
A DEEP LEARNING BASED COST MODEL FOR AUTOMATIC CODE
OPTIMIZATION

Riyadh Baghdadi 1 2 Massinissa Merouani 3 Mohamed-Hicham Leghettas 3 Kamel Abdous 3 Taha Arbaoui 4

Karima Benatchba 3 Saman Amarasinghe 1

ABSTRACT
Enabling compilers to automatically optimize code has been a longstanding goal for the compiler community.
Efficiently solving this problem requires using precise cost models. These models predict whether applying a
sequence of code transformations reduces the execution time of the program. Building an analytical cost model
to do so is hard in modern x86 architectures due to the complexity of the microarchitecture. In this paper, we
present a novel deep learning based cost model for automatic code optimization. This model was integrated in a
search method and implemented in the TIRAMISU compiler to select the best code transformations. The input
of the proposed model is a set of simple features representing the unoptimized code and a sequence of code
transformations. The model predicts the speedup expected when the code transformations are applied. Unlike
previous models, the proposed one works on full programs and does not rely on any heavy feature engineering.
The proposed model has only 16% of mean absolute percentage error in predicting speedups on full programs.
The proposed model enables TIRAMISU to automatically find code transformations that match or are better
than state-of-the-art compilers without requiring the same level of heavy feature engineering required by those
compilers.

1 INTRODUCTION

Writing high-performance software is essential in many ar-
eas from machine learning to science and engineering. In
nuclear physics, for example, researchers need to perform
large scale simulations to study the properties of matter.
A highly optimized implementation of these simulations
can be orders of magnitude faster compared to an unop-
timized implementation. In deep learning, an optimized
implementation of a state-of-the-art neural network such as
XLNet (Yang et al., 2019) is 1.8× faster than the equivalent
PyTorch implementation. Writing such a highly optimized
code requires ninja programmers and is time-consuming
while the results are error-prone, less understandable, and
non-portable. One of the longstanding goals in the compiler
community is to develop compilers that can automatically
optimize high-level code. These compilers automatically
apply code transformations to make the code run faster;
thus, avoiding the need for manual low-level program tun-
ing. They provide greater productivity, portability, and high
performance, and will be directly accessible by domain
scientists.

1Massachusetts Institute of Technology 2New York Univer-
sity Abu Dhabi 3Ecole Nationale Superieure d’Informatique
4University of Technology of Troyes. Correspondence to: Riyadh
Baghdadi <baghdadi@nyu.edu>.

Automatically generating efficient code for high-
performance systems is a tedious task. In order for the
compiler to generate efficient code, two problems have to
be solved. First, a large set of code transformations and a
mechanism to apply them to programs need to be provided.
Examples of such transformations include loop fission,
fusion, parallelization, and vectorization. Second, the right
sequence of code transformations from this large set has to
be chosen. The selected code transformations must preserve
the program semantics and provide the highest performance
for the input program. While state-of-the-art-compilers
have shown success in solving the first problem (i.e., the
ability to provide a large set of transformations and correctly
apply a selected sequence of transformations (Wolf & Lam,
1991; Bondhugula et al., 2008; Trifunovic et al., 2010;
Grosser et al., 2014; Lefebvre & Feautrier, 1998; Quilleré
& Rajopadhye, 2000)), they still do not successfully
solve the second problem (i.e., selecting the sequence of
transformations that will provide the best performance).

The problem of selecting the right sequence of code trans-
formations can be modeled as a search problem that can
be solved in three steps. In the first step, the compiler uses
a search technique to explore the space of possible code
transformations. The result of this step is a set of candidates
where each one is a sequence of code transformations. In
the second step, the compiler checks the validity of each
candidate (i.e., checks that applying the transformations

ar
X

iv
:s

ub
m

it/
36

93
77

6
 [

cs
.P

L
]

 1
1

A
pr

 2
02

1

A Deep Learning Based Cost Model for Automatic Code Optimization

does not change the program semantics). In the third step,
the compiler evaluates the valid candidates and chooses the
one that minimizes the execution time. This evaluation can
be done by running each candidate on the target hardware
to obtain the exact speedup. However, this is not a feasible
solution in practice as running a program takes a consider-
able amount of time. Moreover, the target hardware may
not be available at compile time. Another way to evaluate a
candidate is by using a cost model to predict the speedup.

Designing cost models manually is known to be a hard
task (Trifunovic et al., 2009; Bachir et al., 2013). This is
mainly due to the diversity of hardware architectures and
their complexity (out-of-order execution, complex memory
hierarchies, data prefetching, etc.). Complex interactions be-
tween code transformations make the problem more compli-
cated. Recently, cost models, such as Ithemal (Mendis et al.,
2018) and Halide (Adams et al., 2019), have demonstrated
how to overcome some of this complexity by using deep
learning. While these state-of-the-art cost models are more
accurate, they are limited in two ways: Ithemal (Mendis
et al., 2018) only predicts throughput for basic blocks of as-
sembly code (instead of full programs). It also assumes that
data is always in cache. The cost model in Halide (Adams
et al., 2019) requires heavy feature engineering (it uses 54
complex program features). Designing such features is te-
dious, error-prone, and time-consuming.

In this paper, we propose a novel DNN-based cost model
that avoids the problems of previous work. Our model op-
erates on full programs expressed in a high-level language
(not just basic blocks). It takes into consideration not only
memory accesses to the cache but also to the main memory.
Moreover, it does not require heavy feature engineering.
The proposed cost model takes the original unoptimized
code and a sequence of code transformations and predicts
the speedup that these transformations would yield when
applied. The model is designed for CPUs and is integrated
in the TIRAMISU compiler (Baghdadi et al., 2019), a com-
piler for the TIRAMISU domain-specific language (DSL).
Because this model is a regression model, it allows the com-
piler to select the best transformation candidates by ranking
the candidates selected by a search technique.

Contributions In summary, the contributions of this pa-
per are:

• A novel deep-learning-based cost model for code opti-
mization. This cost model is a regression cost model,
operates on full programs, and does not rely on extract-
ing complex features.

• An implementation of the proposed model and an inte-
gration into a search approach to enable the TIRAMISU
compiler to automatically search for the best code trans-
formations.

• We evaluate the proposed model and show that it has
a low error rate reaching 16% mean absolute percent-
age error. We show also that it enables TIRAMISU to
automatically find code transformations that match or
outperform state-of-the-art compilers.

2 TIRAMISU EMBEDDED DSL
TIRAMISU (Baghdadi et al., 2019) is a domain-specific lan-
guage (DSL) embedded in C++. It provides a C++ API that
allows users to write a high level, architecture-independent
algorithm, and a set of API calls to select which code trans-
formations should be applied. The first part of a TIRAMISU
program specifies the algorithm without specifying how it
should be optimized. The second part specifies which code
transformations to apply and how the results of computa-
tions should be stored. TIRAMISU uses a mathematical
model known as the polyhedral model internally (Feautrier,
1988; Baghdadi et al., 2015a; Bondhugula et al., 2008; Bagh-
dadi et al., 2015b; 2019) to represent code, code transfor-
mations, and to reason about the correctness of code trans-
formations. The following code shows an example of a
convolution algorithm written in TIRAMISU.

1 // Declare the iterators.
2 var n(0, batch), fout(0, out_features), fin

(0, in_features), y(0, H-2), x(0, W-2),
k0(0, 3), k1(0, 3);

3 // Algorithm.
4 conv(n, fout, y, x) += weights(fout, fin, y

, x) * input(n, fin, y + k0, x + k1);

The iterators in line 2 define the loop bounds around the
conv computation. The algorithm is semantically equiva-
lent to the following code.

1 for (n in 0..batch)
2 for (fout in 0..out_features)
3 for (y in 0..H-2)
4 for (x in 0..W-2)
5 for (fin in 0..in_features)
6 for (k0 in 0..3)
7 for (k1 in 0..3)
8 conv[n, fout, y, x] += weigths[fout,

fin, y, x] * input[n, fin, y+k0, x+k1];

The next code shows an example of code transformation
commands that can be applied to the previous convolution
kernel. These commands apply parallelization, loop inter-
change, tiling, vectorization, and unrolling.

1 // Provide the code transformation commands.

2 conv.parallelize(n);
3 conv.interchange(fout, fin);
4 conv.tile(y, x, 32, 32);
5 conv.vectorize(fout, 8);
6 conv.unroll(k0); conv.unroll(k1);

Currently, in TIRAMISU, a developer has to provide the
previous sequence of code transformations manually. Our
goal is to automate finding that sequence. We do this by
developing a cost model that predicts the speedup of using

A Deep Learning Based Cost Model for Automatic Code Optimization

a given transformation or any sequence of valid transfor-
mations. For example, the model can be used to predict
whether combining parallelization, loop interchange, and
loop tiling is useful. In addition, the model can be used
to choose the right arguments for each one of the previous
code transformations (e.g., choose the tile sizes).

3 DATA GENERATION

As training DNNs requires a large data set and only a small
number of programs have ever been written in TIRAMISU,
we decided to automatically generate a data set and use it
to train the model. We developed a code generator that
generates random programs and sequences of code transfor-
mations. Each one of these randomly generated programs
and code transformations is compiled, executed, and finally,
the actual speedup is measured. The speedup is the ratio
between the execution time of the original unoptimized pro-
gram and the optimized one. Each data point in the data
set is a triplet of the form (program, a sequence of code
transformations, measured speedup).

Random Code Generation A TIRAMISU program is a
sequence of computations where each computation is an as-
signment. There are three common patterns of assignments
that appear in TIRAMISU programs: (1) simple assignments
where the right-hand side is a function of input arrays or
array values computed previously; (2) stencils; (3) reduc-
tions. The random code generator generates sequences of
computations where each computation is a variant (or a
combination) of the previous patterns. Randomly generated
programs are correct by construction. A computation con-
sumes either constants, input arrays, or values computed
by previous computations. Code transformations are also
generated randomly but specific rules are used to guarantee
that code transformations are valid (for example, tiling is
not applied if the loop extent is smaller than the tile size).

The random code generator is designed to generate programs
that are representative of real programs. The three patterns
that the random code generator generates, when combined
together, cover all the patterns that we are interested in
supporting. The input data is also generated automatically
and the size of the input data is chosen randomly. Since
the generated programs are not data dependent (no data
dependent conditional or data dependent array access), the
actual data values are not important. Only the size of the
data is important for training the model.

For a given randomly generated program, the random code
generator chooses random data sizes, and then generates 32
random sequences of code transformations.

Dataset Construction The total generated dataset has ap-
proximately 1.8 million programs. To construct this dataset,
we generated 56250 random algorithms. For each algorithm,
we generated 32 random sequences of code transformations.

Therefore we obtained 56250 × 32 programs in total. We
followed the gold-standard in performance engineering and
executed each resulting program 30 times, and retained the
median value of the execution times in order to reduce the
impact of minor variance in execution times. Since data
generation is time consuming, we used a cluster of 16 nodes
of multicore CPUs to accelerate data generation. Generating
the whole data set took 3 weeks.

4 PROGRAM CHARACTERIZATION AND
MODEL ARCHITECTURES

Our cost model is designed to support programs that can be
expressed in TIRAMISU. The latter is designed for express-
ing data parallel algorithms that operate over dense arrays
using loop nests and sequences of statements. These algo-
rithms are often found in image processing, deep learning,
dense linear algebra, tensor operations, and stencil com-
putations. A formal description of programs supported by
TIRAMISU can be found in (Baghdadi et al., 2019; 2020).
Code transformations supported by the proposed model in-
clude loop fusion, loop tiling, loop interchange, and loop
unrolling which are all challenging. For simpler transfor-
mations such as parallelization and vectorization, we use
simple heuristics similar to those used by the Halide au-
toscheduler (Ragan-Kelley et al., 2012). These heuristics
mainly parallelize the outermost loops and vectorize the
innermost loops when a set of conditions are met.

4.1 Program Characterization
Designing complex hand-engineered features is tedious,
error-prone, and time-consuming. Instead of using com-
plex hand-engineered features, we characterize programs by
extracting simple high-level information that is stored in a
compact variable-size representation.

Our program characterization is based on the AST (Abstract
Syntax Tree) representation of programs. A program is
characterized as an ordered tree of computation vectors
as shown in Figure 1b. A computation vector is a vector
that includes three pieces of information: (1) loop nest
representation; (2) assignments representation; (3) loop
transformation representation. In the following paragraphs,
we describe each of these components, the key features we
aim to encode by each one, and how we combine them in a
compact way.

Loop Nest Representation The extent of each loop level
around the computation is stored in the computation vector
(the extent of a loop is calculated based on its lower and up-
per bounds). An example is shown in Figure 1c. After each
loop level extent, for each loop transformation, we insert a
boolean tag that represents whether that transformation is
applied to that particular loop level. Each transformation is
followed by its parameters (when this applies).

A Deep Learning Based Cost Model for Automatic Code Optimization

for	i:	
		for	j:
				for	k:
						computation	A					
				for	l:
						computation	B				
				for	m:
						for	n:
								computation	C
								computation	D
						computation	E

Loop i
j

k l m
n

Computation A B

C D

E

C
om

pu
ta

tio
n

Ve
ct

or

E

Lo
op

 N
es

t V
ec

to
r

As
si

gn
m

en
t V

ec
to

r

Loop i

Loop j

Loop m

Transformations applied on loop i

Transformations applied on loop j

Transformations applied on loop m

Memory access 1
Memory access 2

Memory access n
Operations count

Memory access 3

(a) Program pseudocode. (b) Program tree representation. (c) Computation vector.

Figure 1: Our characterization of a typical program.

Assignments Representation We represent both the left-
hand side and the right-hand side of the assignment. To
represent the left-hand side, we store the dimensions and the
size of each dimension of the buffer used on the left-hand
side. To represent the right-hand side of the assignment (the
assignment expression), we store the following information:
(1) the memory access pattern (access matrix described
later); (2) the ID of each accessed buffer (a number); (3) the
count of each arithmetic operation used on the right-hand
side (i.e., the number of times each arithmetic operation is
used).

We represent the array accesses using an access matrix that
stores the coefficients of each array access. This matrix uses
exactly the same format used in the polyhedral model to
represent array accesses (Paul & Christian, 2011). It only
supports arrays that have affine array accesses (i.e., array
accesses that are affine in the loop iterators). Supporting
only affine accesses is not a problem since TIRAMISU only
supports code that has affine accesses. Supporting code that
has data-dependent array accesses or non-affine accesses is
not within the scope of this paper.

The access matrix has k rows and n + 1 columns where
k is the number of dimensions of the access buffer and n
is the loop depth. Each row in the matrix represents an
array dimension. Each array dimension is considered to be
a linear combination of the loop iterators. Each loop iterator
in the matrix is represented by a column. The coefficient of
each loop iterator is stored in the column that corresponds to
that loop iterator. The last column in the matrix corresponds
to constants.

M =

1 0 0
1 1 0
0 1 −2


For example, the following memory access A[i0, i0 +
i1, i1 − 2] is represented using the matrix M . In this case,
the first dimension of the buffer access is i0. It can also be
written as 1∗ i0+0∗ i1+0. It is represented by the first row
in the matrix using 1 0 0 where the first column corresponds
to iterator i0, the second column corresponds to i1 and the

last column corresponds to constants. The second access
i0+i1 is represented with the second row in the matrix 1 1 0.
Each memory access matrix is succeeded by the identifier
of the buffer.

Loop Transformation Representation Each loop trans-
formation can be characterized by two pieces of information:
transformation type and its parameters. Since transforma-
tions are applied on loop levels, we attach to the representa-
tion of each loop level the transformations that are applied
to that level (Figure 1c). The transformations that involve
changing the structure of the program (e.g. loop fusion) are
directly applied to the program structure representation that
we will describe next.

Program Structure Representation The program is rep-
resented as a tree structure where leaves are the computation
vectors and internal nodes are the loop levels, as shown in
Figure 1b.

4.2 Detailed List of Features Composing the
Computation Vector

Table 1 details the full list of features that constitute the
Computation Vector presented in Figure 1c. All features
are integer values except Tag features which are boolean
values. In practice, we set n = 7 and m = 21 where n is
the maximum length of the loop nests in our dataset and
m is the maximum number of terms used in an assignment.
When needed, a zero-padding is added to the Loop Nest
Vector and Assignment Vector.

4.3 Hardware Characterization
The goal of the paper is not to develop a hardware indepen-
dent model. The proposed model is specific to a particular
CPU. The user can build a model for each CPU they want to
target. Building a new model does not require a large effort.
It can be done simply by running a script that generates new
data and retrains the model.

In other words, we do not include any feature to repre-
sent the hardware because the model is specific to one and
only one hardware architecture. We also do not extract any

A Deep Learning Based Cost Model for Automatic Code Optimization

Loop Nest Vector

Loop1
Upper bound, Lower bound, Reduction tag
Fusion tag, Interchange tag, Tilling tag, Tilling factor

Loop2
Upper bound, Lower bound, Reduction tag
Fusion tag, Interchange tag, Tilling tag, Tilling factor

...
...

Loopn
Upper bound, Lower bound, Reduction tag
Fusion tag, Interchange tag, Tilling tag, Tilling factor,
Unroll tag, Unrolling factor.

Assignment Vector

Memory access 1 Access matrix, Buffer ID.

Memory access 2 Access matrix, Buffer ID.

...
...

Memory access m Access matrix, Buffer ID.

Operations count Number of Additions, Number of Multiplications,
Number of Subtractions, Number of Divisions.

Table 1: A detailed listing of the features that compose the Computation Vector.

hardware-specific feature from the code for the same rea-
son. Designing a model that works for multiple hardware
architectures is beyond the scope of this paper.

4.4 Model Architecture
We model the problem of speedup estimation as a regression
problem: given an algorithm and a set of code transforma-
tions, our model predicts the speedup expected when ap-
plying the suggested code transformations compared to the
base program (i.e. without applying code transformations).

We design our cost model’s architecture to support the vari-
able size and recursive nature of our program characteri-
zation by combining Recurrent and Recursive Neural Net-
works. Our model’s architecture has three layers as shown
in Figure 2a.

Computation Embedding Layer All computation vec-
tors of the program are processed through a feedforward
network after log-transforming non-boolean features. This
log-transformation is necessary since these features have a
large dynamic range and most of them are expected to be
multiplied with other features to compute the final speedup.

Recursive Loop Embedding Layer The computation
embeddings resulting from the previous layer are then pro-
cessed recursively following the tree structure of the pro-
gram using the loop embedding unit. At a given loop level,
the loop embedding unit summarizes the program up to that
loop into a loop embedding. The loop embedding unit, as
depicted in Figure 2b, is composed of two separate LSTM
cells (Hochreiter & Schmidhuber, 1997) and a feedforward
layer. At each loop level, the first LSTM is fed with the
embedding vectors of computations that are nested directly
in that loop level while the second LSTM is fed with the
embedding vectors of the previous loop levels that resulted
from the previous loop embedding units. The two hidden

states of the LSTMs are merged using a feedforward layer
into a loop embedding vector.

The purpose of this recursive embedding is to selectively in-
corporate information from each computation respecting its
positional relations with the other computations. The output
of this layer, the program embedding vector, is assumed to
contain the needed set of automatically extracted features
covering the complete program.

Regression Layer The program embedding vector pro-
duced by the previous layer is finally fed to a shallow feed-
forward neural network that performs a regression in order
to predict the speedup.

We choose MAPE (Mean Absolute Percentage Error) as
an objective function to train our model. The model is im-
plemented in PyTorch (Paszke et al., 2019) and optimized
using AdamW (Loshchilov & Hutter, 2017). All the imple-
mentation details including layer sizes and training policy
can be found in appendix A.1.

Other Neural Network Models Explored We also ex-
plored many other alternative architectures for the cost-
model, the architecture presented above has the lowest
MAPE error on both the test set and benchmarks set. For
instance, replacing the Recursive loop embedding layer with
a simple Recurrent Neural Network that is directly fed with
the sequence of computation embeddings without taking in
consideration the loops hierarchy leads to a relative increase
of 1.15x in MAPE of the test set and 1.33x in the bench-
marks set compared to the presented architecture. Another
straightforward choice of using a simple Feedforwad Neural
Network, i.e. totally skipping the Recursive loop embedding
layer and feeding directly the concatenated computation em-
beddings to the regression layer, leads to a relative increase
of 1.39x in MAPE of the test set and 1.37x in the bench-

A Deep Learning Based Cost Model for Automatic Code Optimization

DC
E

A B
C D

E

Computation embedding vector

Feedforward NN

Loop embedding unit

Loop embedding vector

Feedforward NN

Computation vector

R
ec

ur
si

ve
 L

oo
p

Em
be

dd
in

g
La

ye
r

R
eg

re
ss

io
n

La
ye

r
C

om
pu

ta
tio

n
Em

be
dd

in
g

La
ye

r

A B

i

j

k l

m

n LSTMLSTM

Child computation
embeddings

Child loop
embeddings

New loop
embedding

ŷPredicted Speedup

(a) Processing the program presented in Figure 1 through the three layers of the
cost-model.

(b) Loop embedding unit.

Figure 2: The cost model architecture

marks set compared to the presented model. In addition,
this alternative has the considerable limitation of not sup-
porting variable program sizes and supports only programs
that contain up to a certain number of computations (we
have set the maximum number of computations to 4 when
testing this alternative).

4.5 Level of Feature Extraction
One of the questions that we needed to answer is at which
level should the code representation be extracted: directly
from the source code or from the transformed code (interme-
diate representation obtained after applying code transfor-
mations)? Our choice was to extract the representation from
the TIRAMISU source code for a pragmatic reason. In order
for a model that takes transformed code to work, Tiramisu
will need to apply the transformations on the program before
using the model. Such a step is time-consuming especially
because it will be repeated a large number of times (given
that the search space is large). Furthermore, transformed
code is more complex and therefore is harder to learn from
compared to a program and a list of transformations.

5 SEARCH SPACE EXPLORATION

Finding the best code transformations is a hard combina-
torial optimization problem due to the fact that some of
the constraints (e.g., interaction between code transforma-
tions), and the objective (the speedup in this case), are hard
to represent mathematically using the program’s features.
Thus, the proposed model is used as an objective function
estimator to better navigate the search space. However, the
used search exploration approach should take into account
the estimator’s margin of error, thus requiring stochasticity
in the search space exploration.

C

yes no

C.tile() C

tile?

Unroll?

C.tile(16,8).unroll() C.tile(16,8)

yes no

C.tile(16,8).unroll(2) C.tile(16,8).unroll(4)

2 4

C.tile(8,8) C.tile(16,8) C.tile(32,8)

8,8 16,8 32,8

Parameters?

Explore: tiling, unrolling

Figure 3: Example of the BS Tree for exploring the tiling and
unrolling code transformations

Since the interaction between code transformations is hard
to characterize, one of the best ways to model the problem of
finding the best code transformations (and their parameters)
is to use a tree search. This allows us to use classical tree
search algorithms. In this paper, we use Beam Search and
MCTS (Monte Carlo Tree Search).

The Beam Search tree (as shown in Figure 3) explores
whether to apply a code transformation and which parame-
ters to use for that transformation. At each node of the tree,
an evaluation is conducted using the cost model to assess
whether the chosen transformations provide a good speedup.
In Figure 3, exploring the tree shows that applying tiling
with a tile size of (16, 8) and unrolling with a factor of 4
provides the best sequence of code transformations.

MCTS takes advantage of the search tree and takes into

A Deep Learning Based Cost Model for Automatic Code Optimization

account the stochasticity of the model. Particularly, the
proposed MCTS combines our model’s prediction and an
execution of the best evaluated code transformations as a
compromise between prediction and execution. MCTS first
explores the different branches of the tree and selects a
number of promising code transformations. To this end,
the model is used in each node to obtain an estimate of the
speedup. MCTS keeps track of a set of the best evaluated
code transformations to execute them (the size of the set is a
parameter of the approach). Once the tree is explored, the set
of the best code transformations is executed. The advantage
of this two-step approach is to accelerate the exploration of
the search space using the model and to correct the model’s
error, if occurred, by executing a limited set of programs
and their code transformations. The proposed model is thus
used to prune the search space and limit the execution to
selected code transformations.

6 EVALUATION

To evaluate our cost model: (1) we measure its accuracy on
a test set composed of random programs and compare the
predicted and the measured speedups on that data set; (2) we
measure the speedups obtained when the model is used to
search for code transformations in real-world benchmarks;
(3) we compare the accuracy of this model with the accuracy
of the model used in Halide (Ragan-Kelley et al., 2012), a
state-of-the-art model.

The model evaluation and the data collection are performed
on 16 identical multi-core CPU nodes. Each node has a
dual-socket, each socket is a 12-core Intel Xeon E5-2680v3
CPU, with 128 GB RAM. We used 60% of data for training,
20% for validation, and 20% for testing.

MAPE(y, ŷ) =
1

n

n∑
i=1

∣∣∣yi − ŷi
yi

∣∣∣
Model Accuracy To measure the accuracy of the pro-
posed model, we use MAPE (Mean Absolute Percentage
Error), where y and ŷ are respectively the measured and the
predicted speedups. The MAPE of our cost model on the
test set is 16%.

The Pearson correlation coefficient for the proposed model
is 0.90, showing that the linear correlation between pre-
dicted and measured speedups is strong. In addition, we
evaluate the ranking capabilities of the model with the Spear-
man’s rank correlation coefficient, defined as: rs(y, ŷ) =
r
(
rg(y), rg(ŷ)

)
where rg(y) converts the speedups to ranks

and r is the Pearson correlation coefficient. The Spearman’s
rank coefficient of our cost model is 0.95, which shows
that the predicted and measured ranks are highly linearly
correlated. This property is important when using the model
with a search method.

Comparing Predicted and Measured Speedups Fig-
ure 4 compares the predicted and measured speedups. To

simplify visualization, we use a subset of the test set. This
subset is composed of 100 random programs, each with 32
random sequences of code transformations (therefore, the
total is 3200 transformed programs). The horizontal axis
is the list of 3200 programs. These programs are sorted
based on their speedups in ascending order to simplify vi-
sualization. As the figure shows, the predicted speedups
are close to the measured ones. The error in prediction is
lower around the speedup 1 and is higher as the speedup
gets further from 1. We will comment more on this behavior
later in the section.

Figure 5 investigates the distribution of the model error rates
over the whole test set. On top, Absolute Percentage Error
(APE) is measured on the code transformations of each
program and the results are plotted through a histogram. On
bottom, APE is measured on all data points of the test set
and the measured speedups are plotted against their APE.
We can see that the error gets smaller as speedups approach
1 and gets higher as speedups get far from 1. Particularly,
the error is more significant for speedups below 0.05. The
model is more accurate around speedup 1 because most
programs in the training data set have speedups close to 1.
Speedups below 0.05 are less frequent. The next experiment
will evaluate whether the accuracy of the model allows
finding the best code transformations when searching the
space.

Search Space Exploration Using the Cost Model In
this experiment, we evaluate the ability of search approach
combined with the cost model to find good code transfor-
mation sequences for real-world benchmarks. We use BS
and MCTS to explore the search space. We use a set of
real-world benchmarks spanning different areas: image pro-
cessing, deep learning, linear algebra and stencils. The
benchmarks include box blur (an image processing filter
to blur images), conv + relu (two successive neural net-
work layers that benefit from operator fusion), convolution
(a direct neural network convolution), cvtcolor (an image
processing filter for converting the colors of an input image
from RGB to gray), doitgen (a kernel from the multiresolu-
tion adaptive numerical scientific simulation (Louis-Noel,
2010)), heat2d (heat equation over 2D space), heat3d (heat
equation over 3D space), jacobi2d (a jacobi-style stencil
computation over 2D data with 5-point stencil pattern), mvt
(matrix vector multiplication composed with another matrix
vector multiplication but with transposed matrix), and sei-
del2d (Gauss-Seidel style stencil computation over 2D data
with 9-point stencil pattern). The sizes of the input data for
each benchmark is provided in the appendix.

Figure 6 shows the best speedups found for each benchmark.
The baseline is the original program where the outermost
loop is parallelized (no other code transformation is applied).
The first column (blue), reports results obtained when beam

A Deep Learning Based Cost Model for Automatic Code Optimization

Transformed programs ordered by their speedups

S
pe

ed
up

0.005

0.01

0.05

0.1

0.5

1

5

10

50

100

Predicted speedup Measured speedup

Figure 4: Predicted speedups compared to measured speedups. The speedups are ordered in ascending order.

Absolute percentage error in predicted speedup

N
um

be
r o

f p
ro

gr
am

s

0

10000

20000

30000

40000

0.
00

0.
06

0.
12

0.
18

0.
24

0.
30

0.
36

0.
42

0.
48

0.
54

0.
60

0.
66

0.
72

0.
78

0.
84

0.
90

0.
96

Measured speedup

A
bs

ol
ut

e
pe

rc
en

ta
ge

 e
rr

or

0%

10%

20%

30%

40%

0.05 0.1 0.5 1 5 10

Figure 5: The distribution of error rates for the whole test set.
On top, APE is measured for each transformed program, then
the histogram of measurements is plotted. On bottom, APE is
measured for each transformed program, then the speedups are
plotted with their APE.

search is used to explore the search space. This column is
considered the reference in our comparison as execution
is used to obtain the speedups. In the second and third
columns, beam search and MCTS use the cost model to
predict speedups. The last column shows the speedups
obtained after applying the Halide autoscheduler (Halide
automatic optimizer) defined in (Adams et al., 2019).

S
pe

ed
up

0
1
2
3
4
5
6
7
8

bo
x b

lur

co
nv

 +
rel

u

co
nv

olu
tio

n

cv
tco

lor

do
itg

en

he
at2

d

he
at3

d

jac
ob

i2d mvt

se
ide

l2d

Beam search with execution Beam search with the cost model
MCTS with the cost model Halide Autoscheduler

Figure 6: Speedups for different benchmarks obtained by exploring
the search space.

Beam search (BS) with the cost model is competitive in
most benchmarks, but does not find the best code transfor-
mations in heat2d, jacobi2d and seidel2d. Beam search with
the cost model relies entirely on predictions to make deci-
sions. Bad predictions can thus mislead the search method
which is why beam search does not find the best transfor-
mations in the previous benchmarks. MCTS has similar
performance, except in jacobi2d and seidel2d where it finds
better code transformations, and in cvtcolor where the code
transformations found are less good. MCTS can find bet-
ter code transformations in these cases because it copes
with model imprecision taking into account its stochasticity.
However, since the tree space is explored differently, MCTS
might explore different nodes compared to BS and thus have
distinguishable results.

Comparison with Halide In this section, we compare
our cost model with the one of Halide (Adams et al., 2019),

A Deep Learning Based Cost Model for Automatic Code Optimization

a state-of-the-art cost model and the closest to ours. In
comparison with Halide, TIRAMISU finds transformation
sequences that are either competitive with those found by
Halide or better (except in box blur). This is mainly due
to miss predictions by the Halide model which lead Halide
to use transformations that degrade performance. These
wrong predictions happen in particular in benchmarks that
are from the area of scientific computing which Halide was
not trained to handle (heat2d, jacobi2d, mvt and seidel2d).
In benchmarks that fall in the categories of deep learning and
image processing, which Halide supports well, TIRAMISU
and Halide have comparable performance.

We also compare the performance of the Halide model
with that of TIRAMISU on randomly generated programs.
Halide’s paper uses R2 as an accuracy metric and uses MSE
(Mean Square Error) as a loss function, we thus use the same
metric and loss function for comparison. Halide has an R2

of 0.96, whereas TIRAMISU has 0.89. Both Halide and
TIRAMISU have comparable results but Halide uses heavy
feature engineering. The main advantage of TIRAMISU is
that it does not require feature engineering.

Tradeoff Between Search Time and Quality of Code
Transformations It is crucial to note that the execution
time of a search method is dependent on the time to evaluate
code transformations. If one compiles and executes every
transformed program to assess the speedup of code trans-
formations, the search time would increase considerably
and therefore becomes impractical. The proposed model
accelerates the search space exploration, reducing thus the
time needed to find the best code transformations.

Table 2 illustrates the tradeoff that we make between the
time needed to explore the search space, and the perfor-
mance of the final code transformations found. It compares
the gains from reducing the search time and performance
degradation due to the use of a model. To be specific, for
each benchmark: (1) we compare the time necessary to ex-
plore the search space using Beam Search with Execution
(BSE) and using either of Beam Search with the Cost Model
(BSM) on the left table, or MCTS on the right table. Com-
paring these two shows how faster BSM and MCTS are with
regard to BSE. (2) we compare the performance of the final
code transformations returned by BSE and the ones returned
by BSM or MCTS.

The second column of the table represents the speedup in
search time (the time taken by BSE over the time taken
by BSM or MCTS). The third column is the degradation in
performance (execution time) of the code transformations
found by BSM or MCTS compared to the code transforma-
tions found by BSE. We can see that, on average, searching
with BSM is 106.5 times faster than searching with BSE,
while incurring an average decrease of 15% in the perfor-

mance of the code transformations found. Moreover, search-
ing with MCTS is 11.8 faster on average, with a loss of
12.5% in performance.

Note that for jacobi2d in beam search, and cvtcolor in
MCTS, the performance degradation is important. This
is mainly due to the imprecision of the model for these
benchmarks. The model predicts some bad code transfor-
mations as being good. This is mainly because a pattern
that appears in those benchmarks is not covered enough by
the training data. A solution to this problem would be to
generate more data that include the missing pattern.

P
ea

rs
on

 c
or

re
la

tio
n

0.00

0.25

0.50

0.75

1.00

S
pe

ar
m

an
's

 ra
nk

 c
or

re
la

tio
n

0.00

0.25

0.50

0.75

1.00

Figure 7: Correlation between predicted and measured speedups
for the data points in the small test set. Pearson correlation is on the
left and Spearman’s correlation is on the right. Each column repre-
sents the coefficient measured on 32 random code transformations
for a single program.

More Detailed Evaluation Figure 7 gives more insights
on the behavior of our model. The Pearson and Spearman’s
coefficients are measured on a subset of the test set between
the code transformations of each program. To simplify visu-
alization, we use the same subset of transformations as the
experiment of Figure 4. In most cases, the coefficients are
close to 1, highlighting a strong linear correlation between
the predicted and measured speedups (Pearson correlation),
and between the predicted and measured ranks (Spearman’s
correlation). Particularly, the correlation between ranks is of
most importance for search methods as these methods rely
on the ranks of the explored points instead of their actual
evaluations.

7 RELATED WORK

Several machine learning based cost models have been
developed for automatic code optimization. MILEPOST
GCC (Fursin et al., 2008) uses a 1-nearest-neighbor model
that takes manually engineered features and predicts the best
combinations of compiler flags for GCC (GNU Compiler
Collection). Ithemal (Mendis et al., 2018) uses an LSTM
based model to predict the throughput of basic blocks of the
control-flow graph (assembly-level code). Both of MILE-
POST GCC and Ithemal do not support high-level loop
transformations though. Modeling loop transformations is
in particular challenging as it requires the ability to model
the loop structure. This implies the ability to model cycles
in the control-flow graph of the program, which is not trivial.
In addition, Ithemal does not model memory accesses to
different memory hierarchies (it only models accesses to
cache). Unlike both systems, our proposed model supports

A Deep Learning Based Cost Model for Automatic Code Optimization

Benchmark
Search time

improvement
(speedup)

Performance
degradation

for code
transforma-

tions

box blur 65x 0 %
conv + relu 12x 0 %
convolution 9x 0 %
cvtcolor 65x 7 %
doitgen 114x 7 %
heat2d 117x 18 %
heat3d 351x 13 %
jacobi2d 122x 65 %
mvt 83x 12 %
seidel2d 127x 28 %

Average 106.5x 15 %

Benchmark
Search time

improvement
(speedup)

Performance
degradation

for code
transforma-

tions

box blur 19x 0 %
conv + relu 14x 0 %
convolution 11x 0 %
cvtcolor 3x 41 %
doitgen 12x 5 %
heat2d 17x 17 %
heat3d 28x 9 %
jacobi2d 4x 26 %
mvt 5x 9 %
seidel2d 5x 18 %

Average 11.8x 12.5 %

Table 2: Search time improvement compared to performance degradation. On the left, the results for beam search with the cost model are
shown, and on the right, the results for MCTS.

loop transformations and takes into consideration different
memory hierarchy levels.

Other related work includes a model proposed by Rahman
et al. (Rahman et al., 2010). This model uses a feedforward
neural network to predict the execution time of programs af-
ter applying the tiling code transformation. Another model
proposed by Magni et al. (Magni et al., 2014) uses a feed-
forward neural network in a cascade fashion to predict the
best thread-coarsening factor. These two methods rely on
hand-engineered features though. They are also limited to a
single code transformation.

Halide (Adams et al., 2019) proposes a more comprehensive
method to find efficient code transformations. It combines
beam search with a feedforward neural network that pre-
dicts the execution time of programs from a set of manually-
engineered features. It uses 54 heavily engineered features
to perform its predictions. To the best of our knowledge,
both of Tiramisu and Halide consider the same code trans-
formations in their search spaces. In the same context, Au-
toTVM (Chen et al., 2018) uses a deep learning model to
search for code transformation parameters (TVM compares
two models, a TreeGRU and a Gradient Boosted Tree). The
TVM models are used with simulated annealing to search
the space. The authors only demonstrate the search for trans-
formation parameters though (tile size, unrolling factor, ...).
They do not demonstrate search for loop transformations
since the transformations themselves are provided by the
user. In a different fashion, DeepTune (Cummins et al.,
2017) proposes a neural network consisting of embedding
layers and LSTM cells to predict whether an OpenCL kernel
should be mapped to CPU or GPU. DeepTune also proposes
another model to predict whether thread coarsening (a code
transformation for GPUs) should be used. The DeepTune
models are classification models though. This means that
they can classify whether a given transformation is benefi-
cial, but they are not designed to rank different sequences
of code transformations. Therefore, they are not ideal for
use when searching a large space of code transformations

where many sequences need to be ranked and the best one
selected.

The goal of this paper is not to propose a cost model for
general purpose compilers. The goal is also not to propose
a cost model for general purpose transformations. In a
way similar to related work, this paper mainly focuses on a
domain specific compiler and on loop transformations.

Many polyhedral compilers including Pluto (Bondhugula
et al., 2008), PENCIL (Baghdadi et al., 2015a; 2013a),
LLVM Poly (Grosser et al., 2012), and Tensor Compre-
hensions (Vasilache et al., 2018) formalize the problem of
automatic code optimization as an integer linear program
(ILP). The objective of this ILP is to minimize the distance
between producer and consumer statements. The resulting
problem can be solved exactly, but the implicit cost model
does not capture all the complexity of the hardware architec-
ture and transformation interactions (Baghdadi et al., 2019).
This leads to suboptimal solutions (Baghdadi et al., 2019;
2015a; 2013b). Making the objective function more compre-
hensive makes the problem non-linear and thus it becomes
intractable.

8 CONCLUSION

This paper presents a novel cost model for predicting
speedups. This cost model is a regression cost model that
operates on full programs and does not rely on extracting
complex features. It is not limited to transformation param-
eters but also includes code transformations. We develop
a random code generator to generate the training data and
release the generator publicly. We evaluated the proposed
model and show that it had a low error rate of 16% MAPE.
We integrate this model in a search space method and show
that the integrated approach enables TIRAMISU to auto-
matically find sequences of code transformations that are
competitive with state of the art compilers.

A Deep Learning Based Cost Model for Automatic Code Optimization

REFERENCES

Adams, A., Ma, K., Anderson, L., Baghdadi, R., Li, T.-
M., Gharbi, M., Steiner, B., Johnson, S., Fatahalian, K.,
Durand, F., and Ragan-Kelley, J. Learning to optimize
halide with tree search and random programs. ACM
Trans. Graph., 38(4):121:1–121:12, July 2019. ISSN
0730-0301. doi: 10.1145/3306346.3322967. URL http:
//doi.acm.org/10.1145/3306346.3322967.

Bachir, M., Brault, F., Gregg, D., Cohen, A., et al. Minimal
unroll factor for code generation of software pipelining.
International Journal of Parallel Programming, 41(1):
1–58, 2013.

Baghdadi, R., Cohen, A., Guelton, S., Verdoolaege, S., In-
oue, J., Grosser, T., Kouveli, G., Kravets, A., Lokhmotov,
A., Nugteren, C., Waters, F., and Donaldson, A. F. PEN-
CIL: towards a platform-neutral compute intermediate
language for dsls. CoRR, abs/1302.5586, 2013a. URL
http://arxiv.org/abs/1302.5586.

Baghdadi, R., Cohen, A., Verdoolaege, S., and Trifunovic,
K. Improved loop tiling based on the removal of spurious
false dependences. TACO, 9(4):52, 2013b.

Baghdadi, R., Beaugnon, U., Cohen, A., Grosser, T., Kruse,
M., Reddy, C., Verdoolaege, S., Betts, A., Donaldson,
A. F., Ketema, J., Absar, J., Haastregt, S. v., Kravets,
A., Lokhmotov, A., David, R., and Hajiyev, E. Pencil:
A platform-neutral compute intermediate language for
accelerator programming. In Proceedings of the 2015 In-
ternational Conference on Parallel Architecture and Com-
pilation (PACT), PACT ’15, pp. 138–149, Washington,
DC, USA, 2015a. IEEE Computer Society. ISBN 978-1-
4673-9524-3. doi: 10.1109/PACT.2015.17. URL http:
//dx.doi.org/10.1109/PACT.2015.17.

Baghdadi, R., Cohen, A., Grosser, T., Verdoolaege, S.,
Lokhmotov, A., Absar, J., van Haastregt, S., Kravets,
A., and Donaldson, A. F. PENCIL language specifica-
tion. Research Rep. RR-8706, INRIA, 2015b. URL
https://hal.inria.fr/hal-01154812.

Baghdadi, R., Ray, J., Romdhane, M. B., Del Sozzo, E.,
Akkas, A., Zhang, Y., Suriana, P., Kamil, S., and Amaras-
inghe, S. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In Proceedings of the 2019
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO 2019, pp. 193–205, Piscat-
away, NJ, USA, 2019. IEEE Press. ISBN 978-1-7281-
1436-1. URL http://dl.acm.org/citation.
cfm?id=3314872.3314896.

Baghdadi, R., Debbagh, A. N., Abdous, K., Benhamida,
F. Z., Renda, A., Frankle, J. E., Carbin, M., and Amaras-
inghe, S. Tiramisu: A polyhedral compiler for dense and
sparse deep learning, 2020.

Bondhugula, U., Hartono, A., Ramanujam, J., and Sadayap-
pan, P. A practical automatic polyhedral parallelizer and
locality optimizer. In PLDI, pp. 101–113, 2008.

Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze, L.,
Guestrin, C., and Krishnamurthy, A. Learning to optimize
tensor programs. In Advances in Neural Information
Processing Systems, pp. 3389–3400, 2018.

Cummins, C., Petoumenos, P., Wang, Z., and Leather, H.
End-to-end deep learning of optimization heuristics. In
2017 26th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), pp. 219–232.
IEEE, 2017.

Feautrier, P. Array expansion. In Proceedings of the 2nd
international conference on Supercomputing, pp. 429–
441, St. Malo, France, 1988. ACM. ISBN 0-89791-272-1.
doi: 10.1145/55364.55406. URL http://portal.
acm.org/citation.cfm?id=55406.

Fursin, G., Miranda, C., Temam, O., Namolaru, M., Yom-
Tov, E., Zaks, A., Mendelson, B., Bonilla, E., Thomson,
J., Leather, H., Williams, C., O’Boyle, M., Barnard, P.,
Ashton, E., Courtois, E., and Bodin, F. MILEPOST
GCC: machine learning based research compiler. In GCC
Summit, Ottawa, Canada, June 2008. URL https://
hal.inria.fr/inria-00294704.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. Journal
of Machine Learning Research - Proceedings Track, 9:
249–256, 01 2010.

Grosser, T., Groslinger, A., and Lengauer, C. Polly - per-
forming polyhedral optimizations on a low-level interme-
diate representation. Parallel Processing Letters, 22(4),
2012. URL http://dblp.uni-trier.de/db/
journals/ppl/ppl22.html#GrosserGL12.

Grosser, T., Cohen, A., Holewinski, J., Sadayappan, P., and
Verdoolaege, S. Hybrid hexagonal/classical tiling for
gpus. In Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO
’14, pp. 66:66–66:75, New York, NY, USA, 2014. ACM.

Hochreiter, S. and Schmidhuber, J. Long short-term mem-
ory. Neural Comput., 9(8):1735–1780, November 1997.
ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.
URL https://doi.org/10.1162/neco.1997.
9.8.1735.

Lefebvre, V. and Feautrier, P. Automatic storage man-
agement for parallel programs. Parallel Computing,
24:649–671, 1998. ISSN 01678191. doi: 10.1016/
S0167-8191(98)00029-5.

http://doi.acm.org/10.1145/3306346.3322967
http://doi.acm.org/10.1145/3306346.3322967
http://arxiv.org/abs/1302.5586
http://dx.doi.org/10.1109/PACT.2015.17
http://dx.doi.org/10.1109/PACT.2015.17
https://hal.inria.fr/hal-01154812
http://dl.acm.org/citation.cfm?id=3314872.3314896
http://dl.acm.org/citation.cfm?id=3314872.3314896
http://portal.acm.org/citation.cfm?id=55406
http://portal.acm.org/citation.cfm?id=55406
https://hal.inria.fr/inria-00294704
https://hal.inria.fr/inria-00294704
http://dblp.uni-trier.de/db/journals/ppl/ppl22.html#GrosserGL12
http://dblp.uni-trier.de/db/journals/ppl/ppl22.html#GrosserGL12
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

A Deep Learning Based Cost Model for Automatic Code Optimization

Loshchilov, I. and Hutter, F. Fixing weight decay regular-
ization in adam. CoRR, abs/1711.05101, 2017. URL
http://arxiv.org/abs/1711.05101.

Louis-Noel, P. PolyBench suite. http://www.cse.ohio-
state.edu/˜pouchet/software/polybench/, 2010.
URL http://www.cse.ohio-state.edu/

˜pouchet/software/polybench/.

Magni, A., Dubach, C., and O’Boyle, M. Automatic
optimization of thread-coarsening for graphics proces-
sors. In Proceedings of the 23rd International Confer-
ence on Parallel Architectures and Compilation, PACT
’14, pp. 455–466, New York, NY, USA, 2014. Associa-
tion for Computing Machinery. ISBN 9781450328098.
doi: 10.1145/2628071.2628087. URL https://doi.
org/10.1145/2628071.2628087.

Mendis, C., Amarasinghe, S. P., and Carbin, M. Ithe-
mal: Accurate, portable and fast basic block through-
put estimation using deep neural networks. CoRR,
abs/1808.07412, 2018. URL http://arxiv.org/
abs/1808.07412.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Paul, F. and Christian, L. The polyhedron model. In Padua,
D. (ed.), Encyclopedia of Parallel Computing, pp. 1581,
1592. Springer, 2011.

Quilleré, F. and Rajopadhye, S. Optimizing memory us-
age in the polyhedral model. ACM Trans. on Program-
ming Languages and Systems, 22(5):773–815, September
2000.

Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Ama-
rasinghe, S., and Durand, F. Decoupling algorithms
from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph., 31(4):32:1–32:12, July
2012. ISSN 0730-0301.

Rahman, M., Pouchet, L.-N., and Sadayappan, P. Neural
network assisted tile size selection. In International Work-
shop on Automatic Performance Tuning (IWAPT’2010).
Berkeley, CA: Springer Verlag, 2010.

Smith, L. N. and Topin, N. Super-convergence: Very fast
training of residual networks using large learning rates.

CoRR, abs/1708.07120, 2017. URL http://arxiv.
org/abs/1708.07120.

Trifunovic, K., Nuzman, D., Cohen, A., Zaks, A., and
Rosen, I. Polyhedral-model guided loop-nest auto-
vectorization. In 2009 18th International Conference
on Parallel Architectures and Compilation Techniques,
pp. 327–337, 2009.

Trifunovic, K., Cohen, A., Edelsohn, D., Li, F., Grosser,
T., Jagasia, H., Ladelsky, R., Pop, S., Sjodin, J., and
Upadrasta, R. GRAPHITE two years after: First lessons
learned from Real-World polyhedral compilation, January
2010.

Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., De-
Vito, Z., Moses, W. S., Verdoolaege, S., Adams, A., and
Cohen, A. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. CoRR,
abs/1802.04730, 2018.

Wolf, M. E. and Lam, M. S. A loop transformation theory
and an algorithm to maximize parallelism. IEEE transac-
tions on parallel and distributed systems, 2(4):452–471,
1991.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhut-
dinov, R., and Le, Q. V. Xlnet: Generalized autore-
gressive pretraining for language understanding. CoRR,
abs/1906.08237, 2019. URL http://arxiv.org/
abs/1906.08237.

http://arxiv.org/abs/1711.05101
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
https://doi.org/10.1145/2628071.2628087
https://doi.org/10.1145/2628071.2628087
http://arxiv.org/abs/1808.07412
http://arxiv.org/abs/1808.07412
http://arxiv.org/abs/1708.07120
http://arxiv.org/abs/1708.07120
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237

A Deep Learning Based Cost Model for Automatic Code Optimization

A APPENDIX
A.1 Model Architecture Details and Training

Methodology
The computation embedding layer is a fully connected mul-
tilayer perceptron (MLP), feedforward neural network that
takes 1235-dimensional computation vectors and generates
180-dimensional embeddings. We use 3 intermediate lay-
ers of 600, 350, 200 neurons respectively. The output of
each layer is transformed by the ELU function and fed to a
dropout layer with a dropout probability of 0.225, and then
passed to the next layer. This succession of the activation
function and the dropout layer is applied to all the neural
networks of this model. The two LSTM cells in the loop
embedding unit have identical input and hidden vector sizes
that correspond to the output of the computation embedding
layer (180). The feedforward neural network that maps
the concatenated hidden vectors to 180-dimensional loop
embedding have one intermediate layer of size 200. The
regression layer that maps the program embedding vector to
a speedup value, has two intermediate layers with 200 and
180 neurons.

We implemented our model in PyTorch (Paszke et al., 2019)
(0.4.1.post2). All model parameters are learnable from the
computation embedding layer to the regression layer by way
of the recursive loop embedding layer. For the loss function,
we used MAPE, a normalized metric based on L1. This
loss function is suitable for speedup prediction because the
target value is positive by design. In addition, the function
motivates the model to be equitably accurate in the wide
range of speedups we have. The Glorot initialization (Glorot
& Bengio, 2010) is adopted for all weights of the model. We
train our model using AdamW (Loshchilov & Hutter, 2017)
with a weight decay coefficient of 0.0075. The learning
rate is scheduled by the One Cycle Policy (Smith & Topin,
2017) with a maximum learning rate of 0.001. The other
optimizer parameters are left on their default values. The
best accuracy is achieved after about 700 epochs of training.
The training set is processed in batches of 32 data points.
Each batch is formed by code transformations belonging to
the same algorithm. The rationale for this grouping is that
it is faster to operate on data points having the same tree
structure.

A.2 Benchmark Sizes and Parameters
Table 3 summarizes the benchmarks’ input sizes and param-
eters used in Section 6.

A.3 More Detailed Evaluation
Figure 8 gives an overview of the correlation between the
predicted and measured speedups over 16 programs ran-
domly selected from the test set. Each chart represents the

Benchmark Input size and parameters

box blur 3× 1024× 1024

conv + relu

batch size: 8
input size: 1024× 1024× 3
kernel size: 3× 3
output features: 2

convolution

batch size: 8
input size: 1024× 1024× 3
kernel size: 3× 3
output features: 2

cvtcolor 3× 1024× 1024
doitgen 256× 256× 128, 256× 256
heat2d 1024× 1024
heat3d 770× 898× 1024
jacobi2d 130× 1024
mvt 1024× 1024
seidel2d 256× 256

Table 3: Benchmarks input sizes and parameters

10

50

5

1
0.5

0.1
0.05

0.001

10

50

5

1
0.5

0.1
0.05

0.001

10

50

5

1
0.5

0.1
0.05

0.001

10

50

5

1
0.5

0.1
0.05

0.001

10 5051
0.
5

0.
1

0.
05

0.
00
1 10 5051

0.
5

0.
1

0.
05

0.
00
1 10 5051

0.
5

0.
1

0.
05

0.
00
1 10 5051

0.
5

0.
1

0.
05

0.
00
1

Measured speedups

Pr
ed

ic
te

d
sp

ee
du

ps

Figure 8: Measured vs predicted speedup on 16 random programs
from the test set, each blue dot represents a code transformation
with respect to its measured speedup and its predicted speedup.

32 random transformations applied on each program with
blue dots, the closer a blue dot is to the red line the lower the
prediction error is. This figure shows that the cost model’s
predictions fit well the distribution and the range of the
speedups and does not just predict an average value for each
program.

