
An Analytical Approach to
Memory System Design
NATHAN BECKMANN

PHD DEFENSE

CSAIL MIT

17 AUGUST 2015

Executive Summary
Data movement is a growing problem in multicores

◦ DRAM 1000×energy of FP multiply-add
◦ Consumes ≈50% of energy and caches take >50% area
◦ Bigger multicores More memory requests & greater distances

Traditional heuristics do not scale
◦ Multicores are diverse  “common case” is far from optimal

An analytical design gives robust, high performance

Two in-depth applications of this blueprint
◦ Virtual cache hierarchies
◦ Cache replacement

2

Main memoryMulticore

Data

Mechanisms

Monitors

Models

Executive Summary

Goal: Large, Fast, Low-Energy Memory

3

CPU

CPU

Memory

Introduction

Reality: Cache Hierarchy
Caches take >50% chip area

4

L2 CacheL1

Main memory
Processor

CPU

Sun UltraSPARC circa 1998: 16KB L1, 4MB L2
 nearly all apps benefit from hierarchy & if not penalty is small

Introduction

Data Movement Is A Growing Problem
Multicore today

5

Main memory

16-core Processor

7 cycles

Cores compete for scarce off-chip memory
bandwidth and cache capacity

On-chip latency is heterogeneous and growing
Cores

Caches

Tradeoffs in multicores are complicated!

40 cycles

Introduction

Traditional Heuristics Are Insufficient
Architects try to “make common case fast”

◦ But programs vary greatly in their memory behavior
◦ Access rate

◦ Working set size

◦ Reference locality

◦ What is the “common case”?

Design to particular benchmarks:
◦ Observe behavior for apps that perform poorly

◦ Find techniques that improve performance

◦  State-of-the-art techniques do not perform well across all benchmarks

6Introduction

+ Performance of app-specific hardware design

+ Generality across many apps

+ Low overheads

Our Analytical Approach

7

High-level models

Periodic updates
amortize overheads

Low overhead

Capture important features

Simple

Configurable

Monitors: Profile programs

Models:
Adapt to program

Mechanisms:
Core operations

Introduction

Thesis Contributions
Virtual cache hierarchies

◦ Place data across banks to reduce data movement [Jigsaw, PACT’13]

◦ Schedule threads to reduce contention for banks [CDCS, HPCA’15]

◦ Exploit memory heterogeneity to build virtual hierarchies [Jenga, Under submission]

Cache replacement
◦ Provable convex cache performance [Talus, HPCA’15]

◦ Replacement by economic value added [EVA, Under submission]

Cache modeling
◦ An accurate model for high-performance replacement policies [Under submission]

◦ Explicit, closed-form solutions of hit rate using differential equations [In preparation]

8

Th
is

 t
al

k!

Introduction

An Analytical Memory Design

9

Virtual caches place data in banks to fit working set near where it is used
◦ Reduce data movement energy by >40%

Analytical cache replacement makes better use of cache space
◦ Increase effective capacity by 10% over state-of-the-art

Virtual
Caches

Cache
Repl.

Introduction

Our analytical approach is a blueprint for future
robust, scalable memory systems

10Introduction

Virtual Cache
Hierarchies

11Virtual Caches

Virtual Caches: Jigsaw
Key idea: Schedule data across cache banks

◦ Control both capacity and placement

◦ Minimize cache misses & access latency

12

Cache size

M
is

se
s

3 cache banks

Jigsaw, PACT’13

Virtual Caches

Virtual Caches: Jigsaw
Single-level virtual caches (VCs)

VCs combine partitions of physical banks

Map data to VCs

Periodically reconfigure VCs to minimize
data movement

13

Jigsaw, PACT’13

VTB (virtual cache
translation buffer)
 Spread accesses

across banks

Distributed utility monitors
Miss curves

Latency model &
novel partitioning

algorithm

Virtual Caches

Operation: Access

14

Classifier

VTB

VC 1

VC 2

VC 3

VC N

...

TLB

Core

L1I L1D

L2

LLC

LD 0x5CA1AB1E

Data does not move  single-lookup
Data  virtual caches, so no LLC coherence required

Virtual Caches

Jigsaw classifies data based on access pattern
◦ Thread, Process, and Global

Data lazily re-classified on TLB miss
◦ Negligible overhead

Data Classification

15

• 6 thread VCs
• 2 process VCs
• 1 global VC

Virtual Caches

Virtual Cache Translation Buffer
The VTB gives the unique location of an address in the LLC

Configurable map: {Address, VC}  {Bank, partition}

16

VC id (from TLB)

1,3 0,5 3,4 2,7

1337

VTB entry

4 entries,
associative

VC descriptor

Address (from private cache miss)

H

0x5CA1AB1E

Access:
bank 0, partition 5

…

Accesses

H

X Y Y Y … X Y Y Y

Virtual Caches

17

Monitoring
Software requires miss curves for each VC

Jigsaw adds geometric monitors (GMONs) distributed across tiles

Geometric monitors monitor very large caches at low overhead--𝑂 log 𝑠𝑖𝑧𝑒 ; see thesis

0x3DF7AB 0xFE3D98 0xDD380B 0x3930EA…

0xB3D3GA 0x0E5A7B 0x123456 0x7890AB…

0xCDEF00 0x3173FC 0xCDC911 0xBAD031…

0x7A5744 0x7A4A70 0xADD235 0x541302…

717,543 117,030 213,021 32,103…

… …

Hit
Counters

Tag
Array

Way 0 Way N-1…

Misses

Size
Cache Size

Virtual Caches

Configuration
1. Total memory latency = cache access latency + cache misses

2. Size virtual caches to minimize latency

3. Place virtual caches

◦ Solve each independently for simplicity starting from optimistic assumptions

18

Place Virtual
Herarchies

Model
Total Memory

Latency

App miss curves Size Virtual
Hierarchies

Virtual Caches

Modeling Virtual Cache Latency
LLC miss latency decrease with larger size

Cache access latency increases with larger size

Optimal allocation balances these

19

Optimal

Virtual Caches

Modeling Access Latency
Construct access latency curve using network distance

The average value of this curve gives the access latency
◦ E.g., hierarchy with a VC of 6 banks

20

Color  latencyStart point

C
ac

he
 A

cc
es

s
La

te
n

cy

Total Capacity

Access Latency @ 6 banks

Virtual Caches

Configuration: Sizing
Partitioning problem: Divide cache capacity S among P partitions to minimize objective

◦ Given curves 𝑓𝑝 , choose sizes 𝑠𝑝 such that 0 ≤ 𝑠𝑝 & 𝑝 𝑠𝑝 ≤ 𝑆 to minimize 𝑝𝑓𝑝(𝑠𝑝)

◦ Traditional partitioning minimizes misses

◦ Jigsaw minimizes total latency (including on-chip latency)

NP-complete in general

Prior approaches:
◦ Hill climbing is fast, but gets stuck in local optima

◦ Lookahead [UCP, MICRO’06] produces good outcomes, but scales quadratically

21

Can we scale Lookahead?
Virtual Caches

Configuration: Peekahead
Lookahead scans miss curves to find allocations that maximize hits / capacity

Observation: Lookahead only ever allocates along convex hull of the objective curve

Convex hulls can be found in linear time
◦ Some details and corner cases; see thesis

22

La
te

n
cy

Size

VC 1

VC 2

Virtual Caches

Configuration: Placement

23

75 accs to per K instr ⇒
𝐼𝐵 = 75 accs/3 banks
= 25 accs/bank

100 accs to per K instr ⇒
𝐼𝐴 = 100 accs/10 banks
= 10 accs/bank

Intensity = Accs/Size

A‘s harm:

Δ𝑑𝐴 = 2 hops

Δ𝐿𝐴 = 𝐼𝐴 ⋅ Δ𝑑𝐴 = 20

B‘s harm:

Δ𝑑𝐵 = 1 hop

Δ𝐿𝐵 = 𝐼𝐵 ⋅ Δ𝑑𝐵 = 25

Place B
(Δ𝐿𝐵 > Δ𝐿𝐴)

Start ⇒ Decide ⇒ PlaceAllocations

Virtual Caches

Virtual Cache Overheads
Cache partitioning adds 8KB / bank

VTBs add 1KB / core

Monitors add 8KB / core

Total: 17KB / tile  3% area overhead over caches

Negligible energy overheads

OS runtime takes ≈0.2% of system cycles

24

Jigsaw L3 Bank

NoC Router

ReconfigurationMonitoring

Core

VTB

TLBs

L1I L1D

L2

Modified structures
New/added structures

Virtual Caches

Contention-Aware Thread Scheduling
Virtual caches introduce capacity contention between threads

Schedule threads to cluster around shared VCs, separate private VCs

25

CDCS, HPCA’15

Poor thread placement  unnecessary data movement

Virtual Caches

Evaluation of Virtual Caches
Execution-driven simulation using zsim [Zsim, ISCA’13]

Workloads:
◦ 64-core, random mixes of SPECCPU2006

◦ See thesis for other system sizes, multithreaded programs, etc

Cache organizations
◦ “S-NUCA” – conventional shared cache with lines spread across banks (baseline)

◦ “R-NUCA” – similar classification as Jigsaw but fixed placement heuristics

◦ Jigsaw

26Virtual Caches

Evaluation: Performance

27

64-core multiprogrammed mixes of SPECCPU2006

Weighted speedup vs. S-NUCA

Jigsaw achieves best performance
◦ Up to 75% improved w. speedup

◦ Gmean +46% w. speedup
◦ vs. up to 23% / gmean 19% for R-NUCA

Virtual Caches

Evaluation: Energy Breakdown

28

64-core multiprogrammed mixes of SPECCPU2006

Breakdown data movement energy
◦ Normalized to Jigsaw

R-NUCA reduces network distance but adds LLC misses
◦ Placement heuristics limit capacity

Jigsaw reduces data movement from both
on-chip network and LLC misses

◦ Saves 70% vs. S-NUCA

◦ Saves 20% vs. R-NUCA

LLC
misses

LLC
accesses

Virtual Caches

Hierarchies provide the illusion of a single large & fast memory

Hierarchy is useful for two reasons:

L3

Virtual Cache Hierarchies: Jenga

29

Jenga, Under submission

Core

“Magic” Memory

L1 L2

1. Adapt across diverse apps
• Working set settles at smallest level
• Efficient with big differences across levels

2. Adapt to diversity within one app
• E.g., different data structures
• Single-level VCs insufficient

Virtual Cache Hierarchies

Heterogeneous Memories
New memory technologies give 100s MB capacity nearby

◦ 3D-stacked DRAM

◦ eDRAM w/ interposers

◦ PCM, memristors, etc

Deepen the cache hierarchy?
◦ Significant energy & bandwidth vs. main memory

…But comparable latency to main memory
◦  Large penalty for apps that don’t need it!

Main memory

How do we design memory systems to harness these heterogeneous memories?

30Virtual Cache Hierarchies

Virtual Cache Hierarchies
Expose heterogeneity to software

Build virtual cache hierarchies (VHs) out of heterogeneous cache banks
◦ Multi-level hierarchies only when beneficial

◦ Use caches best suited to access pattern
◦ Small working sets  local on-chip bank

◦ Large working sets  stacked DRAM vault

VHs simply do not use stacked DRAM when not beneficial
◦ Reduces bandwidth and energy [BEAR, ISCA’15]

31Virtual Cache Hierarchies

Virtual Cache Hierarchies
Chain multiple VCs to make virtual cache hierarchies

Give applications the hierarchy they want
◦ Use hierarchy only when it is beneficial

◦  Efficient integration of new memories (e.g., stacked DRAM)

32

256MB 256MB

256MB 256MB
Cache size

M
is

se
s

p
er

 K
 I

n
st

…

Virtual Cache Hierarchies

Jenga Operation

33

Model
2-Level Hierarchy

Latency

Place Virtual
Herarchies

Model
1-Level Access

Latency

Jenga adds another level to the VTB and doesn’t change monitors

Model access latency of a two-level cache hierarchy

App miss curves

Size Virtual
Hierarchies

Virtual Cache Hierarchies

Modeling Hierarchy Latency
Latency = Accesses × L1 Latency + L1 Misses× L2 Latency + L2 Misses× Memory Latency

Two-level virtual hierarchies give latency surface
◦ Total size

◦ VL1 size

Complex tradeoffs
◦ VL1 size influences VL2 access latency

◦ VL2 size influences VL1 miss penalty

◦ Etc

34Virtual Cache Hierarchies

Modeling Hierarchy Latency
Jenga selects the hierarchy that performs best at every size

◦ One vs. two levels

◦ VL1 size

35

Can use same sizing &
placement as used for

single-level VCs!

Virtual Cache Hierarchies

Evaluation
36-tile multicore with 18MB SRAM cache and 1GB stacked DRAM

20 random mixes of SPECCPU2006

Cache organizations
◦ S-NUCA: “LRU” baseline, no stacked DRAM

◦ Jigsaw: No stacked DRAM

◦ Alloy: Stacked DRAM L4
◦ Issues parallel, speculative memory accesses

◦ Spends energy to improve performance

◦ JigAlloy: Jigsaw L3 + Alloy L4

◦ Jenga

36Virtual Cache Hierarchies

Evaluation: Performance
Jenga improves weighted speedup…

vs. S-NUCA by up to 2.2X/gmean 82%

vs. JigAlloy by up to 13%/gmean 7%
◦ Up to 24% for individual apps

37Virtual Cache Hierarchies

Evaluation: Energy

38

JigAlloy spends energy to improve performance
◦ Adds 12% energy vs Jigsaw

Jenga reduces data movement energy…
◦ vs. S-NUCA by 43%
◦ vs. JigAlloy by 20%
◦ vs. Jigsaw by 11%

Jenga sidesteps the energy-performance tradeoff!

Overall, Jenga improves energy-delay product…
◦ vs. S-NUCA by up to 3.6X/gmean 2.6X
◦ vs. JigAlloy by up to 24%/gmean 15%

S-
N

U
C

A

Ji
gs

aw

A
llo

y

Ji
gA

llo
y

Je
n

ga

Virtual Cache Hierarchies

Other Work:
Virtual Caches Up The System Stack

39

Hardware

Operating System

Compilers

Applications

Jigsaw, Jenga

Thread scheduling

Profiling

User-level VCs

Virtual Cache Hierarchies

Virtual Hierarchy Summary
Adapt cache resources to suit applications

◦ Enough space to fit working set

◦ At minimum distance

Improve performance and save energy

Cache performance scales independent of system size
◦ Implications for system architecture and algorithms

Robust framework to manage heterogeneous memories

40Virtual Cache Hierarchies

Analytical Cache
Replacement

41

EVA, Under submission

Analytical Cache Replacement

High-Performance Cache Replacement
Optimal policy (Belady’s MIN) is impractical

Empirical policies:
◦ Traditional: LRU, LFU, random

◦ Statistical cost function [IGRD, ICS’04]

◦ Bypass streaming accesses [DIP, ISCA’07]

◦ Predict likelihood of reuse [SDBP, MICRO’10]

◦ Predict time until reference [RRIP, ISCA’10]
[SHIP, MICRO’11]

◦ Protect lines from eviction [PDP, MICRO’12]

◦ Use data mining to find best policy [GIPR, MICRO’13]

◦ Etc

Perform poorly on some apps
 Not making best use of information

Analytical policies:
◦ Independent reference model [Aho, J. ACM’71]

Assumes static behavior
 Not a good model of LLC accesses

We use a simple reference model that captures
dynamism and solve for its optimal policy: EVA.

EVA is practical and outperforms empirical
policies.

42Analytical Cache Replacement

Background:
Independent Reference Model
Analytical policies use a simplified memory reference model to derive optimal policy

Prior work uses independent reference model [Aho, JACM’71]

◦ Candidates have static, non-uniform reference probabilities

◦ E.g., a 4-way cache

Optimal policy: evict candidate with lowest reference probability

43

0x1000 0x1234 0xBEEF 0x1337

0.1 0.2 0.05 0.0001

Analytical Cache Replacement

Background:
Independent Reference Model
IRM is a poor model of LLC references

◦ Focuses on heterogeneity

◦ At the expense of dynamic behavior

Relatively few threads access LLC
◦ LLC candidates tend to behave similarly

◦ Dynamic behavior is paramount

44

Dynamic behavior

H
e

te
ro

ge
n

ei
ty

MIN

IID

IRM

IID w/ Classes

Array

Analytical Cache Replacement

Iid Reuse Distance Model
Reuse distance is the number of accesses between references to same address

A B B C A D D B A C C D

Reuse distances are independently and identically distributed according to the reuse distance
distribution, P(𝐷 = 𝑑).

What is the right replacement policy?

45

4 4

1 5

Analytical Cache Replacement

What’s the Right Approach?
Goal: Maximize hit rate

Constraint: Limited cache space

The replacement policy must balance the probability a candidate will hit (reward) against the
cache space it takes away from other candidates (opportunity cost)

But how do we tradeoff between these incommensurable objectives?

46Analytical Cache Replacement

Replacement By Economic Value Added
Key idea: Time spent in the cache costs forgone hits

47

A

20%

50%

Hit in 10 accesses

30%

Hit in 20 accesses

Eviction in 32 accesses

Cache hit rate = 40%
Cache size = 16 lines

Line hit rate = (40%)/16 = 2.5%

Net value = 1− 10 × 2.5% = 0.75

Net value = 1 − 20 × 2.5% = 0.5

Net value = 0− 32 × 2.5% = −0.8

𝑬𝑽𝑨 = 𝟐𝟎%× 𝟎. 𝟕𝟓 + 𝟑𝟎%× 𝟎. 𝟓 + 𝟓𝟎% ×−𝟎. 𝟖 = −𝟎. 𝟏
 A tends to lower the cache’s hit rate

Analytical Cache Replacement

Replacement By Economic Value Added
Key idea: Time spent in the cache costs forgone hits

…16 accesses later

48

A

20%

62.5%

Hit in 10 accesses

37.5%

Hit in 4 accesses

Eviction in 16 accesses

Cache hit rate = 40%
Cache size = 16 lines

Line hit rate = (40%)/16 = 2.5%

Net value = 1 − 4 × 2.5% = 0.9

Net value = 0 − 16 × 2.5% = −0.4

𝑬𝑽𝑨 = 𝟑𝟕. 𝟓% × 𝟎. 𝟗 + 𝟔𝟐.𝟓% ×−𝟎. 𝟒 = 𝟎. 𝟎𝟑𝟕𝟓
 A now tends to increase hit rate

30%

Hit in 20 accesses

50%

Eviction in 32 accesses

Analytical Cache Replacement

Replacement By Economic Value Added
What about the future?

49

A

20%

50%

Hit in 10 accesses

30%

Hit in 20 accesses

Eviction in 32 accesses

New line

In the iid reuse distance model,
candidates behave identically

after a reference
 EVA is zero

Analytical Cache Replacement

Cache Replacement As An MDP
Markov decision processes extend Markov chains with decision making

◦ States 𝑠𝑖
◦ Actions 𝛼𝑖,𝑗

◦ Rewards 𝑟 𝑠𝑖 , 𝑎𝑖,𝑗

◦ Transition probabilities P 𝑠𝑘 𝑠𝑖 , 𝑎𝑖,𝑗)

MDP theory lets one find the optimal policy to maximize some metric, e.g. total reward

50

𝛼3,1: +1

𝛼1,1: +1𝛼2,1: 0

𝛼2,2: 0

𝑠2 𝑠3

𝑠1

Analytical Cache Replacement

Cache Replacement As An MDP
States: each candidate’s age

Actions: which candidate to evict

Rewards: +1 for hit

Transition probabilities: iid model

Objective: maximize average reward
◦ I.e., maximize hit rate

51

1,𝑎2+ 1

𝑎1,𝑎2

𝑎1+ 1, 𝑎2+ 1

1,1 2,1 𝑎1+ 1,1

1,2

…

…

𝑎1+ 1,𝑎2

𝑎1,𝑎2+ 1

…

Analytical Cache Replacement

Cache Replacement As An MDP
MDP theory gives the optimal policy

Define bias as the expected total reward minus the average reward
◦ This is EVA: hits minus forgone hits

The optimal policy maximizes the expected future bias
◦  Evicting candidate with lowest EVA is optimal

52Analytical Cache Replacement

Recovering Some Heterogeneity
Some programs have clearly distinct classes of accesses

Iid memory reference model w/ classification
◦ Different reuse distance distribution per class, P(𝐷𝐶 = 𝑑)

◦ Within each class, reuse distances are identically distributed

◦ All reuse distances are independent

Reuse vs. non-reused classification [RRIP, ISCA’10][DCS,HPCA’12]

◦ Distinguishes working set that fits in cache

◦ Simple but effective

53Analytical Cache Replacement

Replacement By Economic Value Added
What about the future?

54

A

20%

50%

Hit in 10 accesses

30%

Hit in 20 accesses

Eviction in 32 accesses

New reused line

With classification, candidates
do not behave identically after

a reference

New non-reused line

Analytical Cache Replacement

Replacement By Economic Value Added
What about the future?

55

A

Evictions

New reused line

With classification, candidates
do not behave identically after

a reference

New non-reused line

Hits

EvictionsHits

Evictions

Hits

Can account for 𝑬𝑽𝑨 in future lifetimes
by adding a single constant term

(see thesis)

Analytical Cache Replacement

Implementation

56

CACHE EVENT COUNTERS

R
eu

se
d

N
o

n
-

R
eu

se
d

Age 1 2 3 4 5 6 7 8

Reused 1 5 6 7 12 10 2 14

Non-reused 9 3 11 16 13 8 15 4

EVICTION PRIORITY ARRAY

1. Candidate ages: 1 7 5 3

EVICT 3rd CANDIDATE
(non-reused at age 5)

9 2 13 6

Age  Hits Evictions

Periodic
Update

+1 2. Compare priorities:

3. Update monitor

Analytical Cache Replacement

Implementation – Updates
Small circuit computes EVA

Sorting FSM computes eviction priorities (not shown)

57

Counters
16-bit 1R1W

P 𝐿 > 𝑎

Temp

Single-
adder ALU

1-cycle ADD
33-cycle MUL

57-cycle DIV

EVA
32-bit 1R1W

P 𝐻 > 𝑎

𝑚𝑁𝑅

𝑔ℓ
𝑚𝑅

1

Sh
if

te
r

waddr
write

op

addr

raddr

 𝑥 P 𝐿 > 𝑎 src2

src1
shift

Analytical Cache Replacement

Implementation – Overheads
Synthesized in 65nm commercial manufacturing process

SRAM overheads from CACTI

58

Area Energy

mm2 vs. 1MB nJ / LLC miss vs. 1MB

Ranking 0.010 0.05% 0.014 0.6%

Counters 0.025 0.14% 0.010 0.4%

Updates 0.052 0.30% 380 / 128K 0.1%

Total − 0.5% − 1.1%

Analytical Cache Replacement

Evaluation – Cache Performance
EVA greatly reduces misses vs. prior policies

◦ Avg. MPKI over SPECCPU2006

◦ LLC sizes 1MB to 8MB

EVA closes 57% of gap between random and MIN
◦ vs. 41%-45% for prior policies

59Analytical Cache Replacement

Evaluation – Cache Area
Because EVA improves performance, it requires less space to match performance

◦ EVA saves 9% area vs SHiP

60

Breakdown
@ 4MB

Analytical Cache Replacement

Other Work

61Other Work

Provable Convex Cache Performance
Partitioning and high-performance replacement should be complementary

◦ Partitioning requires miss curves – easy for LRU, hard otherwise

We use partitioning to fix LRU’s problems without sacrificing its benefits
◦ Specifically, we avoid performance cliffs and guarantee convex miss curves

◦ Prove it works using simple model of miss curve scaling

62

Talus, HPCA’15

Cache size

M
is

se
s

p
er

 K
 I

n
st

10

Cache

𝛼

𝛽

𝜷

𝜶

Other Work

A Cache Model for Modern Processors
Accurately model performance of arbitrary replacement policies

◦ Use iid memory reference model

◦ Model replacement policies as ranking functions: 𝑅 𝑎 = eviction priority

Simple set of equations for probability distribution of age, hits, and
evictions

◦ Fixed-point iteration converges rapidly

Mean error of ~3% across policies, benchmarks & LLC sizes

63

Under submission

Other Work

Cache Calculus
Explicit, closed-form solutions of cache performance

Relax discrete cache model into system of ordinary differential equations
◦ E.g., for random replacement:

𝐻′′ =
𝐷′′

𝐷′
𝐻′−

𝐷′

1− 𝐷
𝐸′

𝐸′′ = −
𝑚

𝑆
(𝐻′+ 𝐸′)

Can use numerical analysis to solve for arbitrary access patterns

Can solve explicitly miss rate 𝑚 on particular access patterns
◦ E.g., scanning: 𝑚 = 1 − ProductLog (−𝜔e−𝜔)/𝜔where 𝜔 = N/S

◦ E.g., stack: 𝑚 = 1 −
1

2𝜔
−
1

4𝜔2
−
1

4𝜔3
+𝑂

1

𝜔4

Extremely good match with simulation!

64

In preparation

Array size Cache size

Other Work

Acknowledgements – Research

65

Anant Agarwal
2008-2012

Frans Kaashoek Nickolai Zeldovich Daniel Sanchez
2013-2012-2013

Acknowledgements

Acknowledgements – Research

66Acknowledgements

Acknowledgements – Education

67Acknowledgements

Conclusion
Data movement is a growing problem in current systems

“Common case”, heuristic design is insufficient

Analytical memory systems achieve robust, high performance
◦ Virtual cache hierarchies

◦ Analytical cache replacement

Mechanisms, monitoring, and models give a blueprint for future memory systems

68Conclusion

Questions?

69

1, 𝑎2+ 1

𝑎1, 𝑎2

𝑎1+ 1, 𝑎2+1

1,1 2,1 𝑎1+ 1,1

1,2

…

…
𝑎1+1, 𝑎2

𝑎1,𝑎2 +1

…

Conclusion

