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Executive Summary
Data movement is a growing problem in multicores

◦ DRAM 1000×energy of FP multiply-add
◦ Consumes ≈50% of energy and caches take >50% area
◦ Bigger multicores More memory requests & greater distances

Traditional heuristics do not scale
◦ Multicores are diverse  “common case” is far from optimal

An analytical design gives robust, high performance

Two in-depth applications of this blueprint
◦ Virtual cache hierarchies
◦ Cache replacement
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Goal: Large, Fast, Low-Energy Memory
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Reality: Cache Hierarchy
Caches take >50% chip area
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L2 CacheL1

Main memory
Processor

CPU

Sun UltraSPARC circa 1998: 16KB L1, 4MB L2
 nearly all apps benefit from hierarchy & if not penalty is small
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Data Movement Is A Growing Problem
Multicore today
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Main memory

16-core Processor

7 cycles

Cores compete for scarce off-chip memory 
bandwidth and cache capacity

On-chip latency is heterogeneous and growing
Cores

Caches

Tradeoffs in multicores are complicated!

40 cycles

Introduction



Traditional Heuristics Are Insufficient
Architects try to “make common case fast”

◦ But programs vary greatly in their memory behavior
◦ Access rate

◦ Working set size

◦ Reference locality

◦ What is the “common case”?

Design to particular benchmarks:
◦ Observe behavior for apps that perform poorly

◦ Find techniques that improve performance

◦  State-of-the-art techniques do not perform well across all benchmarks
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+ Performance of app-specific hardware design

+ Generality across many apps

+ Low overheads

Our Analytical Approach
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High-level models

Periodic updates
amortize overheads

Low overhead

Capture important features

Simple

Configurable

Monitors: Profile programs

Models:
Adapt to program

Mechanisms:
Core operations
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Thesis Contributions
Virtual cache hierarchies

◦ Place data across banks to reduce data movement [Jigsaw, PACT’13]

◦ Schedule threads to reduce contention for banks [CDCS, HPCA’15]

◦ Exploit memory heterogeneity to build virtual hierarchies [Jenga, Under submission]

Cache replacement
◦ Provable convex cache performance [Talus, HPCA’15]

◦ Replacement by economic value added [EVA, Under submission]

Cache modeling
◦ An accurate model for high-performance replacement policies [Under submission]

◦ Explicit, closed-form solutions of hit rate using differential equations [In preparation]
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An Analytical Memory Design
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Virtual caches place data in banks to fit working set near where it is used
◦ Reduce data movement energy by >40%

Analytical cache replacement makes better use of cache space
◦ Increase effective capacity by 10% over state-of-the-art

Virtual
Caches

Cache
Repl.
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Our analytical approach is a blueprint for future 
robust, scalable memory systems
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Virtual Cache 
Hierarchies
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Virtual Caches: Jigsaw
Key idea: Schedule data across cache banks

◦ Control both capacity and placement

◦ Minimize cache misses & access latency
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Virtual Caches: Jigsaw
Single-level virtual caches (VCs)

VCs combine partitions of physical banks

Map data to VCs

Periodically reconfigure VCs to minimize 
data movement
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Jigsaw, PACT’13

VTB (virtual cache 
translation buffer)
 Spread accesses 

across banks

Distributed utility monitors
Miss curves

Latency model & 
novel partitioning 

algorithm
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Operation: Access
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...
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Core
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L2

LLC

LD 0x5CA1AB1E

Data does not move  single-lookup
Data  virtual caches, so no LLC coherence required
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Jigsaw classifies data based on access pattern
◦ Thread, Process, and Global

Data lazily re-classified on TLB miss
◦ Negligible overhead

Data Classification
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• 6 thread VCs
• 2 process VCs
• 1 global VC
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Virtual Cache Translation Buffer
The VTB gives the unique location of an address in the LLC

Configurable map: {Address, VC}  {Bank, partition}
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VC id (from TLB)

1,3 0,5 3,4 2,7
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VTB entry

4 entries,
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Address (from private cache miss)
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Monitoring
Software requires miss curves for each VC

Jigsaw adds geometric monitors (GMONs) distributed across tiles

Geometric monitors monitor very large caches at low overhead--𝑂 log 𝑠𝑖𝑧𝑒 ; see thesis

0x3DF7AB 0xFE3D98 0xDD380B 0x3930EA…

0xB3D3GA 0x0E5A7B 0x123456 0x7890AB…

0xCDEF00 0x3173FC 0xCDC911 0xBAD031…

0x7A5744 0x7A4A70 0xADD235 0x541302…

717,543 117,030 213,021 32,103…

… …

Hit 
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Array

Way 0 Way N-1…

Misses

Size
Cache Size
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Configuration
1. Total memory latency = cache access latency + cache misses

2. Size virtual caches to minimize latency

3. Place virtual caches

◦ Solve each independently for simplicity starting from optimistic assumptions
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Modeling Virtual Cache Latency
LLC miss latency decrease with larger size

Cache access latency increases with larger size

Optimal allocation balances these
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Modeling Access Latency
Construct access latency curve using network distance

The average value of this curve gives the access latency
◦ E.g., hierarchy with a VC of 6 banks
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Configuration: Sizing
Partitioning problem: Divide cache capacity S among P partitions to minimize objective

◦ Given curves 𝑓𝑝 , choose sizes 𝑠𝑝 such that 0 ≤ 𝑠𝑝 &  𝑝 𝑠𝑝 ≤ 𝑆 to minimize  𝑝𝑓𝑝(𝑠𝑝)

◦ Traditional partitioning minimizes misses

◦ Jigsaw minimizes total latency (including on-chip latency)

NP-complete in general

Prior approaches:
◦ Hill climbing is fast, but gets stuck in local optima

◦ Lookahead [UCP, MICRO’06] produces good outcomes, but scales quadratically
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Can we scale Lookahead?
Virtual Caches



Configuration: Peekahead
Lookahead scans miss curves to find allocations that maximize hits / capacity

Observation: Lookahead only ever allocates along convex hull of the objective curve

Convex hulls can be found in linear time
◦ Some details and corner cases; see thesis
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Configuration: Placement

23

75 accs to per K instr ⇒
𝐼𝐵 = 75 accs/3 banks
= 25 accs/bank

100 accs to per K instr ⇒
𝐼𝐴 = 100 accs/10 banks
= 10 accs/bank

Intensity = Accs/Size

A‘s harm:

Δ𝑑𝐴 = 2 hops

Δ𝐿𝐴 = 𝐼𝐴 ⋅ Δ𝑑𝐴 = 20

B‘s harm:

Δ𝑑𝐵 = 1 hop

Δ𝐿𝐵 = 𝐼𝐵 ⋅ Δ𝑑𝐵 = 25

Place B
(Δ𝐿𝐵 > Δ𝐿𝐴)

Start ⇒ Decide ⇒ PlaceAllocations
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Virtual Cache Overheads
Cache partitioning adds 8KB / bank

VTBs add 1KB / core

Monitors add 8KB / core

Total: 17KB / tile  3% area overhead over caches

Negligible energy overheads

OS runtime takes ≈0.2% of system cycles
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Core

VTB

TLBs

L1I L1D

L2

Modified structures
New/added structures

Virtual Caches



Contention-Aware Thread Scheduling
Virtual caches introduce capacity contention between threads

Schedule threads to cluster around shared VCs, separate private VCs
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CDCS, HPCA’15

Poor thread placement  unnecessary data movement
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Evaluation of Virtual Caches
Execution-driven simulation using zsim [Zsim, ISCA’13]

Workloads:
◦ 64-core, random mixes of SPECCPU2006

◦ See thesis for other system sizes, multithreaded programs, etc

Cache organizations
◦ “S-NUCA” – conventional shared cache with lines spread across banks (baseline)

◦ “R-NUCA” – similar classification as Jigsaw but fixed placement heuristics

◦ Jigsaw
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Evaluation: Performance
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64-core multiprogrammed mixes of SPECCPU2006

Weighted speedup vs. S-NUCA

Jigsaw achieves best performance
◦ Up to 75% improved w. speedup

◦ Gmean +46% w. speedup
◦ vs. up to 23% / gmean 19% for R-NUCA

Virtual Caches



Evaluation: Energy Breakdown

28

64-core multiprogrammed mixes of SPECCPU2006

Breakdown data movement energy
◦ Normalized to Jigsaw

R-NUCA reduces network distance but adds LLC misses
◦ Placement heuristics limit capacity

Jigsaw reduces data movement from both
on-chip network and LLC misses

◦ Saves 70% vs. S-NUCA

◦ Saves 20% vs. R-NUCA

LLC 
misses

LLC
accesses

Virtual Caches



Hierarchies provide the illusion of a single large & fast memory

Hierarchy is useful for two reasons:

L3

Virtual Cache Hierarchies: Jenga
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Jenga, Under submission

Core

“Magic” Memory

L1 L2

1. Adapt across diverse apps
• Working set settles at smallest level
• Efficient with big differences across levels

2. Adapt to diversity within one app
• E.g., different data structures
• Single-level VCs insufficient

Virtual Cache Hierarchies



Heterogeneous Memories
New memory technologies give 100s MB capacity nearby

◦ 3D-stacked DRAM

◦ eDRAM w/ interposers

◦ PCM, memristors, etc

Deepen the cache hierarchy?
◦ Significant energy & bandwidth vs. main memory

…But comparable latency to main memory
◦  Large penalty for apps that don’t need it!

Main memory

How do we design memory systems to harness these heterogeneous memories?
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Virtual Cache Hierarchies
Expose heterogeneity to software

Build virtual cache hierarchies (VHs) out of heterogeneous cache banks
◦ Multi-level hierarchies only when beneficial

◦ Use caches best suited to access pattern
◦ Small working sets  local on-chip bank

◦ Large working sets  stacked DRAM vault

VHs simply do not use stacked DRAM when not beneficial
◦ Reduces bandwidth and energy [BEAR, ISCA’15]
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Virtual Cache Hierarchies
Chain multiple VCs to make virtual cache hierarchies

Give applications the hierarchy they want
◦ Use hierarchy only when it is beneficial

◦  Efficient integration of new memories (e.g., stacked DRAM)
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Jenga Operation
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Model 
2-Level Hierarchy

Latency

Place Virtual 
Herarchies

Model 
1-Level Access

Latency

Jenga adds another level to the VTB             and doesn’t change monitors

Model access latency of a two-level cache hierarchy

App miss curves

Size Virtual 
Hierarchies
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Modeling Hierarchy Latency
Latency = Accesses × L1 Latency + L1 Misses× L2 Latency + L2 Misses× Memory Latency

Two-level virtual hierarchies give latency surface
◦ Total size

◦ VL1 size

Complex tradeoffs
◦ VL1 size influences  VL2 access latency

◦ VL2 size influences VL1 miss penalty

◦ Etc
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Modeling Hierarchy Latency
Jenga selects the hierarchy that performs best at every size

◦ One vs. two levels

◦ VL1 size
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Can use same sizing & 
placement as used for 

single-level VCs!
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Evaluation
36-tile multicore with 18MB SRAM cache and 1GB stacked DRAM

20 random mixes of SPECCPU2006

Cache organizations
◦ S-NUCA: “LRU” baseline, no stacked DRAM

◦ Jigsaw: No stacked DRAM

◦ Alloy: Stacked DRAM L4
◦ Issues parallel, speculative memory accesses

◦ Spends energy to improve performance

◦ JigAlloy: Jigsaw L3 + Alloy L4

◦ Jenga
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Evaluation: Performance
Jenga improves weighted speedup…

vs. S-NUCA by up to 2.2X/gmean 82%

vs. JigAlloy by up to 13%/gmean 7%
◦ Up to 24% for individual apps
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Evaluation: Energy
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JigAlloy spends energy to improve performance
◦ Adds 12% energy vs Jigsaw

Jenga reduces data movement energy…
◦ vs. S-NUCA by 43%
◦ vs. JigAlloy by 20%
◦ vs. Jigsaw by 11%

Jenga sidesteps the energy-performance tradeoff!

Overall, Jenga improves energy-delay product…
◦ vs. S-NUCA by up to 3.6X/gmean 2.6X
◦ vs. JigAlloy by up to 24%/gmean 15%
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Other Work:
Virtual Caches Up The System Stack
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Hardware

Operating System

Compilers

Applications

Jigsaw, Jenga

Thread scheduling

Profiling

User-level VCs
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Virtual Hierarchy Summary
Adapt cache resources to suit applications

◦ Enough space to fit working set

◦ At minimum distance

Improve performance and save energy

Cache performance scales independent of system size
◦ Implications for system architecture and algorithms

Robust framework to manage heterogeneous memories
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Analytical Cache 
Replacement
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EVA, Under submission
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High-Performance Cache Replacement
Optimal policy (Belady’s MIN) is impractical

Empirical policies:
◦ Traditional: LRU, LFU, random

◦ Statistical cost function [IGRD, ICS’04]

◦ Bypass streaming accesses [DIP, ISCA’07]

◦ Predict likelihood of reuse [SDBP, MICRO’10]

◦ Predict time until reference [RRIP, ISCA’10]
[SHIP, MICRO’11]

◦ Protect lines from eviction [PDP, MICRO’12]

◦ Use data mining to find best policy [GIPR, MICRO’13]

◦ Etc

Perform poorly on some apps
 Not making best use of information

Analytical policies:
◦ Independent reference model [Aho, J. ACM’71]

Assumes static behavior
 Not a good model of LLC accesses

We use a simple reference model that captures 
dynamism and solve for its optimal policy: EVA. 

EVA is practical and outperforms empirical 
policies.
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Background:
Independent Reference Model
Analytical policies use a simplified memory reference model to derive optimal policy

Prior work uses independent reference model [Aho, JACM’71]

◦ Candidates have static, non-uniform reference probabilities

◦ E.g., a 4-way cache

Optimal policy: evict candidate with lowest reference probability
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Background:
Independent Reference Model
IRM is a poor model of LLC references

◦ Focuses on heterogeneity

◦ At the expense of dynamic behavior

Relatively few threads access LLC
◦ LLC candidates tend to behave similarly

◦ Dynamic behavior is paramount 
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Iid Reuse Distance Model
Reuse distance is the number of accesses between references to same address

A B B C A D D B A C C D

Reuse distances are independently and identically distributed according to the reuse distance 
distribution, P(𝐷 = 𝑑).

What is the right replacement policy?
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What’s the Right Approach?
Goal: Maximize hit rate

Constraint: Limited cache space

The replacement policy must balance the probability a candidate will hit (reward) against the 
cache space it takes away from other candidates (opportunity cost)

But how do we tradeoff between these incommensurable objectives?
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Replacement By Economic Value Added
Key idea: Time spent in the cache costs forgone hits
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A

20%

50%

Hit in 10 accesses

30%

Hit in 20 accesses

Eviction in 32 accesses

Cache hit rate = 40%
Cache size = 16 lines

Line hit rate = (40%)/16 = 2.5%

Net value = 1− 10 × 2.5% = 0.75

Net value = 1 − 20 × 2.5% = 0.5

Net value = 0− 32 × 2.5% = −0.8

𝑬𝑽𝑨 = 𝟐𝟎%× 𝟎. 𝟕𝟓 + 𝟑𝟎%× 𝟎. 𝟓 + 𝟓𝟎% ×−𝟎. 𝟖 = −𝟎. 𝟏
 A tends to lower the cache’s hit rate
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Replacement By Economic Value Added
Key idea: Time spent in the cache costs forgone hits

…16 accesses later
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A

20%

62.5%

Hit in 10 accesses

37.5%

Hit in 4 accesses

Eviction in 16 accesses

Cache hit rate = 40%
Cache size = 16 lines

Line hit rate = (40%)/16 = 2.5%

Net value = 1 − 4 × 2.5% = 0.9

Net value = 0 − 16 × 2.5% = −0.4

𝑬𝑽𝑨 = 𝟑𝟕. 𝟓% × 𝟎. 𝟗 + 𝟔𝟐.𝟓% ×−𝟎. 𝟒 = 𝟎. 𝟎𝟑𝟕𝟓
 A now tends to increase hit rate

30%

Hit in 20 accesses

50%

Eviction in 32 accesses
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Replacement By Economic Value Added
What about the future?
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A

20%

50%

Hit in 10 accesses

30%

Hit in 20 accesses

Eviction in 32 accesses

New line

In the iid reuse distance model, 
candidates behave identically 

after a reference
 EVA is zero
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Cache Replacement As An MDP
Markov decision processes extend Markov chains with decision making

◦ States 𝑠𝑖
◦ Actions 𝛼𝑖,𝑗

◦ Rewards 𝑟 𝑠𝑖 , 𝑎𝑖,𝑗

◦ Transition probabilities P 𝑠𝑘 𝑠𝑖 , 𝑎𝑖,𝑗)

MDP theory lets one find the optimal policy to maximize some metric, e.g. total reward
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𝛼1,1: +1𝛼2,1: 0

𝛼2,2: 0
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Cache Replacement As An MDP
States: each candidate’s age

Actions: which candidate to evict

Rewards: +1 for hit

Transition probabilities: iid model

Objective: maximize average reward
◦ I.e., maximize hit rate
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Cache Replacement As An MDP
MDP theory gives the optimal policy

Define bias as the expected total reward minus the average reward
◦ This is EVA: hits minus forgone hits

The optimal policy maximizes the expected future bias
◦  Evicting candidate with lowest EVA is optimal
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Recovering Some Heterogeneity
Some programs have clearly distinct classes of accesses

Iid memory reference model w/ classification
◦ Different reuse distance distribution per class, P(𝐷𝐶 = 𝑑)

◦ Within each class, reuse distances are identically distributed

◦ All reuse distances are independent

Reuse vs. non-reused classification [RRIP, ISCA’10][DCS,HPCA’12]

◦ Distinguishes working set that fits in cache

◦ Simple but effective
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Replacement By Economic Value Added
What about the future?
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New reused line

With classification, candidates 
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Replacement By Economic Value Added
What about the future?
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A

Evictions

New reused line

With classification, candidates 
do not behave identically after 

a reference

New non-reused line

Hits

EvictionsHits

Evictions

Hits

Can account for 𝑬𝑽𝑨 in future lifetimes 
by adding a single constant term

(see thesis)
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Implementation
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CACHE EVENT COUNTERS
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Age 1 2 3 4 5 6 7 8

Reused 1 5 6 7 12 10 2 14

Non-reused 9 3 11 16 13 8 15 4

EVICTION PRIORITY ARRAY

1. Candidate ages: 1 7 5 3

EVICT 3rd CANDIDATE
(non-reused at age 5)

9 2 13 6

Age  Hits Evictions

Periodic
Update

+1 2. Compare priorities: 

3. Update monitor
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Implementation – Updates 
Small circuit computes EVA

Sorting FSM computes eviction priorities (not shown)
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Counters
16-bit 1R1W

P 𝐿 > 𝑎

Temp

Single-
adder ALU

1-cycle ADD
33-cycle MUL

57-cycle DIV

EVA
32-bit 1R1W

P 𝐻 > 𝑎

𝑚𝑁𝑅

𝑔ℓ
𝑚𝑅

1

Sh
if

te
r

waddr
write

op

addr

raddr

 𝑥 P 𝐿 > 𝑎 src2

src1
shift
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Implementation – Overheads 
Synthesized in 65nm commercial manufacturing process

SRAM overheads from CACTI
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Area Energy

mm2 vs. 1MB nJ / LLC miss vs. 1MB

Ranking 0.010 0.05% 0.014 0.6%

Counters 0.025 0.14% 0.010 0.4%

Updates 0.052 0.30% 380 / 128K 0.1%

Total − 0.5% − 1.1%
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Evaluation – Cache Performance
EVA greatly reduces misses vs. prior policies

◦ Avg. MPKI over SPECCPU2006

◦ LLC sizes 1MB to 8MB

EVA closes 57% of gap between random and MIN
◦ vs. 41%-45% for prior policies
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Evaluation – Cache Area
Because EVA improves performance, it requires less space to match performance

◦ EVA saves 9% area vs SHiP
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Breakdown
@ 4MB
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Other Work
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Provable Convex Cache Performance
Partitioning and high-performance replacement should be complementary

◦ Partitioning requires miss curves – easy for LRU, hard otherwise

We use partitioning to fix LRU’s problems without sacrificing its benefits
◦ Specifically, we avoid performance cliffs and guarantee convex miss curves

◦ Prove it works using simple model of miss curve scaling
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Talus, HPCA’15

Cache size

M
is

se
s 

p
er

 K
 I

n
st

10

Cache

𝛼

𝛽

𝜷

𝜶

Other Work



A Cache Model for Modern Processors
Accurately model performance of arbitrary replacement policies

◦ Use iid memory reference model

◦ Model replacement policies as ranking functions: 𝑅 𝑎 = eviction priority

Simple set of equations for probability distribution of age, hits, and 
evictions

◦ Fixed-point iteration converges rapidly

Mean error of ~3% across policies, benchmarks & LLC sizes 
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Under submission
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Cache Calculus
Explicit, closed-form solutions of cache performance

Relax discrete cache model into system of ordinary differential equations
◦ E.g., for random replacement:

𝐻′′ =
𝐷′′

𝐷′
𝐻′−

𝐷′

1− 𝐷
𝐸′

𝐸′′ = −
𝑚

𝑆
(𝐻′+ 𝐸′)

Can use numerical analysis to solve for arbitrary access patterns

Can solve explicitly miss rate 𝑚 on particular access patterns
◦ E.g., scanning: 𝑚 = 1 − ProductLog (−𝜔e−𝜔)/𝜔where 𝜔 = N/S

◦ E.g., stack: 𝑚 = 1 −
1

2𝜔
−
1

4𝜔2
−
1

4𝜔3
+𝑂

1

𝜔4

Extremely good match with simulation!
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Conclusion
Data movement is a growing problem in current systems

“Common case”, heuristic design is insufficient

Analytical memory systems achieve robust, high performance
◦ Virtual cache hierarchies

◦ Analytical cache replacement

Mechanisms, monitoring, and models give a blueprint for future memory systems
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Questions?
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