk, the
algorithm has a comparable running time (1.5× faster) to the 1D exactly sparse FFT in [HIKP12a] while
using 8× fewer samples. We expect that the algorithm or its variant will be efficient on non-random data
as well, since the algorithm can randomize the positions of the coefficients using random two-dimensional
affine transformations (cf. Appendix B). Even though the resulting distribution is not fully random, it has
been observed that random affine transformations work surprisingly well on real data [MV08].

Our techniques Our first algorithm fork-sparse signals is based on the following idea. Recall that one
way to compute the two-dimensional DFT of a signalx is to apply the one-dimensional DFT to each column
and then to each row. Suppose thatk = a

√
n for a < 1. In this case, the expected number of nonzero entries

in each row is less than1. If everyrow contained exactly one nonzero entry, then the DFT could be computed
via the following two step process. In the first step, we select the first two columns ofx, denoted byu(0)

andu(1), and compute their DFTŝu(0) andû(1). Let ji be the index of the unique nonzero entry in thei-th
row of x̂, and leta be its value. Observe that̂u(0)i = a and û(1)i = aω−ji (whereω is a primitive

√
n-th

root of unity), as these are the first two entries of the inverse Fourier transform of a1-sparse signalaeji .

Thus, in the second step, we can retrieve the value of the nonzero entry, equal tôu(0)i , as well as the indexji
from the phase of the ratiôu(1)i /û

(0)
i (this technique was introduced in [HIKP12a, LWC12] and was referred

to as the “OFDM trick”). The total time is dominated by the cost of the two DFTs of the columns, which
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(a) Original Spectrum

→

→

(b) Step 1: Row recovery

↓ ↓ ↓ ↓ ↓

(c) Step 2: Column recovery

→

→
→
→

(d) Step 3: Row recovery

↓ ↓

(e) Step 4: Column recovery

→

→

(f) Step 5: Row Recovery

Figure 1: An illustration of the “peeling” recovery processon an8× 8 signal with 15 nonzero frequencies.
In each step, the algorithm recovers all1-sparse columns and rows (the recovered entries are depicted in
red). The process converges after a few steps.

is O(
√
n log n). Since the algorithm queries only a constant number of columns, its sample complexity is

O(
√
n).

In general, the distribution of the nonzero entries over therows can be non-uniform. Thus, our actual
algorithm alternates the above recovery process between the columns and rows (see Figure 1 for an illus-
tration). Since the OFDM trick works only on1-sparse columns/rows, we check the1-sparsity of each
column/row by sampling a constant number of additional entries. We then show that, as long as the sparsity
constanta is small enough, this process recovers all entries in a logarithmic number steps with constant
probability. The proof uses the fact that the probability ofthe existence of an “obstructing configuration”
of nonzero entries which makes the process deadlocked (e.g., see Figure 2) is upper bounded by a small
constant.

The algorithm is extended to the case ofk = o(
√
n) via a reduction. Specifically, we subsample the

signalx by the reduction ratioR = α
√
n/k for some small enough constantα in each dimension. The

subsampled signalx′ has dimension
√
m × √m, where

√
m = k

α . Since subsampling in time domain
corresponds to “spectrum folding”, i.e., adding together all frequencies with indices that are equal modulo√
m, the nonzero entries of̂x are mapped into the entries ofx̂′. It can be seen that, with constant probability,

the mapping is one-to-one. If this is the case, we can use the earlier algorithm for sparse DFT to compute the
nonzero frequencies inO(

√
m logm) = O(

√
k log k) time, usingO(k) samples. We then use the OFDM

trick to identify the positions of those frequencies inx̂.
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↓ ↓ ↓

→

→

→

(a)

↓ ↓

→

→

(b)

Figure 2: Examples of obstructing sequences of nonzero entries. None of the remaining rows or columns
has a sparsity of 1.

Our second algorithm for the exactly sparse case works for all values ofk. The main idea behind it
is to decode rows/columns with higher sparsity than1. First, we give adeterministic, worst-casealgo-
rithm for 1-dimensional sparse Fourier transforms that takesO(k2 + k(log log n)O(1)) time. This algo-
rithm uses the relationship between sparse recovery and syndrome decoding of Reed-Solomon codes (due
to [AT08]). Although a simple application of the decoder yields O(n2) decoding time, we show that by
using appropriate numerical subroutines one can in fact recover ak-sparse vector fromO(k) samples in
timeO(k2 + k(log log n)O(1))5. In particular, we use Berlekamp-Massey’s algorithm for constructing the
error-locator polynomial and Pan’s algorithm for finding its roots. For our fast average-case,2-dimensional
sparse Fourier transform algorithm, we fold the spectrum into B = k

C log k bins for some large constantC.
Since the positions of thek nonzero frequencies are random, it follows that each bin receivest = Θ(log k)
frequencies with high probability. We then takeΘ(t) samples of the time domain signal corresponding to
each bin, and recover the frequencies corresponding to those bins inO(t2 + t(log log n)O(1)) time per bin,
for a total time ofO(k log k + k(log log n)O(1)).

The above approach works as long as the number of nonzero coefficients per column/row are highly
concentrated. However, this is not the case fork ≪ √n log n. We overcome this difficulty by replacing a
row by a sequence of rows. A technical difficulty is that the process might lead to collisions of coefficients.
We resolve this issue by using a two level procedure, where the first level returns the syndromes of colliding
coefficients as opposed to the coefficients themselves; the syndromes are then decoded at the second level.

Our third algorithm works forapproximatelysparse data, at sparsityΘ(
√
n). Its general outline mimics

that of the first algorithm. Specifically, it alternates between decoding columns and rows, assuming that they
are1-sparse. The decoding subroutine itself is similar to that of [HIKP12a] and usesO(log n) samples. The
subroutine first checks whether the decoded entry is large; if not, the spectrum is unlikely to contain any
large entry, and the subroutine terminates. The algorithm then subtracts the decoded entry from the column
and checks whether the resulting signal contains no large entries in the spectrum (which would be the case
if the original spectrum was approximately1-sparse and the decoding was successful). The check is done
by samplingO(log n) coordinates and checking whether their sum of squares is small. To prove that this
check works with high probability, we use the fact that a collection of random rows of the Fourier matrix is
likely to satisfy the Restricted Isometry Property (RIP) of[CT06].

A technical difficulty in the analysis of the algorithm is that the noise accumulates in successive itera-

5We note that, fork = o(log n), this is the fastest knownworst-casealgorithm for the exactly sparse DFT.
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tions. This means that a1/ logO(1) n fraction of the steps of the algorithm will fail. However, weshow that
the dependencies are “local”, which means that our analysisstill applies to a vast majority of the recovered
entries. We continue the iterative decoding forlog log n steps, which ensures that all but a1/ logO(1) n
fraction of the large frequencies are correctly recovered.To recover the remaining frequencies, we resort to
algorithms with worst-case guarantees.

Extensions Our algorithms have natural extensions to dimensions higher than2. We do not include them
in this paper as the description and analysis are rather cumbersome.

While no optimal result is known for the1-dimensional case, one can achieve optimal sample complex-
ity and efficient robust recovery in thelog n-dimensional (Hadamard) case ([Lev93], see also Appendix C.2
of [Gol99]). Our result demonstrates that even two dimensions give enough flexibility for optimal sample
complexity in the average case. Due to the equivalence between the two-dimensional case and the one-
dimensional case wheren is a product of different prime powers [GMS05, Iwe12], our algorithm also gives
optimal sample complexity bounds for e.g.,n = 6t in the average case.

1.1 Related work

As described in the introduction, currently the most efficient algorithms for computing the sparse DFT
are due to [HIKP12a]. For signals that are exactlyk-sparse, the first algorithm runs inO(k log n) time.
For approximately sparse signals, the second algorithm runs in O(k log n log(n/k)) time. Formally, the
latter algorithm works for any signalx, and computes an approximation vectorx̂′ that satisfies theℓ2/ℓ2
approximation guarantee, i.e.,‖x̂− x̂′‖2 ≤ Cmink-sparsey ‖x̂− y‖2, whereC is some approximation factor
and the minimization is overk-sparse signals. Note that this guarantee generalizes thatof Equation (1).

We also mention another efficient algorithm, due to [LWC12],designed for the exactlyk-sparse model.
The average case analysis presented in that paper shows thatthe algorithm hasO(k) expected sample com-
plexity and runs inO(k log k) time. However, the algorithm assumes that the input signalx is specified as a
functionover an interval[0, 1] that can be sampled at arbitrary positions, as opposed to a given discrete se-
quence ofn samples as in our case. Thus, although very efficient, that algorithm does not solve the Discrete
Fourier Transform problem.

2 Preliminaries

This section introduces the notation, assumptions and definitions used in the rest of this paper.

Notation Throughout the paper we assume that
√
n is a power of2. We use[m] to denote the set

{0, . . . ,m − 1}, and [m] × [m] = [m]2 to denote them × m grid {(i, j) : i ∈ [m], j ∈ [m]}. We de-
fine ω = e−2πi/

√
n to be a primitive

√
n-th root of unity andω′ = e−2πi/n to be a primitiven-th root of

unity. For any complex numbera, we useφ(a) ∈ [0, 2π) to denote thephaseof a. For a 2D matrix
x ∈ C

√
n×√

n, its support is denoted bysupp(x) ⊆ [
√
n] × [

√
n]. We use‖x‖0 to denote|supp(x)|, the

number of nonzero coordinates ofx. Its 2D Fourier spectrum is denoted byx̂, with

x̂i,j =
1√
n

∑

l∈[√n]

∑

m∈[√n]

ωil+jmxl,m.
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Similarly, if y is a frequency-domain signal, its inverse Fourier transform is denoted by̌y.

Definitions The paper uses the comb filter used in [Iwe10, HIKP12b] (cf. [Man92]). The filter can be
generalized to2 dimensions as follows:

Given(τr, τc) ∈ [
√
n]× [

√
n], andBr, Bc that divide

√
n, then for all(i, j) ∈ [Br]× [Bc] set

yi,j = xi(
√
n/Br)+τr ,j(

√
n/Bc)+τc .

Then, compute the 2D DFT̂y of y. Observe that̂y is a folded version of̂x:

ŷi,j =
∑

l∈[√n/Br ]

∑

m∈[√n/Bc]

x̂lBr+i,mBc+jω
−τr(i+lBr)−τc(j+mBc).

Distributions In the exactly sparse case, we assume a Bernoulli model for the support of̂x. This means
that for all(i, j) ∈ [

√
n]× [

√
n],

Pr{(i, j) ∈ supp (x̂)} = k/n

and thusE[|supp (x̂)|] = k. We assume an unknown predefined matrixai,j of values inC; if x̂i,j is selected
to be nonzero, its value is set toai,j.

In the approximately sparse case, we assume that the signalx̂ is equal tôx∗+ŵ ∈ C
√
n×√

n, wherex̂∗i,j
is the “signal” andŵ is the “noise”. In particular,̂x∗ is drawn from the Bernoulli model, wherêx∗i,j is drawn
from {0, ai,j} at random independently for each(i, j) for some valuesai,j and withE[| supp(x̂∗)|] = k. We
also require that|ai,j| ≥ L for some parameterL. ŵ is a complex Gaussian vector with varianceσ2 in both
the real and imaginary axes independently on each coordinate; we notate this aŝw ∼ NC(0, σ

2In). We will
need thatL = Cσ

√
n/k for a sufficiently large constantC, so thatE[‖x̂∗‖22] ≥ C E[‖ŵ‖22].

3 Basic Algorithm for the Exactly Sparse Case

The algorithm for the noiseless case depends on the sparsityk wherek = E[|supp (x̂)|] for a Bernoulli
distribution of the support.

3.1 Basic Exact Algorithm: k = Θ(
√
n)

In this section, we focus on the regimek = Θ(
√
n). Specifically, we will assume thatk = a

√
n for a

(sufficiently small) constanta > 0.
The algorithm BASICEXACT2DSFFT is described as Algorithm 3.1. The key idea is to fold the spec-

trum into bins using the comb filter defined in§2 and estimate frequencies which are isolated in a bin. The
algorithm takes the FFT of a row and as a result frequencies inthe same columns will get folded into the
same row bin. It also takes the FFT of a column and consequently frequencies in the same rows wil get
folded into the same column bin. The algorithm then uses the OFDM trick introduced in [HIKP12a] to
recover the columns and rows whose sparsity is 1. It iteratesbetween the column bins and row bins, sub-
tracting the recovered frequencies and estimating the remaining columns and rows whose sparsity is 1. An
illustration of the algorithm running on an8 × 8 signal with 15 nonzero frequencies is shown in Fig. 1 in
Section 1. The algorithm also takes a constant number of extra FFTs of columns and rows to check for
collisions within a bin and avoid errors resulting from estimating bins where the sparsity is greater than 1.
The algorithm uses three functions:

7



• FOLDTOBINS. This procedure folds the spectrum intoBr ×Bc bins using the comb filter described§2.

• BASICESTFREQ. Given the FFT of rows or columns, it estimates the frequencyin the large bins. If there
is no collision, i.e. if there is a single nonzero frequency in the bin, it adds this frequency to the resultŵ
and subtracts its contribution to the row and column bins.

• BASICEXACT2DSFFT. This performs the FFT of the rows and columns and theniterates BASICEST-
FREQ between the rows and columns until is recoversx̂.

Analysis of BASICEXACT 2DSFFT

Lemma 3.1. For any constantα > 0, if a > 0 is a sufficiently small constant, then assuming that all
1-sparsity tests in the procedureBASICESTFREQ are correct, the algorithm reports the correct output with
probability at least1−O(α).

Proof. The algorithm fails if there is a pair of nonzero entries in a column or row of x̂ that “survives”
tmax = C log n iterations. For this to happen there must be an “obstructing” sequence of nonzero entries
p1, q1, p2, q2 . . . pt, 3 ≤ t ≤ tmax, such that for eachi ≥ 1, pi andqi are in the same column (“vertical
collision”), while qi andpi+1 are in the same row (“horizontal collision”). Moreover, it must be the case
that either the sequence “loops around”, i.e.,p1 = pt, or t > tmax. We need to prove that the probability of
either case is less thanα. We focus on the first case; the second one is similar.

Assume that there is a sequencep1, q1, . . . pt−1, qt−1 such that the elements in this sequence are all
distinct, whilep1 = pt. If such a sequence exists, we say that the eventEt holds. The number of sequences
satisfyingEt is at most

√
n
2(t−1), while the probability that the entries corresponding to the points in a

specific sequence are nonzero is at most(k/n)2(t−1) = (a/
√
n)2(t−1). Thus the probability ofEt is at most

√
n
2(t−1) · (a/

√
n)2(t−1) = a2(t−1).

Therefore, the probability that one of the eventsE1, . . . , Etmax holds is at most
∑∞

t=3 a
2(t−1) = a4/(1−a2),

which is smaller thanα for a small enough.

Lemma 3.2. The probability that any 1-sparsity test invoked by the algorithm is incorrect is at most
O(1/n(c−5)/2).

To prove Lemma 3.2, we first need the following lemma.

Lemma 3.3. Let y ∈ Cm be drawn from a permutation invariant distribution withr ≥ 2 nonzero values.
LetT = [2c]. Then the probability that there exists ay′ such that‖y′‖0 ≤ 1 and (ŷ − ŷ′)T = 0 is at most

c
(

c
m−r

)c−2
.

Proof. Let A = FT be the first2c rows of the inverse Fourier matrix. Because any2c × 2c submatrix ofA
is Vandermonde and hence non-singular, the system of linearequations

Az = b

has at most onec-sparse solution inz, for anyb.
If r ≤ c− 1, then‖y− y′‖0 ≤ c soA(y− y′) = 0 impliesy− y′ = 0. But r ≥ 2 so‖y− y′‖0 > 0. This

is a contradiction, so ifr < c then the probability that(ŷ − ŷ′)T = 0 is zero. Henceforth, we assumer ≥ c.

8



procedure FOLDTOBINS(x, Br, Bc, τr, τc)
yi,j = xi(

√
n/Br)+τr ,j(

√
n/Bc)+τc for (i, j) ∈ [Br]× [Bc],

return ŷ, the DFT ofy
end procedure
procedure BASICESTFREQ(û(T ) , v̂(T ),T , IsCol)

ŵ ← 0.
ComputeJ = {j : ∑τ∈T |û

(τ)
j | > 0}.

for j ∈ J do
b← û

(1)
j /û

(0)
j .

i← round(φ(b)
√
n

2π ) mod
√
n. ⊲ φ(b) is the phase ofb.

s← û
(0)
j .

⊲ Test whether the row or column is 1-sparse

if
(∑

τ∈T |û
(τ)
j − sω−τi| == 0

)
then

if IsCol then ⊲ whether decoding column or row
ŵi,j ← s.

else
ŵj,i ← s.

end if
for τ ∈ T do

û
(τ)
j ← 0

v̂
(τ)
i ← v̂

(τ)
i − sω−τi

end for
end if

end for
return ŵ, û(T ), v̂(T )

end procedure
procedure BASICEXACT2DSFFT(x, k)

T ← [2c] ⊲ We setc ≥ 6
for τ ∈ T do

û(τ) ← FOLDTOBINS(x,
√
n, 1, 0, τ).

v̂(τ) ← FOLDTOBINS(x, 1,
√
n, τ, 0).

end for
ẑ ← 0
for t ∈ [C log n] do ⊲ û(T ) := {û(τ) : τ ∈ T}
{ŵ, û(T ), v̂(T )} ← BASICESTFREQ(û(T ), v̂(T ), T, true).
ẑ ← ẑ + ŵ.
{ŵ, v̂(T ), û(T )} ← BASICESTFREQ(v̂(T ), û(T ), T, false).
ẑ ← ẑ + ŵ.

end for
return ẑ

end procedure

Algorithm 3.1: Basic Exact 2D sparse FFT algorithm fork = Θ(
√
n)
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When drawingy, first placer − (c − 1) coordinates intou then place the otherc − 1 values intov, so
thaty = u+ v. Condition onu, sov is a permutation distribution overm− r+ c− 1 coordinates. We know
there exists at most onec-sparse vectorw with Aw = −Au. Then

Pr
y
[∃y′ : A(y − y′) = 0 and‖y′‖0 ≤ 1]

=Pr
v
[∃y′ : A(v − y′) = −Au and‖y′‖0 ≤ 1]

≤Pr
v
[∃y′ : v − y′ = w and‖y′‖0 ≤ 1] = Pr

v
[‖v − w‖0 ≤ 1]

≤Pr
v
[|supp(v)△ supp(w)| ≤ 1]

<
m− r + c− 1(m−r+c−1

c−1

) < c

(
c

m− r

)c−2

where the penultimate inequality follows from consideringthe cases‖w‖0 ∈ {c−2, c−1, c} separately.

We now proceed with the proof of Lemma 3.2 .

Proof. W.L.O.G. consider the row case. Lety be thejth row of x̂. Note thatû(τ)j = ŷτ . Observe that
with probability at least1 − 1/nc we have‖y‖0 ≤ r for r = c log n. Moreover, the distribution ofy is
permutation-invariant, and the test in BASICESTFREQ corresponds to checking whether(ŷ − ŷ′)T = 0 for
some1-sparsey′ = aei. Hence, Lemma 3.3 withm =

√
n implies the probability that any specific test fails

is less thanc(2c/
√
n)c−2. Taking a union bound over the

√
n log n total tests gives a failure probability of

4c3 log n(2c/
√
n)c−4 < O(1/n(c−5)/2).

Theorem 3.4.For any constantα, the algorithmBASICEXACT2DSFFTusesO(
√
n) samples, runs in time

O(
√
n log n) and returns the correct vector̂x with probablility at least1 − O(α) as long asa is a small

enough constant.

Proof. From Lemma 3.1 and Lemma 3.2, the algorithm returns the correct vectorx̂ with probability at least
1−O(α)−O(n−(c−5)/2) = 1−O(α) for c > 5.

The algorithm uses onlyO(T ) = O(1) rows and columns ofx, which yieldsO(
√
n) samples. The

running time is bounded by the time needed to performO(1) FFTs of rows and columns (in FOLDTOBINS)
procedure, andO(log n) invocations of BASICESTFREQ. Both components take timeO(

√
n log n).

3.2 Reduction to Basic Exact Algorithm:k = o(
√
n)

Algorithm REDUCEEXACT2DSFFT, which is for the case wherek = o(
√
n), is described in Algo-

rithm 3.2). The key idea is to reduce the problem from the casewherek = o(
√
n) to the case where

k = Θ(
√
n). To do that, we subsample the input time domain signalx by the reduction ratioR =

a
√
n/k for some small enougha. The subsampled signalx′ has dimension

√
m × √m, where

√
m = k

a .
This implies that the probability that any coefficient in̂x′ is nonzero is at mostR2 × k/n = a2/k =
(a2/k) × (k2/a2)/m = k/m, sincem = k2/a2. This means that we can use the algorithm BASICNOISE-
LESS2DSFFT in subsection§3.1 to recover̂x′. Each of the entries of̂x′ is a frequency in̂x which was
folded intox̂′. We employ the same phase technique used in [HIKP12a] and subsection§3.1 to recover their
original frequency position in̂x.

The algorithm uses 2 functions:
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• REDUCETOBASICSFFT: This folds the spectrum intoO(k)×O(k) dimensions and performs the reduc-
tion to BASICEXACT2DSFFT. Note that only theO(k) elements ofx′ which will be used in BASICEX-
ACT2DSFFT need to be computed.

• REDUCEEXACT2DSFFT: This invokes the reduction as well as the phase technique to recover̂x.

procedure REDUCETOBASICSFFT(x, R, τr, τc)
Definex′ij = xiR+τr ,jR+τc ⊲ With lazy evaluation
return BASICEXACT2DSFFT(x′, k)

end procedure
procedure REDUCEEXACT2DSFFT(x, k)

R← a
√
n

k , for some constanta < 1 such thatR|√n.
û(0,0) ← REDUCETOBASICSFFT(x,R, 0, 0)
û(1,0) ← REDUCETOBASICSFFT(x,R, 1, 0)
û(0,1) ← REDUCETOBASICSFFT(x,R, 0, 1)
ẑ ← 0
L← supp(û(0,0)) ∩ supp(û(1,0)) ∩ supp(û(0,1))
for (ℓ,m) ∈ L do

br ← û
(1,0)
ℓ,m /û

(0,0)
ℓ,m

i← round(φ(br)
√
n

2π ) mod
√
n

bc ← û
(0,1)
ℓ,m /û

(0,0)
ℓ,m

j ← round(φ(bc)
√
n

2π ) mod
√
n

ẑij ← û
(0,0)
ℓ,m

end for
return ẑ

end procedure

Algorithm 3.2: Exact 2D sparse FFT algorithm fork = o(
√
n)

Analysis of REDUCEEXACT 2DSFFT

Lemma 3.5. For any constantα, for sufficiently smalla there is a one-to-one mapping of frequency coeffi-
cients fromx̂ to x̂′ with probability at least1− α.

Proof. The probability that there are at least2 nonzero coefficients among theR2 coefficients inx̂ that are
folded together in̂x′, is at most

(
R2

2

)
(k/n)2 < (a2n/k2)2(k/n)2 = a4/k2

The probability that this event holds for any of them positions inx̂′ is at mostma4/k2 = (k2/a2)a4/k2 =
a2 which is less thanα for small enougha. Thus, with probability at least1− α any nonzero coefficient in
x̂′ comes from only one nonzero coefficient inx̂.

11



Theorem 3.6.For any constantα > 0, there exists a constantc > 0 such that ifk < c
√
n then the algorithm

REDUCEEXACT2DSFFTusesO(k) samples, runs in timeO(k log k) and returns the correct vector̂x with
probablility at least1− α.

Proof. By Theorem 3.4 and the fact that each coefficient inx̂′ is nonzero with probabilityO(1/k), each
invocation of the function REDUCETOBASICSFFT fails with probability at mostα. By Lemma 3.5, with
probability at least1−α, we could recover̂x correctly if each of the calls to REDTOBASICSFFT returns the
correct result. By the union bound, the algorithm REDUCEEXACT2DSFFT fails with probability at most
α+ 3× α = O(α).

The algorithm usesO(1) invocations of BASICEXACT2DSFFT on a signal of sizeO(k) × O(k) in
addition toO(k) time to recover the support using the OFDM trick. Noting thatcalculating the intersection
L of supports takesO(k) time, the stated number of samples and running time then follow directly from
Theorem 3.4.

4 Algorithm for Exactly Sparse Case of any sparsityk = O(n)

4.1 Exact 1D Algorithm for k = O(n)

We will first present a deterministic algorithm for the one-dimensional exactly sparse case. The algorithm
1DSFFT, described in Alg. 4.1, computes the spectrum of at-sparse signalx ∈ Cn and has worst case run-
ning time ofO(t2 + t(log log n)O(1)) for t = O(log n). This deterministic algorithm has the fastest known
worst case running time fork = o(log n). We will later use it to construct the algorithm EXACT1DSFFT
that has the fastest known average case running time fork = O(n).

procedure 1DSFFT(x, t)
x̂← 0
{(fi, vi)}i∈[l] ← SIGNAL FROMSYNDROME(n, {x0, · · · , x2t−1}).
x̂fi ← vi for all i ∈ [l]. ⊲ l ≤ t is result size
return x̂

end procedure

procedure SIGNAL FROMSYNDROME(n, {s0 , · · · , s2t−1})
Λ(z)← BERLEKAMPMASSEY({s0, · · · , s2t−1}).
f ← PAN(Λ(z)). ⊲ This finds{f : |x̂f | > 0} of lengthl ≤ t
V ← VANDERMONDE((ω′)f0 , · · · , (ω′)fl−1)
V −1 ← INVERSEVANDERMONDE(V )
v ← V −1s[l]
return {(fi, vi)}i∈[l]

end procedure

Algorithm 4.1: Algorithm for computing the exact 1D FFT of at-sparse signal of sizen

1DSFFT is a wrapper for the “Signal From Syndrome” procedureSIGNAL FROMSYNDROME which
uses the following procedures:

• BERLEKAMPMASSEY: This function finds the coefficients of the error locator polynomialΛ(z) based on
the inputsyndromessi =

∑
i x̂i(ω

′)i. The error locator polynomial, which only depends on the locations
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of the nonzero frequency components ofx, is given by:

Λ(z) =
t∏

ℓ=1

(
1− z(ω′)fℓ

)
(2)

Constructing the error locator polynomial is a commonly used step in decoding Reed-Solomon codes [MS77]
In our case, the main difference is that the coefficients ofΛ(z) lie in C whereas they lie in a finite field in
the case of Reed-Solomon codes. By Lemma 4.1 below, the Berlekamp-Massey algorithm [Mas69] solves
this problem in time quadratic int.

Lemma 4.1([Mas69]). Given the first2t time-domain samples of at-frequency sparse signal, Algorithm
BERLEKAMPMASSEY finds the error locator polynomialΛ(z) (given by Equation 2) in timeO(t2).

Proof. As shown in [AT08], finding the positions of the nonzero frequencies is equivalent to a gener-
alization of the Reed-Solomon decoding problem to the complex field; then, solving this complex-field
Reed-Solomon problem reduces to recovering the lowest-order linear recurrence (Λ(z)) that generates a
given sequence of “syndromes” (which equal thexi in our case) [Var97]. The running time isO(t2) where
t is the degree of the polynomial [Mas69].

• PAN: By the definition of the error locator polynomial (given by Equation 2), its roots determine the set
{f1, · · · , ft} of nonzero frequencies ofx. Thus, we can use the Pan root-finding algorithm [Pan02] to find
the complex roots ofΛ(z).

Lemma 4.2. ([Pan02]) For a polynomialp(z) of degreet with complex coefficients and whose complex
roots are located in the unit disk{z : |z| ≤ 1}, the PAN algorithm approximates all the roots ofp(z)
with an absolute error of at most2−b and usingO(t log2 t(log2 t+ log b)) arithmetic operations onb-bit
numbers, assuming thatb ≥ t log t.

• VANDERMONDE: Given the nonzero frequencies ofx, the problem reduces to solving a system of linear
equations in the values of those frequencies. The coefficient matrix of this system is a Vandermonde
matrix. Thus, this system has the form:

V




v1
...
vt


 = s(T ) whereVi,j = (ω′)ifj (3)

• INVERSEVANDERMONDE: The Vandermonde matrix can be inverted using the optimal algorithm given
in [Zip90] to find the values of the nonzero coordinates ofx̂.

Lemma 4.3. ([Zip90]) Given at× t Vandermonde matrixV , its inverse can be computed in timeO(t2).

Analysis of 1DSFFT

Theorem 4.4. If x is a t-sparse signal of sizen wheret ≤ O(log n), then on input{x0, · · · , x2t−1} the
procedureSIGNAL FROMSYNDROME (and hence the algorithm1DSFFT) computes the spectrum̂x in time
O(t2 + t(log log n)O(1)).

13



Proof. By Lemma 4.1, the time needed to construct the error locator polynomialΛ(z) isO(t2). By Lemma
4.2 and sincet ≤ log n, running the PAN algorithm withb = log n log log n requiresO(t log2 t(log2 t +
log log n)) arithmetic operations on(log n log log n)-bit numbers. Since a(log n log log n)-bit arithmetic
operation can be implemented usingO((log log n)O(1)) log n-bit operations and since we are assuming that
arithmetic operations onlog n bits can be performed in constant time, the total running time of the PAN

algorithm isO(t(log log n)O(1)). Note that since the roots ofΛ(z) aren-th roots (or later
√
n-roots) of

unity, the precision of the algorithm is sufficient. Noting that, by Lemma 4.3, inverting the Vandermonde
matrix requiresO(t2) time completes the proof of the Theorem.

Description and Analysis of EXACT 1DSFFT The algorithm EXACT1DSFFT(Algorithm 4.2) com-
putes the 1D spectrum with high probability over a randomk-sparse input for anyk. It usesO(k) samples
and runs in timeO(k(log k + (log log n)O(1))) . The idea is the following: We fold the spectrum into
θ(k/ log k) bins using the 1D version of the comb filter (cf. Section§2). As shown in Lemma 4.5, with high

probability, each of the bins hasO(log k) nonzero frequencies. In this case, SIGNAL FROMSYNDROME(n, û
(T )
j )

will then recover the original spectrum values. The generalization of this algorithm to the 2D case can be
found in Section 4.2.

procedure EXACT1DSFFT(x, k)
x̂← 0
B ← Θ(k/ log k) ⊲ Such thatB | n
T ← [2C log k] for a sufficiently large constantC.
for τ ∈ T do

u
(τ)
i := xi(n/B)+τ for i ∈ [B]

Computêu(τ), the DFT ofu(τ)

end for
for j ∈ [B] do ⊲ û

(T )
j = {û(τ)j : τ ∈ T}.

{(vi, fi)}i∈[C log k] ← SIGNAL FROMSYNDROME(n, û
(T )
j )

x̂fi ← vi for all i ∈ [C log k].
end for
return x̂

end procedure

Algorithm 4.2: Exact 1D sparse FFT algorithm for any sparsity k

Lemma 4.5. Assume that̂x is distributed according to the Bernoulli model of Section§2. If we fold the
spectrum intoB = θ(k/ log k) bins, then for a sufficiently large constantC, the probability that there is a
bin with more thanC log k nonzero frequencies is smaller thanO((1/k)0.5C logC).

Proof. The probability Pr(B, k,m) that there is a bin with more thanm nonzero frequencies is bounded by:

Pr(B, k,m) ≤ B

(
n/B

m

)(
k

n

)m

≤ B

(
ek

Bm

)m

SinceB = dk/ log k (for some constantd > 0), m = C log k, we get:

Pr(B, k,m) ≤ B

(
ek

Bm

)m

≤ dk

log k

(
ed

C

)C log k

= O

(
1

k0.5C logC

)
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Theorem 4.6. If x̂ is distributed according to the Bernoulli model of Section§2, then AlgorithmEX-
ACT1DSFFTruns in timeO(k(log k + (log log n)O(1))), usesO(k) samples and returns the correct spec-
trum x̂ with probability at least1−O((1/k)0.5C logC).

Proof. By Lemma 4.5, with probability at least1 − O((1/k)0.5C logC), all the bins have at mostC log k

nonzero frequencies each. Then, Theorem 4.4 guarantees thesuccess of SIGNAL FROMSYNDROME(n, û
(T )
j )

for everyj ∈ [B]. This proves the correctness of EXACT1DSFFT.

The running time of the for loop overτ isO(k log k). By Theorem 4.4, SIGNAL FROMSYNDROME(n, û
(T )
j )

takes timeO(log2 k + log k(log log n)O(1)) for every j ∈ [B]. Thus, the total running time of EX-
ACT1DSFFT isO(k(log k + (log log n)O(1))). For everyτ ∈ [C log k], computingû(τ) requiresB =
k/ log k samples. Thus, the total number of samples needed isO(k).

4.2 Exact 2D Algorithm for k = O(n)

Here, we generalize the EXACT1DSFFT to the 2D case. Fork/ log k ≥ √n, the generalization is straight-
forward and can be found in Alg. 4.3: EXACT2DSFFT1. Fork/ log k ≤ √n, the generaliztion requires an
extra step and can be found in Alg. 4.4 : EXACT2DSFFT2.

Whenk/ log k ≥ √n, the desired bucket sizen/B is less than
√
n, so we can have one-dimensional

buckets and recover the locations with a single applicationof syndrome decoding. Whenk/ log k <
√
n,

we need to have two dimensional buckets to make them large enough. But this means syndrome decoding
will not uniquely identify the locations, and we will need multiple tests.

procedure EXACT2DSFFT1(x, k)
B1 ←

√
n.

B2 ← θ(k/(log k
√
n)).

T ← [2C log k] for a sufficiently large constantC.
for τ ∈ T do

Defineu(τ)i,j := xi,j(
√
n/B2)+τ for (i, j) ∈ [B1]× [B2].

Compute the 2D FFT̂u(τ) of u(τ)

end for
x̂← 0.
for (i, j) ∈ [B1]× [B2] do ⊲ û

(T )
i,j := {û(τ)i,j : τ ∈ T}.

{(fl, vl)}l∈[C log k] ← SIGNAL FROMSYNDROME(
√
n, û

(T )
i,j )

x̂i,fl ← vl for all l ∈ [C log k].
end for
return x̂

end procedure

Algorithm 4.3: Exact 2D sparse FFT algorithm for sparsityk/ log k ≥ √n

Description and Analysis of EXACT 2DSFFT1 The algorithm EXACT2DSFFT1 applies to the case
where
k/ log k ≥ √n. As in the 1D case, we useB = Θ(k/ log k) buckets each of which havingΘ(n log k/k)

15



frequencies mapping to it. We construct the buckets corresponding to a phase shift ofτ along the second
dimension for allτ ∈ [2C log k]. As in the 1D case, with high probability, each of those buckets will have
at mostC log k nonzero frequencies. The particular choice of the buckets above will ensure that the inputs
to the SIGNAL FROMSYNDROME procedure have the appropriate “syndrome” form.

Theorem 4.7. If x is a k-sparse signal (withk/ log k ≥ √n) distributed according to the Bernoulli model
of Section§2, then AlgorithmEXACT2DSFFT1runs in timeO(k log k), usesO(k) samples and recovers
the spectrum̂x of x with probability at least1−O

(
1/k0.5C logC

)
.

Proof. For every(i, j) ∈ [B1] × [B2] and everyτ ∈ [2C log k], û(τ)i,j =
∑

f2≡j modB2

x̂i,f2ω
−τf2. Using

the same argument as in Lemma 4.5, with high probability, every bin û
(τ)
i,j has at mostC log k nonzero

frequencies. Noting that the function SIGNAL FROMSYNDROME(
√
n, û

(T )
i,j ) succeeds wheneverû(T )

i,j are the
syndromes of aC log k-sparse signal, implies the correctness of EXACT2DSFFT1.

Computingû(τ) for all τ ∈ T takes timeO(k log k). Each call to SIGNAL FROMSYNDROME(
√
n, û

(T )
i,j )

takes timeO(log2 k+ log k(log log n)O(1)) by Theorem 4.4. Thus, the overall running time isO(k(log k+
(log log n)O(1))) = O(k log k). For everyτ ∈ [C log k], computingû(τ) requiresB1 × B2 = k/ log k
samples. Thus, the total number of samples needed isO(k).

procedure EXACT2DSFFT2(x, k)
B ← θ(k/ log k).
T ← {0, 1, · · · , 2C log k − 1} for a sufficiently large constantC.
for (τ, s) ∈ T × [4] do

Compute the FFT̂uτ,s of uτ,s where for everyi ∈ [B], u(τ1,τ2)i = xτ1,i(
√
n/B)+τ2

end for
x̂← 0.
for i ∈ [B] do

for s ∈ [4] do ⊲ ûT,si = {ûτ,si : τ ∈ T}.
{(f (s)

l , v
(s)
l )}l∈[C log k] ← SIGNAL FROMSYNDROME(

√
n, ûT,si )

end for
({f0, · · · , fO(log k)}, {y(s)0 , · · · , y(s)O(log k)}s∈[4])← MATCH({(f (s)

l , v
(s)
l )}s∈[4], l∈[C log k])

for l ∈ [O(log k)] do ⊲ y
(S)
l := {y(s)l : s ∈ S = [4]}.

{(g0, w0), (g1, w1)} ← SIGNAL FROMSYNDROME(
√
n, y

(S)
l )

x̂fl,gj ← wj for all j ∈ [2].
end for

end for
return x̂

end procedure

Algorithm 4.4: Exact 2D sparse FFT algorithm for sparsityk/ log k ≤ √n

Description and Analysis of EXACT 2DSFFT2 The algorithm EXACT2DSFFT2 above applies to the
case wherek/ log k ≤ √n. As in the1D case, we useB = Θ(k/ log k) buckets, each of which having
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Θ(n log k/k) frequencies mapping to it (i.e.Θ(
√
n log k/k) columns). We construct4 sets of buckets

(as opposed to1 set in the 1D case). Those sets correspond to the phase shifts(τ, 0), (τ, 1), (τ, 2) and
(τ, 3) for all τ ∈ [2C log k]. We run the SIGNAL FROMSYNDROME procedure on each of those4 sets.
As opposed to the 1D case, the resulting values can be the superposition of2 or more nonzero frequency
components. However, as shown in Lemma 4.9, with high probability, all the obtained values correspond
to the superposition of at most2 nonzero frequency components. The4 corresponding superpositions (one
from each of the4 sets) are then combined (by the MATCH procedure) to get the union{f0, · · · , fO(log k)}
of the sets{f (s)

0 , · · · , f (s)
C log k−1} for all s ∈ [4] along with the associated values{y(s)0 , · · · , y(s)O(log k)} (with a

value0 if the frequency did not appear for somes). Then, we give the4 resulting superpositions as inputs to
the SIGNAL FROMSYNDROME procedure again. The particular choice of the4 sets of buckets above ensures
that those inputs have the appropriate “syndrome” form. Theoutput of this procedure will then consist of
original spectrum values.

Lemma 4.8. With probability at least1 − O
(
1/k0.5C logC

)
, for everyi ∈ [B] and s ∈ [4], the output of

SIGNAL FROMSYNDROME(
√
n, ûT,si ) consists of all nonzero values of the form

∑

f2≡i modB

x̂f1,f2ω
−sf2 for

somef1 ∈ [
√
n].

Proof. As in Lemma 4.5, we have that the probability that there is a bin with more than|T | /2 = C log k
nonzero frequencies is at mostO

(
1/k0.5C logC

)
. Moreover, for everyτ ∈ T , i ∈ [B] ands ∈ [4], we have:

ûτ,si =
∑

f1∈[
√
n]

∑

f2≡i modB

x̂f1,f2ω
−τf1−sf2 (4)

=
∑

f1∈[
√
n]

( ∑

f2≡i modB

x̂f1,f2ω
−sf2

)
ω−τf1 (5)

Noting that the function SIGNAL FROMSYNDROME(
√
n, ûT,si ) succeeds whenever̂uT,si are the syndromes

of a |T | /2-sparse signal, we get the desired statement.

Lemma 4.9. The probability that there are more than2 nonzero frequency components that superimpose in
a power ofω (i.e., as in Equation (4),̂xf1,f2 and x̂f ′

1
,f ′

2
superimpose iff1 = f ′

1 andf2 ≡ f ′
2 modB) is at

mostO(k log2 k
n ).

Proof. Since
√
n/B = Θ(

√
n log k/k) frequencies map to each power ofω in each bucket, the probability

is upper bounded by

n · k/n ·
(√

n/B

2

)(
k

n

)2

≤ k3

2nB2
= Θ(

k log2 k

n
)

Lemma 4.10. With probability at least

1−O
(
k log2 k/n− 1/k0.5C logC

)
,

for all i ∈ [B] the outputs ofSIGNAL FROMSYNDROME(
√
n, ySl ) for all l ∈ [C log k] consist of all nonzero

x̂f1,f2 wheref2 ≡ i modB.
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Proof. By Lemmas 4.9 and 4.8, the probability that all bins have at mostC log k nonzero frequencies and
all powers ofω have at most2 nonzero frequencies is at least1−O

(
k log2 k/n − 1/k0.5C logC

)
. Then for

everyi ∈ [B] ands ∈ S = [4], there are at mostC log k nonzero values of the form
∑

f2≡i modB

x̂f1,f2ω
−sf2

wheref1 ∈ [
√
n], and each of those sums consists of at most2 terms. Thus,y(S)l are the syndromes of a

2-sparse signal of the form̂xfl,g0ω
−g0r + x̂fl,g1ω

−g1r wherer is the time-domain index. This yields the
desired statement.

Theorem 4.11. If x is ak-sparse signal (withk/ log k ≤ √n) distributed according to the Bernoulli model
of Section§2, then AlgorithmEXACT2DSFFT2 runs in timeO(k(log k + (log log n)O(1))), usesO(k)
samples and recovers the spectrumx̂ of x with probability at least1− k log2 k/n−O

(
1/k0.5C logC

)
.

Proof. Lemma 4.10 implies that Algorithm EXACT2DSFFT2 succeeds with the desired probability.
Computingûτ,s for all τ ∈ T and alls ∈ [4] takes timeO(k log k). The running time of the MATCH

procedure isO(log k). By Theorem 4.4, each call to SIGNAL FROMSYNDROME in the for loop overs takes
timeO(log2 k+log k(log log n)O(1)) whereas each one in the for loop overl takes timeO((log log n)O(1)).
Thus, the overall running time isO(k(log k + (log log n)O(1))).

For everyτ ∈ [C log k], computingû(τ) requiresB = k/ log k samples. Thus, the total number of
samples needed isO(k).

5 Algorithm for Robust Recovery

5.1 Preliminaries

Following [CT06] we say that a matrixA satisfies arestricted isometry property(RIP) of ordert with
constantδ > 0 if, for all t-sparse vectorsy, we have‖Ay‖22/‖y‖22 ∈ [1− δ, 1 + δ].

Suppose all columnsAi of anN × M matrix A have unit norm. Letµ = maxi 6=j |Ai ·Aj | be the
coherenceof A. It is folklore6 thatA satisfies the RIP of ordert with the constantδ = (t− 1)µ.

Suppose that the matrixA is anM × N submatrix of theN × N Fourier matrixF , with each theM
rows ofA chosen uniformly at random from the rows ofF . It is immediate from the Hoeffding bound that
if M = bµ2 log(N/γ) for some large enough constantb > 1 then the matrixA has coherence at mostµ
with probability1− γ. Thus, forM = Θ(t2 · t logN), A satisfies the RIP of ordert with constantδ = 0.5
with probability1− 1/N t.

The algorithm appears in Algorithm 5.1.

5.2 Correctness of each stage of recovery

Lemma 5.1. Consider the recovery of a column/rowj in ROBUSTESTIMATECOL, where û and v̂ are
the results ofFOLDTOBINS on x̂. Let y ∈ C

√
n denote thejth column/row of̂x. Supposey is drawn

from a permutation invariant distributiony = yhead + yresidue + ygauss, wheremini∈supp(yhead) |yi| ≥ L,

‖yresidue‖1 < ǫL, andygauss is drawn from the
√
n-dimensional normal distributionNC(0, σ

2I√n) with

standard deviationσ = ǫL/n1/4 in each coordinate on both real and imaginary axes. We do not require
that yhead, yresidue, andygauss are independent except for the permutation invariance of their sum.

Consider the following bad events:

6It is a direct corollary of Gershgorin’s theorem applied to any t columns ofA.
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procedure ROBUSTESTIMATECOL(û, v̂, T , T ′, IsCol,J , Ranks)
ŵ ← 0.
S ← {} ⊲ Set of changes, to be tested next round.
for j ∈ J do

continue if Ranks[(IsCol, j)] ≥ log log n.
i← HIKPLOCATESIGNAL (û(T

′), T ′) ⊲ Procedure from [HIKP12a]:O(log2 n) time
a← medianτ∈T ûτjω

τi.
continue if |a| < L/2 ⊲ Nothing significant recovered
continue if

∑
τ∈T |ûτj − aω−τi|2 ≥ L2 |T | /10 ⊲ Bad recovery: probably not 1-sparse

b← meanτ∈T ûτjω
τi.

if IsCol then ⊲ whether decoding column or row
ŵi,j ← b.

else
ŵj,i ← b.

end if
S ← S ∪ {i}.
Ranks[(1− IsCol, i)] += Ranks[(IsCol, j)].
for τ ∈ T ∪ T ′ do

û
(τ)
j ← û

(τ)
j − bω−τi

v̂
(τ)
i ← v̂

(τ)
i − bω−τi

end for
end for
return ŵ, û, v̂, S

end procedure
procedure ROBUST2DSFFT(x, k)

T, T ′ ⊂ [
√
n], |T | = |T ′| = O(log n)

for τ ∈ T ∪ T ′ do
û(τ) ← FOLDTOBINS(x,

√
n, 1, 0, τ).

v̂(τ) ← FOLDTOBINS(x, 1,
√
n, τ, 0).

end for
ẑ ← 0
Ranks← 1[2]×[

√
n] ⊲ Rank of vertex (iscolumn, index)

Scol ← [
√
n] ⊲ Which columns to test

for t ∈ [C log n] do
{ŵ, û, v̂, Srow} ← ROBUSTESTIMATECOL(û, v̂, T, T ′, true,Scol, Ranks).
ẑ ← ẑ + ŵ.
Srow ← [

√
n] if t = 0 ⊲ Try every row the first time

{ŵ, v̂, û, Scol} ← ROBUSTESTIMATECOL(v̂, û, T, T ′ false,Srow, Ranks).
ẑ ← ẑ + ŵ.

end for
return ẑ

end procedure

Algorithm 5.1: Robust 2D sparse FFT algorithm fork = Θ(
√
n)
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• False negative:supp(yhead) = {i} andROBUSTESTIMATECOL does not update coordinatei.

• False positive:ROBUSTESTIMATECOL updates some coordinatei but supp(yhead) 6= {i}.

• Bad update:supp(yhead) = {i} and coordinatei is estimated byb with
∣∣b− yheadi

∣∣ > ‖yresidue‖1 +√
log logn
logn ǫL.

For any constantc andǫ below a sufficiently small constant, there exists a distribution over setsT, T ′ of
sizeO(log n), such that as a distribution overy andT, T ′ we have

• The probability of a false negative is1/ logc n.

• The probability of a false positive is1/nc.

• The probability of a bad update is1/ logc n.

Proof. Let y̌ denote the 1-dimensional inverse DFT ofy. Note that

û
(τ)
j = y̌τ

by definition. Therefore, the goal of ROBUSTESTIMATECOL is simply to perform reliable1-sparse recovery
with O(log n) queries. Fortunately, [HIKP12a] solved basically the sameproblem, although with more false
positives than we want here.

We chooseT ′ according to the LOCATEINNER procedure from [HIKP12a]; the setT is chosen uniformly
at random from[

√
n]. We have that

û
(τ)
j =

∑

i∈[√n]

yiω
−τi.

This is exactly what the procedure HASHTOBINS of [HIKP12a] approximates up to a small error term.
Therefore, the same analysis goes through (Lemma 4.5 of [HIKP12a]) to get that HIKPLOCATESIGNAL

returnsi with 1− 1/ logc n probability if |yi| ≥ ‖y−i‖2, where we definey−i := y[
√
n]\{i}.

DefineA ∈ C|T |×√
n to be the rows of the inverse Fourier matrix indexed byT , normalized so|Ai,j| = 1.

Thenû(τ)j = (Ay)τ .
First, we prove

‖yresidue + ygauss‖2 = O(ǫL) (6)

with all but n−c probability. We have thatE[‖ygauss‖22] = 2ǫ2L2, so ‖ygauss‖2 ≤ 3ǫL with all but
e−Ω(

√
n) < 1/nc probability by concentration of chi-square variables. We also have that‖yresidue‖2 ≤

‖yresidue‖1 ≤ ǫL.
Next, we show

‖A(yresidue + ygauss)‖2 = O(ǫL
√
|T |) (7)

with all butn−c probability. We have thatAygauss is drawn fromNC(0, ǫ
2L2I|T |) by the rotation invariance

of Gaussians, so

‖Aygauss‖2 ≤ 3ǫL
√
|T | (8)
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with all but e−Ω(|T |) < n−c probability. Furthermore,A has entries of magnitude1 so ‖Ayresidue‖2 ≤
‖yresidue‖1

√
|T | = ǫL

√
|T |.

Consider the case wheresupp(yhead) = {i}. From Equation (6) we have

‖y−i‖22 ≤ ‖ygauss + yresidue‖22 ≤ O(ǫ2L2) < L2 ≤ ‖yi‖22 (9)

soi is located with1− 1/ logc n probability by HIKPLOCATESIGNAL .
Next, we note that for anyi, as a distribution overτ ∈ [

√
n],

E
τ
[
∣∣∣û(τ)j − yiω

−τi
∣∣∣
2
] = ‖y−i‖22

and so (analogously to Lemma 4.6 of [HIKP12a], and for anyi), sincea = medianτ∈T û
(τ)
j ωτi we have

|a− yi|2 ≤ 5‖y−i‖22 (10)

with probability 1 − e−Ω(|T |) = 1 − 1/nc for some constantc. Hence if{i} = supp(yhead), we have
|a− yi|2 ≤ O(ǫ2L2) and therefore|a| > L/2, passing the first check on whetheri is valid.

For the other check, we have that with1− 1/nc probability

(
∑

τ∈T

∣∣∣û(τ)j − aω−τi
∣∣∣
2
)1/2 = ‖A(y − aei)‖2

≤ ‖A(ygauss + yresidue + (yheadi − a)ei)‖2
≤ ‖A(ygauss + yresidue)‖2 +

∣∣∣yheadi − a
∣∣∣
√
|T |

≤ ‖A(ygauss + yresidue)‖2 + (
∣∣∣yresiduei + ygaussi

∣∣∣+ |yi − a|)
√
|T |

≤ O(ǫL
√
|T |).

where the last step uses Equation 7. This gives

∑

τ∈T

∣∣∣û(τ)j − aω−τi
∣∣∣
2
= O(ǫ2L2 |T |) < L2 |T | /10

so the true coordinatei passes both checks. Hence the probability of a false negative is1/ logc n as desired.
Now we bound the probability of a false positive. First consider what happens to any other coordinate

i′ 6= i when
∣∣supp(yhead)

∣∣ = {i}. We get some estimatea′ of its value. SinceA/
√
|T | satisfies an RIP of

order 2 and constant1/4, by the triangle inequality and Equation 7 we have that with1− n−c probability,

‖A(y − a′ei′)‖2 ≥ ‖A(yheadi ei − a′ei′)‖2 − ‖A(ygauss + yresidue)‖2
≥ yheadi

√
|T | · (3/4) −O(ǫL

√
|T |)

> L
√
|T |/2.

Hence the second condition will be violated, andi′ will not pass. Thus if
∣∣supp(yhead)

∣∣ = 1, the probability
of a false positive is at mostn−c.

Next, consider what happens to the resulti of HIKPLOCATESIGNAL when
∣∣supp(yhead)

∣∣ = 0. From
Equation (6) and Equation (7) we have that with1− n−c probability:

|a− yi|2 ≤ 5‖y−i‖22 ≤ O(ǫ2L2).
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Therefore, from Equation 6,

|a| ≤ |yi|+ |a− yi| ≤ ‖yresidue + ygauss‖2 + |a− yi| = O(ǫL) < L/2

so the first check is not passed andi is not recovered.
Now suppose|supp(yhead)| > 1. Lemma 5.2 says that with1 − n−c probability over the permutation,

no (i, a) satisfies
‖A(yhead − aei)‖22 < L2 |T | /5.

But then, from Equation 8

‖A(y − aei)‖2 ≥ ‖A(yhead − aei)‖2 − ‖Aygauss‖2
> L

√
|T | /5−O(ǫL

√
|T |)

> L
√
|T | /10

so noi will pass the second check. Thus the probability of a false positive is1/nc.
Finally, consider the probability of a bad update. We have that

b = mean
τ∈T

(Ay)τω
τi = yheadi +mean

τ∈T
(Ayresidue +Aygauss)τω

τi

and so ∣∣∣b− yheadi

∣∣∣ ≤
∣∣∣∣mean

τ∈T
(Ayresidue)τω

τi

∣∣∣∣+
∣∣∣∣mean

τ∈T
(Aygauss)τω

τi

∣∣∣∣ .

We have that ∣∣∣∣mean
τ∈T

(Ayresidue)τω
τi

∣∣∣∣ ≤ max
τ∈T

∣∣∣(Ayresidue)τ
∣∣∣ ≤ ‖yresidue‖1

.
We know thatAygauss is NC(0, ǫ

2L2I|T |). Hence its mean is a complex Gaussian with standard devia-

tion ǫL/
√
|T | in both the real and imaginary axes. This means the probability that

∣∣∣b− yheadi

∣∣∣ > ‖yresidue‖1 + tǫL/
√
|T |

is at moste−Ω(t2). Settingt =
√

log logc n gives a1/ logc n chance of a bad update, for sufficiently large
|T | = O(log n).

The following is the robust analog of Lemma 3.3.

Lemma 5.2. Let y ∈ Cm be drawn from a permutation invariant distribution withr ≥ 2 nonzero values.
Suppose that all the nonzero entries ofy have absolute value at leastL. ChooseT ⊂ [m] uniformly at
random witht := |T | = O(c3 logm)

Then, the probability that there exists ay′ with ‖y′‖0 ≤ 1 and

‖(y̌ − y̌′)T ‖22 < ǫL2t/n

is at mostc3( c
m−r )

c−2 wheneverǫ < 1/8.
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Proof. LetA =
√

1/tFT×∗ be
√

1/t times the submatrix of the Fourier matrix with rows fromT , so

‖(y̌ − y̌′)T ‖22 = ‖A(y − y′)‖22t/n.

By a coherence bound (see Section 5.1), with1 − 1/mc probability A satisfies the RIP of order2c with
constant0.5. We would like to bound

P := Pr[∃y′ : ‖A(y − y′)‖22 < ǫL2 and‖y′‖0 ≤ 1]

If r ≤ c− 1, theny − y′ is c-sparse and

‖A(y − y′)‖22 ≥ ‖y − y′‖22/2
≥ (r − 1)L2/2

> ǫL2

as long asǫ < 1/2, givingP = 0. Henceforth, we can assumer ≥ c. When drawingy, first placer−(c−1)
coordinates intou then place the otherc − 1 values intov, so thaty = u + v. Condition onu, sov is a
permutation distribution overm− r + c− 1 coordinates. We would like to bound

P = Pr
v
[∃y′ : ‖A(u+ v − y′)‖22 < ǫL2 and‖y′‖0 ≤ 1].

Letw be anyc-sparse vector such that‖A(u+w)‖22 < ǫL2 (and note that if no suchw exists, then since
v − y′ is c-sparse,P = 0). Then recalling that for any norm‖·‖, ‖a‖2 ≤ 2‖b‖2 + 2‖a + b‖2 and hence
‖a+ b‖2 ≥ ‖a‖2/2− ‖b‖2,

‖A(u+ v − y′)‖22 ≥ ‖A(v − y′ − w)‖22/2− ‖A(u +w)‖22
≥ ‖v − y′ + w‖22/4 − ǫL2.

Hence
P ≤ Pr

v
[∃y′ : ‖v − y′ + w‖22 < 8ǫL2 and‖y′‖0 ≤ 1].

Furthermore, we know that‖v − y′ + w‖22 ≥ L2(|supp(v) \ supp(w)| − 1). Thus ifǫ < 1/8,

P ≤ Pr
v
[|supp(v) \ supp(w)| ≤ 1]

≤ c+ (m− r + c− 1)c(c − 1)/2(m−r+c−1
c−1

)

< c3(
c

m− r
)c−2

as desired.

5.3 Overall Recovery

Recall that we are considering the recovery of a signalx̂ = x̂∗ + ŵ ∈ C
√
n×√

n, wherex̂∗ is drawn from the
Bernoulli model with expectedk = a

√
n nonzeros for a sufficiently small constanta, andŵ ∼ NC(0, σ

2In)
with σ = ǫL

√
k/n = Θ(ǫL/n1/4) for sufficiently smallǫ.
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It will be useful to consider a bipartite graph representationG of x̂∗. We construct a bipartite graph with√
n nodes on each side, where the left side corresponds to rows and the right side corresponds to columns.

For each(i, j) ∈ supp(x̂∗), we place an edge between left nodei and right nodej of weight x̂∗(i,j).
Our algorithm is a “peeling” procedure on this graph. It iterates over the vertices, and can with a “good

probability” recover an edge if it is the only incident edge on a vertex. Once the algorithm recovers an edge,
it can remove it from the graph. The algorithm will look at thecolumn vertices, then the row vertices, then
repeat; these are referred to asstages. Supposing that the algorithm succeeds at recovery on each vertex,
this gives a canonical order to the removal of edges. Call this theideal ordering.

In the ideal ordering, an edgee is removed based on one of its incident verticesv. This happens after all
other edges reachable fromv without passing throughe are removed. Define therank of v to be the number
of such reachable edges, and rank(e) = rank(v) + 1 (with rank(v) undefined ifv is not used for recovery of
any edge).

Lemma 5.3. Let c, α be arbitrary constants, anda a sufficiently small constant depending onc, α. Then
with1−α probability every component inG is a tree and at mostk/ logc n edges have rank at leastlog log n.

Proof. Each edge ofG appears independently with probabilityk/n = a/
√
n. There are at most

√
n
t cycles

of length t. Hence the probability that any cycle of lengtht exists is at mostat, so the chance any cycle
exists is less thana2/(1− a2) < α/2 for sufficiently smalla.

Each vertex has expected degreea < 1. Exploring the component for any vertexv is then a subcritical
branching process, so the probability thatv’s component has size at leastlog log n is1/ logc n for sufficiently
small a. Then for each edge, we know that removing it causes each of its two incident vertices to have
component size less thanlog log n − 1 with 1 − 1/ logc n probability. Since the rank is one more than the
size of one of these components, the rank is less thanlog log n with 1− 2/ logc n probability.

Therefore, the expected number of edges with rank at leastlog log n is 2k/ logc n. Hence with proba-
bility 1− α/2 there are at most(1/α)4k/ logc n such edges; adjustingc gives the result.

Lemma 5.4. Let ROBUST2DSFFT’ be a modifiedROBUST2DSFFT that avoids false negatives or bad
updates: whenever a false negative or bad update would occur, an oracle corrects the algorithm. With large
constant probability,ROBUST2DSFFT’ recoverŝz such that there exists a(k/ logc n)-sparsêz′ satisfying

‖ẑ − x̂− ẑ′‖22 ≤ 6σ2n.

Furthermore, onlyO(k/ logc n) false positives or bad updates are caught by the oracle.

Proof. One can choose the random̂x∗ by first selecting the topology of the graphG, and then selecting the
random ordering of the columns and rows of the matrix. Note that reordering the vertices only affects the
ideal ordering by a permutation within each stage of recovery; the set of edges recovered at each stage in
the ideal ordering depends only on the topology ofG. Suppose that the choice of the topology of the graph
satisfies the thesis of Lemma 5.3 (which occurs with large constant probability). We will show that with large
constant probability (over the space of random permutations of the rows and columns), ROBUST2DSFFT’
follows the ideal ordering and the requirements of Lemma 5.1are satisfied at every stage.

For a recovered edgee, we define the “residue”̂x∗e − ẑe. We will show that ife has rankr, then∣∣∣x̂∗e − ẑe

∣∣∣ ≤ r
√

log logn
logn ǫL.

During attempted recovery at any vertexv during the ideal ordering (including attempts on vertices
which do not have exactly one incident edge), lety ∈ C

√
n be the associated column/row ofx̂− ẑ. We split

y into three partsy = yhead + yresidue + ygauss, whereyhead contains the elements of̂x∗ not in supp(ẑ),

24



yresidue containsx̂∗ − ẑ over the support of̂z, andygauss containsŵ (all restricted to the column/row
corresponding tov). LetS = supp(yresidue) contain the set of edges incident onv that have been recovered

so far. We have by the inductive hypothesis that‖yresidue‖1 ≤
∑

e∈S rank(e)
√

log logn
logn ǫL. Since the

algorithm verifies that
∑

e∈S rank(e) ≤ log log n, we have

‖yresidue‖1 ≤

√
log3 log n

log n
ǫL < ǫL.

Furthermore,y is permutation invariant: if we condition on the values and permute the rows and columns
of the matrix, the algorithm will consider the permutedy in the same stage of the algorithm.

Therefore the conditions for Lemma 5.1 hold. This means thatthe chance of a false positive is1/nc,
so by a union bound this never occurs. Because false negatives never occur by assumption, this means we
continue following the ideal ordering. Because bad updatesnever occur, new residuals have magnitude at
most

‖yresidue‖1 +
√

log log n

log n
ǫL.

Because‖yresidue‖1/
(√

log logn
logn ǫL

)
≤ ∑

e∈S rank(e) = rank(v) = rank(e) − 1, each new residual has

magnitude at most

rank(e)

√
log log n

log n
ǫL ≤ ǫL. (11)

as needed to complete the induction.
Given that we follow the ideal ordering, we recover every edge of rank at mostlog log n. Furthermore,

the residue on every edge we recover is at mostǫL. By Lemma 5.3 there are at mostk/ logc n edges that we
do not recover. From Equation (11), the squaredℓ2 norm of the residues is at mostǫ2L2k = ǫ2C2σ2n/k·k <
σ2n for ǫ small enough. Since‖ŵ‖22 < 2σ2n with overwhelming probability, there exists âz′ so that

‖ẑ − x̂− ẑ′‖22 ≤ 2‖ẑ − x̂∗ − ẑ′‖22 + 2‖w‖22 ≤ 6σ2n.

Finally, we need to bound the number of times the oracle catches false positives or bad updates. The
algorithm applies Lemma 5.1 only2

√
n+O(k) = O(k) times. Each time has a1/ logc n chance of a false

positive or bad update. Hence the expected number of false positives or bad updates isO(k/ logc n).

Lemma 5.5. For any constantα > 0, the algorithmROBUST2DSFFTcan with probability1− α recover
ẑ such that there exists a(k/ logc−1 n)-sparsêz′ satisfying

‖ẑ − x̂− ẑ′‖22 ≤ 6σ2n

usingO(k log n) samples andO(k log2 n) time.

Proof. To do this, we will show that changing the effect of a single call to ROBUSTESTIMATECOL can
only affect log n positions in the output of ROBUST2DSFFT. By Lemma 5.4 we can, with large constant
probability turn ROBUST2DSFFT into ROBUST2DSFFT’ with onlyO(k/ logc n) changes to calls to RO-
BUSTESTIMATECOL. This means the output of ROBUST2DSFFT and of ROBUST2DSFFT’ only differ in
O(k/ logc−1 n) positions.

25



We view ROBUSTESTIMATECOL as trying to estimate a vertex. Modifying it can change from recover-
ing one edge (or none) to recovering a different edge (or none). Thus, a change can only affect at most two
calls to ROBUSTESTIMATECOL in the next stage. Hence inr stages, at most2r−1 calls may be affected, so
at most2r edges may be recovered differently.

Because we refuse to recover any edge with rank at leastlog log n, the algorithm has at mostlog log n
stages. Hence at mostlog n edges may be recovered differently as a result of a single change to ROBUSTES-
TIMATE COL.

Theorem 5.6. Our overall algorithm can recover̂x′ satisfying

‖x̂− x̂′‖22 ≤ 12σ2n+ ‖x̂‖22/nc

with probability 1 − α for any constantsc, α > 0 in O(k log n) samples andO(k log2 n) time, where
k = a

√
n for some constanta > 0.

Proof. By Lemma 5.5, we can recover anO(k)-sparsêz such that there exists an(k/ logc−1 n)-sparsêz′

with
‖x̂− ẑ − ẑ′‖22 ≤ 6σ2n.

with arbitrarily large constant probability for any constant c usingO(k log2 n) time andO(k log n) samples.
Then by Theorem B.1 in Appendix B, we can recover aẑ′ in O(k log2 n) time andO(k log4−c n) samples
satisfying

‖x̂− ẑ − ẑ′‖22 ≤ 12σ2n+ ‖x̂‖22/nc

and hencêx′ := ẑ + ẑ′ is a good reconstruction for̂x.
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A Sample lower bound for our distribution

We will show that the lower bound onℓ2/ℓ2 recovery from [PW11] applies to our setting with a simple
reduction. First, we state their bound:

Lemma A.1 ([PW11] section 4). For any k < n/ log n and constantǫ > 0, there exists a distribution
Dk over k-sparse vectors in{0, 1,−1}n such that, for every distribution of matricesA ∈ Rm×n with
m = o(k log(n/k)) and recovery algorithmsA,

Pr[‖A(A(x+ w))− x‖2 <
√
k/5] < 1/2

as a distribution overx ∼ Dk andw ∼ N(0, σ2In) with σ2 = ǫk/n, as well as overA andA.

First, we note that we can replaceDk withUk, the uniform distribution overk-sparse vectors in{0, 1,−1}n
in Lemma A.1. To see this, suppose we have an(A,A) that works with1/2 probability overUk. Then
for any k-sparsex ∈ {0, 1,−1}n, if we choose a random permutation matrixP and sign flip matrixS,
PSx ∼ Uk. Hence, the distribution of matricesAPS and algorithmA′(x) = A((PS)−1x) works with1/2
probability for anyx, and therefore on average overDk. This implies thatA hasΩ(k log(n/k)) rows by
Lemma A.1. Hence, we can setDk = Uk in Lemma A.1.

Our algorithm works with3/4 probability over vectorsx that are not necessarilyk-sparse, but have
a binomial numberB(n, k/n) of nonzeros. That is, it works over the distributionU that isUk′ : k′ ∼
B(n, k/n). With 1 − e−Ω(k) > 3/4 probability,k′ ∈ [k/2, 2k]. Hence, our algorithm works with at least
1/2 probability over(Uk′ : k

′ ∼ B(n, k/n)∩ k′ ∈ [k/2, 2k]). By an averaging argument, there must exist a
k′ ∈ [k/2, 2k] where our algorithm works with at least1/2 probability overUk′ ; but the lemma implies that
it must therefore takeΩ(k′ log(n/k′)) = Ω(k log(n/k)) samples.

B Robust 2D FFTs

This section outlines the straightforward generalizationof [HIKP12a] to two dimensions, as well as how to
incorporate the extra parameterẑ of already recovered coefficients. Relative to our result ofTheorem 5.6,

28



this result takes more samples. However, it does not requirethat the input be from a random distribution and
is used as a subroutine by Theorem 5.6 after decreasing the sparsity by alogc n factor.

Because we use this as a subroutine after computing an estimate ẑ of x̂, we actually want to estimate
x̂− ẑ where we have oracle access tox and toẑ.

Theorem B.1. There is a variant of [HIKP12a] algorithm that will, givenx, ẑ ∈ C
√
n×√

n, return x̂′ with

‖x̂− ẑ − x̂′‖2 ≤ 2 · min
k-sparsêx∗

‖x̂− ẑ − x̂∗‖22 + ‖x̂‖22/nc

with probability1− α for any constantsc, α > 0 in time

O(k log(n/k) log2 n+ |supp(ẑ)| log(n/k) log n),

usingO(k log(n/k) log2 n) samples ofx.

Proof. We need to modify [HIKP12a] in two ways: by extending it to twodimensions and by allowing the
parameter̂z. We will start by describing the adaptation to two dimensions.

The basic idea of [HIKP12a] is to construct from Fourier measurements a way to “hash” the coordinates
in B = O(k) bins. There are three basic components that are needed: apermutationthat gives nearly
pairwise independent hashing to bins; afilter that allows for computing the sum of bins using Fourier
measurements; and thelocation estimation needs to search in both axes. The permutation is the main
subtlety.

Permutation LetM⊂ [
√
n]2×2 be the set of matrices with odd determinant. For notational purposes, for

v = (i, j) we definexv := xi,j.

Definition B.2. For M ∈M anda, b ∈ [
√
n]2 we define thepermutationPM,a,bC

√
n×√

n → C
√
n×√

n by

(PM,a,bx)v = xM(v−a)ω
vTMb.

We also defineπM,b(v) = M(v − b) mod
√
n.

Claim B.3. P̂M,a,bxπ
MT ,b

(v) = x̂vω
vTMT a

Proof.

P̂M,a,bxM(v−b) =
1√
n

∑

u∈[√n]2

ωuTM(v−b)(PM,a,bx)u

=
1√
n

∑

u∈[√n]2

ωuTM(v−b)xM(u−a)ω
uTMb

= ωvTMT a 1√
n

∑

u∈[√n]2

ωvTMT (u−a)xM(u−a)

= x̂iω
vTMT a

where we used thatMT is a bijection over[
√
n]2 becausedet(M) is odd.

This gives a lemma analogous to Lemma 2.4 of [HIKP12a].
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Lemma B.4. Supposev ∈ [
√
n]2 is not0. Then

Pr
M∼M

[Mv ∈ [−C,C]2 (mod
√
n)] ≤ O(

C2

n
).

Proof. For anyu, defineG(u) to be the largest power of2 that divides bothu0 andu1. Defineg = G(v),
and letS = {u ∈ [

√
n]2 | G(u) = g}. We have thatMv is uniform overS:M is a group andS is the orbit

of (0, g).
BecauseS lies on a lattice of distanceg and does not include the origin, there are at most(2 ⌊C/g⌋ +

1)2 − 1 ≤ 8(C/g)2 elements inS ∩ [−C,C]2, and(3/4)n/g2 total elements inS. Hence the probability is
at most(32/3)C2/n.

We can then define the “hash function”hM,b : [
√
n]2 → [

√
B]2 given by(hM,b(u)) = round(πM,b(u) ·√

n/B); i.e., round to the nearest multiple of
√

n/B in each coordinate and scale down. We also define
the “offset”oM,b(u) = πM,b(u)−

√
n/BhM,b(u). This lets us give results analogous to Claims 3.1 and 3.2

of [HIKP12a]:

• Pr[hM,b(u) = hM,b(v) < O(1/B)] for u 6= v. In order forh(u) = h(v), we need thatπM,b(u) −
πM,b(v) ∈ [−2

√
n/B, 2

√
n/B]2. But Lemma B.4 implies this probability isO(1/B).

• Pr[oM,b(u) /∈ [−(1−α)
√

n/B, (1−α)
√

n/B]2] < O(α) for anyα > 0. Because of the offsetb, oM,b(u)
is uniform over[−

√
n/B,

√
n/B]2. Hence the probability is2α− α2 + o(1) by a volume argument.

which are all we need of the hash function.

Filter Modifying the filter is pretty simple. Specifically,[HIKP12a] defined a filterG ∈ R
√
n with support

sizeO(
√
B log n) such thatĜ is essentially zero outsize[−

√
n/B,

√
n/B] and is essentially1 inside

[−(1 − α)
√

n/B, (1 − α)
√

n/B] for constantα. We compute the
√
B ×

√
B 2-dimensional DFT of

x′i,j = xi,jGiGj to sum up the element in each bin. This takesB log2 n samples and time rather than
B log n, which is the reason for the extralog n factor compared to the one dimensional case.

Location Location is easy to modify; we simply run it twice to find the row and column separately.
In summary, the aforementioned adaptations leads to a variant of the [HIKP12a] algorithm that works

in two dimensions, with running timeO(k log(n/k) log2 n), usingO(k log(n/k) log2 n) samples.

Adding extra coefficient list ẑ The modification of the algorithm of [HIKP12a] (as well as itsvariant
above) is straightforward. The algorithm performs a sequence of iterations, where each iteration involves
hashing the frequencies of the signal into bins, followed bysubtracting the already recovered coefficients
from the bins. Since the algorithm recoversΘ(k) coefficients in the first iteration, the subtracted list is
always of sizeΘ(k).

Given the extra coefficient list, the only modification to thealgorithm is that the list of the subtracted
coefficients needs to be appended with coefficients inẑ. Since this step does not affect the samples taken
by the algorithm, the sample bound remains unchanged. To analyze the running time, letk′ be the number
of nonzero coefficients in̂z. Observe that the total time of the original algorithm spenton subtracting the
coefficients from a list of sizeΘ(k) wasO(k log(n/k) log n), or O(log(n/k) log n) per list coefficient.
Since in our case the number of coefficients in the list is increased fromΘ(k) to k′+Θ(k), the running time
is increased by an additive factor ofO(k′ log(n/k) log n).
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