
A Unified Backend for Targeting FPGAs from DSLs
Emanuele Del Sozzo1, Riyadh Baghdadi2, Saman Amarasinghe2, Marco D. Santambrogio1

1DEIB - Politecnico di Milano, Italy
{emanuele.delsozzo, marco.santambrogio}@polimi.it

2CSAIL - Massachusetts Institute of Technology, USA
{baghdadi, saman}@csail.mit.edu

Abstract—The major flaw of Field Programmable Gate Arrays
(FPGAs) is their hard programmability and steep learning curve.
Even though High-Level Synthesis (HLS) tools may alleviate this
task by providing directives to optimize the hardware design,
as well as supporting languages like C/C++ and OpenCL, the
development of efficient designs for FPGA is still a challenging
and time-consuming task. In this context, Domain Specific
Languages (DSLs) represent an emerging solution to generate
efficient code to target FPGAs. However, the support for these
languages towards FPGA is still limited, and only few DSLs
provide FPGA backends. This paper describes FROST, a unified
backend for targeting FPGAs from DSLs. FROST takes as
input an algorithm described in one of the supported DSLs
and generates an optimized design suitable for HLS tools. To
this end, FROST exposes a high-level scheduling co-language
to drive many aspects of the optimization process, like the
resulting architecture, the level of parallelism, and so on. We
evaluated FROST on a set of image processing kernels, developed
in Halide and TIRAMISU, and compared the results against a
hand-tuned FPGA library. The experimental results demonstrate
that FROST designs are able to match the performance of such
library (exploiting the same level of parallelism), and surpass it
by a factor of 10X when combining FROST and the frontends
scheduling commands.

Index Terms—FPGA, DSL, Common Backend, Scheduling Co-
Language

I. INTRODUCTION

In the recent years, we have been experiencing an increas-
ing interest in systems composed by multiple heterogeneous
architectures. Such systems permit to overcome the limits of
homogeneous architectures [1] and thus improve performance
while reducing power consumption. For this reason, many
high performance systems [2] are currently combining Central
Processing Units (CPUs) with architectures like Graphic
Processing Units (GPUs), Field Programmable Gate Arrays
(FPGAs), and Application Specific Integrated Circuits (ASICs)
to accelerate computations belonging to different fields (like
image and signal processing, linear algebra, computational
biology, etc.) on the most suitable device for that domain.

Concurrently, many and different tools are emerging in
literature to ease and abstract the design of highly parallel
applications for such architectures [3], [4]. One of the most
interesting solutions in this context is represented by Domain
Specific Languages (DSLs). Indeed, current DSLs [5]–[7]
allow the user to quickly and easily develop portable designs
for multiple architectures (mainly CPUs and GPUs). Thanks
to the restriction of the domain, DSL compilers are able
rapidly explore the design space and deeply optimize the

resulting implementations. As a result, DSL applications often
outperform hand-tuned libraries.

Among the aforementioned architectures, FPGAs currently
lack a concrete support for DSLs. Historically, hardware
design for FPGAs has always been more complex with respect
to the design for CPUs and GPUs, in spite of the great design
possibilities FPGAs can provide (for instance, in terms of
arbitrary data precision and custom architecture tailored to the
target application). Even though in the last years there has been
a significant improvement in the toolchain for FPGAs, like
High-Level Synthesis (HLS) tools [8] that permit to hardware
accelerate algorithms using C/C++ and OpenCL instead of
Hardware Description Languages like Verilog and VHDL, the
design process remains complex and the supported languages
are still limited. As a consequence, there is little to no support
for DSLs, and, even though there exist some DSLs able to
target FPGAs [9]–[13], a common solution to target FPGAs
from DSLs is still lacking.

This paper describes FROST, a unified backend to efficiently
hardware accelerate DSLs on FPGAs. Starting from the an
algorithm described in one of the supported DSLs, FROST
translates it into its Intermediate Representation (IR), performs
a series of FPGA-oriented optimizations steps, and, finally,
generates an optimized design suitable of HLS tools. In order
to better leverage the features of the FPGA and enhance the
performance, FROST provides a high-level scheduling co-
language the user can exploit to guide the optimizations to
apply, as well as specify the architecture to implement. This
allows to easily evaluate different hardware designs and choose
the most suitable to the input algorithm.

This paper, starting from the work described in [14], pro-
vides the following contributions:

• A common backend capable of supporting multiple DSLs
as frontend. In the context of this paper, we show FROST
integration with Halide and TIRAMISU.

• Introduction of a new critical scheduling command able
to generate a streaming dataflow architecture, mainly
suitable for applications like image processing kernels.

• The FPGA designs generated by FROST match the
performance of a hand-tuned HLS library [15], and,
thanks to a combination of both FROST and TIRAMISU
scheduling commands, they significant outperform such
library (by a factor of 10X).

The paper is organized as follows: Section II describes the
related work, while Section III exhaustively analyzes FROST
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Fig. 1. FROST design flow

architecture, as well as its high-level scheduling co-language.
In Section IV we report FROST experimental evaluation.
Finally, Section V draws the conclusions and gives some
insights on the future work.

II. RELATED WORK

In the state of the art there are many and different tools
whose purpose is to facilitate the hardware acceleration on
FPGA of algorithms. HLS tools are examples of that. For
instance, frameworks like Xilinx Vivado HLS [8], Intel HLS
Compiler [16] and SDK for OpenCL [17] allow users to
produce a RTL representation of a high level code, usually
written in languages like C/C++ and OpenCL. HLS tools,
like the aforementioned, support all computational domains,
and feature a set of directives to guide the optimizations to
apply to the resulting hardware design, as well as exhaustive
reports describing the details of the design (e.g., resource
usage, pipeline depths, etc.).

On the other hand, many frameworks and compilers fo-
cusing on specific contexts to generate efficient hardware
implementations are emerging in literature. Darkroom [9] is a
language and compiler embedded in Terra language [18] for
image processing. Darkroom compiler takes as input a high
level description of the application and translates it into line-
buffered pipelines, expressed in Verilog HDL. Darkroom then
synthesizes such pipelines for ASIC, FPGA, or CPU. The
experimental evaluation of Darkroom reports gigapixel/sec
performance for ASIC designs, while realtime 1080p/60 video
processing for FPGAs ones. In [10], the authors present RIPL,
a memory-efficient, declarative FPGA image processing DSL.
At first, RIPL compiles the input programs into dataflow
graphs, then it relies on an open source dataflow compiler
[19] to generate the HDL. The authors evaluated RIPL against
five benchmarks, and, without the need of synthesis directives,
they showed a comparable memory usage with respect to the
Vivado HLS Video Library [15]. The work in [11] presents
an FPGA backend for the PolyMage DSL [20]. At first, the

proposed backend enforces optimizations in terms of both
data parallelism and memory bandwidth, then it leverages
Vivado HLS to produce the FPGA design. In the experimental
evaluation, the authors compared their backend against both
Darkroom, and Vivado HLS Video Library. On average, this
work reaches a 1.5× speedup. ExaSlang 4 [12] is a DSL
designed for the hardware acceleration on FPGA of numerical
solvers based on the multigrid method. ExaSlang 4 takes
advantage of Vivado HLS as backend to generate the hardware
implementation of the input code. The presented approach
outperformed a vectorized, single-threaded execution on an
Intel i7 by a 3X factor. In [13], the authors describe an
extension to Halide [5] to accelerate image processing kernels
on Xilinx Zynq MPSoCs. To this end, the authors provided
Halide with additional scheduling commands to control some
crucial aspects of the resulting FPGA designs, like the depth
of the FIFOs between kernels. Polyhedral compilers such as
Rose [21] and PENCIL [6] use fully automatic techniques
(such as the Pluto [22] scheduling algorithm) to parallelize
and optimize computations and generate an OpenCL or HLS
code that targets FPGA architectures.

With respect to the aforementioned work available in liter-
ature, FROST is designed as a common backend for multiple
DSLs, instead of being specific to one DSL, and thus reduces
the effort of developing a new FPGA backend. It is also
designed to support data parallel algorithms implemented as
loops and operating on dense arrays and tensors. One of the
fundamental features of FROST is its high level scheduling
co-language, which allows the user to specify exactly how
the computation should be optimized and mapped to FPGA.
Thanks to this feature, FROST is capable of being generic
enough and to support general data parallel algorithms, while
still reaching a high level of performance.

III. FROST

The purpose of this Section is to describe the key features
and rationale of this work. FROST is a common backend for



the acceleration of FPGA for DSLs. Given a description of
an algorithm in one of the supported DSLs, FROST translates
it into FROST IR, and then manipulates and optimized the
IR. To this end, FROST provides a high level scheduling co-
language to allow users to specify the optimizations to apply
at different levels (e.g., computation, memory interface, and so
on). Once the optimization process is done, FROST generates
a C++ code suitable for HLS tools. The final step consists in
generating the FPGA bitstream from FROST output. Figure 1
gives an overview of FROST design flow.

The following Sections analyze in deep the overall archi-
tecture of FROST framework. In particular, in Section III-B
we first start describing the DSLs supported as frontends, as
well as the rationale behind the choice of designing FROST
as a common backend. Section III-C describes the motivation
for the scheduling co-language, and analyzes the commands
that the user can express with it. Section III-D focuses on the
IR manipulation and optimization process. More specifically,
we explain how the IR changes according to the scheduling
commands. Finally, in Section III-E we report the FPGA
bitstream generation step, which starts from FROST output.

A. Scope

FROST is designed for expressing data parallel algorithms,
in particular algorithms that operate over dense arrays using
loop nests. These algorithms are often found in the areas of
image processing, dense linear algebra and tensor algebra,
stencil computations, and deep neural networks. Moreover,
FROST is designed as a common backend for DSLs only. We
restrict ourselves to DSLs because DSLs are very effective in
producing efficient code for a given target architecture (CPU,
GPU, FPGA) because they are restricted to a small set of
language features and because their context is limited. Indeed,
domain restrictions allow better exploration of the design space
and better identification of the computational patterns that are
typical in a specific domain. Language restrictions allow better
static analysis for the code. For example, many DSLs do not
have pointers which allows better static analysis (it is known
that static analysis is undecidable if the language has double
pointer indirection [23]). As a result, DSLs enable users to
easily reach significant performance with a relative small effort
with respect to other more general programming languages.

B. Frontends

Recently, the use of DSLs and high level languages has
been gaining in popularity for many reasons: (1) they provide
portability across multiple hardware architectures; (2) they
provide high productivity, and (3) they allow the application of
certain optimizations such as fusion, and data layout transfor-
mations that are difficult otherwise. The input of the FROST
backend is the FROST IR which describes the algorithm and
a list of optimizations (scheduling) commands to optimize
the algorithm. Currently, the FROST IR is fully compatible
with Halide [5], a state-of-the-art DSL and compiler for
image processing pipelines, as well as TIRAMISU [7], a
unified optimization framework for DSL compilers, and which
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presently is integrated in DSLs such as Julia [24] and Theano
[25]. In this paper, we will focus on presenting FROST itself,
and on evaluating FROST with Halide and TIRAMISU as
frontends. A full end-to-end evaluation of FROST with many
high level DSLs, like the ones that use TIRAMISU as an
optimization framework (Theano and Julia), is left for a future
paper. Figure 2 shows the complete FROST stack.

C. Scheduling Co-Language

We decided to provide FROST with a high scheduling co-
language for different reasons. In many performance crit-
ical domains, users need code that achieves performance
comparable to hand-optimized code. Generating such code
requires combinations of non-trivial program transformations
that optimization frameworks try to fully automate using cost
models, heuristics [26], and machine learning [27]. While
automatic optimization techniques provide productivity, they
may not always achieve the desired level of performance.
A scheduling co-language allows to solve this problem by
separating mechanism from policy 1. This way, FROST allows
full control over scheduling while still enabling integration
with higher level frameworks for policy-making.

Another reason for the scheduling co-language is the fact
that designing efficient architectures for FPGA is definitely a
challenging task, and it gets more complex when the goal is
to generate them automatically. Again, a set of well defined
guidelines for the development of the FPGA design is a
viable solution, but it would prevent a fully exploitation of
the FPGA features. On the other hand, an exhaustive design
space exploration can for sure identify a highly efficient FPGA

1Mechanism means the application of optimizations while policy means
deciding which optimization to apply



design, but it would require a significant amount of time.
Besides, not even HLS tools do that automatically, but rather
they provide the designer with a set of directives to enhance
the performance of the hardware design, even though most of
the work is still up to the designer’s expertise and skills with
FPGA design. As a result, producing and evaluating different
hardware designs may quickly become a time-consuming and
error-prone task.

For the aforementioned reasons, the goal of FROST schedul-
ing co-language is to (1) separate mechanism from policy and
enable users to fully control the generated code; (2) provide
the user with a set of possible optimizations in order to tailor
the resulting architecture to the input computation, and (3)
simplify optimization space exploration. Given the scheduling
commands, FROST will automatically generate an optimized
version of the input code.

FROST scheduling commands may refer to different aspects
of the resulting hardware design. Indeed, they can specify the
scheduling of parts of the computation (e.g., loop scheduling),
how the data need to be stored on the FPGA memory (either
logic or BRAM), or the design of the overall architecture. To
this end, we organized the scheduling commands in three dif-
ferent categories (Table I reports a summary of the scheduling
commands currently supported by FROST).

Computation commands: This category contains the
scheduling commands that allow to change the scheduling
of part of the computations within the overall hardware
architecture. In particular, these commands mainly involve the
scheduling of loop statements. Indeed, given a function within
the design that iterates over the dimensions of the input/output
buffers, the user can mark one or more dimensions to be
pipelined, unrolled, or (un)flattened. Moreover, the user can
choose to vectorize one or more input/output buffers in chunks
of n bits. This commands has an impact on both the access
to the off-chip memory and the computation.

Local memory commands: This category refers to the
scheduling commands related to the data storage on the FPGA.
Indeed, given a buffer, such commands enable to partition one
or more dimensions of the buffer in a complete, cyclic or
block way. According to the command, the data are stored in
one or multiple BRAMs, or in logic. In this way, it is possible
access in the same clock cycle to different elements of a buffer.

Architecture commands: This last category of scheduling
commands impacts on the overall architecture to be generated
by FROST. In particular, it defines whether to generate a
tiled or streaming dataflow architecture. In Section III-D
we will better describe the difference between these two
architectures. These commands also take care of the communi-
cation with the off-chip memory. Currently, FROST provides
support for a master/slave communication based on AMBA
AXI4 interface protocol [28]. This protocol allows to either
stream or move a tile of data from the DDR to the FPGA local
memory and vice-versa. According to the selected command,
FROST employs a different approach to move data from/to
the off-chip memory.

Finally, it is fundamental to notice that FROST scheduling

TABLE I
SCHEDULING COMMANDS

We assume that f is a function, while m is the whole computation

Command Description

Computation scheduling commands

f.pipeline(i) marks the dimension i to be pipelined
f.unroll(i) marks the dimension i to be unrolled
f.flatten(i) marks the dimension i to be (un)flattened
f.vectorize(b, n) marks the buffer b to be vectorized in

chunks on n bits

Local Memory scheduling commands

f.partition(b, d, t) marks the buffer b to be partitioned on
dimension d in a t way

Architecture scheduling commands

m.tiled() marks the architecture to be implemented in
a tiled way

m.streaming() marks the architecture to be implemented in
a streaming dataflow way

co-language only focuses on transformations related to the
FPGA implementation. Hence, FROST is not designed to
perform transformations like loop splitting, loop tiling, and
so on. Such transformations are surely useful and necessary
in some cases (e.g. vectorization), but, since the supported
DSLs, like Halide and TIRAMISU, already support them,
there was no point in re-implement them also in FROST.
Therefore, the idea behind this design choice is that FROST
and its frontends has to work in synergy to produce an efficient
hardware implementation.

D. FROST workflow

The input of FROST framework is a set of functions
described in one of the supported DSLs, as well as the
scheduling commands to optimize the output hardware design.
First of all, FROST translates the input functions into FROST
IR by means of an ad-hoc translator for each of the frontend
DSLs. As a result, FROST represents each function as a data
structure that mainly contains: the name of the function itself,
its arguments (which are either buffers or scalars), an Abstract
Syntax Tree (AST) describing the body of the function, along
with other minor parameters. FROST requires the dimensions
of the input/output buffers to be specified at this stage of the
workflow, otherwise it may not be possible to apply some of
the optimizations. At this point, FROST starts applying a series
of IR manipulation and optimization steps. In particular, the
scheduling commands trigger some of the steps to perform.
FROST enforces the scheduling commands in two different
ways: IR manipulation or directives for HLS tools. Indeed,
some of the commands have a direct map to HLS directives
(like loop pipelining, unrolling, etc.), hence FROST inserts
them during the code generation.

We now focus on the main steps FROST may perform
according to the scheduling commands.

Top function generation: The first step of FROST is
the definition of the top function, i.e. the main function to
be synthesized on FPGA. The purpose of this function is
to: (1) invoke the input functions, (2) instantiate the local
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buffers, (3) declare the memory interfaces, (4) manage the
data transfer from/to the off-chip DDR memory. To this end,
FROST analyzes the arguments of each function to differ-
entiate the global arguments (i.e., the arguments that refer
to buffers to be read/written from/to the off-chip memory)
from temporary arguments (i.e. the arguments existing only
within the top function). For instance, let us consider a
pipeline of two image processing filters, namely FilterA
and FilterB. The arguments/buffers of FilterA are InA
and OutA, while the arguments/buffers of FilterB are InB
and OutB. Since these two filters work as a pipeline, the
output of FilterA is the input of FilterB, hence InB
is OutA. As a result, InA and OutB are the global buffers,
while OutA/InB is a temporary buffer. After identifying the
global buffers, FROST inserts code blocks to read/write buffers
from/to the off-chip memory before/after the computation.
More technically, according to the chosen architecture com-
mand (namely tiled or streaming), FROST instantiates
different read/write blocks, as well as buffer types.

Tiled architecture: In case of a tiled architecture,
FROST instantiates the buffers as local arrays, and copies all
the data from the off-chip memory, leveraging the memory
burst, before starting the computation. Thanks to the data
locality, each computation can access data within buffers at
different offsets, and iterate multiple times on the same data
(ideal for linear algebra kernels). In this case, partition
scheduling commands may help to improve the performance
enabling access to data at different offsets in the same clock
cycle. Once the computation is over, the output data are copied
back to the off-chip memory.

Streaming architecture: On the other hand, a streaming
dataflow architecture (more suitable for applications like image
processing filters) requires a more complex IR manipulation
and analysis of the access patterns within each function. In-
deed, to enable a dataflow computation and pipelining between
the computations, FROST considers global and local buffers as
streams of data (i.e., data FIFOs), and inserts the data coming
from the off-chip memory inside such streams. According to
the access pattern of the computations, FROST may instantiate
line buffers and shift registers to store, respectively, lines of

the input (typically an image) and the portion of data to be
filtered. This allows to store on the FPGA memory only the
data necessary to produce the output. At each clock cycle, the
function reads a new element from the input stream and inserts
it into the line buffers, while removing the oldest element from
it. At the same time, the function loads data into the shift reg-
isters. In this way, as soon as enough data are available within
such data structures, the function starts generating outputs and
pushing them into the output streams. As a consequence, the
functions overlap their execution, significantly reducing the
latency of the hardware design. Figure 3 displays an overview
of the streaming dataflow architecture.

Vectorization: Another optimization step that requires sig-
nificant manipulation of FROST IR is vectorization. Using
vectorization command, the user marks the buffer data
to be packed in bunches of N bits. This command is available
both for tiled and streaming architectures. For instance,
a 512-bit vectorization of a 32-bit integer buffer packs 16
integers into a single variable. The vectorization allows to
significantly reduce latency of both data transfer and computa-
tion itself, but, on the other hand, it implies a significant code
restyling. At first, FROST update the data types of the buffers
to be vectorized. Then, FROST has to update the access to the
data bunches as well. Finally, similarly to the streaming
architecture, FROST may need to insert shift registers to
store a portion of data. In particular, this is necessary when
the computation applies a fixed nearest-neighbor pattern to
produce the output (e.g., an image processing filter). Hence,
FROST analyzes the access pattern to the buffer in order
to instantiate a proper sequence of shift registers. Like for
the streaming architecture, FROST introduces additional
code blocks to manage the insertion, access and shift of data
within the shift registers. The main drawback of an N -bit
vectorization relies in the fact that the number of elements
in the buffer (in case of a multi-dimensional buffer, the last
dimension) has to be multiple of N/K, where K is the
bitwidth of the original buffer data. Consequently, the input
may need to be padded, while the output may contain some
garbage data. For instance, let us consider a 3×3 filter applied
on a N ×M single channel input image. The filtered output
should be a (N−2)×(M−2) image. In case of vectorization,
assuming the M -dimension does not need to be padded, the
corresponding output is a (N − 2) × M image, where two
columns contain garbage data. Padding allows to maintain the
hardware design simpler avoiding an invasive control flow.

Final steps: Once the IR manipulation is over, FROST
analyzes the new ASTs in order to start the code generation.
During the analysis, FROST extracts information related to the
to the libraries to include (in case of mathematical functions
or particular HLS data structure), and the type of the variables.
Basically, FROST builds a lookup table for each function.
Finally, FROST visits the ASTs one last time, and, during the
generation of the C++ code, enforces the remaining scheduling
commands as HLS directives.
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E. backend

The last step of FROST workflow consist in generating the
bitstream file to configure the FPGA. Once the IR optimization
step is done, FROST produces a C++ implementation of
the input algorithm suitable for HLS tools. Such code can
be immediately imported in a HLS tool like Xilinx Vivado
HLS [8] or Xilinx SDAccel [29] to have an estimation of
the performance of the current design (for instance, in terms
of circuit latency, resource usage, and so on). In this way,
the user can verify whether the resulting design reaches, at
least theoretically, the expected performance or not, and, if
necessary, generate a new optimized design using FROST.

Once satisfied by the produced FPGA design, the user can
employ SDAccel to write the host code using SDAccel APIs,
and start the synthesis process to, eventually, produce the
bitstream file. Indeed, SDAccel environment covers all the
steps of the design flow for FPGA (i.e., the HLS and System
Level Design steps) and automatizes them. Starting from the
kernel generated by FROST, SDAccel first translates it to
RTL, and the wraps the resulting IP Core within SDAccel
infrastructure. Such infrastructure is in charge of enabling
the communication between the board powered by the FPGA
and the host machine via PCIe, as well as exploiting partial
dynamic reconfiguration enable kernel reconfiguration at run-
time. At the end of synthesis process, SDAccel produces the
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Fig. 6. Performance comparison between FROST with TIRAMISU (plane
interleaved designs) and Vivado HLS Video Library.

bitstream file. Thus, the user’s task consist only in writing
the host code using SDAccel APIs to manage the FPGA
configuration, and the communication with it via PCIe.

Currently, these steps (namely, evaluation of performance
using a HLS tool, host code generation, and SDAccel invoca-
tion) are done manually by the user, but we plan to automatize
them from FROST, as an additional scheduling command.

IV. EXPERIMENTAL EVALUATION

This Section presents the experimental evaluation of FROST
framework. We first describe the experimental setup of our
work (Section IV-A), and then compare the designs pro-
duced by FROST against a hand-tuned library available in
Vivado HLS framework, as well as the designs from [14]
(Section IV-B).

A. Experimental Setup

For each design generated by FROST, we first leveraged
Xilinx Vivado HLS 2017.2 to evaluate the performance and
resource usage of the design, then Xilinx SDAccel 2017.2
to synthesize it and, consequently, produce the bitstream file.
The board we targeted is an ADM-PCIE-7V3 by Alpha Data,
which mounts a Xilinx Virtex-7 FPGA. We connected such
board via PCIe to a host CPU (an Intel Core i7-870 at
2.93GHz), which leverages SDAccel APIs to manage applica-
tion execution, the communication between the host and the
FPGA, and other aspects of the computation.

B. Experimental Results

In this Section, we report the evaluation we performed on
the designs produced by FROST. To this end, we used both
Halide and TIRAMISU as frontends, and evaluated FROST
with 6 image processing kernels, namely Threshold,
AddWeighted, Erode, Scale, Sobel, Gaussian. We
decided to target such kernels because they are already avail-
able within the Vivado HLS Video Library, a library imple-
menting several hand-tuned OpenCV functions for FPGA. We
designed the first three kernels using Halide, and the remaining
with TIRAMISU. For each kernel, we compared the resulting
design (in terms of execution time and resource usage) against
the corresponding kernel in the HLS Video Library. The input



TABLE II
RESOURCE USAGE OF HALIDE BENCHMARKS

Application BRAM 18K DSP48E FF LUT
(2940) (3600) (866400) (4332009)

FROST

Threshold 2 0 814 1542
AddWeighted 0 30 5487 7383
Erode 8 0 1023 2012

Vivado HLS Video Library

Threshold 0 0 307 1300
AddWeighted 0 30 6810 11465
Erode 9 0 2170 2828

of each kernel is a 8-bit FullHD (1920x1080) RGB image.
The only exception is the threshold kernel, which works
on single-channel images.

The Vivado HLS Video Library works in a channel inter-
leaved manner, which means that it expects images arranged
by channels (i.e. channels as innermost dimension). The main
reason is to maintain consistency with software OpenCV
library. This design choice enables to compute each channel in
parallel (i.e. one pixel per clock cycle). However, a different
data layout, like a plane interleaved one (i.e. image width as
innermost dimension), would allow to process more elements
in parallel (for instance, N elements belonging to the same
channel per clock cycle). In this regard, we demonstrate that
FROST is able to design both channel interleaved and plane
interleaved designs, thanks to the integration with its frontends.
In particular, we implemented all the kernels in a channel inter-
leaved manner, while, for the ones expressed in TIRAMISU,
we took advantage of TIRAMISU features to also rearrange
the input in a plane interleaved manner. Moreover, for each
kernel we leveraged both FROST and the frontends scheduling
co-language to evaluated different optimizations, while we
chose a streaming dataflow architecture to implement such
kernels, since the are implemented in the same way within the
Video Library. Finally, we synthesized each considered design
at 200MHz.

Halide benchmarks: For the Halide benchmarks, we chose
the following kernels: Threshold, AddWeighted, and
Erode. We designed each kernel in a channel interleaved
way, just like the HLS Video Library does. The resulting
designs exploit both Halide and FROST scheduling commands
to enable a parallel computation of the channels within each
pixel (except the Threshold kernel, as it works on single-
channel images). In Figure 4, we show the comparison, in
terms of normalized execution time, between the FROST (with
Halide) designs and the ones from the Video Library. FROST
designs are able to match the performance of the HLS Video
Library, and, in case of the AddWeighted kernel, outperform
it (a speedup of 1.28X). Table II describes the resource usage
of the considered kernels. We cna notice that the resource
usage of FROST designs is in line with the one of the Video
Library.

TABLE III
RESOURCE USAGE OF THE TIRAMISU BENCHMARKS

Application BRAM 18K DSP48E FF LUT
(2940) (3600) (866400) (4332009)

FROST (channel interleaved)

Scale 2 15 3550 4803
Sobel 8 0 1047 1787
Gaussian 8 0 997 1907

FROST (plane interleaved)

Scale 30 320 59642 73933
Sobel 144 0 3287 7543
Gaussian 60 0 2757 7008

Vivado HLS Video Library

Scale 0 15 4828 8792
Sobel 9 0 2220 3255
Gaussian 9 12 2560 3355

TIRAMISU benchmarks: The TIRAMISU benchmarks
consist in the following image processing kernels: Scale,
Sobel, and Gaussian. For each kernel, we implemented
both a channel interleaved and plane interleaved design. We
relied on both FROST and TIRAMISU scheduling commands
to optimize the hardware designs. First of all, TIRAMISU
allowed us to prepare the computation for vectorization (ap-
plying loop splitting), and, when necessary, rearrange it in a
plane interleaved manner. Then, FROST applied vectorization
to the hardware designs and built a streaming dataflow
architecture. On one hand, for the channel interleaved designs,
we packed the 3 channels into a single variable, just like HLS
Video Library does. On the other hand, the plane interleaved
designs leveraged a higher level of parallelism, as we packed
the input in chunks of 512-bit (i.e., 64 elements per chunk).
This value represents the maximum bit-width of the memory
ports of the DDR mounted on the target board.

Figure 5 displays a comparison in terms of normalized
execution time between FROST channel interleaved designs
and the HLS Video Library designs, while, in Figure 6, the
comparison is between FROST plane interleaved designs and
the Video Library. In Figure 5, we notice that FROST designs
match the performance of HLS Video Library, and, in two
cases, it reaches a better execution time (a speedup up to
1.30X). In Figure 6, thanks to a higher level of parallelism,
FROST designs significantly outperform the Video Library,
reaching a speedup of 10X. Table III reports the resource usage
of both FROST designs (channel and plane interleaved) and
Vivado HLS Video Library designs. The channel interleaved
designs have a resource usage similar to the Video Library,
while the plane interleaved designs require a higher number
of resources due to the higher level of parallelism.

Architectures comparison: Finally, we compared the per-
formance of Scale and Gaussian (plane interleaved) ker-
nels reported here against the ones described in [14]. The
main difference in the two works mainly is the designed



architecture; indeed, even though both works operate on plane
interleaved images and leverage the same level of parallelism,
[14] implements a tiled architecture, while we rely on a
streaming dataflow one. Besides, since dimensions of the
input images are different, we compare the two works in
terms of MPixel/s. The version of Scale and Gaussian
implemented in [14] reach, respectively, 2488MPixel/s and
1771MPixel/s. On the other hand, our designs, thanks to the
streaming dataflow, achieve on the Scale and Gaussian
kernels 4200MPixel/s and 4323MPixel/s, respectively.

V. CONCLUSIONS AND FUTURE WORK

This paper described FROST, a common backend for tar-
geting FPGAs from DSLs. The design of FROST allows to
support multiple DSLs as frontends, and leverages Xilinx
SDAccel to generate the bitstream file. A crucial feature of
FROST is a high-level scheduling co-language, which permits
to optimize the resulting FPGA design according to the input
application characteristics. In the experimental evaluation of
FROST, we employed Halide and TIRAMISU as frontends,
and reached the same level of both performance and resource
usage of a hand-tuned HLS library for image processing
kernels (when we used the same level of parallelism), and out-
performed it up to 10X thanks a combination of TIRAMISU
and FROST scheduling commands.

As future work, first of all, we plan to add support for
additional DSLs that are not currently supported. Then, we
intend to introduce other high-level scheduling commands to
further improve the productivity and efficiency of FROST.
Finally, we would like to better integrate FROST with Xilinx
SDAccel. This would allow to invoke SDAccel directly from
FROST, and enable users to easily evaluate the performance
of a design and, consequently, optimize it according to the
HLS phase results.
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