P
¥ : '

-

-4;" JIGSAW:

' SCALABLE SOFTWARE-DEFINED CACHES

5 sl R
oA : L .’1,;, : :;—} X
A) _., o il & e >
% Q‘y 3 SR » -
3 gl
PR N ;
A= Y

*

/
7 \
A 3

e
e
3

. ;‘“' b
AP __‘4) 5 AR
v
,
XN

oy /> ol
L)
-
Fout
ty U
£ L
{':"c ~
<.

#

NATHAN BECKMANN AND DANIEL SANCHEZ
MIT CSAIL

PACT' 13 - EDINBURGH, SCOTLAND WFH{L’

SEr 11, 2013]
Ute Ll

Massachusetts Institute of Technology
CSAIL

Summary

NUCA is giving us , but further away
40
Applications have widely & libquantum
. . s zeusmp
varying cache behavior N
0 16MB
Cache Size
Cache organization should to application

Jigsaw uses physical cache resources as building blocks
of virtual caches, or shares

Approach

11 Jigsaw uses physical cache resources as building blocks

of virtual caches, or shares libquantum
zeusmp
\ Bank

4 ' ~
- B ——
s .

- Tiled

0 .

Cache Size 1oM8 MUI“CO re

Agenda

O Introduction

-1 Background
Goals
Existing Approaches

0 Jigsaw Design

0 Evaluation

Goals

Make effective use of cache

Place data for

Provide capacity for performance

Have a implementation

S-NUCA

Existing Approaches

ly across banks

Ines even

Spread |

0

3

0

A

01 High Latency

ion

7 No Isolat

Existing Approaches: Partitioning

Isolate regions of cache between applications.

O]
1 High Latency
O]

[l

11 Jigsaw needs partitioning; uses Vantage to get strong
guarantees with no loss in associativity

Existing Approaches: Private

Place lines in local bank

0 Low Capacity !_
O

[l

1 Complex = LLC directory

Existing Approaches: D-NUCA

Placement, migration, and replication heuristics

,,,,,,,,,,,,,,,,,,,,,,,,,,

But beware of over-replication

................

Don’t fully exploit capacity
vs. latency tradeoff

1 No Isolation

N _/

Private-baseline schemes require LLC directory

[l

Existing Approaches: Summary

S-NUCA Partitioning Private

Hi
|gh. No
Capacity
L
o No No
Latency
Isolation No

Simple No

10

D-NUCA

No

Jigsaw

[l

[l

[l

[l

— Any share can
take full capacity, no replication

— Shares allocated
near cores that use them

— Partitions within each
bank

— Low overhead hardware, no LLC directory,
software-managed

11

Agenda

O Introduction
0 Background

01 Jigsaw Design
Operation
Monitoring

Configuration

0 Evaluation

12

Jigsaw Components

- qucemenﬁ -
- Miss Curves

ﬂ Accesses

-

Monitoring

\

13

Jigsaw Components

_——--—-——_____.~

- -

- -
- -

Monitoring

-~
= e -
— -
-
= e = =

14

Agenda

O Introduction
0 Background

0 Jigsaw Design
o Operation
O Monitoring

O Configuration

0 Evaluation

re
C]@C] 15

Operation: Access

Data =2 shares, so

LLC

Classifier

L2

L1l L1D

Core

LD Ox5CATABIE

TLB

‘—

Share 1

Data Classification

1 Jigsaw classifies data based on access pattern

Thread, Process, , and Kernel

* 6 thread shares

* 2 process shares
global share

* 1 kernel share

Operating System

71 Data lazily re-classified on TLB miss

Similar to R-NUCA but...

® R-NUCA: Classification = Location
= Jigsaw: Classification = Share (sized & placed

17

Operation:

Share-bank Translation Buffer

Gives unique location of
the line in the LLC

Address, Share =»
Bank, Partition

Share Id (from TLB)

v

2706

m STB Entry '

4 entries, associative, Share Config ‘ Address Ox5CA1AB1E maps to

exception on miss

Address (from L1 miss)

Bank/
Part O

1

STB:
400 bytes;

1/3

3/5

~

=l e

Hash lines proportionally

Share:

SES I

~ Il

Ox5CATABI1E
Bank/
Part 63

1/3 0/8

bank 3, partition 5

Agenda

O Introduction
0 Background

0 Jigsaw Design
Operation
Monitoring

Configuration

0 Evaluation

re
ESIRET.

Monitoring

rc
) %0

Software requires miss curves for each share

Add utility monitors (UMON:s) per tile to produce miss curves

Dynamic sampling to model full LLC at each bank; see paper

—

Way O Way N-1
0x3DF7AB || OxFE3D98 0xDD380B O0x3930EA
0"6 0xB3D3GA || OxOE5A7B 0x123456 0x7890AB
\
V’bb_> 0xCDEF00 0x3173FC || oxcDC911 OxBADO31
0x7A5744 || ox7A4A70 || oxADD235 0x541302
717,543 117,030 213,021 32,103

Tag
Array

Hit
Counters

Misses
A

|

|

— Size
Cache Size

o re
Configuration B .

1 Software decides share configuration

-1 Approach: Size = Place
Solving independently is
Sizing is hard, placing is

. o@oEm

Misses

Slze LL

Configuration: Sizing .ﬁg%
T @l s

Partitioning problem: Divide cache capacity of S among P
partitions /shares to maximize hits

Use miss curves to describe partition behavior
NP-complete in general

Existing approaches:

g I e cerbo

UCP Lookahead is but scales quadratically: O(P x S?)
Utility-based Cache Partitioning, Qureshi and Patt, MICRO’06

Can we scale Lookahead?¢

Configuration: Lookahead .ﬁg%
- @@ OO ®

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses R

. L »

Size LLC Size

Configuration: Lookahead .ﬁg%
— = ¥

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
S A R

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
- @@ O 2%

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
-— e 7

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
S A LY

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
- %

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
L

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
- e n

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
SR S L

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
e 1

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
_— 8 %

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
e

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
e L

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Misses

Configuration: Lookahead .ﬁg%
S A

-1 UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Maximum

/

cache utility

Misses

—

Size LLC Size

Configuration: Lookahead .ﬁg%
L

UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Maximum
cache utility

Misses

r—

Size LLC Size

Configuration: Lookahead .ﬁg%
- %

UCP Lookahead:

Scan miss curves to find allocation that maximizes average
cache utility (hits per byte)

Maximum
cache utility

/

Misses

r—

Size LLC Size

Configuration: Lookahead .ﬁg%
40

1 Observation: Lookahead traces the convex hull of the miss
curve

Maximum
cache utility

/

Misses

r—

Size LLC Size

rc
Convex Hulls 0 .

The convex hull of a curve is the set containing all lines
between any two points on the curve, or “the curve

connecting the points along the bottom”

Size LLC Size

Configuration: Peekahead .ﬁg%
42

There are well-known algorithms to compute convex
hulls
Peekahead algorithm is an ' -time

implementation of UCP Lookahead

Size LLC Size

Configuration: Peekahead .ﬁg%
- @@ 9yl s

Peekahead computes all convex hulls encountered during
allocation in time

Starting from every possible allocation

Up to any remaining cache capacity

Misses
/ >
Misses

Size LLC Size

>

Configuration: Peekahead .ﬁg%
— = 4

Knowing the convex hull, each allocation step is

Convex hulls have decreasing slope = decreasing average
cache utility =2 only consider on hull

Use max-heap to compare between partitions
A

Best /

Step?

é

Configuration: Peekahead .fg%
- @@ OO %

-1 Knowing the convex hull, each allocation step is

Current

Allocation \

Best /

Step?
\N\v
O

Configuration: Peekahead .fg%
S L2

-1 Knowing the convex hull, each allocation step is

Current

Allocation \

Best /

Step

Configuration: Peekahead .ﬁg%
S A A

1 Knowing the convex hull, each allocation step is

>
Best _—— k
Step? — o

Configuration: Peekahead .ﬁg%
- @@ Oy s

1 Knowing the convex hull, each allocation step is

Configuration: Peekahead .ﬁg%
S

1 Knowing the convex hull, each allocation step is

Best k
Step? ,/ —> 0

Configuration: Peekahead .ﬁg%
S LA

1 Knowing the convex hull, each allocation step is

Best
Step

. @

Configuration: Peekahead .ﬁg%
SR i i

1 Knowing the convex hull, each allocation step is

Configuration: Peekahead .ﬁg%
SR S,

o1 Full runtime is
P — number of partitions

S — cache size

1 See paper for additional examples, algorithm, and
corner cases

1 See technical report for additional detail, proofs, and
run-time analysis

Jigsaw: Scalable Software-Defined Caches (Extended Version), Nathan Beckmann and Daniel
Sanchez, Technical Report MIT-CSAIL-TR-2013-017, Massachusetts Institute of Technology, July 2013

Re-configuration .ﬁg%
53

When STB changes, some addresses hash to different

banks
% Ox5CATABI1E % Ox5CATABI1E

1/3|1/3|3/5|1/3|1/3|3/5 1/3 | 4/9|3/5|1/3|1/3|3/5

Selective invalidation hardware walks the LLC and
invalidates lines that have moved

Heavy-handed but infrequent and
Maximum of 300K cycles / 50M cycles =

Design: Hardware Summary

Operation:
Share-bank translation buffer (STB)

rt

)=l s

Tile Organization

handles accesses

Jigsaw L3 Bank

TLB augmented with share id

Bank partitioning HW (Vantage)

b

Monitoring HW Inv HW
. s . I
Monitoring HW: produces miss curves - NoC Router
) T
L2 —| STB
Configuration: invalidation HW : - T
L1l L1D
Core | TLBs

Partitioning HW (Vantage)

Modified structures
New /added structures

Agenda

0 Introduction
0 Background
0 Jigsaw Design

1 Evaluation
Methodology
Performance

Energy

55

Methodology

56

Execution-driven simulation using zsim

Workloads:
16-core singlethreaded mixes of SPECCPU2006 workloads
64-core multithreaded (4x16-thread) mixes of PARSEC

Cache organizations
LRU — shared S-NUCA cache with LRU replacement; baseline
— S-NUCA with Vantage and UCP Lookahead
R-NUCA - state-of-the-art shared-baseline D-NUCA organization
(“shared-private D-NUCA”) — private L3 + shared L4

2x capacity of other schemes
Upper bound for private-baseline D-NUCA organizations

Jigsaw

Evaluation: Performance

16-core multiprogrammed mixes of SPECCPU2006
1.6 | | | I T I 2.2 | |
. ' ' ' D . ' ' '
é) 15l = Jigsaw | P L o 5ol ™™ Jigsaw | : D N |
™ IdealsPD | =TT —~ IdealspD| =
D 14f = RNUCA | i D 1.8H =+ RNUCA |t
-l:—J5 1.3H Vantage __ o 1.6 H Vantage ______________________ _|
T > T
SL2f el D Lap
(@) : : : ; BT Q : : : : : f
R B N D I et i Sy Q L2p it it
o S o N N — s
£ LOPEmmamin bt . Lo T
: : : : : : / . . .
P I S N T N N = .
"0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Workload Workload

Jigsaw achieves best performance
Up to 50% improved throughput, 2.2x improved w. speedup
Gmean +14% throughput, +18% w. speedup

Jigsaw does even better on the most memory intensive mixes

Top 20% of LRU MPKI
Gmean +21% throughput, +29% w. speedup

57

Evaluation: Performance

64-core mu

O

1.30
>

a
I 1.25

2]
S 1.20

)
S 1.15

2110

(@)
> 1.05
@)

=
c 100

= 0.95

’rl’rhreaded mlxes of PARSEC
1.30 .
. J|gsaw ; ; = . J|gsaw 5
o SPRET i ff ocoposH PN SR —
IdealSPD| : — IdealSPD ;
= R-NUCA [-eio i L 120 =+ RNUCA [~ R
i Vantage [@ . i/ o 1151 Vantage | = [f/ .|
N Sl Y =N - r
ERRRERER AR R 8 110 R R A > RN i
Bl Wy i D 105}
L ' : 7p) o et T ;
S T T ---------- . 1.00 [i o o= --------------------------- ---------- -
A R R R R = oosl— i i i i i i |
0 5 10 15 20 25 30 35 40 "0 5 10 15 20 25 30 35 40

Workload
Jigsaw achieves best performance

Gmean +9% throughput, +9% w. speedup

Workload

Remember IdealSPD is an upper bound with 2x capacity

Evaluation: Performance Breakdown

16-core multiprogrammed mixes of SPECCPU2006

Breakdown memory stalls into
network and DRAM
Normalized to LRU o
o
R-NUCA is limited by capacity in these workloads G
(private data = local bank) o
Z

only benefits DRAM

acts as either a private organization (benefit
network) or a shared organization (benefit DRAM)

=
N

.
o

o
(o)

o
o

o
I

o
N

59

Jigsaw IdealSPD
A4 4 R-NUCA Vantage

o

..

0'%.0 OE5 110 1.i5 ZEO 2i5 3.0
I\LLC+DRAM Latency

Optimum

Jigsaw is the only scheme to simultaneously benefit

network and DRAM latency

Evaluation: Energy

60
1 6-core multiprogrammed mixes
1.4
\ : : : : : :
L3 [
A R R
R
e ot O N
?g.z—: " Jigsaw —-_
Q ° IdealSPD| @ @ N\ |
V5 07 - RNUCA |
0.6 Vantage | @iy
030720 40 60 80 100 120 140
Workload
McPAT models of energy (chip + DRAM)

Jigsaw achieves best energy reduction
Up to 72%, gmean of 11%
Reduces both network and DRAM energy

Conclusion

NUCA is giving us , but further away
Applications have widely 4
varying cache behavior .

2 N\
Cache organization should 0 T OMB
to meet application needs Cache Size

Jigsaw uses physical cache resources as
building blocks of virtual caches, or shares

Sized to fit working set
Placed near application for low latency

Jigsaw improves performance up to and reduces energy up
fo

Address

!

H;

Limit

Way O Way N-1
Ox3F7AB OxFE3D98 0xD380B 0x3930EA
O0xBD3GA OxOE5A7B 0x123456 0x7890AB
0xCDEF00 0x3173FC 0xCDC911 O0xBADO31
0x7A5744 0x74A70 0xAD235 0x541302

717,543 117,030 213,021 32,103

~ QUESTIONS

Tag
Array

Hit Counters

N N
I I Massachusetts Institute of Technology

Misses

>
Size LLC Size

!

Placement

Greedy algorithm
Each share is allocated budget

Shares take turns grabbing space in “nearby” banks

Banks ordered by distance from “center of mass” of cores
accessing share

Repeat until budget & banks exhausted

Monitoring

64

Software requires miss curves for each share

Add UMON:s per tile

Small tag array that models LRU on sample of accesses
Tracks # hits per way, # misses = miss curve

Changing sampling rate Sampline Rat UMON Lines
ampling Rate =
models a larger cache pling Modeled Cache Lines

STB spreads lines proportionally to partition size, so sampling
rate must compensate

. Share size UMON Lines
Sampling Rate = X

Partition size Modeled Cache Lines

Monitoring

re
0 e

STB spreads addresses unevenly = change sampling rate to compensate

Augment UMON with hash (shared with STB) and 32-bit limit register that
gives fine control over sampling rate

Way O Way N-1
Address
l Ox3DF7AB OxFE3D98 OxDD380B 0x3930EA
OxB3D3GA OxOE5A7B 0x123456 0x7890AB
H

3 OxCDEFO00 0x3173FC OxCDC911 OxBADO31
— Ox7A5744 O0x7A4A70 OxADD235 0x541302

717,543 117,030 213,021 32,103

Limit

UMON now models full LLC capacity exactly

Shares require only one UMON
Max four shares / bank =» four UMONs / bank =»

Tag
Array

—

Hit
Counters

Evaluation: Extra
66

[Exec [T Net [Reconf
] See paper fOI‘: EEN(2 [E3ILLC CIDRAM
1.2
Out-of-order results 2 10
— o8
° ° %)}
Execution time breakdown 7 os
@
] 0.4
Peekahead performance 3.
ere o . OOV R T] LVRI
SenSITIVITy STUdles All Top MPKI Quintile
B Static ™1 Net —1DRAM
_ 1'20- 4KB [32KB @ 64KB N ——T
1.2
5 [Jigsaw [Vantage =)
5 115 120 2 10
” = — s
S 110 5 O
_CC?- 0 1.15 2 06
S o 204
S 105 3 110 o
c - w 0.2
" 100 S 0.0
" 32 64 128 256 512 512 2K o 105 S LVRITLVRI
Associativity l-E All Top MPKI Quintile

L
o
S}

5 10 25 50 100 250 500
M cycles / interval

