An Analytical Approach to Memory System Design

NATHAN BECKMANN

CSAIL MIT

PHD DEFENSE

17 AUGUST 2015

Executive Summary

Data movement is a growing problem in multicores

- DRAM 1000× energy of FP multiply-add
- $\,\circ\,$ Consumes $\approx\!50\%$ of energy and caches take $>\!50\%$ area
- Bigger multicores → More memory requests & greater distances

Traditional heuristics do not scale

Multicores are diverse → "common case" is far from optimal

An analytical design gives robust, high performance

Two in-depth applications of this blueprint

- Virtual cache hierarchies
- Cache replacement

Goal: Large, Fast, Low-Energy Memory

Reality: Cache Hierarchy

Caches take >50% chip area

Data Movement Is A Growing Problem

Traditional Heuristics Are Insufficient

Architects try to "make common case fast"

- But programs vary greatly in their memory behavior
 - Access rate
 - Working set size
 - Reference locality
- What is the "common case"?

Design to particular benchmarks:

- Observe behavior for apps that perform poorly
- Find techniques that improve performance
- → State-of-the-art techniques do not perform well across all benchmarks

Our Analytical Approach

- + Performance of app-specific hardware design
- + Generality across many apps Low overhead Monitors: Profile programs + Low overheads Capture important features Models: Mechanisms: *Core operations* Adapt to program Simple High-level models Configurable Periodic updates \rightarrow amortize overheads

Thesis Contributions

Virtual cache hierarchies

- Place data across banks to reduce data movement
- Schedule threads to reduce contention for banks
- Exploit memory heterogeneity to build virtual hierarchies
- Cache replacement
 - Provable convex cache performance
- Replacement by economic value added

Cache modeling

This talk

- An accurate model for high-performance replacement policies
- Explicit, closed-form solutions of hit rate using differential equations

[Jigsaw, PACT'13] [CDCS, HPCA'15] [Jenga, Under submission]

[Talus, HPCA'15] [EVA, Under submission]

[Under submission] [In preparation]

An Analytical Memory Design

Virtual caches place data in banks to fit working set near where it is used

Reduce data movement energy by >40%

Analytical cache replacement makes better use of cache space

Increase effective capacity by 10% over state-of-the-art

Our analytical approach is a blueprint for future robust, scalable memory systems

Virtual Cache Hierarchies

Virtual Caches: Jigsaw

Key idea: Schedule data across cache banks

- Control both capacity and placement
- → Minimize cache misses & access latency

Operation: Access

Data Classification

Jigsaw classifies data based on access pattern

• Thread, Process, and Global

Data lazily re-classified on TLB miss

• Negligible overhead

Virtual Cache Translation Buffer

The VTB gives the *unique location* of an address in the LLC

Configurable map: {Address, VC} → {Bank, partition}

Monitoring

Software requires miss curves for each VC

Jigsaw adds geometric monitors (GMONs) distributed across tiles

Geometric monitors monitor very large caches at low overhead-- $O(\log size)$; see thesis

Configuration

- 1. Total memory latency = cache access latency + cache misses
- 2. Size virtual caches to minimize latency
- 3. Place virtual caches
 - Solve each independently for simplicity starting from optimistic assumptions

Modeling Virtual Cache Latency

LLC miss latency decrease with larger size

Cache access latency increases with larger size

Optimal allocation balances these

Modeling Access Latency

Construct access latency curve using network distance

The average value of this curve gives the access latency

• E.g., hierarchy with a VC of 6 banks

Configuration: Sizing

Partitioning problem: Divide cache capacity *S* among *P* partitions to minimize objective

- Given curves $\{f_p\}$, choose sizes $\{s_p\}$ such that $0 \le s_p \& \sum_p s_p \le S$ to minimize $\sum_p f_p(s_p)$
- Traditional partitioning minimizes misses
- Jigsaw minimizes total latency (including on-chip latency)

NP-complete in general

Prior approaches:

• Hill climbing is fast, but gets stuck in local optima

• Lookahead [UCP, MICRO'06] produces good outcomes, but scales quadratically

Can we scale Lookahead?

Virtual Caches

Configuration: Peekahead

Lookahead scans miss curves to find allocations that maximize hits / capacity

Observation: Lookahead only ever allocates along *convex hull* of the objective curve

Convex hulls can be found in linear time

• Some details and corner cases; see thesis

Configuration: Placement

Virtual Cache Overheads

Cache partitioning adds 8KB / bank

VTBs add 1KB / core

Monitors add 8KB / core

Total: 17KB / tile -> 3% area overhead over caches

Negligible energy overheads

OS runtime takes $\approx 0.2\%$ of system cycles

Modified structures
 New/added structures

Contention-Aware Thread Scheduling

Virtual caches introduce *capacity contention* between threads

Schedule threads to cluster around shared VCs, separate private VCs

Evaluation of Virtual Caches

Execution-driven simulation using zsim

[Zsim, ISCA'13]

Workloads:

- 64-core, random mixes of SPECCPU2006
- See thesis for other system sizes, multithreaded programs, etc

Cache organizations

- "S-NUCA" conventional shared cache with lines spread across banks (baseline)
- "R-NUCA" similar classification as Jigsaw but fixed placement heuristics
- Jigsaw

Evaluation: Performance

64-core multiprogrammed mixes of SPECCPU2006

Weighted speedup vs. S-NUCA

Jigsaw achieves best performance

- Up to 75% improved w. speedup
- Gmean +46% w. speedup
 - vs. up to 23% / gmean 19% for R-NUCA

Evaluation: Energy Breakdown

64-core multiprogrammed mixes of SPECCPU2006

Breakdown data movement energy

• Normalized to Jigsaw

R-NUCA reduces network distance but adds LLC misses

Placement heuristics limit capacity

Jigsaw reduces data movement from both on-chip network and LLC misses

- Saves 70% vs. S-NUCA
- Saves 20% vs. R-NUCA

Virtual Cache Hierarchies: Jenga

Hierarchies provide the illusion of a single large & fast memory

Heterogeneous Memories

New memory technologies give 100s MB capacity nearby

- 3D-stacked DRAM
- eDRAM w/ interposers
- PCM, memristors, etc

Deepen the cache hierarchy?

Significant energy & bandwidth vs. main memory

...But comparable latency to main memory

→ Large penalty for apps that don't need it!

How do we design memory systems to harness these heterogeneous memories?

Virtual Cache Hierarchies

Expose heterogeneity to software

Build virtual cache hierarchies (VHs) out of heterogeneous cache banks

- Multi-level hierarchies only when beneficial
- Use caches best suited to access pattern
 - Small working sets → local on-chip bank
 - Large working sets → stacked DRAM vault

VHs simply do not use stacked DRAM when not beneficial

• Reduces bandwidth and energy [BEAR, ISCA'15]

Virtual Cache Hierarchies

Chain multiple VCs to make virtual cache hierarchies

Give applications the *hierarchy they want*

- Use hierarchy only when it is beneficial
- → Efficient integration of new memories (e.g., stacked DRAM)

Modeling Hierarchy Latency

Latency = Accesses × L1 Latency + L1 Misses × L2 Latency + L2 Misses × Memory Latency

← Latency

Two-level virtual hierarchies give latency surface

• Total size

• VL1 size

Complex tradeoffs

- VL1 size influences VL2 access latency
- VL2 size influences VL1 miss penalty
- Etc

Modeling Hierarchy Latency

Jenga selects the hierarchy that performs best at every size

- One vs. two levels
- VL1 size

Evaluation

36-tile multicore with 18MB SRAM cache and 1GB stacked DRAM

20 random mixes of SPECCPU2006

Cache organizations

- S-NUCA: "LRU" baseline, no stacked DRAM
- Jigsaw: No stacked DRAM
- Alloy: Stacked DRAM L4
 - Issues parallel, speculative memory accesses
 - Spends energy to improve performance
- JigAlloy: Jigsaw L3 + Alloy L4
- Jenga

Evaluation: Performance

Jenga improves weighted speedup...

vs. S-NUCA by up to 2.2X/gmean 82%

vs. JigAlloy by up to 13%/gmean 7%• Up to 24% for individual apps

Evaluation: Energy

JigAlloy spends energy to improve performance • Adds 12% energy vs Jigsaw

Jenga reduces data movement energy...

- vs. S-NUCA by 43%
- vs. JigAlloy by 20%
- vs. Jigsaw by 11%

Jenga sidesteps the energy-performance tradeoff!

Overall, Jenga improves energy-delay product...

- vs. S-NUCA by up to 3.6X/gmean 2.6X
- vs. JigAlloy by up to 24%/gmean 15%

Other Work: Virtual Caches Up The System Stack

Virtual Hierarchy Summary

Adapt cache resources to suit applications

- Enough space to fit working set
- At minimum distance

Improve performance *and* save energy

Cache performance scales independent of system size

• Implications for system architecture and algorithms

Robust framework to manage heterogeneous memories

EVA, Under submission

Analytical Cache Replacement

High-Performance Cache Replacement

[*IGRD*, *ICS*'04]

[*DIP*, *ISCA'07*]

[SDBP, MICRO'10]

[RRIP, ISCA'10] [SHIP, MICRO'11]

[*PDP*, *MICRO*'12]

Optimal policy (Belady's MIN) is impractical

Empirical policies:

- Traditional: LRU, LFU, random
- Statistical cost function
- Bypass streaming accesses
- Predict likelihood of reuse
- Predict time until reference
- Protect lines from eviction
- Use data mining to find best policy [GIPR, MICRO'13]
- Etc

Perform poorly on some apps
➔ Not making best use of information

Analytical policies:

• Independent reference model

[Aho, J. ACM'71]

Assumes static behavior → Not a good model of LLC accesses

We use a simple reference model that captures dynamism and solve for its optimal policy: EVA.

EVA is practical and outperforms empirical policies.

Background: Independent Reference Model

Analytical policies use a simplified memory reference model to derive optimal policy

Prior work uses *independent reference model*

[Aho, JACM'71]

• Candidates have static, non-uniform reference probabilities

• E.g., a 4-way cache	0x1000	0x1234	OxBEEF	0x1337	
	0.1	0.2	0.05	0.0001	

Optimal policy: evict candidate with lowest reference probability

Background: Independent Reference Model

IRM is a poor model of LLC references

- Focuses on heterogeneity
- At the expense of dynamic behavior

Relatively few threads access LLC

- LLC candidates tend to behave similarly
- Dynamic behavior is paramount

lid Reuse Distance Model

Reuse distance is the number of accesses between references to same address

Reuse distances are independently and identically distributed according to the *reuse distance* distribution, P(D = d).

What is the right replacement policy?

What's the Right Approach?

Goal: Maximize hit rate

Constraint: Limited cache space

The replacement policy must balance the probability a candidate will hit (reward) against the cache space it takes away from other candidates (opportunity cost)

But how do we tradeoff between these incommensurable objectives?

 $EVA = 20\% \times 0.75 + 30\% \times 0.5 + 50\% \times -0.8 = -0.1$ A tends to lower the cache's hit rate

🕽 🔵 🌑 🌑 🛛 Analytical Cache Replacement 🛛 🔘 🔵

) 🕘 🕘 🕘 🛛 Analytical Cache Replacement 🛛 🔾 🔵

What about the future?

Cache Replacement As An MDP

Markov decision processes extend Markov chains with decision making

- States *s*_i
- Actions $\alpha_{i,j}$
- Rewards $r(s_i, a_{i,j})$
- Transition probabilities $P(s_k | s_i, a_{i,j})$

MDP theory lets one find the optimal policy to maximize some metric, e.g. total reward

Cache Replacement As An MDP

States: each candidate's age

Actions: which candidate to evict

Rewards: +1 for hit

Transition probabilities: iid model

Objective: maximize average rewardI.e., maximize hit rate

Cache Replacement As An MDP

MDP theory gives the optimal policy

Define bias as the expected total reward minus the average reward

• This is EVA: hits minus forgone hits

The optimal policy maximizes the *expected future bias*

• → Evicting candidate with lowest EVA is optimal

Recovering Some Heterogeneity

Some programs have clearly distinct *classes* of accesses

lid memory reference model w/ classification

- Different reuse distance distribution per class, $P(D_C = d)$
- Within each class, reuse distances are identically distributed
- All reuse distances are independent

Reuse vs. non-reused classification

- Distinguishes working set that fits in cache
- Simple but effective

[RRIP, ISCA'10][DCS,HPCA'12]

Implementation

Implementation – Updates

Small circuit computes EVA

Sorting FSM computes eviction priorities (not shown)

Implementation – Overheads

Synthesized in 65nm commercial manufacturing process

SRAM overheads from CACTI

	Area		Energy		
	mm ²	vs. 1MB	nJ / LLC miss	vs. 1MB	
Ranking	0.010	0.05%	0.014	0.6%	
Counters	0.025	0.14%	0.010	0.4%	
Updates	0.052	0.30%	380 / 128K	0.1%	
Total	_	0.5%	_	1.1%	

Evaluation – Cache Performance

EVA greatly reduces misses vs. prior policies

- Avg. MPKI over SPECCPU2006
- LLC sizes 1MB to 8MB

EVA closes 57% of gap between random and MINvs. 41%-45% for prior policies

Evaluation – Cache Area

Because EVA improves performance, it requires less space to match performance

• EVA saves 9% area vs SHiP

Other Work

Other Work

Provable Convex Cache Performance

Partitioning and high-performance replacement should be complementary

• Partitioning requires miss curves – easy for LRU, hard otherwise

We use partitioning to fix LRU's problems without sacrificing its benefits

- Specifically, we avoid performance cliffs and guarantee *convex miss curves*
- Prove it works using simple model of miss curve scaling

🕽 🕘 🕘 🔵 🔵 Other Work 🛛 🔾

A Cache Model for Modern Processors

Accurately model performance of arbitrary replacement policies

- Use iid memory reference model
- Model replacement policies as ranking functions: R(a) = eviction priority

Simple set of equations for probability distribution of age, hits, and evictions

Fixed-point iteration converges rapidly

Mean error of ~3% across policies, benchmarks & LLC sizes

Explicit, closed-form solutions of cache performance

Relax discrete cache model into system of ordinary differential equations

• E.g., for random replacement:

$$H'' = \frac{D''}{D'_m} H' - \frac{D'}{1 - D} E'$$

$$E'' = -\frac{m}{S} (H' + E')$$

Can use numerical analysis to solve for arbitrary access patterns

Can solve explicitly miss rate m on particular access patterns

• E.g., scanning: $m = 1 - \text{ProductLog}(-\omega e^{-\omega})/\omega$ where $\omega = N/S$

• E.g., stack:
$$m = 1 - \frac{1}{2\omega} - \frac{1}{4\omega^2} - \frac{1}{4\omega^3} + O\left(\frac{1}{\omega^4}\right)$$

Extremely good match with simulation!

Acknowledgements – Research

Anant Agarwal 2008-2012

Frans Kaashoek 2012-2013

Nickolai Zeldovich

Acknowledgements – Research

Acknowledgements – Education

Conclusion

Data movement is a growing problem in current systems

"Common case", heuristic design is insufficient

Analytical memory systems achieve robust, high performance

- Virtual cache hierarchies
- Analytical cache replacement

Mechanisms, monitoring, and models give a blueprint for future memory systems

Questions?

Conclusion