An Analytical Approach to
Memory System Design

NATHAN BECKMANN CSAIL MIT
PHD DEFENSE 17 AUGUST 2015

Executive Summary

Data movement is a growing problem in multicores
> DRAM 1000X energy of FP multiply-add Multicore Main memory

o Consumes ~50% of energy and caches take >50% area f. . .\

> Bigger multicores =» More memory requests & greater distances

Traditional heuristics do not scale
o Multicores are diverse = “common case” is far from optimal \)

Monitors

An analytical design gives robust, high performance

Two in-depth applications of this blueprint
> Virtual cache hierarchies

o Cache replacement

Mechanisms Models

@® ctxecutivesummary QOO OO0 0 2

Goal: Large, Fast, Low-Energy Memory

® @® introduction QOO QOQO000O

Reality: Cache Hierarchy

Caches take >50% chip area

4 R
S
K \ 4 / Main memory

Processo\ /

Sun UltraSPARC circa 1998: 16KB L1, 4MB L2
=>» nearly all apps benefit from hierarchy & if not penalty is small

® ® introduction QO OO0 0O0O0O 4

Data Movement Is A Growing Problem

Multicore today

T
N

N

Cores compete for scarce off-chip memory
bandwidth and cache capacity

AN

ﬁ\ On-chip latency is heterogeneous and growing
-

1T I B

40 cycles Main memory

\J =/

16-core Processor

Caches

Tradeoffs in multicores are complicated!

® @® introduction QOO QOQO000O 5

Traditional Heuristics Are Insufficient

Architects try to “make common case fast”
o But programs vary greatly in their memory behavior

o Access rate

o Working set size

o Reference locality

o What is the “common case”?

Design to particular benchmarks:
> Observe behavior for apps that perform poorly

° Find techniques that improve performance
o =¥ State-of-the-art techniques do not perform well across all benchmarks

® @® introduction QOO QOQO000O 6

Our Analytical Approach

+ Performance of app-specific hardware design

+ .
Generallty dCross many apps Low overhead

Monitors: Profile programs

+ Low overheads Capture important features

Models:
Adapt to program

Mechanisms:
Core operations

Simple High-level models
Periodic updates

Configurable
=»amortize overheads

® @® introduction QOO QOQO000O

Thesis Contributions

Virtual cache hierarchies

> Place data across banks to reduce data movement [Jigsaw, PACT’13]
v o Schedule threads to reduce contention for banks [CDCS, HPCA’15]
Tg /v[o Exploit memory heterogeneityto build virtual hierarchies [Jenga, Under submission]
E Cache replacement
= ° Provable convex cache performance [Talus, HPCA’15]
o Replacement by economic value added [EVA, Under submission]

Cache modeling
o An accurate model for high-performance replacement policies [Under submission]

o Explicit, closed-form solutions of hit rate using differential equations [In preparation]

® @® introduction QOO QOQO000O 8

An Analytical Memory Design

Virtual caches place data in banks to fit working set near where it is used
o Reduce data movement energy by >40%

Analytical cache replacement makes better use of cache space
° Increase effective capacity by 10% over state-of-the-art

K N 4 ' 4 N 4 \

Virtual Cache

Caches

=% =

{ N { N { N { N
k S \, S \ S \, j

® @® introduction QOO QOQO000O

Our analytical approach is a blueprint for future
robust, scalable memory systems

® @® introduction QOO QOQO000O 10

Virtual Cache
Hierarchies

Jigsaw, PACT’13

Virtual Caches: Jigsaw

Key idea: Schedule data across cache banks
o Control both capacity and placement

o =» Minimize cache misses & access latency

A

3 cache banks

N

Cachessize

Misses

Q@O O vitwaicaches OO OO0 12

Jigsaw, PACT’13

Virtual Caches: Jigsaw

Single-level virtual caches (VCs)

Distributed utility monitors

3 =» Miss curves
D
S

VCs combine partitions of physical banks ~z3§

Map data to VCs

Periodically reconfigure VCs to minimi
data movement

VTB (virtual cache
translation buffer)
=» Spread accesses
across banks

gncy model &
novel partitioning
algorithm

Q@O O vitwaicaches OO OO0 13

Operation: Access

Data does not move = single-lookup
Data =» virtual caches, so no LLC coherence required

VC1 " uimm
4]
VTB | “x

VC3

L2

L1l | [L1D Coven

Core

LD Ox5CA1AB1E

Q@O O vitwaicaches OO OO0 14

Data Classification

Jigsaw classifies data based on access pattern
o Thread, Process, and

* 6 thread VCs
* 2 process VCs
global VC

Data lazily re-classified on TLB miss
o Negligible overhead

Q@O O vitwaicaches OO OO0 15

Virtual Cache Translation Buffer

The VTB gives the unique location of an address in the LLC

Configurable map: {Address, VC} = {Bank, partition}

VCid (from TLB) Address (from private cache miss)
Ox5CA1AB1E

1337

VC descriptor

ViBentry—- | L3 | 0,5 | 3,4 | e | 2,7

4 entries, L
associative Access: .
bank 0, partition 5

Q@O O vitwaicaches OO OO0 16

Monitoring

Software requires miss curves for each VC

Jigsaw adds geometric monitors (GMONSs) distributed across tiles

Geometric monitors monitor very large caches at low overhead--0(log size); see thesis

Misses
A
Way 0 Way N-1
o 0x3DF7AB OXFE3D98 oxpD380B | - | 0x3930EA
<
z:,‘o 0xB3D3GA OXOE5A7B 0x123456 | - | 0x7890AB
(&)
fb(’ —] | oxcpEFOO 0x3173FC oxcpco1l | - | oxBADO31 _ Tag
Ox Array :
Ny |
0x7A5744 0x7A4A70 oxADD235 | - | o0x541302 : > Size
Hit i
717,543 117,030 213,021 | - 32,103 } Cache Size
Counters

Q@O O vitwaicaches OO OO0

Configuration

1. Total memory latency = cache access latency + cache misses

2. Size virtual caches to minimize latency

3. Place virtual caches

o Solve each independently for simplicity starting from optimisticassumptions

App miss curves Size Virtual Place Virtual Final allocation

Hierarchies " Herarchies T .’

Q@O O vitwaicaches OO OO0 18

Modeling Virtual Cache Latency

LLC miss latency decrease with larger size

Cache access latency increases with larger size

T
Optimal allocation balances these g‘

Q

bt

(18]

_I '
IR : .~ == Miss
. b AT 14
r IS - == Access

Lo [I—— ...-I'.--"--F————-I--——-EI

Cache size —

19

Q@O O vitwaicaches OO OO0

Modeling Access Latency

Construct access latency curve using network distance

Start point Color = latency A =
§ [=]
8 = - -
S o= -7
5 = -7

‘ 9l em _-%

< -
o™ ™~ Access Latency @ 6 banks
(S)
© >
© Total Capacity

The average value of this curve gives the access latency
° E.g., hierarchy with a VC of 6 banks

Q@O O vitwaicaches OO OO0 20

Configuration: Sizing

Partitioning problem: Divide cache capacity S among P partitions to minimize objective
o Given curves {fp}, choose sizes {Sp} suchthat 0 < s, & Y., 5, < S to minimize Y., f, (Sp)

o Traditional partitioning minimizes misses
o Jigsaw minimizes total latency (including on-chip latency)

NP-complete in general

Prior approaches:
+ e He-ifersir rroeatont

° Lookahead jucr, micro’06] produces good outcomes, but scales quadratically

Can we scale Lookahead?

Q@O O vitwaicaches OO OO0 21

Configuration: Peekahead

Lookahead scans miss curves to find allocations that maximize hits / capacity

A
— VC1
——- VC2
>
(@)
C
Q
=)
©
_Im
>

Size
Observation: Lookahead only ever allocates along convex hull of the objective curve

Convex hulls can be found in linear time
o Some details and corner cases; see thesis

22

Q@O O vitwaicaches OO OO0

Configuration: Placement

Allocations Start = Decide = Place

- - . Intensity = Accs/Size
. - 100 accs to A per Kinstr =
. . . I, = 100 accs/10 banks I~ U U

= 10 accs/bank I — I I

75 accs to B per K instr =
. . Ig =75 accs/3 banks A‘s harm: B‘s harm; Place B

= 25 accs/bank Ad, = 2 hops Adg = 1 hop (AL > ALy)
ALA=IA‘AdA=20 ALB=IB.AdB=25

Q@O O vitwaicaches OO OO0 23

Virtual Cache Overheads

Cache partitioning adds 8KB / bank
VTBs add 1KB / core

Monitors add 8KB / core

: NoC Router :
I
Total: 17KB / tile =» 3% area overhead over caches . L2 .
LZII.I L]I.D
Negligible energy overheads Core -

OS runtime takes =0.2% of system cycles B Modified structures

B New/added structures

Q@O O vitwaicaches OO OO0 pZ!

CDCS, HPCA’15

Contention-Aware Thread Scheduling

Virtual caches introduce capacity contention between threads

—

Poor thread placement =» unnecessary data movement

(T =

Schedule threads to cluster around shared VCs, separate private VCs

Q@O O vitwaicaches OO OO0

Evaluation of Virtual Caches

Execution-driven simulation using zsim [Zsim, ISCA’13]

Workloads:
o 64-core, random mixes of SPECCPU2006

o See thesis for other system sizes, multithreaded programs, etc

Cache organizations
o “S-NUCA” — conventional shared cache with lines spread across banks (baseline)
o “R-NUCA” — similar classification as Jigsaw but fixed placement heuristics
° Jigsaw

Q@O O vitwaicaches OO OO0 26

Evaluation: Performance

64-core multiprogrammed mixes of SPECCPU2006

1.8 r I I I I 7

= |igsaw
L7- _ Rnuca |
1.6- — S-NUCA e

Weighted speedup vs. S-NUCA

= = =
B W
1 1 1

Jigsaw achieves best performance
o Up to 75% improved w. speedup

WSpeedup vs S-NUCA

1.2 - —_
o Gmean +46% w. speedup —_—
o vs.upto 23%/gmean 19% for R-NUCA L1-]
1'ﬂl 1 1 1 1 I
0 10 20 30 40 50

Workload

Q@O O vitwaicaches OO OO0 27

Evaluation: Energy Breakdown

64-core multiprogrammed mixes of SPECCPU2006 Cache banks

e Main memo
Breakdown data movement energy 7

18- _
° Normalized to Jigsaw % 16l]
-
reduces network distance but adds LLC misses U 14 i
o Placement heuristics limit capacity L-'j 12 i
c
Jigsaw reduces data movement from both E 10F 1
on-chip network and LLC misses v 08 | ue
o Saves 70% vs. S-NUCA % 0.6 - - | misses
o Saves 20% vs. R-NUCA © 0.4+~ -
o LLC
0.2+ L
E accesses
00- =
@::‘5'?“ ﬁuﬁp‘ qc,a““

Q@O O vitwaicaches OO OO0 28

Jenga, Under submission

Virtual Cache Hierarchies: Jenga

Hierarchies provide the illusion of a single large & fast memory

/ “Magic”

e’ -
O
7
,z}%iegtg\}hy is useful for two reasons:

. \(&\) §>\Q/Ada pta iverse apps 2. Adaptto diversity within one app
! /b'(\ * Worki est level E.g., different datastructures
AN e Effi Ith big diffe cross levels * Single-level VCs insufficient

~

y

@ ® O® @® \VitualCacheHierarchies QO OO

Heterogeneous Memories

New memory technologies give 100s MB capacity nearby
o 3D-stacked DRAM

o eDRAM w/ interposers

o PCM, memristors, etc

Deepen the cache hierarchy? |
> Significantenergy & bandwidth vs. main memory

- Main memory

...But comparable latency to main memory
o =» Large penalty for apps that don’t need it!

How do we design memory systems to harness these heterogeneous memories?

@ ® O® @® \VitualCacheHierarchies QO OO

Virtual Cache Hierarchies

Expose heterogeneity to software

Build virtual cache hierarchies (VHs) out of heterogeneous cache banks
o Multi-level hierarchiesonly when beneficial

o Use caches best suited to access pattern
> Small working sets =» local on-chip bank
o Largeworking sets =» stacked DRAM vault

VHs simply do not use stacked DRAM when not beneficial
o Reduces bandwidthand energy [BEAR, ISCA’15]

@ ® O® @® \VitualCacheHierarchies QO OO

Virtual Cache Hierarchies

Chain multiple VCs to make virtual cache hierarchies

Give applications the hierarchy they want
o Use hierarchyonly when it is beneficial

o =¥ Efficient integration of new memories (e.g., stacked DRAM)

2A
(ot
: '
o
o
§ \. J N
.‘22 —_ ! e N K
) 256MB ¥
Cache size %
O o 7

@ ® O® @® \VitualCacheHierarchies QO OO

Jenga Operation

Jenga adds another level to the VTB § f‘

and doesn’t change monitors/

Model access latency of a two-level cache hierarchy

-_——
’—'— -

’ N\
’ Model AN))
,' 2-Level Hierarchy =\ S',Ze V|rtL.1aI
| Hierarchies
\ Latency /
\ /

N /
~ //
\\ -~
~~~ _—”

App miss curves

Place Virtual Final allocation

Herarchies [SEE—

® O® ® @® \VitualCacheHierarchies QO OO 3




Modeling Hierarchy Latency

Latency = Accesses X L1 Latency + L1 Misses X L2 Latency + L2 Misses X Memory Latency

— One level
Two-level virtual hierarchies give latency surface B Two levels
> Total size
° VL1size

Complex tradeoffs

o VL1 size influences VL2 access latency

o VL2 size influences VL1 miss penalty
o Etc

Aouazxe| —

@ ® O® @® \VitualCacheHierarchies QO OO

34



Modeling Hierarchy Latency

Jenga selects the hierarchy that performs best at every size
° One vs. two levels

o VL1size
A E—— BN I S—— E— E—
——  One level | | § —— Use one level |
—— Best two level | | T — Use two levels -
T ' ' : | T : ] H | |
LC:".? E‘ | Can use same s:zmg&
% % - ......;placement as used for 1
- - smgle—level VCs'
Total Size — Total Size —

35

@ ® O® @® \VitualCacheHierarchies QO OO




Evaluation

36-tile multicore with 18 MB SRAM cache and 1GB stacked DRAM
20 random mixes of SPECCPU2006

Cache organizations
o S-NUCA: “LRU” baseline, no stacked DRAM

Jigsaw: No stacked DRAM
Alloy: Stacked DRAM L4

o |ssues parallel, speculative memory accesses

(o]

o

o Spendsenergy to improve performance

JigAlloy: Jigsaw L3 + Alloy L4

[¢]

° Jenga

® O® ® @® \VitualCacheHierarchies QO OO 56




Evaluation: Performance

Jenga improves weighted speedup... | | | |
- — Jenga ——  S-NUCA
2.2+ Alloy — JigAlloy - /;-

vs. S-NUCA by up to 2.2X/gmean 82%

vs. JigAlloy by up to 13%/gmean 7%
o Up to 24% for individual apps

WSpeedup vs S-NUCA

Workload

@ ® O® @® \VitualCacheHierarchies QO OO



Evaluation: Energy

JigAlloy spends energy to improve performance
o Adds 12% energy vs Jigsaw

Jenga reduces data movement energy...
> vs. S-NUCA by 43%

o vs. JigAlloy by 20%
° vs. Jigsaw by 11%

Jenga sidesteps the energy-performance tradeoff!

Overall, Jenga improves energy-delay product...
> vs. S-NUCA by up to 3.6X/gmean 2.6X

o vs. JigAlloy by up to 24%/gmean 15%

@ ® O® @® \VitualCacheHierarchies QO OO

msm Off-chip DRAM

mm Stacked DRAM
SRAM

B Net

—
o

o
o

S 2 2

D n 5
N ee— 0
Jigsaw SN NS

Data Movement Energy
o
(e)]

Alloy I .

Jigalloy NN N

Jenga



Other Work:
Virtual Caches Up The System Stack

Applications +<— User-level VCs

Compilers <— Profiling

«<— Thread scheduling

} Jigsaw, Jenga

Operating System

Hardware

@ ® O® @® \VitualCacheHierarchies QO OO



Virtual Hierarchy Summary

Adapt cache resources to suit applications
° Enough space to fit working set

o At minimum distance

Improve performance and save energy

Cache performance scales independent of system size
o Implicationsfor system architecture and algorithms

Robust framework to manage heterogeneous memories

@ ® O® @® \VitualCacheHierarchies QO OO



Analytical Cache
Replacement




High-Performance Cache Replacement

Optimal policy (Belady’s MIN) is impractical

Empirical policies:
o Traditional: LRU, LFU, random

o Statistical cost function [IGRD, ICS’04]

o Bypass streaming accesses [DIP, ISCA’07]

o Predict likelihood of reuse [SDBP, MICRO’10]

o Predict time until reference [RRIP, ISCA’10]
[SHIP, MICRO’11]

o Protectlines from eviction [PDP, MICRO’12]

o Use data mining to find best policy [GIPR, MICRO’13]
o Etc

Perform poorly on some apps
=>» Not making best use of information

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O

Analytical policies:
° Independent reference model [Aho, J. ACM’71]

Assumes static behavior
=>» Not a good model of LLC accesses

We use a simple reference model that captures
dynamism and solve for its optimal policy: EVA.

EVA is practical and outperforms empirical
policies.




Background:
Independent Reference Model

Analytical policies use a simplified memory reference model to derive optimal policy

Prior work uses independent reference model [Aho, JACM’71]
o Candidateshave static, non-uniform reference probabilities
° E.g., a4-way cache 0x1000 0x1234 OxBEEF 0x1337
0.1 0.2 0.05 00001 J

Optimal policy: evict candidate with lowest reference probability

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O



Background:
Independent Reference Model

IRM is a poor model of LLC references
o Focuses on heterogeneity

o At the expense of dynamic behavior A
IRM MIN
=
. 'G_J
Relatively few threads access LL'C | 2 ID w/ Classes
o LLC candidatestend to behavesimilarly o0
> Dynamicbehavioris paramount 3
()]
T IID
Arra >
Dynamic behavior

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O



lid Reuse Distance Model

Reuse distance is the number of accesses between references to same address

4 4

~~ N N\
ABBCADDBACCD
Y =

Reuse distances are independently and identically distributed according to the reuse distance
distribution, P(D = d).

What is the right replacement policy?

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O



What’s the Right Approach?

Goal: Maximize hit rate

Constraint: Limited cache space

The replacement policy must balance the probability a candidate will hit (reward) against the
cache space it takes away from other candidates (opportunity cost)

But how do we tradeoff between these incommensurable objectives?

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O



Replacement By Economic Value Added

Key idea: Time spent in the cache costs forgone hits Cache hit rate = 40%
Cache size = 16 lines
Line hitrate = (40%)/16 = 2.5%

Hitin 10 accesses

Netvalue =1 — 10 X 2.5% = 0.75

A

Netvalue = 0 — 32 X 2.5% = —0.8

EVA=20%x%x0.75+30%Xx0.54+50% %x—-0.8=-0.1
= A tends to lower the cache’s hit rate

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O



Replacement By Economic Value Added

Key idea: Time spent in the cache costs forgone hits Cache hit rate = 40%
16 I Cache size = 16 lines
.16 accesses later Line hit rate = (40%)/16 = 2.5%

Hit in 10 accesses

1

]

0—-16 X 2.5% =—-0.4

EVA=37.5%X%X0.94+62.5% %X —-0.4=0.0375
=» A now tends to increase hit rate

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O



Replacement By Economic Value Added

What about the future?

In the iid reuse distance model,

Hit in 1OAaccesses candidatesbehaveidentically
' ‘ after a reference

= EVA s zero

¥ New line

A

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O



Cache Replacement As An MDP

Markov decision processes extend Markov chains with decision making
o Statess;

° Actions a; ;
o Rewards r(si, al-,j)

o Transition probabilities P(si|s;, a; ;)

MDP theory lets one find the optimal policy to maximize some metric, e.g. total reward

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O



Cache Replacement As An MDP

States: each candidate’s age

Actions: which candidate to evict

Rewards: +1 for hit

Transition probabilities: iid model

Objective: maximize average reward
° |.e., maximize hit rate

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O



Cache Replacement As An MDP

MDP theory gives the optimal policy

Define bias as the expected total reward minus the average reward
o This is EVA: hits minus forgone hits

The optimal policy maximizes the expected future bias
o =» Evicting candidate with lowest EVA is optimal

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O



Recovering Some Heterogeneity

Some programs have clearly distinct classes of accesses

lid memory reference model w/ classification
o Different reuse distancedistribution per class, P(D; = d)

o Within each class, reuse distances are identically distributed

o All reuse distances are independent

Reuse vs. non-reused classification [RRIP, ISCA’10][DCS,HPCA’12]
o Distinguishes working set that fits in cache

o Simple but effective

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O




Replacement By Economic Value Added

What about the future? With classification, candidates
do not behave identically after
a reference

Hit in 10 accesses

M New reused line

« New non-reused line

A

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O 54




Replacement By Economic Value Added

What about the future? With classification, candidates
do not behave identically after
a reference

Hits

New reused line

Can account for EV A in future lifetimes
by adding a single constant term
(see thesis)

Evictions

Evictions

New non-reused line

N/

Evictions

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O 55




Implementation

1. Candidate ages:| 1 [=7

e

§ i\ EVICTION PRIORITY ARRAY

o \ .

o \ 1 Periodic Age 112134

= Update Reused 1p 5 67

3 K\

g Non-reused 9 3 | 11| 16
\

Q

o *i \X

. .. 2. Compare priorities:| 9 N2
Age = Hlt( Evictions -
EVICT 39 CANDIDATE

3. Update monitor (non-reused atage 5)

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O



Implementation — Updates

Small circuit computes EVA

V' Counters 1 | v
16-bit 1R1IW |_.—’ - —>| raddr
—s{addr > e N . —{ waddr
IV I | < Single- — write
Je > < adder ALU EVA
v m srcl T hif g » 32-bit1RIW
m ShITE ("1 cyele ADD
MR 33-cycle MUL
- ~VP(L>a) | - 57-cycle DIV
—[ P> ) — Forca
—{YP(H >a) }—

Sorting FSM computes eviction priorities (not shown)

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O




Implementation — Overheads

Synthesized in 65nm commercial manufacturing process

SRAM overheads from CACTI

-“

mm? vs. 1MB nJ / LLC miss vs. 1IMB
Ranking 0.010 0.05% 0.014 0.6%
Counters 0.025 0.14% 0.010 0.4%
Updates 0.052 0.30% 380/ 128K 0.1%
Total — 0.5% — 1.1%

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O



Evaluation — Cache Performance

. . L. = < MIN Random =< LRU & SHP *~— PDP o EVA
EVA greatly reduces misses vs. prior policies 35
o Avg. MPKI over SPECCPU2006 ] :
> LLC sizes 1IMB to 8MB 3.0 |5
Z '
= 25
= :
EVA closes 57% of gap between random and MIN EI;J 2.0 :
° vs. 41%-45% for prior policies O {15L
N
a 1.0F
= :
05 i -
00—t -—o—e—jo-—t—0—|o —e-

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O

10 20 30 40 50 60 70
Area (mm? @ 65nm)




Evaluation — Cache Area

Because EVA improves performance, it requires less space to match performance
o EVA saves 9% area vs SHiP

o =+ MIN + = Random ~ LRU +—¢ SHiP *—% PDP —as EVA 30 . | | Breakdown
40 -
s T 35 £ @ 4MB
€ c 30 5 20 | (== Data
E E 25 g m Tag
E ® 20 ~ 15 || g Replacement
= E (Tags)
= £ | Replacement
2 £ 10F o 10 W (Other)
OB Z .
0 | i ] | | |
SRR ;

Random LLC Size (MB)

Q@ O®O®O® ® ~rnaytical CacheReplacement O O O 60




Other Work

Q00O O®O®O® otherwork OO0



Talus, HPCA’15

Provable Convex Cache Performance

Partitioning and high-performance replacement should be complementary
° Partitioning requires miss curves — easy for LRU, hard otherwise

We use partitioning to fix LRU’s problems without sacrificing its benefits
o Specifically, we avoid performance cliffs and guarantee convex miss curves

° Prove it works using simple model of miss curve scaling

>

=
o
K

Misses per K Inst
/

Cachesize

Q00O O®O® O oOtherwork OO



Under submission

A Cache Model for Modern Processors

Accurately model performance of arbitrary replacement policies

o Use iid memory reference model
> Model replacement policies as ranking functions: R(a) = eviction priority

=i
=

Simple set of equations for probability distribution of age, hits, and R
evictions _ o8} - LRU
o Fixed-pointiteration convergesrapidly ug”ﬁ S ==
s .
8 0.4
Mean error of ~3% across policies, benchmarks & LLC sizes <,
ool . :
25 50 75 100
Percentile

63

Q00O O®O® O oOtherwork OO




In preparation

Cache Calculus

Explicit, closed-form solutions of cache performance

Relax discrete cache model into system of ordinary differential equations
° E.g., for random replacement:

DII DI
HII — _Hl _ E/ 1.0 [l ] I | L
D,;,n 1-D = = N=100
E" = -3 (H'+E" 0.8 »x N=175 _
~ » = N=250
Can use numerical analysis to solve for arbitrary access patterns ¢ 0.6- > N=500
L
Can solve explicitly miss rate m on particular access patterns " 0.4- ]
° E.g.,scanning: m = 1 — ProductLog (—we™®)/w where w = N/S =
o . — — i _ i — i i 0.2- B
E.g., stack:m = 1 20 4w? 4w3 +0 (w4) / \
Extremely good match with simulation! _ _ 0.05 - ; . | .
Array size Cache size 0 100 200 300 400 500
Cache Size, S

Q0 0O0O®O® oiherwork OO 64




Acknowledgements — Research

Anant Agarwal Frans Kaashoek NickolaiZeldovich
2008-2012 2012-2013

—_—_—_—__N
\________-

2013-

QO OO O® O® O® -~cknowledgements O



Acknowledgements — Research

QO OO O® O® O® -~cknowledgements O



Acknowledgements — Education

QO OO O® O® O® -~cknowledgements O



Conclusion

Data movement is a growing problem in current systems

“Common case”, heuristic design is insufficient

Analytical memory systems achieve robust, high performance
o Virtual cache hierarchies
o Analytical cache replacement

Mechanisms, monitoring, and models give a blueprint for future memory systems

Conclusion 68




m D)
SS2E

2 SSSE
SE8s

(D
=
-

Q0000 O®O®O® cConclusion




